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Restricted invertibily

In this talk we consider, more generally, rectangular matrices.

Let B be a d ×m matrix. The restricted invertibility principle of Bourgain-Tzafriri is
a quantitative version of the fact that the rank of B is the maximum number of
linearly independent columns it has.

Recall that the stable rank of B is the quantity

srank(B) =
‖B‖2HS

‖B‖2 .

The Bourgain-Tzafriri principle states that for some S ⊂ [m] with |S | ≈ srank(B)
one has

σmin(BS) > c.
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Restricted invertivility

Spielman-Srivastava

Let B be a d ×m matrix and k 6 srank(B). There exists S ⊂ [m] with |S | = k such that

σmin(BS)2 >
(

1−

√
k

srank(B)

)2 ‖B‖2HS

m
.

We shall first consider the so called isotropic case, where BB t = Id (the identity
matrix). In this case, srank(B) = d .

Spielman-Srivastava

Let B be a d ×m matrix with BB t = Id . For every k 6 d there exists S ⊂ [m] with
|S | = k such that

σmin(BS)2 >
(

1−
√

k

d

)2 d

m
.
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Restricted invertibility

Then, we shall give a more recent proof of the general case with an improved
estimate.

Let ‖B‖p denote the p-Schatten norm of B:

‖B‖pp =
d∑

i=1

σp
i ,

where σ1 > · · · > σd are the singular values of B.

Consider the quantity

srank4(B) =
‖B‖42
‖B‖44

=

(∑
i σ

2
i

)2∑
i σ

4
i

>

(∑
i σ

2
i

)2
σ2
1

∑
i σ

2
i

= srank(B).

Marcus-Spielman-Srivastava

Let B be a d ×m matrix and k 6 srank4(B). There exists S ⊂ [m] with |S | = k such
that

σmin(BS)2 >
(

1−

√
k

srank4(B)

)2 ‖B‖2HS

m
.
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Basic definitions and formulas

Matrix determinant lemma

If A is an invertible matrix and u is any vector, then

det
(
A + uut) = det

(
A
)

(1 + utA−1u) = det
(
A
) (

1 + tr(A−1uut)
)
.

Jacobi’s formula

If A,B are square matrices then

∂x det
(
xA + B

)
= det

(
xA + B

)
tr
(
A(xA + B)−1).
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Basic definitions and formulas

Lemma 1

Let A be a square matrix. If r is a random vector then

E det
(
A− rrt

)
= (1− ∂x) det

(
A + x E(rrt)

)∣∣∣
x=0

.

For the proof, first we assume that A is invertible. Then,

E
(

det(A− rrt)
)

= E det
(
A
)
(1− r tA−1r)

= det
(
A
) (

1− E tr(A−1rrt)
)

= det
(
A
) (

1− tr
(
A−1E (rrt)

))
.

On the other hand, one can check that

(1− ∂x) det
(
A + xE(rrt)

)
= det

(
A + xE(rrt)

) (
1− tr

((
A + xE(rrt)

)−1E(rrt)
)
,

and setting x = 0 we have the result.

If A is not invertible then we approximate it by a sequence of invertible matrices and
pass to the limit with a continuity argument.
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Interlacing families of polynomials

An interlacing family consists of a finite rooted tree T and a labelling of the nodes
v ∈ T by monic real rooted polynomials fv (x) such that:

1. If fv corresponds to a non-leaf node v then fv is a convex combination of the
polynomials that correspond to the children of v .

2. If the nodes v1, v2 ∈ T have a common parent then every convex combination of fv1
and fv2 is a real rooted polynomial. This condition implies that all convex
combinations of all the children of a node are real-rooted.

We say that a family of polynomials is an interlacing family if they are the labels of
the leaves of such a tree.
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Interlacing families of polynomials

We shall use interlacing families of a specific type: the nodes at distance t from the
root are indexed by sequences (s1, . . . , st) ∈ [m]t . The root node is denoted by ∅.

The leaves of the tree are labeled by polynomials fs1,...,sk (x).

