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Restricted invertibily

@ In this talk we consider, more generally, rectangular matrices.
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Restricted invertibily

@ In this talk we consider, more generally, rectangular matrices.

@ Let B be a d x m matrix. The restricted invertibility principle of Bourgain-Tzafriri is
a quantitative version of the fact that the rank of B is the maximum number of
linearly independent columns it has.
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Restricted invertibily

@ In this talk we consider, more generally, rectangular matrices.

@ Let B be a d x m matrix. The restricted invertibility principle of Bourgain-Tzafriri is
a quantitative version of the fact that the rank of B is the maximum number of
linearly independent columns it has.

@ Recall that the stable rank of B is the quantity

IBllEs.
18I

srank(B) =

Summer School - 2019 (Part I1) Interlacing polynomials July 2019 2/29



Restricted invertibily

@ In this talk we consider, more generally, rectangular matrices.

@ Let B be a d x m matrix. The restricted invertibility principle of Bourgain-Tzafriri is
a quantitative version of the fact that the rank of B is the maximum number of
linearly independent columns it has.

@ Recall that the stable rank of B is the quantity

IBllEs.
18I

srank(B) =

@ The Bourgain-Tzafriri principle states that for some S C [m] with |S| ~ srank(B)
one has
Umin(BS) 2 C.

2
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Restricted invertivility

Spielman-Srivastava

Let B be a d x m matrix and k < srank(B). There exists S C [m] with |S| = k such that

k )2 I1BlI%s

2
) > _
omin(Bs)" > (1 srank(B) m
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Restricted invertivility

Spielman-Srivastava

Let B be a d x m matrix and k < srank(B). There exists S C [m] with |S| = k such that

k )2 I1BlI%s

2
) > _
omin(Bs)" > (1 srank(B) m

@ We shall first consider the so called isotropic case, where BB = I, (the identity
matrix). In this case, srank(B) = d.
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Restricted invertivility

Spielman-Srivastava
Let B be a d x m matrix and k < srank(B). There exists S C [m] with |S| = k such that

2 k2 |1Bllis
) > _ .
omin(Bs)" > (1 srank(B)) m

@ We shall first consider the so called isotropic case, where BB = I, (the identity
matrix). In this case, srank(B) = d.

Spielman-Srivastava
Let B be a d X m matrix with BB* = I,. For every k < d there exists S C [m] with

|S| = k such that
k

Omin(Bs)? > (1 — 3)2 %
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Restricted invertibility

@ Then, we shall give a more recent proof of the general case with an improved
estimate.
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Restricted invertibility

@ Then, we shall give a more recent proof of the general case with an improved
estimate.

@ Let ||B||, denote the p-Schatten norm of B:

d
1Bl = of,
i=1

where o1 > - -+ > 04 are the singular values of B.
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Restricted invertibility

@ Then, we shall give a more recent proof of the general case with an improved
estimate.

@ Let ||B||, denote the p-Schatten norm of B:

d
1Bl = of,
i=1

where o1 > - -+ > 04 are the singular values of B.
o Consider the quantity

22 22
Srank4(B) — HBHg _ (Ziai) (ZI Uf)
18113 > o} - of ) a?

\
Vv

= srank(B).
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Restricted invertibility

@ Then, we shall give a more recent proof of the general case with an improved
estimate.

@ Let ||B||, denote the p-Schatten norm of B:

d
1Bl = of,
i=1

where o1 > - -+ > 04 are the singular values of B.
o Consider the quantity

sranks(B) = HBHg _ (Zif’?)2 > (Z,U?f

CBlE T Xief T eiyef

Marcus-Spielman-Srivastava

Let B be a d x m matrix and k < sranks(B). There exists S C [m] with |S| = k such

that
|k 2 ||Blffs
min B 2 2 1-— .
omin(Bs) ( srank4(B)) m
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Basic definitions and formulas

Matrix determinant lemma

If Ais an invertible matrix and v is any vector, then

det (A+ uu') = det (A) (1 + u'A™'u) = det (A) (1 + tr(A™ uut)).
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Basic definitions and formulas

Matrix determinant lemma

If Ais an invertible matrix and v is any vector, then

det (A+ uu') = det (A) (1 + u'A™'u) = det (A) (1 + tr(A™ uut)).

v

Jacobi's formula

If A, B are square matrices then

O det (xA+ B) = det (xA+ B) tr(A(xA+ B) ™).

