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Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if Aisan nx n
matrix whose columns Ae; have Euclidean norm equal to 1 then there exists o C [n] of
cardinality |o| > cn/||Al|3 such that the restriction A, of A to span{e; : j € o} is
well-invertible.
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Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if Aisan nx n
matrix whose columns Ae; have Euclidean norm equal to 1 then there exists o C [n] of
cardinality |o| > cn/||Al|3 such that the restriction A, of A to span{e; : j € o} is
well-invertible.

Bourgain-Tzafriri

There exist absolute constants 9,y > 0 such that if A: {53 — /3 is a linear operator with
|Aej| =1 for all j =1, ..., n then one may find a subset o C [n] of cardinality

|o| > dn/||Al|3 such that
1> tAe| =D 18P

JjEo Jj€Eo

‘ 2

for any choice of scalars {tj}jco.
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Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if Aisan nx n
matrix whose columns Ae; have Euclidean norm equal to 1 then there exists o C [n] of
cardinality |o| > cn/||Al|3 such that the restriction A, of A to span{e; : j € o} is
well-invertible.

Bourgain-Tzafriri

There exist absolute constants 9,y > 0 such that if A: {53 — /3 is a linear operator with
|Aej| =1 for all j =1, ..., n then one may find a subset o C [n] of cardinality

|o| > dn/||Al|3 such that
1> tAe| =D 18P

JjEo Jj€Eo

‘ 2

for any choice of scalars {tj}jco.

@ Recall that the stable rank of A is defined by srank(A) := ||A||4s/||All3.
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Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if Aisan nx n
matrix whose columns Ae; have Euclidean norm equal to 1 then there exists o C [n] of
cardinality |o| > cn/||Al|3 such that the restriction A, of A to span{e; : j € o} is
well-invertible.

Bourgain-Tzafriri

There exist absolute constants 9,y > 0 such that if A: {53 — /3 is a linear operator with
|Aej| =1 for all j =1, ..., n then one may find a subset o C [n] of cardinality

|o| > dn/||Al|3 such that
1> tAe| =D 18P

JjEo Jj€Eo

‘ 2

for any choice of scalars {tj}jco.

@ Recall that the stable rank of A is defined by srank(A) := ||A||4s/||All3.

@ Assuming that |Ae;| =1 for all j = 1,..., n we have ||A||4s = n, therefore the
cardinality of the set o provided by this theorem is proportional to the stable rank of
A.
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Restricted invertibility

@ Note also that if A, is the restriction of A to span{e; : j € o} then the theorem is
equivalent to the fact that smin(As) > 7y, where

Smin(T) = Amin(VTET) = Amin(V TTE)

denotes the smallest singular number of an operator T.
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Restricted invertibility

@ Note also that if A, is the restriction of A to span{e; : j € o} then the theorem is
equivalent to the fact that smin(As) > 7y, where

Smin(T) = Amin(VTET) = Amin(V TTE)

denotes the smallest singular number of an operator T.

@ The original proof uses random selection, the Sauer-Shelah lemma and
Grothendieck’s factorization theorem.

Summer School - 2019 (Part 1) Interlacing polynomials July 2019 3/23



Restricted invertibility

@ Note also that if A, is the restriction of A to span{e; : j € o} then the theorem is
equivalent to the fact that smin(As) > 7y, where

Smin(T) = Amin(VTET) = Amin(V TTE)

denotes the smallest singular number of an operator T.

@ The original proof uses random selection, the Sauer-Shelah lemma and
Grothendieck’s factorization theorem.

Vershynin generalized this result as follows.