For t < k we have

fs1,...,st (x) =
1

m

m∑
j=1

fs1,...,st ,j(x) =
1

mk−t

∑
st+1,...,sk

fs1,...,st ,st+1,...,sk (x).

Note that

f∅(x) =
1

mk

∑
s1,...,sk

fs1,...,sk (x).
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Interlacing families of polynomials

Marcus-Spielman-Srivastava

Let u1, . . . , um ∈ Rd . For any (s1, . . . , sk) ∈ [m]k define

fs1,...,sk (x) = det
(
xId −

k∑
i=1

usi u
t
si

)
.

For 0 6 t < k and s1, . . . , st ∈ [m] define

fs1,...,st (x) =
1

m

m∑
j=1

fs1,...,st ,j(x).

Then, these polynomials form an interlacing family.
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Interlacing

We say that a polynomial g(x) =
∏d+1

i=1 (x − αi ) interlaces a polynomial

f (x) =
∏d

i=1(x − βi ) if α1 > β1 > α2 > β2 > · · · > αd > βd > αd+1.

The polynomials f1, . . . , fm have a common interlacing if there exists a polynomial g
that interlaces all the fi ’s.

The real rooted monic polynomials f1, . . . , fm have a common interlacing if and only
if every convex combination

∑m
j=1 µj fj is real rooted.

If f1, . . . , fm are monic real rooted polynomials of degree d that have a common
interlacing then for any µj > 0 with

∑m
j=1 µj = 1 and any 1 6 k 6 d we have

λk(fa) > λk

( m∑
j=1

µj fj
)
> λk(fb)

for some a, b ∈ [m].

Theorem

Let (fv )v∈T be an interlacing family of monic real rooted polynomials of degree d with
root labeled by f∅(x) and leaves labeled by {f`(x)}`∈L. Then, for any 1 6 k 6 d we have

λk(fa) > λk(f∅) > λk(fb)

for some leaves a, b ∈ L.
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The isotropic case

Isotropic case

Let B be a d ×m matrix with columns u1, . . . , um. Assume that Id = BB t =
∑m

i=1 uiu
t
i .

For every k < d there exists a subset S ⊂ [m] with |S | = k such that

σmin(BS)2 >
(

1−
√

k

d

)2 d
m
.

If |S | = k < d then

σmin(BS)2 = λk(B t
SBS) = λk(BSB

t
S) = λk

(∑
i∈S

uiu
t
i

)
.

We consider a random k-tuple S = (s1, . . . , sk) ∈ [m]k (that is, the si ’s may not be
distinct) and the polynomial

fs1,...,sk (x) = det
(
xId −

k∑
i=1

usi u
t
si

)
.

Our aim is to show that there exists a k-tuple S such that

λk(fs1,...,sk ) >
(
√
d −
√
k)2

m
.
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The isotropic case

Consider the polynomial

f∅(x) =
1

mk

∑
S=(s1,...,sk )∈[m]k

fs1,...,sk (x).

We have seen that there exists an k-tuple S such that

λk(fs1,...,sk ) > λk(f∅).

Therefore, it suffices to show that

λk(f∅) >
(
√
d −
√
k)2

m
.

The main step is a formula for f∅(x).

Summer School - 2019 (Part II) Interlacing polynomials July 2019 12 / 29



The isotropic case

Consider the polynomial

f∅(x) =
1

mk

∑
S=(s1,...,sk )∈[m]k

fs1,...,sk (x).

We have seen that there exists an k-tuple S such that

λk(fs1,...,sk ) > λk(f∅).

Therefore, it suffices to show that

λk(f∅) >
(
√
d −
√
k)2

m
.

The main step is a formula for f∅(x).

Summer School - 2019 (Part II) Interlacing polynomials July 2019 12 / 29



The isotropic case

Consider the polynomial

f∅(x) =
1

mk

∑
S=(s1,...,sk )∈[m]k

fs1,...,sk (x).

We have seen that there exists an k-tuple S such that

λk(fs1,...,sk ) > λk(f∅).

Therefore, it suffices to show that

λk(f∅) >
(
√
d −
√
k)2

m
.

The main step is a formula for f∅(x).