A\
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Basic definitions and formulas

Let A be a square matrix. If r is a random vector then

E det (A—rr') = (1 — 9y) det (A + xE(rr"))

x=0
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Basic definitions and formulas

Let A be a square matrix. If r is a random vector then

E det (A—rr') = (1 — 9y) det (A + xE(rr"))

x=0

@ For the proof, first we assume that A is invertible. Then,
E (det(A—rr)) =E det (A)(1 — r'A7'r)
= det (A) (1 - Etr(A 'rr"))
= det (A) (1 - tr(AT'E(rr))).
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Basic definitions and formulas

Let A be a square matrix. If r is a random vector then

E det (A—rr') = (1 — 9y) det (A + xE(rr"))

x=0

@ For the proof, first we assume that A is invertible. Then,

E (det(A—rr)) =E det (A)(1 — r'A7'r)
= det (A) (1 - Etr(A 'rr"))
= det (A) (1 - tr(AT'E(rr))).

@ On the other hand, one can check that
(1 — 8y)det (A + xE(rr")) = det (A + xE(rr")) (1 — tr((A+ xE(rr)) "'E(rr")),

and setting x = 0 we have the result.
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Basic definitions and formulas

Let A be a square matrix. If r is a random vector then

E det (A—rr') = (1 — 9y) det (A + xE(rr"))

x=0

@ For the proof, first we assume that A is invertible. Then,
E (det(A—rr)) =E det (A)(1 — r'A7'r)
= det (A) (1 - Etr(A 'rr"))
= det (A) (1 - tr(AT'E(rr))).

@ On the other hand, one can check that
(1 — 8y)det (A + xE(rr")) = det (A + xE(rr")) (1 — tr((A+ xE(rr)) "'E(rr")),

and setting x = 0 we have the result.

o If A is not invertible then we approximate it by a sequence of invertible matrices and
pass to the limit with a continuity argument.
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Interlacing families of polynomials

@ An interlacing family consists of a finite rooted tree T and a labelling of the nodes
v € T by monic real rooted polynomials f,(x) such that:
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Interlacing families of polynomials

@ An interlacing family consists of a finite rooted tree T and a labelling of the nodes
v € T by monic real rooted polynomials f,(x) such that:

1. If f, corresponds to a non-leaf node v then f, is a convex combination of the

polynomials that correspond to the children of v.
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Interlacing families of polynomials

@ An interlacing family consists of a finite rooted tree T and a labelling of the nodes
v € T by monic real rooted polynomials f,(x) such that:

1. If f, corresponds to a non-leaf node v then f, is a convex combination of the
polynomials that correspond to the children of v.

2. If the nodes vi,v» € T have a common parent then every convex combination of f,,
and f,, is a real rooted polynomial. This condition implies that all convex
combinations of all the children of a node are real-rooted.
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Interlacing families of polynomials

@ An interlacing family consists of a finite rooted tree T and a labelling of the nodes
v € T by monic real rooted polynomials f,(x) such that:

1. If f, corresponds to a non-leaf node v then f, is a convex combination of the
polynomials that correspond to the children of v.

2. If the nodes vi,v» € T have a common parent then every convex combination of f,,
and f,, is a real rooted polynomial. This condition implies that all convex
combinations of all the children of a node are real-rooted.

@ We say that a family of polynomials is an interlacing family if they are the labels of
the leaves of such a tree.