Let I, = ZI'"ZI ujujt be an arbitrary decomposition of the identity and A : ¢5 — /3 be a
linear operator. Then, for any € € (0,1) one can find o C [m] of cardinality
|o| = (1 — €) srank(A) such that for any choice of scalars (tj)jco.,

el 0(5)"
j€o

where c(g) > 0 is a constant depending only on e.
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Restricted invertibility

@ Note that if [Agj| = 1 for all j then, applying Vershynin's theorem for the standard

decomposition I, = 37 . ejef we recover the Bourgain-Tzafriri theorem.
j=1 -~
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Restricted invertibility

@ Note that if [Agj| = 1 for all j then, applying Vershynin's theorem for the standard

decomposition I, = 37 . ejef we recover the Bourgain-Tzafriri theorem.
j=1 -~

@ Moreover, we may now find & C [n] of cardinality greater than (1 — €)n/||A||3 for

any e € (0,1) so that
2
‘ > tAg| =y |4

Jj€o Jj€o

will hold true, of course with a constant v = y(¢) depending on e.
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Restricted invertibility

@ Note that if [Agj| = 1 for all j then, applying Vershynin's theorem for the standard
decomposition /, = Z}’Zl ejef we recover the Bourgain-Tzafriri theorem.

@ Moreover, we may now find & C [n] of cardinality greater than (1 — €)n/||A||3 for

any e € (0,1) so that
2
‘ > tAg| =y 4l

Jj€o Jj€o

will hold true, of course with a constant v = y(¢) depending on e.

Spielman and Srivastava gave a generalization, in the spirit of Vershynin's theorem, with
optimal dependence on e.

Spielman-Srivastava

Let € € (0,1) and w1, ..., un € R" such that I, = ZJ";I ujuf. Let A: £5 — €5 be a linear
operator. We can find o C [m] of cardinality |o| > | (1 — €)?srank(A)| such that the set

{Au; : j € o} is linearly independent and

Amin ( Z(AUJ)(Auj)t) > HAH%{S ’

Jj€o

where the smallest eigenvalue Amin is computed on the subspace span{Au; : j € o}.
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Restricted invertibility

@ The inequality

Allfis
Amin g (Auj)(Au))t) > € I ,
(jEcr d J ) m

is equivalent to the fact that, for any choice of scalars (tj)jeo,

> sA| = e”f‘/'%HS (>48)"

Jjeo JjEo
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Restricted invertibility

@ The inequality

Allfis
Amin g (Auj)(Au))t) > € I ,
(jEcr d J ) m

is equivalent to the fact that, for any choice of scalars (tj)jeo,

> sA| = e”f‘/'%‘*s (>48)"

Jjeo JjEo

@ The Bourgain-Tzafriri theorem follows with constants y(e) = € §(e) = (1 — €)*;
consider the standard decomposition of the identity I, = >__; ejef, where

{e/:j=1,...,n} and recall that ||A|%g = n.
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Strong restricted invertibility

Strong B-T

There exists an absolute constant v > 0 with the following property: for every B > 0
there exists r = r(B) € N such that if A: ¢35 — ¢3 is a linear operator with ||A|| < B and

|Aej| =1 for all i =1,...,n, then we may find a partition {ok};—; of [n] such that for
every k =1,...,r and any choice of real coefficients (t;)jco,.
2
1> tAg] 9> 1

JEoK JEok

@ This statement is called the strong Bourgain-Tzafriri conjecture.
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Strong restricted invertibility

Strong B-T

There exists an absolute constant v > 0 with the following property: for every B > 0
there exists r = r(B) € N such that if A: ¢35 — ¢3 is a linear operator with ||A|| < B and

|Aej| =1 for all i =1,...,n, then we may find a partition {ok};—; of [n] such that for
every k =1,...,r and any choice of real coefficients (t;)jco,.
2
1> tAg] 9> 1

JEoK JEok

@ This statement is called the strong Bourgain-Tzafriri conjecture.

@ It is now a theorem, after the proof of the paving conjecture by Marcus, Spielman
and Srivastava.
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Strong restricted invertibility

Strong B-T

There exists an absolute constant v > 0 with the following property: for every B > 0
there exists r = r(B) € N such that if A: ¢35 — ¢3 is a linear operator with ||A|| < B and

|Aej| =1 for all i =1,...,n, then we may find a partition {ok};—; of [n] such that for
every k =1,...,r and any choice of real coefficients (t;)jco,.
2
1> tAg] 9> 1

JEoK JEok

@ This statement is called the strong Bourgain-Tzafriri conjecture.