Summer School - 2019 (Part II) Interlacing polynomials July 2019 12 / 29



The isotropic case

Consider the polynomial

f∅(x) =
1

mk

∑
S=(s1,...,sk )∈[m]k

fs1,...,sk (x).

We have seen that there exists an k-tuple S such that

λk(fs1,...,sk ) > λk(f∅).

Therefore, it suffices to show that

λk(f∅) >
(
√
d −
√
k)2

m
.

The main step is a formula for f∅(x).

Summer School - 2019 (Part II) Interlacing polynomials July 2019 12 / 29



The isotropic case

A formula for f∅

f∅(x) =
(

1− 1

m
∂x
)k

(xd).

The proof goes by induction. For every 0 6 t 6 k we define

gt(x) =
1

mt

∑
s1,...,st∈[m]t

det
(
xId −

t∑
i=1

usi u
t
si

)
.

We prove by induction that

gt(x) =
(

1− 1

m
∂x
)t

(xd).

The case t = 0 is easily checked. Clearly,

det(xId) = xd =
(

1− 1

m
∂x
)0

(xd) = g0(x).
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The isotropic case

For the inductive step we write

gt+1(x) =
1

mt+1

∑
s1,...,st

∑
j

det
(
xId −

t∑
i=1

usi u
t
si − uju

t
j

)

=
1

mt+1

∑
s1,...,st

∑
j

det
(
xId −

t∑
i=1

usi u
t
si

)(
1− tr

((
xId −

t∑
i=1

usi u
t
si

)−1

uju
t
j

))

=
1

mt+1

∑
s1,...,st

det
(
xId −

t∑
i=1

usi u
t
si

)(
m − tr

((
xId −

t∑
i=1

usi u
t
si

)−1

Id
))

= gt(x)− 1

mt+1

∑
s1,...,st

det
(
xId −

t∑
i=1

usi u
t
si

)
tr
((

xId −
t∑

i=1

usi u
t
si

)−1)

= gt(x)− 1

mt+1

∑
s1,...,st

∂x det
(
xId −

t∑
i=1

usi u
t
si

)
= gt(x)− 1

m
∂xgt(x) =

(
1− 1

m
∂x
)

(gt(x)).
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The isotropic case

Note that f∅(x) is divisible by xd−k . Therefore, λk(f∅) is equal to the smallest root of

x−(d−k)f∅(x) = x−(d−k)
(

1− 1

m
∂x
)k

(xd).

We use the theory of Laguerre polynomials. The Laguerre polynomial of degree n
and parameter α is

L(α)
n (x) = exx−α

1

n!
∂n
x (e−xxn+α) =

x−α

n!
(∂x − 1)n(xn+α).

Therefore,

x−(d−k)f∅(x) = (−1)k
k!

mk
L
(d−k)
k (mx).
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The isotropic case

Fact

For α > −1,
λk(L

(α)
k (x)) > V 2 + 3V 4/3(U2 − V 2)−1/3,

where V =
√
k + α + 1−

√
k and U =

√
k + α + 1 +

√
k.

In our case α = d − k, so we have V =
√
d + 1−

√
k and U =

√
d + 1 +

√
k.

We write

λk(f∅(x)) = λk(L
(d−k)
k (mx)) =

1

m
λk(L

(d−k)
k (x)) >

1

m
V 2 >

(
√
d −
√
k)2

m
.
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The general (non-isotropic) case

Recall that if A is a symmetric matrix, then

κA =
tr(A)2

tr(A2)
.

Theorem

Let B be a d ×m matrix with columns u1, . . . , um. Define

A = BB t =
m∑
i=1

uiu
t
i .

For every k < κA there exists a subset S ⊂ [m] with |S | = k such that

λk

(∑
i∈S

uiu
t
i

)
>
(

1−
√

k

κA

)2 tr(A)

m
.
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More definitions and formulas

Let p be a real rooted polynomial. We write λk(p) for the k-th largest root of p.
The smallest root of p will be denoted by λmin(p).

If A is a matrix with eigenvalues λ1, . . . , λd then the `-th elementary symmetric
function of these eigenvalues is

e`(A) =
∑

S⊂[d ],|S|=`

∏
i∈S

λi .