July 2019 7/29
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Interlacing families of polynomials

@ We shall use interlacing families of a specific type: the nodes at distance t from the
root are indexed by sequences (si,...,s:) € [m]". The root node is denoted by (.
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Interlacing families of polynomials

@ We shall use interlacing families of a specific type: the nodes at distance t from the
root are indexed by sequences (si,...,s:) € [m]". The root node is denoted by (.

@ The leaves of the tree are labeled by polynomials 7, ... 5 (x).
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Interlacing families of polynomials

@ We shall use interlacing families of a specific type: the nodes at distance t from the
root are indexed by sequences (si,...,s:) € [m]". The root node is denoted by (.

@ The leaves of the tree are labeled by polynomials 7, ... 5 (x).
@ For t < k we have

1< 1
fsl,...,st(x) = E Z fsl,...,st,j(x) = F Z f_sl,...,st,st+1,...,sk(X)-
j=1

St+15-++55k
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Interlacing families of polynomials

@ We shall use interlacing families of a specific type: the nodes at distance t from the
root are indexed by sequences (si,...,s:) € [m]". The root node is denoted by (.

@ The leaves of the tree are labeled by polynomials 7, ... 5 (x).
@ For t < k we have

1 <« 1
fsl,...,st(x) = E Z fsl,...,st,j(x) = F Z f_sl,...,st,st+1,...,sk(X)-
j=1 St41s-++»Sk
@ Note that 1
)= "% D fas(X).
S1y--3Sk
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Interlacing families of polynomials

Marcus-Spielman-Srivastava

Let ui,...,un € RY Forany (si,...,sx) € [m]* define

foi,ons(x) = det (xld - zk: usfust,.).

=1

For 0< t < k and s1,...,s: € [m] define

foryonse(X) = — E fip st (X))

Then, these polynomials form an interlacing family.
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Interlacing

@ We say that a polynomial g(x) = Hd+l(X — a;) interlaces a polynomial
F) =TI (x=B)ifon>Pr>a2>Pa> > aq > Ba > gyt
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Interlacing

@ We say that a polynomial g(x) = H;’jll(x — «) interlaces a polynomial

d .
fxX)=[l_ix=8)ifau>2pr>2a>2pBe>- 2 aqg 2 Ba > ad1.
@ The polynomials fi, ..., fn, have a common interlacing if there exists a polynomial g
that interlaces all the f;'s.
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Interlacing

@ We say that a polynomial g(x) = H;’jll(x — «) interlaces a polynomial

f(X):H;i:l(X—ﬂi) far2pfiz22Pe> 2 a2 P 2 adyt.

@ The polynomials fi, ..., fn, have a common interlacing if there exists a polynomial g
that interlaces all the f;'s.
@ The real rooted monic polynomials fi, ..., f, have a common interlacing if and only

if every convex combination ZJ'"ZI wif; is real rooted.
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Interlacing

@ We say that a polynomial g(x) = Hf”ll(x — «) interlaces a polynomial

) =ML x=B)ifar>p>a>F> - >ag> B> agn.

@ The polynomials fi, ..., fn, have a common interlacing if there exists a polynomial g
that interlaces all the f;'s.

@ The real rooted monic polynomials fi, ..., f, have a common interlacing if and only
if every convex combination ZJ'"ZI wif; is real rooted.

e If A1,...,fm are monic real rooted polynomials of degree d that have a common
interlacing then for any p; > 0 with Zm:1 uj =1and any 1 < k < d we have

)\ Ak(ZHj}) = fb)

for some a, b € [m].
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Interlacing

@ We say that a polynomial g(x) = H;’jll(x — «) interlaces a polynomial

d .
fxX)=[l_ix=8)ifau>2pr>2a>2pBe>- 2 aqg 2 Ba > ad1.
@ The polynomials fi, ..., fn, have a common interlacing if there exists a polynomial g
that interlaces all the f;'s.

@ The real rooted monic polynomials fi, ..., f, have a common interlacing if and only
if every convex combination ZJ'"ZI wif; is real rooted.

e If A1,...,fm are monic real rooted polynomials of degree d that have a common
interlacing then for any p; > 0 with ZJ"’ZI uj =1and any 1 < k < d we have

M(8) = Me( Do) = M)
j=1

for some a, b € [m].