@ It is now a theorem, after the proof of the paving conjecture by Marcus, Spielman
and Srivastava.

@ In fact, the paving theorem is equivalent to the statement above, and also provides
an affirmative answer to the Kadison-Singer problem.
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Paving theorem

For every € > 0 there exists r = r(e) € N such that: if S: ¢5 — £5 is a linear operator
with diagonal D(S) = 0 then we may find a partition {o«};—; of [n] such that for every
k=1,...,r

[ Ro SR | < €l S-
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Paving theorem

For every € > 0 there exists r = r(e) € N such that: if S: ¢5 — £5 is a linear operator
with diagonal D(S) = 0 then we may find a partition {o«};—; of [n] such that for every
k=1,...,r

[ Ro SR | < €l S-

@ Here, R, is the restriction map (orthogonal projection) onto the subspace
span{e; : j € o}.
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Paving theorem

For every € > 0 there exists r = r(e) € N such that: if S: ¢5 — £5 is a linear operator
with diagonal D(S) = 0 then we may find a partition {o«};—; of [n] such that for every
k=1,...,r

[ Ro SR | < €l S-

@ Here, R, is the restriction map (orthogonal projection) onto the subspace
span{e; : j € o}.
@ The delicate point is that r should depend only on £ and not on n.
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Paving implies restricted invertibility

o Let A: (5 — ¢5 satisfy |Aej| =1 for all i < n. Then, B = A*A has diagonal
D(B) = (1,...,1) and || B|| = | A*A| = || A|]*.
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Paving implies restricted invertibility

o Let A: (5 — ¢5 satisfy |Aej| =1 for all i < n. Then, B = A*A has diagonal
D(B) = (1,...,1) and || B|| = | A*A| = || A|]*.

e Write B=1,+ S. Then, D(S) = 0 and applying the paving theorem we may find
r = r(]|A]]) and a partition {o\};—; of [n] such that for every k =1,...,r

[Ro (B = In)Ro || < &
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Paving implies restricted invertibility

o Let A: (5 — ¢5 satisfy |Aej| =1 for all i < n. Then, B = A*A has diagonal
D(B) = (1,...,1) and || B|| = | A*A| = || A|]*.

e Write B=1,+ S. Then, D(S) = 0 and applying the paving theorem we may find
r = r(]|A]]) and a partition {o\};—; of [n] such that for every k =1,...,r
[Ro (B = In)Ro, || < e
@ It follows that for every x € £5 and every k < r we have
<BRf7kX7 RUkX> = <R0k BRUkX, RUkX>
= <RUkX’ RUkX> - <R0'k(ln - B)Rfkav RU'kX>
|R0'kX|2 - |R0'k(ln - B)RUkX| |R0'kX|

>
> |Roox|* = elRo x| = (1 = €)|Rox".
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Paving implies restricted invertibility

o Let A: (5 — ¢5 satisfy |Aej| =1 for all i < n. Then, B = A*A has diagonal
D(B) = (1,...,1) and || B|| = | A*A| = || A|]*.

e Write B=1,+ S. Then, D(S) = 0 and applying the paving theorem we may find
r = r(]|A]]) and a partition {o\};—; of [n] such that for every k =1,...,r

[Ro (B = In)Ro || < &

It follows that for every x € £5 and every k < r we have
(BRy, X, Rs, x) = (Rs, BR>, %, Ro, X)
= (Ro, X, Ro, x) — (Ro (In — B)Rs, X, R, X)
=2 |R0'kX|2 - |R0'k(ln - B)RUkX| |R0'kX|
> |Roy X — el Royx? = (1 = )| R, xP%

@ This verifies the strong Bourgain-Tzafriri conjecture.