Then, the characteristic polynomial of A is

det(xId − A) =
d∑
`=0

(−1)`e`(A)xd−`.

The Cauchy-Binet formula states that if B is a d ×m matrix then

e`(B
tB) =

∑
|T |=`

det
(
B t

TBT

)
,

where the sum is over all subsets T of [m] with |T | = ` and BT is the d × ` matrix
formed by the columns of B corresponding to T .
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More definitions and formulas

For any polynomial p(x) and any α > 0 we define

α−min(p(x)) := λmin(p(x) + αp′(x)).

Note that if we consider the lower barrier function

Φp(x) := −p′(x)

p(x)

then
α−min(p) = min{z : Φp(z) = 1/α}.

Since Φp(x) =
∑d

i=1
1

λi−x
, we see that α−min(p) is smaller than the smallest root

of p.

Example

Let p(x) = xk . For any α > 0.

α−min(xk) = −kα.
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The general (non-isotropic) case

Lemma 2

Let r be a random vector in Rd with finite support. If r1, . . . , rk are independent copies of
r then

E det
(
xId −

k∑
i=1

ri r
t
i

)
= xd−k

d∏
i=1

(1− λi∂x)(xk),

where λ1, . . . , λd are the eigenvalues of E(rrt).

Let M = E(rrt). Applying Lemma 1 k-times, we write

E det
(
xId −

k∑
i=1

ri r
t
i

)
=

k∏
i=1

(1− ∂xi ) det
(
xId +

( k∑
i=1

xi
)
M
) ∣∣∣

x1=···=xk=0

=
k∏

i=1

(1− ∂xi )
( d∑
`=0

xd−`
( k∑

i=1

xi
)`

e`(M)
) ∣∣∣

x1=···=xk=0
.

Computation shows that

k∏
i=1

(1− ∂xi )
( k∑

i=1

xi
)` ∣∣∣

x1=···=xk=0
=

(−1)`k!

(k − `)!

if k > ` and zero otherwise.
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The general (non-isotropic) case

Taking this into account we get

E det
(
xId −

k∑
i=1

ri r
t
i

)
=

k∑
`=0

xd−`(−1)`
k!

(k − `)!
e`(M).

Since ∂d
x (xk) = xk−` k!

(k−`)! when ` 6 k and ∂d
x (xk) = 0 when ` > k, we have

k∑
`=0

xd−`(−1)`
k!

(k − `)!
e`(M) = xd−k

k∑
`=0

∂`x (−1)`e`(M)xk

= xd−k
d∑
`=0

∂`x (−1)`e`(M)xk

= xd−k det
(
∂x I −M

)
(xk)

= xd−k
d∏

i=1

(1− λi∂x)(xk).
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The general (non-isotropic) case
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The general (non-isotropic) case

Our next step is to give a lower bound for the smallest root of
∏d

i=1(1− λi∂x)(xk).

Lemma 3

Let p(x) be a real-rooted polynomial and λ > 0. Then,

(1− λ∂x)(p(x))

is real-rooted, and

α−min((1− λ∂x)p(x)) > α−min(p(x)) +
1

1/λ+ 1/α
.

The first observation is that (1− λ∂x)p(x) is real rooted. Moreover,
λmin(p′) > λmin(p). Since p and −λp′ have the same sign for all x < λmin(p) we see
that p − λp′ cannot have a root in this interval. Therefore,

λmin(p) 6 λmin(p − λp′).
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The general (non-isotropic) case

Consider a polynomial p of degree d with roots µd 6 · · · 6 µ1. We set
b = α−min(p). Then,

Φp(b) = 1/α.

We want to prove that if δ = 1
1/λ+1/α

then b + δ 6 λd((1− λ∂x)p) and

Φ(1−λ∂x )p(b + δ) 6 Φp(b).

The first inequality holds because

1

µd − b
6 Φp(b) = 1/α,

which gives
b + δ < b + α 6 µd 6 λd((1− λ∂x)p).
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The general (non-isotropic) case

Note that

Φ(1−λ∂x )p = − (p − λp′)′

p − λp′ = − (p(1 + λΦp))′

p(1 + λΦp)
= −p′

p
−

λΦ′p
1 + λΦp

= Φp −
Φ′p

1/λ+ Φp
.