Let (f,)ver be an interlacing family of monic real rooted polynomials of degree d with
root labeled by f3(x) and leaves labeled by {f;(x)}eci. Then, for any 1 < k < d we have

() = Me(fp) = M)

for some leaves a, b € L.
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The isotropic case

Isotropic case

Let B be a d x m matrix with columns u, ..., un. Assume that Iy = BB* = > 7 ujuf.
For every k < d there exists a subset S C [m] with |S| = k such that

omn(Bs)? > (1- 5)21.

m
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The isotropic case

Isotropic case

Let B be a d x m matrix with columns u, ..., un. Assume that Iy = BB* = > 7 ujuf.
For every k < d there exists a subset S C [m] with |S| = k such that

Umin(BS)2 = (1 = 5)

2d
d B

m

e If |S| = k < d then

O'min(BS)2 = Ak(B_éBs) = )\k(Bngt;) = )\k(z u,-u,-t).
€S
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The isotropic case

Isotropic case

Let B be a d x m matrix with columns u, ..., un. Assume that Iy = BB* = > 7 ujuf.
For every k < d there exists a subset S C [m] with |S| = k such that

Umin(BS)2 = (1 = 5)

2d
d B

m

e If |S| = k < d then
O'min(BS)2 = Ak(B_éBs) = )\k(Bngt;) = )\k(z u,-u,-t).
ies
@ We consider a random k-tuple S = (s, ...,s¢) € [m]* (that is, the s;'s may not be
distinct) and the polynomial
K

fo. s (x) = det (xld -3 us,u;).

i=1
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The isotropic case

Isotropic case

Let B be a d x m matrix with columns u, ..., un. Assume that Iy = BB* = > 7 ujuf.
For every k < d there exists a subset S C [m] with |S| = k such that

Umin(BS)2 = (1 = 5)

2d
d B

m

e If |S| = k < d then
Onin(Bs)’ = A(BSBs) = A(BsBS) = A (> uiur).
ieS

@ We consider a random k-tuple S = (s, ...,s¢) € [m]* (that is, the s;'s may not be
distinct) and the polynomial

k
fo. s (x) = det (xld -3 us,u;).
i=1

@ Our aim is to show that there exists a k-tuple S such that

Melfoy o) = (Vd - VK
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The isotropic case

o Consider the polynomial

1
fy(x) = povs > Fon (%)
S=(51,..-,5k) E[m]K
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The isotropic case

o Consider the polynomial

1
fy(x) = povs > Fon (%)
S=(51,..-,5k) E[m]K

@ We have seen that there exists an k-tuple S such that

)\k(fsl,...,sk) > /\k(fﬂ)'
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The isotropic case

o Consider the polynomial
fo(x) = % S s ().
S=(51,-+-,5¢) E[m]¥
@ We have seen that there exists an k-tuple S such that
Ac(fey,s) = Ae(fp).
@ Therefore, it suffices to show that

Me(fy) = M
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The isotropic case

Consider the polynomial

1
fo(x) = e Z for,nnsi (%)
S=(s1,---,s%)€[m]¥
@ We have seen that there exists an k-tuple S such that

)\k(fsl,...,sk) > /\k(f@))'

Therefore, it suffices to show that

Me(fy) = M

The main step is a formula for f(x).
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The isotropic case

A formula for fy

o) = (1~ %&)k(xd).
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The isotropic case

A formula for fy

o) = (1~ %&)k(xd).

@ The proof goes by induction. For every 0 < t < k we define

t
gi(x) = % > det (de -3 Us,-ust,-)-
i=1
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The isotropic case

A formula for fy

o) = (1~ %&)k(xd).

@ The proof goes by induction. For every 0 < t < k we define

t
gi(x) = % > det (de -3 Us,-ust,-)-
i=1

@ We prove by induction that
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The isotropic case

A formula for fy

o) = (1~ %&)k(xd).

