Interlacing polynomials, restricted invertibility and multi-paving

Summer School in Operator Theory

Part III

July 10, 2019

Anderson

For every $\epsilon > 0$ there exists $r = r(\epsilon) \in \mathbb{N}$ such that, for every zero diagonal complex $n \times n$ matrix A there exists a paving $\sigma_1 \cup \cdots \cup \sigma_r = [n]$ which satisfies

$$\|P_{\sigma_i}AP_{\sigma_i}\| \leqslant \epsilon \|A\|$$

for all $i = 1, \ldots, r$.

Anderson

For every $\epsilon > 0$ there exists $r = r(\epsilon) \in \mathbb{N}$ such that, for every zero diagonal complex $n \times n$ matrix A there exists a paving $\sigma_1 \cup \cdots \cup \sigma_r = [n]$ which satisfies

$$\|P_{\sigma_i}AP_{\sigma_i}\| \leqslant \epsilon \|A\|$$

for all $i = 1, \ldots, r$.

Marcus-Spielman-Srivastava

Anderson's conjecture is true; with $r(\epsilon) = (6/\epsilon)^2$ if A is Hermitian, and $r(\epsilon) = (6/\epsilon)^8$ in the general case.

Anderson

For every $\epsilon > 0$ there exists $r = r(\epsilon) \in \mathbb{N}$ such that, for every zero diagonal complex $n \times n$ matrix A there exists a paving $\sigma_1 \cup \cdots \cup \sigma_r = [n]$ which satisfies

$$\|P_{\sigma_i}AP_{\sigma_i}\| \leqslant \epsilon \|A\|$$

for all $i = 1, \ldots, r$.

Marcus-Spielman-Srivastava

Anderson's conjecture is true; with $r(\epsilon) = (6/\epsilon)^2$ if A is Hermitian, and $r(\epsilon) = (6/\epsilon)^8$ in the general case.

This result implies a positive solution to the Kadison-Singer problem.

The next theorem concerns simultaneous paving of a k-tuple of Hermitian matrices.

The next theorem concerns simultaneous paving of a k-tuple of Hermitian matrices.

Ravichandran-Srivastava

Let $\epsilon > 0$ and let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. There exist $r \leq 18k/\epsilon^2$ and a partition $\sigma_1 \cup \cdots \cup \sigma_r = [n]$ such that

$$\lambda_{\max}(P_{\sigma_i}A^{(j)}P_{\sigma_i})\leqslant \epsilon$$

for all $1 \leq i \leq r$ and $1 \leq j \leq k$.

The next theorem concerns simultaneous paving of a k-tuple of Hermitian matrices.

Ravichandran-Srivastava

Let $\epsilon > 0$ and let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. There exist $r \leq 18k/\epsilon^2$ and a partition $\sigma_1 \cup \cdots \cup \sigma_r = [n]$ such that

$$\lambda_{\max}(P_{\sigma_i}A^{(j)}P_{\sigma_i})\leqslant \epsilon$$

for all $1 \leq i \leq r$ and $1 \leq j \leq k$.

By successive application of the Marcus-Spielman-Srivastava theorem one can prove a statement like this; however, the dependence of $r(\epsilon)$ on ϵ would be

 $r(\epsilon) \leqslant (6/\epsilon)^{2k}.$

• A weaker result, in the spirit of the previous talk, is the following joint restricted invertibility theorem.

• A weaker result, in the spirit of the previous talk, is the following joint restricted invertibility theorem.

Ravichandran-Srivastava

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

 $\lambda_{\max}(P_{\tau}A^{(j)}P_{\tau})\leqslant\epsilon$

for all $j = 1, \ldots, k$.

• A weaker result, in the spirit of the previous talk, is the following joint restricted invertibility theorem.

Ravichandran-Srivastava

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\mathsf{max}}({{\mathcal{P}}_{ au}}{\mathcal{A}}^{(j)}{{\mathcal{P}}_{ au}})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

• We shall sketch the proof of this result.