8
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The case of /7

Let S : ¢1 — ¢7 with D(S) = 0. For every € > 0 there exists o C [n] with |o| >
that

en
such
2[|s]]

IR+ SR-|| < €.
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The case of /7

Let S : ¢1 — ¢7 with D(S) = 0. For every € > 0 there exists o C [n] with |o| >
that

en
such
2[|s]]

IR+ SR-|| < €.

e If S:R" — R" is a linear operator and a;; = (Sej, e;) then

n

IS+ 6 = €1l = max 3" lay]

Jj=1
and

n
. n n _ ..
IS : 42 = £5]| = 12?5"2; |y
p
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The case of /7

Let S : ¢] — 7 with D(S) = 0. For every € > 0 there exists o C [n] with |o| > s such
that

IR+ SR-|| < €.

e If S:R" — R" is a linear operator and a;; = (Sej, e;) then

n
IS+ 6 = €1l = max 3" lay]

Jj=1
and

n
. n n _ ..
IS : 42 = £5]| = 12?5"; |y
p

, and assume

@ Therefore, we may replace S by S’, which is defined by (Se;, &) = |a;;
that all a;; are non-negative.
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The case of /7

Paving in ¢{

Let A = (a;)7;—1 be an n X n matrix such that:
@ 3; > 0and a; =0.
e Forall i < n, Zj'.':l a; < L.
Then, for every € > 0 there exists o C [n] with |o| > & such that: for every i € o,

Zjeo' aU < €.
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The case of /7

Paving in ¢{

Let A = (a;)7;—1 be an n X n matrix such that:
@ 3; > 0and a; =0.
e Forall i < n, Zj'.':l a; < L.
Then, for every € > 0 there exists o C [n] with |o| > & such that: for every i € o,

Zjeo' aU < €.

@ In fact, we have something stronger.
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The case of /]

Paving in ¢{

Let A = (a;)7;—1 be an n X n matrix such that:

@ 3; > 0and a; =0.

e Forall i < n, ZJ'.'ZI a; < L.
Then, for every € > 0 there exists o C [n] with |o| > & such that: for every i € o,
Zjeg aj < €.

@ In fact, we have something stronger.

Bourgain

Let A = (aj)7;—1 be an n x n matrix such that:
@ a;j >0 and a; =0.
@ Forevery i<n, > 7 a; <1

Then, for every k € N there exists a partition {o1,...,0} of [n] such that: for all £ < k

and any i € oy,
PBETES

j€oy

L)
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The case of /7

This implies paving.

Paving in /]

For any k € N and any S : ¢f — /7 with D(S) = 0 there exists a partition {071, ..., 0k} of
[n] such that: for all £ < k

2
IRoe SRo Il < Z1ISII-
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The case of /7

@ The next argument is due to K. Ball.
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The case of /7

@ The next argument is due to K. Ball. We may assume that a; > 0 if / # j and that
for every i < n we have ZJ’.’:I a; =1
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The case of /7

@ The next argument is due to K. Ball. We may assume that a; > 0 if / # j and that
for every i < n we have ZJ’.’:I a; =1

@ Then p =1 is an eigenvalue of A with right eigenvector 1 = (1,...,1). So, there
exists non zero v = (Y1, ...,vn) With YA =1~.
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The case of /7

@ The next argument is due to K. Ball. We may assume that a; > 0 if / # j and that
for every i < n we have ZJ’.’:I a; =1

@ Then p =1 is an eigenvalue of A with right eigenvector 1 = (1,...,1). So, there
exists non zero v = (Y1, ...,vn) With YA =1~.

We may assume that ~; > 0 for all i < n.
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The case of /7

@ The next argument is due to K. Ball. We may assume that a; > 0 if / # j and that
for every i < n we have ZJ’.’:I a; =1

@ Then p =1 is an eigenvalue of A with right eigenvector 1 = (1,...,1). So, there
exists non zero v = (Y1, ...,vn) With YA =1~.

We may assume that ~; > 0 for all i < n.

@ Since YA =~ we have >.7 | vja; = ~; for all j < n.
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The case of /7

@ The next argument is due to K. Ball. We may assume that a; > 0 if / # j and that
for every i < n we have ZJ’.’:I a; =1

@ Then p =1 is an eigenvalue of A with right eigenvector 1 = (1,...,1). So, there
exists non zero v = (Y1, ...,vn) With YA =1~.