@ The proof goes by induction. For every 0 < t < k we define

1 ~
gi(x) = — E det (de - -E,l us; Us,-)-
@ We prove by induction that

g = (1~ %ax)t(xd).

@ The case t = 0 is easily checked. Clearly,

det(xly) = x? = (17 fa) (x9) = go(x).
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The isotropic case

@ For the inductive step we write

grr1(x) = m:f[“ Z Zdet (xld - Z us, us, — u,-uf)

Siye-sSt J

= m:fL“ Z Zdet(xldfZus,us)(1*tr((X/d*ZUs,Us) UJUJ))

St

= % Z det (xld - Z u5,-ust/.) (m — tr((xld — Z usiust/.)illd))
SLyeesSt i_1 P
e 3 et (s - Z i ) ur( (xto - Z wit) ")

~~~~~

I
w
—_~

X
Ko
|

,,,,,

= gx) - %axgt(x) = (1- %ax)(gt(x)).
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The isotropic case

o Note that f;(x) is divisible by x?~*. Therefore, Ac(f) is equal to the smallest root of

—(d— —(d— 1 k
x~ k)f@(x):x (d k)(l—;(ax) (Xd).
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The isotropic case

o Note that f;(x) is divisible by x?~*. Therefore, Ac(f) is equal to the smallest root of
—(d—k) —(d—k) 1,.\% a
% fo(x) = x (1 — —&() (x9).
m

@ We use the theory of Laguerre polynomials. The Laguerre polynomial of degree n
and parameter « is
X _—a 1 x ¢

L (x) = e*x m&?(efxx"*a) =

(0 = 1)"(x"").

n!
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The isotropic case

o Note that f;(x) is divisible by x?~*. Therefore, Ac(f) is equal to the smallest root of
—(d—k) —(d—k) 1,.\% a
% fo(x) = x (1 — —&() (x9).
m

@ We use the theory of Laguerre polynomials. The Laguerre polynomial of degree n
and parameter « is

X*Ot
n!

xfcx]-

L (x) = e*x (B — 1)"(x"").

Hag(efxxn#»oz) —

@ Therefore,

|
X () = (1) S ).

July 2019 15 /29
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The isotropic case

For a > —1,

(L) = V2 4+ 3v3(U2 — v T3,
where V=+vk+a+1—+vkand U=vVk+a+1+Vk.
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The isotropic case

For a > —1,

(L) = V2 4+ 3v3(U2 — v T3,
where V=+vk+a+1—+vkand U=vVk+a+1+Vk.

e lnourcasea=d—k,sowe have V=+vd+1—+vkand U=+vd+1+ Vk.
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The isotropic case

For a > —1,

(L) = V2 4+ 3v3(U2 — v T3,
where V=+vk+a+1—+vkand U=vVk+a+1+Vk.

e lnourcasea=d—k,sowe have V=+vd+1—+vkand U=+vd+1+ Vk.
o We write

M) = ML (mx) = (L 7I00) = V2> @
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The general (non-isotropic) case

@ Recall that if A is a symmetric matrix, then

_ tr(A)?
T tr(A2

RA

~

Theorem

Let B be a d X m matrix with columns vy, ..., un. Define
m
A=BB' =Y uuf.
i=1

For every k < ka there exists a subset S C [m] with |S| = k such that

(5o > (o A5

i€eS
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More definitions and formulas

@ Let p be a real rooted polynomial. We write A«(p) for the k-th largest root of p.
The smallest root of p will be denoted by Amin(p)-
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More definitions and formulas

@ Let p be a real rooted polynomial. We write A«(p) for the k-th largest root of p.
The smallest root of p will be denoted by Amin(p)-

e If Ais a matrix with eigenvalues Ai,..., A\qy then the /-th elementary symmetric
function of these eigenvalues is

(A= > J[M

SCld],|S|=ti€S
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More definitions and formulas

@ Let p be a real rooted polynomial. We write A«(p) for the k-th largest root of p.