 For any σ ⊂ [n] we write A_σ for the submatrix of A indexed by rows and columns with indices in σ, and A_{σ*} for the matrix obtained if the rows and columns with indices in σ are removed.

- For any σ ⊂ [n] we write A_σ for the submatrix of A indexed by rows and columns with indices in σ, and A_{σ*} for the matrix obtained if the rows and columns with indices in σ are removed.
- If A = (A⁽¹⁾,...,A^(k)) is a k-tuple of matrices in M_n(C) then their mixed determinant is

$$D(\mathbf{A}) = \sum_{\sigma_1 \cup \cdots \cup \sigma_k = [n]} \det(A_{\sigma_1}^{(1)}) \cdots \det(A_{\sigma_k}^{(k)}).$$

- For any σ ⊂ [n] we write A_σ for the submatrix of A indexed by rows and columns with indices in σ, and A_{σ*} for the matrix obtained if the rows and columns with indices in σ are removed.
- If A = (A⁽¹⁾,...,A^(k)) is a k-tuple of matrices in M_n(C) then their mixed determinant is

$$D(\mathbf{A}) = \sum_{\sigma_1 \cup \cdots \cup \sigma_k = [n]} \det(A_{\sigma_1}^{(1)}) \cdots \det(A_{\sigma_k}^{(k)}).$$

If A = (A⁽¹⁾,...,A^(k)) is a k-tuple of matrices in M_n(C) then their mixed determinantal polynomial (MDP) is

$$\chi[\mathbf{A}](x) = \frac{1}{k^n} D\big(xl - A^{(1)}, \dots, xl - A^{(k)}\big).$$

• For any $\sigma \subset [n]$ we define the restricted mixed determinantal polynomials

$$\chi[\mathbf{A}_{\sigma}] = \chi[A_{\sigma}^{(1)}, \dots A_{\sigma}^{(k)}]$$

and

$$\chi[\mathbf{A}_{\sigma^*}] = \chi[A_{\sigma^*}^{(1)}, \dots A_{\sigma^*}^{(k)}].$$

• For any $\sigma \subset [n]$ we define the restricted mixed determinantal polynomials

$$\chi[\mathbf{A}_{\sigma}] = \chi[A_{\sigma}^{(1)}, \dots A_{\sigma}^{(k)}]$$

and

$$\chi[\mathbf{A}_{\sigma^*}] = \chi[A_{\sigma^*}^{(1)}, \dots A_{\sigma^*}^{(k)}].$$

• If $\Sigma = (\sigma_1, \ldots, \sigma_r)$ is a partition of [n], for any $A \in M_n(\mathbb{C})$ we define

$$\chi[A_{\Sigma}] = \prod_{i=1}^{r} \chi[A_{\sigma_i}].$$

• For any $\sigma \subset [n]$ we define the restricted mixed determinantal polynomials

$$\chi[\mathbf{A}_{\sigma}] = \chi[A_{\sigma}^{(1)}, \dots A_{\sigma}^{(k)}]$$

and

$$\chi[\mathbf{A}_{\sigma^*}] = \chi[A_{\sigma^*}^{(1)}, \dots A_{\sigma^*}^{(k)}].$$

• If $\Sigma = (\sigma_1, \ldots, \sigma_r)$ is a partition of [n], for any $A \in M_n(\mathbb{C})$ we define

$$\chi[A_{\Sigma}] = \prod_{i=1}^{r} \chi[A_{\sigma_i}]$$

• Similarly, if $\Sigma = (\sigma_1, \dots, \sigma_r)$ is a partition of [n] and $A^{(1)}, \dots, A^{(k)} \in M_n(\mathbb{C})$ we define

$$\chi[\mathbf{A}_{\Sigma}] = \prod_{i=1}^{r} \chi[\mathbf{A}_{\sigma_i}] = \prod_{i=1}^{r} \chi[\mathcal{A}_{\sigma_i}^{(1)}, \dots, \mathcal{A}_{\sigma_i}^{(k)}].$$