We may assume that ; > 0 for all i < n

@ Since YA =~ we have >.7  via; = forall j < n

e It follows that

Z\%\—Z‘Z%a:f

ZZW:\BU —ZW Zau —ZI%

j=1 i=1
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The case of /7

@ The next argument is due to K. Ball. We may assume that a; > 0 if / # j and that
for every i < n we have ZJ’.’:I a; =1

@ Then p =1 is an eigenvalue of A with right eigenvector 1 = (1,...,1). So, there
exists non zero v = (Y1, ...,vn) With YA =1~.

We may assume that ; > 0 for all i < n

@ Since YA =~ we have >.7  via; = forall j < n

e It follows that

Z\%\—Z‘Z%a:f

@ Since we have equality everywhere, all v; have the same sign. So, we may assume
that v; > 0 for all j < n. We shall show that v; > 0 for all j < n

ZZW:\BU —ZW Zau —ZI%

j=1 i=1
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The case of /7

@ The next argument is due to K. Ball. We may assume that a; > 0 if / # j and that
for every i < n we have ZJ’.’:I a; =1

@ Then p =1 is an eigenvalue of A with right eigenvector 1 = (1,...,1). So, there
exists non zero v = (Y1, ...,vn) With YA =1~.

We may assume that ; > 0 for all i < n

@ Since YA =~ we have >.7  via; = forall j < n

e It follows that

Z\%\—Z‘Z%a:f

@ Since we have equality everywhere, all v; have the same sign. So, we may assume
that v; > 0 for all j < n. We shall show that v; > 0 for all j < n

ZZW:\BU —ZW Zau —ZI%

j=1 i=1

@ Suppose that v; = 0 for some j. Since a; > 0 if i # j, from the equation
>, 7viaij =7y we get v = 0, a contradiction.
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The case of /7

@ Let k > 2 and for any partition A = {d1,...,dx} of [n] define

f(A) = Z Z Yidij-

0=1i,jES,
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The case of /7

@ Let k > 2 and for any partition A = {d1,...,dx} of [n] define

f(A) = Z Z Yidij-

0=1i,jES,

@ Choose a partition ¥ = {o1,...,0k} that minimizes f(A) over all such partitions.
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The case of /7

@ Let k > 2 and for any partition A = {d1,...,dx} of [n] define

f(A) = Z Z Yidij-

0=1i,jES,

@ Choose a partition ¥ = {o1,...,0k} that minimizes f(A) over all such partitions.

k

For all £ < k and i € g¢ we have 3, a; < 2.

€oyp

@ Assuming the contrary, there exists r € o1 such that 6 := )

o> 2
jcoy 3 > %
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The case of /7

@ Let k > 2 and for any partition A = {d1,...,dx} of [n] define

f(A) = Z Z Yidij-

0=1i,jES,

@ Choose a partition ¥ = {o1,...,0k} that minimizes f(A) over all such partitions.

For all £ < k and i € g¢ we have 3, a; < 2.

€oy k
@ Assuming the contrary, there exists r € o1 such that 6 := Zjevl ag > %
@ We define (k — 1) new partitions Y2, ..., %k as follows: for every s =2,..., k we

define ¥° = {o1,..., 0%} where

o1 =01 \{r}, oi=0sU{r} and o7 =0, if £#£1,s.
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The case of /7

@ Observe that

FE) - ()= > vias+ Y viag— D, %di— »_ %d
ij€o1 ij€os ijeoi\{r} ij€osU{r}
= Z a + Z’y;a;, —Yr Z ar — Zm‘air.
jEo1 i€oy j€Eos i€os
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The case of /7

@ Observe that

f(Z) — f Zs Z Yidaij + Z Yidij — Z Yidij — Z 7Yidij

ihj€oy ij€os ij€oi\{r} ij€osU{r}
=r g aj + g Yidir — Vr g ag — g Yidir-
jEo1 i€oy j€Eos i€os