The smallest root of p will be denoted by Amin(p)-

e If Ais a matrix with eigenvalues Ai,..., A\qy then the /-th elementary symmetric
function of these eigenvalues is

(A= > J[M

SCld],|S|=ti€S

@ Then, the characteristic polynomial of A is

det(xly — A) =) (—1)"er(A)x""".

£=0

/29
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More definitions and formulas

@ Let p be a real rooted polynomial. We write A«(p) for the k-th largest root of p.
The smallest root of p will be denoted by Amin(p)-

e If Ais a matrix with eigenvalues Ai,..., A\qy then the /-th elementary symmetric
function of these eigenvalues is

(A= > J[M

SCld],|S|=ti€S

@ Then, the characteristic polynomial of A is
det(xly — A) = Z( 1) er(A)x

@ The Cauchy-Binet formula states that if B is a d X m matrix then

e(B'B) = det (BiBr),
|T|=¢

where the sum is over all subsets T of [m] with |T| = ¢ and Bt is the d X £ matrix
formed by the columns of B corresponding to T.
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More definitions and formulas

@ For any polynomial p(x) and any a > 0 we define

& = min(p(x)) := Amin(P(x) + ap'(x)).
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More definitions and formulas

@ For any polynomial p(x) and any a > 0 we define
o = min(p(x)) = Amin(p(x) + P (x)).
o Note that if we consider the lower barrier function

W) P
®elx): p(x)

then
a—min(p) = min{z : ®,(z) = 1/a}.
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More definitions and formulas

@ For any polynomial p(x) and any a > 0 we define
o = min(p(x)) = Amin(p(x) + P (x)).
o Note that if we consider the lower barrier function

W) P
®elx): p(x)

then
a—min(p) = min{z : ®,(z) = 1/a}.

e Since ®,(x) =7, 5=, we see that v — min(p) is smaller than the smallest root
of p.
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More definitions and formulas

@ For any polynomial p(x) and any a > 0 we define
o = min(p(x)) = Amin(p(x) + P (x)).
o Note that if we consider the lower barrier function

W) P
®elx): p(x)

then
a—min(p) = min{z : ®,(z) = 1/a}.

e Since ®,(x) =7, 5=, we see that v — min(p) is smaller than the smallest root
of p.

Let p(x) = x*. For any o > 0.

o — min(x*) = —ka.
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The general (non-isotropic) case

Let r be a random vector in R? with finite support. If r1,. .., rc are independent copies of

r then . ,
E det (xld - Z r,-r,-t) =x7k H(l = Nid)(x9),
=1 i=1

where A1, ..., Aq are the eigenvalues of E(rr").

@ Let M = E(rr"). Applying Lemma 1 k-times, we write
K

E det (xld - i r,-rf) = ﬁ(l — 8y,) det (xld + (Z ) M)

i=1 i=1 i=1

xp=++-=x =0
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The general (non-isotropic) case

Let r be a random vector in R? with finite support. If r1,. .., rc are independent copies of

r then . ,
E det (xld - Z r,-r,-t) =x7k H(l = Nid)(x9),
=1 i=1

where A1, ..., Aq are the eigenvalues of E(rr").

@ Let M = E(rr"). Applying Lemma 1 k-times, we write
K

E det (xld - i r,-rf) = ﬁ(l — 8y,) det (xld + (Z ) M)

i=1 i=1 i=1

xp=++-=x =0

o Computation shows that
K

[Te-a0(3x) ],

i=1 i=1

if k > £ and zero otherwise.
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The general (non-isotropic) case

@ Taking this into account we get

k

E det (xld — Z r,-rf) = Zxd_g(—l)lmeg(M).

i=1 £=0
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The general (non-isotropic) case