Formulas

1. If $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ then

$$\chi[A^{(1)}, \dots, A^{(k)}] = rac{1}{(k!)^n} \partial^{(k-1)[n]} \prod_{j=1}^k \det[Z - A^{(j)}]\Big|_{Z=xl}.$$

Formulas

1. If $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ then

$$\chi[A^{(1)}, \dots, A^{(k)}] = \frac{1}{(k!)^n} \partial^{(k-1)[n]} \prod_{j=1}^k \det[Z - A^{(j)}]\Big|_{Z = xl}.$$

2. Moreover, if $\sigma \subset [n]$ then

$$\chi[\mathcal{A}_{\sigma}^{(1)},\ldots,\mathcal{A}_{\sigma}^{(k)}] = \frac{1}{(k!)^n} \partial^{k([n]\setminus\sigma)} \prod_{j=1}^k \det[Z - \mathcal{A}^{(j)}]\Big|_{Z=x^j}$$

Formulas

1. If $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ then

$$\chi[A^{(1)}, \dots, A^{(k)}] = \frac{1}{(k!)^n} \partial^{(k-1)[n]} \prod_{j=1}^k \det[Z - A^{(j)}]\Big|_{Z = xl}.$$

2. Moreover, if $\sigma \subset [n]$ then

$$\chi[\mathcal{A}_{\sigma}^{(1)},\ldots,\mathcal{A}_{\sigma}^{(k)}] = \frac{1}{(k!)^n} \partial^{k([n]\setminus\sigma)} \prod_{j=1}^k \det[Z-\mathcal{A}^{(j)}]\Big|_{Z=xl}$$

3. Moreover, if $\Sigma = \{\sigma_1, \ldots, \sigma_r\}$ is a partition of [n] then

$$\chi[\mathbf{A}_{\Sigma}] = \frac{1}{(k!)^{rn}} \Big(\prod_{i=1}^{r} \partial_{(i)}^{k([n] \setminus \sigma_i)}\Big) \prod_{i=1}^{r} \prod_{j=1}^{k} \det[Z_i - A^{(j)}] \Big|_{Z_1 = \dots = Z_r = x^d}$$

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then, $\max_{1 \leqslant i \leqslant k} \lambda_{\max}(\chi[A^{(i)}]) \leqslant k \cdot \lambda_{\max}(\chi[\mathbf{A}]),$ where $\mathbf{A} = (A^{(1)}, \ldots, A^{(k)}).$

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then, $\max_{1 \leqslant i \leqslant k} \lambda_{\max}(\chi[A^{(i)}]) \leqslant k \cdot \lambda_{\max}(\chi[\mathbf{A}]),$ where $\mathbf{A} = (A^{(1)}, \ldots, A^{(k)}).$

• The main step is the next proposition.

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then, $\max_{1 \leq i \leq k} \lambda_{\max}(\chi[A^{(i)}]) \leq k \cdot \lambda_{\max}(\chi[\mathbf{A}]),$ where $\mathbf{A} = (A^{(1)}, \ldots, A^{(k)}).$

• The main step is the next proposition.

Proposition 2

Let $\mathbf{A} = (A^{(1)}, \dots, A^{(k)})$ be a k-tuple of zero diagonal Hermitian matrices and B be a zero diagonal Hermitian matrix. Then,

$$\lambda_{\max}(\chi[\mathbf{A},B]) \ge \lambda_{\max}(\chi[\mathbf{A},0]).$$

$$\lambda_{\max}(\chi[\mathbf{A}, B]) \geqslant \lambda_{\max}(\chi[\mathbf{A}, B_{(\{1\})}]).$$

Here, $B_{(\sigma)}$ is the matrix that we obtain if we set the entries of the rows and columns of σ equal to 0.

$$\lambda_{\max}(\chi[\mathbf{A},B]) \geqslant \lambda_{\max}(\chi[\mathbf{A},B_{(\{1\})}]).$$

Here, $B_{(\sigma)}$ is the matrix that we obtain if we set the entries of the rows and columns of σ equal to 0.