Since b + δ is smaller than the roots of p and (1− λ∂x)p, we get

Φ(1−λ∂x )p(b + δ) = Φp(b + δ)−
Φ′p(b + δ)

1/λ+ Φp(b + δ)
.

Since 1/λ = 1/δ − 1/α = 1/δ − Φp(b), and since Φp(b + δ)− Φp(b) > 0, we need
to show that

(Φp(b + δ)− Φp(b))2 6 Φ′p(b + δ)− 1

δ
(Φp(b + δ)− Φp(b)).
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The general (non-isotropic) case

Finally, we expand Φp and Φp′ in terms of the roots of p:

(Φp(b + δ)− Φp(b))2 =
(∑

i

1

µi − b − δ −
∑
i

1

µi − b

)2
=
(∑

i

δ

(µi − b − δ)(µi − b)

)2
6
(∑

i

δ

µi − b

)(∑
i

δ

(µi − b − δ)2(µi − b)

)
6
(∑

i

δ

(µi − b − δ)2(µi − b)

)
=
∑
i

1

(µi − b − δ)2
−
∑
i

1

(µi − b)(µi − b − δ)

=
∑
i

1

(µi − b − δ)2
− 1

δ

(∑
i

1

µi − b − δ −
∑
i

1

µi − b

)
= Φ′p(b + δ)− 1

δ

(
Φp(b + δ)− Φp(b)

)
.
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The general (non-isotropic) case

Lemma 4

Let r be a random vector in Rd with finite support and set M = E(rrt). If r1, . . . , rk are
independent copies of r and

p(x) = E det
(
xId −

k∑
i=1

ri r
t
i

)
,

then

λk(p) >
(

1−
√

k

κM

)2
tr(M).

We may assume that tr(M) = 1. Then, we want to show that

λk(p) >
(
1−

√
1− k · tr(M2)

)
.
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The general (non-isotropic) case

If 0 6 λd 6 · · · 6 λ1 are the eigenvalues of M, from Lemma 2 we have

p(x) = xd−k
d∏

i=1

(1− λi∂x)xk .

Let α > 0. Applying Lemma 3 d-times we get

λk(p) > λk

( d∏
i=1

(1− λi∂x)xk
)
> α−min

( d∏
i=1

(1− λi∂x)xk
)

> α−min(xk) +
d∑

i=1

1

1/λi + 1/α
= −kα +

d∑
i=1

1

1/λi + 1/α
.

Since y 7→ 1
1+y/α

is convex and
∑d

i=1 λi = tr(M) = 1, from Jensen’s inequality we
get

d∑
i=1

1

1/λi + 1/α
=

d∑
i=1

λi

1 + λi/α
>

1

1 +
(∑

i λ
2
i

)
/α

=
1

1 + tr(M2)/α
.
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The general (non-isotropic) case

It follows that

λk(p) > −kα +
1

1 + tr(M2)/α

for every α > 0.

The right-hand side is maximized if we choose

α = tr(M2)
( 1√

k · tr(M2)
− 1
)
.

With this choice of α we see that

λk(p) >
(

1−
√

k

κM

)2
.
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The general (non-isotropic) case

We apply Lemma 4 for the random vector r which is uniformly distributed in
{u1, . . . , um}.

Note that M = E(rrt) = A
m

.

From Lemma 4 we get ui1 , . . . , uik such that

λk

( k∑
j=1

uij u
t
ij

)
>
(

1−
√

k

κM

)2
tr(M),

where

κM =
tr(M)2

tr(M2)
=

tr(A)2

tr(A2)
.

Therefore, we get:

Theorem

Let B be a d ×m matrix with columns u1, . . . , um. Define A = BB t =
∑m

i=1 uiu
t
i . For

every k < κA there exists a subset S ⊂ [m] with |S | = k such that

λk

(∑
i∈S

uiu
t
i

)
>
(

1−
√

k

κA

)2 tr(A)

m
.
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