@ Taking this into account we get

E det (xld — Z r,-rf) = Zxd_g(—l)lﬁeg(M).

i=1 £=0

@ Since 9¢(x*) = kaeﬁ when £ < k and 9¢(x¥) = 0 when £ > k, we have

k k
D2 (1) ey (M) = S o) e (M)
=0 £=0

d

= x"TN " 0i(—1) e (M)x*
£=0

= xI"*det (9] — M)(x")

= xI [ = X0 ().
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The general (non-isotropic) case

@ Our next step is to give a lower bound for the smallest root of []7_, (1 — X;idx)(x").
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The general (non-isotropic) case

@ Our next step is to give a lower bound for the smallest root of []7_, (1 — X;idx)(x").

Let p(x) be a real-rooted polynomial and A > 0. Then,

(1 = A8x)(p(x))

is real-rooted, and

1

a —min((1 — Adk)p(x)) = a — min(p(x)) + 1/A+1/a’
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The general (non-isotropic) case

@ Our next step is to give a lower bound for the smallest root of []7_, (1 — X;idx)(x").

Let p(x) be a real-rooted polynomial and A > 0. Then,

(1 = A8x)(p(x))

is real-rooted, and

1

a —min((1 — Adk)p(x)) = a — min(p(x)) + 1/A+1/a’

@ The first observation is that (1 — A9x)p(x) is real rooted. Moreover,
Amin(p’) = Amin(p). Since p and —Ap’ have the same sign for all x < Amin(p) we see
that p — Ap’ cannot have a root in this interval. Therefore,

)\min(p) < Amin(p - )\pl)
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The general (non-isotropic) case

o Consider a polynomial p of degree d with roots pg < -+ < p1. We set
b = o — min(p). Then,
®o(b) =1/
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The general (non-isotropic) case

o Consider a polynomial p of degree d with roots pg < -+ < p1. We set
b = o — min(p). Then,
®o(b) =1/

@ We want to prove that if § = then b+ < Ag((1 — Adx)p) and

1
1/A+1/a

P10 gplb+ ) < Bp(b).
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The general (non-isotropic) case

o Consider a polynomial p of degree d with roots pg < -+ < p1. We set
b = o — min(p). Then,
®o(b) =1/

@ We want to prove that if § = ﬁ then b+ < Ag((1 — Adx)p) and
Pt xonyp(b+8) < By(b).

@ The first inequality holds because

1
pa — b

< O,(b) =1/,

which gives
b+d<b+a< Hd < /\d((]- —A&X)p).
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The general (non-isotropic) case

o Note that
o (=) (140 p A
(lfkax)P - / - Y
p—Ap p(1+ Ad,) p  1+Xb,
@’
=, P
P+,
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The general (non-isotropic) case

o Note that
(P=M) _ (p(1+29)) _ p AP
P_rogp = — == =
p—Ap p(1+ Ad,) p  1+Xb,
@’
=, P
P+,

@ Since b+ ¢ is smaller than the roots of p and (1 — \d«)p, we get

(b + d)

q)(l,)\ax)p(b‘i’ 5) - ¢P(b+ 5) - m
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The general (non-isotropic) case

o Note that
(=) _ (p(1+29)) _ A9
P_rogp = — == =—-—-
p—Ap p(1+ Ad,) p  1+Xb,
@’
-0, P
P+,

@ Since b+ ¢ is smaller than the roots of p and (1 — \d«)p, we get

o) (b+ o)
/A +®,(b+6)

e Since1/A=1/6—1/a=1/6 — ®,(b), and since ®,(b+ §) — P,(b) > 0, we need
to show that

q>(17>\59x)p(b +08) = (b +6) -

(@p(b+6) — &p(b))* < &} (b +6) — %(%(b +0) = ®y(b))-
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The general (non-isotropic) case

@ Finally, we expand ®, and &,/ in terms of the roots of p:

(®p(b+ ) — dy(b))* = (Zm_lb_é —Zml_b)Q
- (Z (i — b—is)(m - b))2
<(Zﬁb)(ibefswb))
(e )