• In order to show this we define $B_t = D_t B D_t$ where $D_t = \text{diag}(\sqrt{t}, 1, \dots, 1)$ and the polynomial

$$p_t = \chi[\mathbf{A}, B_t].$$

$$\lambda_{\max}(\chi[\mathbf{A},B]) \geqslant \lambda_{\max}(\chi[\mathbf{A},B_{(\{1\})}]).$$

Here, $B_{(\sigma)}$ is the matrix that we obtain if we set the entries of the rows and columns of σ equal to 0.

• In order to show this we define $B_t = D_t B D_t$ where $D_t = \text{diag}(\sqrt{t}, 1, \dots, 1)$ and the polynomial

$$p_t = \chi[\mathbf{A}, B_t].$$

This is real rooted for all $t \ge 0$. Then, we show that the function $f : [0, \infty) \to \mathbb{R}$ defined by

$$f(t) = \lambda_{\max}(p_t)$$

is increasing in t. Letting $t \rightarrow 0$ we get the claim.

$$\lambda_{\max}(\chi[\mathbf{A},B]) \geqslant \lambda_{\max}(\chi[\mathbf{A},B_{(\{1\})}]).$$

Here, $B_{(\sigma)}$ is the matrix that we obtain if we set the entries of the rows and columns of σ equal to 0.

• In order to show this we define $B_t = D_t B D_t$ where $D_t = \text{diag}(\sqrt{t}, 1, \dots, 1)$ and the polynomial

$$p_t = \chi[\mathbf{A}, B_t].$$

This is real rooted for all $t \ge 0$. Then, we show that the function $f : [0, \infty) \to \mathbb{R}$ defined by

$$f(t) = \lambda_{\max}(p_t)$$

is increasing in t. Letting $t \rightarrow 0$ we get the claim.

• Applying this successively we see that

$$\lambda_{\max}(\chi[\mathbf{A}, B]) \geqslant \lambda_{\max}(\chi[\mathbf{A}, B_{(\{1, \dots, k\})}])$$

for all $k \leq n$. When k = n we get the result.

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then,

$$\max_{\leqslant i \leqslant k} \lambda_{\max}(\chi[\mathcal{A}^{(i)}]) \leqslant k \cdot \lambda_{\max}(\chi[\mathbf{A}]),$$

where $\mathbf{A} = (A^{(1)}, \dots, A^{(k)}).$

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then,

$$\max_{1 \leq i \leq k} \lambda_{\max}(\chi[\mathcal{A}^{(i)}]) \leq k \cdot \lambda_{\max}(\chi[\mathcal{A}]),$$

where $\mathbf{A} = (A^{(1)}, \dots, A^{(k)}).$

• Having proved Proposition 2 and applying it k times we see that

 $\lambda_{\max}(\chi[A^{(1)}, A^{(2)}, \dots, A^{(k)}]) \ge \lambda_{\max}(\chi[A^{(1)}, 0, \dots, 0]).$

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then,

$$\max_{1 \leq i \leq k} \lambda_{\max}(\chi[\mathcal{A}^{(i)}]) \leq k \cdot \lambda_{\max}(\chi[\mathcal{A}]),$$

where $\mathbf{A} = (A^{(1)}, \dots, A^{(k)}).$

• Having proved Proposition 2 and applying it k times we see that

$$\lambda_{\max}(\chi[\mathcal{A}^{(1)}, \mathcal{A}^{(2)}, \dots, \mathcal{A}^{(k)}]) \geqslant \lambda_{\max}(\chi[\mathcal{A}^{(1)}, 0, \dots, 0]).$$

• A computation shows that

$$\chi[A^{(1)}, 0, \dots, 0](x) = \frac{1}{k^n}\chi[A^{(1)}](kx).$$

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then,

$$\max_{1 \leq i \leq k} \lambda_{\max}(\chi[A^{(i)}]) \leq k \cdot \lambda_{\max}(\chi[A]),$$

where $\mathbf{A} = (A^{(1)}, \dots, A^{(k)}).$

• Having proved Proposition 2 and applying it k times we see that

$$\lambda_{\max}(\chi[\mathcal{A}^{(1)},\mathcal{A}^{(2)},\ldots,\mathcal{A}^{(k)}]) \geqslant \lambda_{\max}(\chi[\mathcal{A}^{(1)},0,\ldots,0]).$$

• A computation shows that

$$\chi[A^{(1)}, 0, \dots, 0](x) = \frac{1}{k^n}\chi[A^{(1)}](kx).$$

• This implies that

$$\lambda_{\max}(\chi[\mathcal{A}^{(1)}]) = k \cdot \lambda_{\max}(\chi[\mathcal{A}^{(1)}, 0, \dots, 0]) \leqslant k \cdot \lambda_{\max}(\chi[\mathbf{A}]).$$

Let $A^{(1)}, \ldots, A^{(k)}$ be zero diagonal Hermitian matrices. Then,

$$\max_{1 \leq i \leq k} \lambda_{\max}(\chi[\mathcal{A}^{(i)}]) \leq k \cdot \lambda_{\max}(\chi[\mathcal{A}]),$$

where $\mathbf{A} = (A^{(1)}, \dots, A^{(k)}).$

• Having proved Proposition 2 and applying it k times we see that

$$\lambda_{\max}(\chi[\mathcal{A}^{(1)},\mathcal{A}^{(2)},\ldots,\mathcal{A}^{(k)}]) \geqslant \lambda_{\max}(\chi[\mathcal{A}^{(1)},0,\ldots,0]).$$

• A computation shows that

$$\chi[A^{(1)}, 0, \dots, 0](x) = \frac{1}{k^n}\chi[A^{(1)}](kx).$$

• This implies that

$$\lambda_{\max}(\chi[\mathcal{A}^{(1)}]) = k \cdot \lambda_{\max}(\chi[\mathcal{A}^{(1)}, 0, \dots, 0]) \leqslant k \cdot \lambda_{\max}(\chi[\mathbf{A}]).$$

• By symmetry, the same holds for all $\lambda_{\max}(\chi[A^{(j)}])$.

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\max}(P_{ au}A^{(j)}P_{ au})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\max}(P_{ au}A^{(j)}P_{ au})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

• For the proof we analyze the MDP when we choose a common submatrix of the matrices $A^{(j)}$.

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\max}(P_{ au}A^{(j)}P_{ au})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

- For the proof we analyze the MDP when we choose a common submatrix of the matrices $A^{(j)}$.
- Recall that A_{σ^*} denotes the submatrix of A with the rows and columns in σ removed, and χ_{σ^*} is the corresponding restricted characteristic polynomial.

Lemma 3

If $\mathbf{A} = (A^{(1)}, \dots, A^{(k)})$ is a k-tuple of matrices in $M_n(\mathbb{C})$ then, for any $m \leqslant n$ we have

$$m! \sum_{|\sigma|=m} \chi[\mathbf{A}_{\sigma^*}] = \chi^{(m)}[\mathbf{A}].$$

Here, $f^{(m)}$ denotes the *m*-th derivative of *f*.

Lemma 3

If $\mathbf{A} = (A^{(1)}, \dots, A^{(k)})$ is a k-tuple of matrices in $M_n(\mathbb{C})$ then, for any $m \leqslant n$ we have

$$m! \sum_{|\sigma|=m} \chi[\mathbf{A}_{\sigma^*}] = \chi^{(m)}[\mathbf{A}].$$

Here, $f^{(m)}$ denotes the *m*-th derivative of *f*.