"2 ftl) 5)2_Z(uf*b)(:f*b*5)
=21 T 5)2‘%(Zﬁ‘gﬁ)

=d,(b+46)— g(cbp(b +6) — ®p(b)).
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The general (non-isotropic) case

Lemma 4

Let r be a random vector in R? with finite support and set M = E(rr®). If vy,

..., are
independent copies of r and

p(x) = E det (xld = Z I’ﬂ’f),

i=1

M(p) > (1~ \/g)ir(/vz).

o We may assume that tr(M) = 1. Then, we want to show that

M(p) = (1= /1 —k-tr(M?)).

then

Summer School - 2019 (Part I1)

Interlacing polynomials July 2019



The general (non-isotropic) case

o If 0 < Ay < -+ < \p are the eigenvalues of M, from Lemma 2 we have

p(x) = x?7* H(l — Xid)x".

i=1
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The general (non-isotropic) case

o If 0 < Ay < -+ < \p are the eigenvalues of M, from Lemma 2 we have

p(x) = x?7* H(l — Xid)x".

i=1

@ Let a > 0. Applying Lemma 3 d-times we get

Ak(p) = Ak (H(lfx\a)x) afmln(H(lf)\,-BX)xk)
1 1
> o~ min(x +Zl/)\ +1/a ka+21/A +1ja’
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The general (non-isotropic) case

o If 0 < Ay < -+ < \p are the eigenvalues of M, from Lemma 2 we have

p(x) = x?7* H(l — Xid)x".

i=1

@ Let a > 0. Applying Lemma 3 d-times we get

Ak(p) = Ak (H(lfx\a)x) afmln(H(lf)\,-BX)xk)
1 1
> o~ min(x +Zl/)\ +1/a ka+21/A +1ja’

@ Since y — ﬁ is convex and 27:1 Ai = tr(M) = 1, from Jensen's inequality we
get

1 i 1 _ 1
; 1/x+1/a ; 1+ \i/a > 1+ (X, 0) Ja 1+ t(M?)/a

Summer School - 2019 (Part I1) Interlacing polynomials July 2019 27 /29



The general (non-isotropic) case

o It follows that

1
> —
A(p) 2 —ka 1+ tr(M?)/a

for every a > 0.
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The general (non-isotropic) case

o It follows that

1
> — - -
Alp) 2 —ka+ Ty e

for every a > 0.
@ The right-hand side is maximized if we choose

o = tr(M?) (\/ﬁ — 1).
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The general (non-isotropic) case

o It follows that 1
> —k T
Alp) 2 —ka+ Ty e
for every a > 0.
@ The right-hand side is maximized if we choose

o = tr(M?) (\/ﬁ — 1).

@ With this choice of o we see that

M(p) > (1~ i)z.

July 2019
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The general (non-isotropic) case

@ We apply Lemma 4 for the random vector r which is uniformly distributed in
{Ul7 ey Um}.
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The general (non-isotropic) case

@ We apply Lemma 4 for the random vector r which is uniformly distributed in
{Ul7 ey Um}.
o Note that M = E(rrf) = 4

m-
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The general (non-isotropic) case

@ We apply Lemma 4 for the random vector r which is uniformly distributed in
{Ul7 ey Um}.
e Note that M = E(rr) = 4.

@ From Lemma 4 we get uj, ..., uj such that

n(Suet) > (1 EY v,

e (M) tr(A)?
M7 a(M2) T er(A?)

where

@ Therefore, we get:
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The general (non-isotropic) case

@ We apply Lemma 4 for the random vector r which is uniformly distributed in
{U17 ey Um}.
e Note that M = E(rr) = 4.

@ From Lemma 4 we get uj, ..., uj such that

n(Suet) > (1 EY v,

e (M) tr(A)?
M7 a(M2) T er(A?)

where

@ Therefore, we get:

Let B be a d x m matrix with columns w1, ..., um. Define A= BB* =" ujuf. For
every k < Ka there exists a subset S C [m] with |S| = k such that

(5)> 625

ies
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