Proposition 4

Let $\mathbf{A} = (A^{(1)}, \dots, A^{(k)})$ be a k-tuple of Hermitian matrices in $M_n(\mathbb{C})$. For any $m \leq n$ there exists a subset $\sigma \subset [n]$ with $|\sigma| = m$ such that

$$\lambda_{\max}(\chi[\mathbf{A}_{\sigma^*}]) \leqslant \lambda_{\max}\Big(\sum_{|\sigma|=m} \chi[\mathbf{A}_{\sigma^*}]\Big) = \lambda_{\max}(\chi^{(m)}[\mathbf{A}]).$$

 Fix i ∈ [n]. First we show that the polynomials χ[A_{{i}*}] have a common interlacing. To see this we check that every convex combination

$$\sum_{i=1}^n \mu_i \chi[\mathbf{A}_{\{i\}^*}]$$

is real rooted.

 Fix i ∈ [n]. First we show that the polynomials χ[A_{{i}*}] have a common interlacing. To see this we check that every convex combination

$$\sum_{i=1}^n \mu_i \chi[\mathbf{A}_{\{i\}^*}]$$

is real rooted.

 One can check that differentiation preserves interlacing. It follows that for any j ≥ 1 the polynomials χ^(j)[A_{ij}*] have a common interlacing.

 Fix i ∈ [n]. First we show that the polynomials χ[A_{{i}*}] have a common interlacing. To see this we check that every convex combination

$$\sum_{i=1}^n \mu_i \chi[\mathbf{A}_{\{i\}^*}]$$

is real rooted.

- One can check that differentiation preserves interlacing. It follows that for any j ≥ 1 the polynomials χ^(j)[A_{ij}*] have a common interlacing.
- Applying this fact with j = m 1 we find i_1 such that

$$\lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}\Big(\sum_{i=1}^n \chi^{(m-1)}[\mathbf{A}_{\{i\}^*}]\Big).$$

 Fix i ∈ [n]. First we show that the polynomials χ[A_{{i}*}] have a common interlacing. To see this we check that every convex combination

$$\sum_{i=1}^n \mu_i \chi[\mathbf{A}_{\{i\}^*}]$$

is real rooted.

- One can check that differentiation preserves interlacing. It follows that for any j ≥ 1 the polynomials χ^(j)[A_{ii}*] have a common interlacing.
- Applying this fact with j = m 1 we find i_1 such that

$$\lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}\Big(\sum_{i=1}^n \chi^{(m-1)}[\mathbf{A}_{\{i\}^*}]\Big).$$

• By Lemma 3 we have

$$\lambda_{\max}\Big(\sum_{i=1}^n \chi^{(m-1)}[\mathbf{A}_{\{i\}^*}]\Big) = \lambda_{\max}(\chi^{(m)}[\mathbf{A}]),$$

therefore, for some $i_1 \in [n]$ we have

$$\lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}(\chi^{(m)}[\mathbf{A}]).$$

• We have found $i_1 \in [n]$ such that

$$\lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}(\chi^{(m)}[\mathbf{A}]).$$

• We have found $i_1 \in [n]$ such that

$$\lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}(\chi^{(m)}[\mathbf{A}]).$$

• Repeating the same argument we find $i_2 \in [n] \setminus \{i_1\}$ such that

$$\begin{split} \lambda_{\max}(\chi^{(m-2)}[\mathbf{A}_{\{i_1,i_2\}^*}]) &\leqslant \lambda_{\max}\Big(\sum_{i \in [n] \setminus \{i_1\}} \chi^{(m-2)}[\mathbf{A}_{\{i_1,i\}^*}]\Big) \\ &= \lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}(\chi^{(m)}[\mathbf{A}]). \end{split}$$

• We have found $i_1 \in [n]$ such that

$$\lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}(\chi^{(m)}[\mathbf{A}]).$$

• Repeating the same argument we find $i_2 \in [n] \setminus \{i_1\}$ such that

$$\begin{split} \lambda_{\max}(\chi^{(m-2)}[\mathbf{A}_{\{i_1,i_2\}^*}]) &\leqslant \lambda_{\max}\Big(\sum_{i \in [n] \setminus \{i_1\}} \chi^{(m-2)}[\mathbf{A}_{\{i_1,i\}^*}]\Big) \\ &= \lambda_{\max}(\chi^{(m-1)}[\mathbf{A}_{\{i_1\}^*}]) \leqslant \lambda_{\max}(\chi^{(m)}[\mathbf{A}]). \end{split}$$

• After m steps we get $\sigma = \{i_1, \ldots, i_m\}$ with $|\sigma| = m$ so that

$$\lambda_{\max}(\chi[\mathbf{A}_{\sigma^*}]) \leqslant \lambda_{\max}(\chi^{(m)}[\mathbf{A}]).$$

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\max}(P_{\tau}A^{(j)}P_{\tau})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\max}(P_{\tau}A^{(j)}P_{\tau})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

• The first observation is that the characteristic polynomial of a zero diagonal $n \times n$ Hermitian matrix A is of the form

$$x^n - rac{\operatorname{tr}(\mathcal{A}^2)}{2}x^{n-2} + ext{lower order terms.}$$

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\max}(P_{\tau}A^{(j)}P_{\tau})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

• The first observation is that the characteristic polynomial of a zero diagonal $n \times n$ Hermitian matrix A is of the form

$$x^n - rac{\operatorname{tr}(\mathcal{A}^2)}{2}x^{n-2} +$$
lower order terms.

• Given $\mathbf{A} = (A^{(1)}, \dots, A^{(k)})$ we set $tr(\mathbf{A}^2) = \sum_{i=1}^{k} tr((A^{(i)})^2)$.

Let $A^{(1)}, \ldots, A^{(k)} \in M_n(\mathbb{C})$ be zero diagonal Hermitian contractions. For any $\epsilon > 0$ we may find a subset $\tau \subset [n]$ with $|\tau| \ge \epsilon^2 n/6k$ such that

$$\lambda_{\max}(P_{\tau}A^{(j)}P_{\tau})\leqslant\epsilon$$

for all $j = 1, \ldots, k$.

• The first observation is that the characteristic polynomial of a zero diagonal $n \times n$ Hermitian matrix A is of the form

$$x^n - \frac{\operatorname{tr}(A^2)}{2}x^{n-2} +$$
lower order terms.

- Given $\mathbf{A} = (A^{(1)}, \dots, A^{(k)})$ we set $tr(\mathbf{A}^2) = \sum_{i=1}^k tr((A^{(i)})^2)$.
- Then, summing over all partitions $\Sigma = (\sigma_1, \dots, \sigma_k)$ of [n] and noting that each pair of indices has probability $1/k^2$ of being in some σ_i , we finally get

$$q(x) = \chi[\mathbf{A}](x) = \mathbb{E}_{\sigma_1,...,\sigma_k} \prod_{i=1}^k \chi[\mathbf{A}_{\sigma_i^*}^{(i)}](x) = x^n - \frac{\operatorname{tr}(\mathbf{A}^2)}{2k^2} x^{n-2} + \cdots$$

One can also check that all the roots of q(x) are in [-1, 1].

Let q be a real rooted polynomial of degree n with roots in [-1, 1]. Assume that the sum of the roots is 0 and the average of the squares of the roots is α . For any $c \leq \frac{1}{1+\alpha}$ we have

$$\lambda_{\max}(q^{((1-c)n)}) \leqslant c(1-lpha) + 2\sqrt{c(1-c)lpha}.$$

Let q be a real rooted polynomial of degree n with roots in [-1, 1]. Assume that the sum of the roots is 0 and the average of the squares of the roots is α . For any $c \leq \frac{1}{1+\alpha}$ we have

$$\lambda_{\max}(q^{((1-c)n)}) \leqslant c(1-\alpha) + 2\sqrt{c(1-c)\alpha}.$$

• We apply this lemma for the polynomial $q = \chi[\mathbf{A}]$. The average of the squares of the roots is

$$\alpha = \frac{\operatorname{tr}(\mathbf{A}^2)}{k^2 n} \leqslant \frac{kn}{k^2 n} = \frac{1}{k}.$$

Here we use the fact that $||A^{(i)}|| \leq 1$ for all *i*.

Let q be a real rooted polynomial of degree n with roots in [-1, 1]. Assume that the sum of the roots is 0 and the average of the squares of the roots is α . For any $c \leq \frac{1}{1+\alpha}$ we have

$$\lambda_{\max}(q^{((1-c)n)}) \leqslant c(1-\alpha) + 2\sqrt{c(1-c)\alpha}.$$

• We apply this lemma for the polynomial $q = \chi[\mathbf{A}]$. The average of the squares of the roots is

$$\alpha = \frac{\operatorname{tr}(\mathbf{A}^2)}{k^2 n} \leqslant \frac{kn}{k^2 n} = \frac{1}{k}.$$

Here we use the fact that $||A^{(i)}|| \leq 1$ for all *i*.

• Choose $c \in (0,1)$ small and set m = (1-c)n. Then,

$$\lambda_{\max}(\chi^{(m)}[\mathbf{A}]) \leqslant rac{c(k-1)}{k} + 2\sqrt{rac{c(1-c)}{k}}.$$

Let q be a real rooted polynomial of degree n with roots in [-1, 1]. Assume that the sum of the roots is 0 and the average of the squares of the roots is α . For any $c \leq \frac{1}{1+\alpha}$ we have

$$\lambda_{\max}(q^{((1-c)n)}) \leqslant c(1-\alpha) + 2\sqrt{c(1-c)\alpha}.$$

• We apply this lemma for the polynomial $q = \chi[\mathbf{A}]$. The average of the squares of the roots is

$$\alpha = \frac{\operatorname{tr}(\mathbf{A}^2)}{k^2 n} \leqslant \frac{kn}{k^2 n} = \frac{1}{k}.$$

Here we use the fact that $||A^{(i)}|| \leq 1$ for all *i*.

• Choose $c \in (0,1)$ small and set m = (1-c)n. Then,

$$\lambda_{\max}(\chi^{(m)}[\mathbf{A}]) \leqslant rac{c(k-1)}{k} + 2\sqrt{rac{c(1-c)}{k}}.$$

• From Proposition 4 we have $\sigma \subset [n]$ with $|\sigma| = m$ such that

$$\lambda_{\mathsf{max}}(\mathcal{A}^{(i)}_{\sigma^*}) \leqslant k \cdot \lambda_{\mathsf{max}}(\chi^{(m)}[\mathbf{A}]) \leqslant c(k-1) + 2\sqrt{c(1-c)k}.$$

for all $i \leq m$.

Let q be a real rooted polynomial of degree n with roots in [-1, 1]. Assume that the sum of the roots is 0 and the average of the squares of the roots is α . For any $c \leq \frac{1}{1+\alpha}$ we have

$$\lambda_{\max}(q^{((1-c)n)}) \leqslant c(1-lpha) + 2\sqrt{c(1-c)lpha}.$$

• We apply this lemma for the polynomial $q = \chi[\mathbf{A}]$. The average of the squares of the roots is

$$\alpha = \frac{\operatorname{tr}(\mathbf{A}^2)}{k^2 n} \leqslant \frac{kn}{k^2 n} = \frac{1}{k}.$$

Here we use the fact that $||A^{(i)}|| \leq 1$ for all *i*.

• Choose $c \in (0,1)$ small and set m = (1-c)n. Then,

$$\lambda_{\max}(\chi^{(m)}[\mathbf{A}]) \leqslant rac{c(k-1)}{k} + 2\sqrt{rac{c(1-c)}{k}}.$$

• From Proposition 4 we have $\sigma \subset [n]$ with $|\sigma| = m$ such that

$$\lambda_{\mathsf{max}}(\mathcal{A}^{(i)}_{\sigma^*}) \leqslant k \cdot \lambda_{\mathsf{max}}(\chi^{(m)}[\mathbf{A}]) \leqslant c(k-1) + 2\sqrt{c(1-c)k}$$

for all $i \leq m$.

• Given $0 < \epsilon < 1$ we choose $c = \epsilon^2/6k$ and get the theorem with $\tau = [n] \setminus \sigma$.