@ Adding these equations we see that

K
SDTFE) () = (k=17 Y ag+(k=1)> var—v > ag— > viar
s=2 j€oy icoy j¢o1 i¢o
k— 1)y, Z ag —Yr Z ag — Z’Y,‘air
j€or j¢o1 =1
=(k=1)vb0—v(1-0)—
= v, (k6 —2) > 0.
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The case of /7

@ Observe that

f(Z) — f Zs Z Yidaij + Z Yidij — Z Yidij — Z 7Yidij

ihj€oy ij€os ij€oi\{r} ij€osU{r}
=r g aj + g Yidir — Vr g ag — g Yidir-
jEo1 i€oy j€Eos i€os

@ Adding these equations we see that

K
SDTFE) () = (k=17 Y ag+(k=1)> var—v > ag— > viar
s=2 j€oy icoy j¢o1 i¢o
k— 1)y, Z ag —Yr Z ag — Z’Y,‘air
j€or j¢o1 =1
=(k=1)vb0—v(1-0)—
= v, (k6 —2) > 0.

@ Therefore, for some s € {2,..., k} we must have f(X) > f(X°), a contradiction.
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The Bourgain-Tzafriri argument

Random selection

Let A : ¢5 — 5 such that |Aej| =1 for all i < n. There exists o1 C [n] with
|o1| = cin/||A||? such that, for all i € o1,

1
|Plaiconniiny (Ae))| < Ve

@ We fix 4 € (0,1) and consider independent 0-1 random variables &, ..., &, with
E (&) = 6 on a probability space (2, X, ).
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The Bourgain-Tzafriri argument

Random selection

Let A : ¢5 — 5 such that |Aej| =1 for all i < n. There exists o1 C [n] with
|o1| = cin/||A||? such that, for all i € o1,

1
|Plaiconniiny (Ae))| < Ve

@ We fix 4 € (0,1) and consider independent 0-1 random variables &, ..., &, with
E (&) = 6 on a probability space (2, X, ).

@ For each w € Q we set o(w) = {i < n: &(w) =1}
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The Bourgain-Tzafriri argument

Random selection

Let A : ¢5 — 5 such that |Aej| =1 for all i < n. There exists o1 C [n] with
|o1| = cin/||A||? such that, for all i € o1,

1
|Plaiconniiny (Ae))| < Ve

@ We fix 4 € (0,1) and consider independent 0-1 random variables &, ..., &, with
E (&) = 6 on a probability space (2, X, ).

@ For each w € Q we set o(w) = {i < n: &(w) =1}
e Note that [o(w)| = Y1, &i(w).
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The Bourgain-Tzafriri argument

Random selection

Let A : ¢5 — 5 such that |Aej| =1 for all i < n. There exists o1 C [n] with
|o1| = cin/||A||? such that, for all i € o1,

1
|Plaiconniiny (Ae))| < Ve

@ We fix 4 € (0,1) and consider independent 0-1 random variables &, ..., &, with
E (&) = 6 on a probability space (2, X, ).

@ For each w € Q we set o(w) = {i < n: &(w) =1}

e Note that [o(w)| = Y1, &i(w).
@ From Bernstein's inequality we have

({w o(w)| < 7}) < exp(—dn/10).
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The Bourgain-Tzafriri argument

@ By the independence of the &;'s we get
E( Z5;(w)|P(gj(w)Ae/:j¢,->(Ae,-)|2) = > (E&(w)) E|Pe;wyae i (Aei)|”
i=1 i=1
=4 E( > |P<5f(w>Aej:f¢f>(Aef)!2) <96 ]E( > \P@j(w)AejJsm(Aef)lz)
i=1 i=1
= 6 E[|PigmesicnAlls < SIAIP E[[Preingicnlhs
= S|l AI1* E [dim((&(w)Ag : j < m))] < |IA|? E(Z&(W))
j=1

= 6%n|| Al
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The Bourgain-Tzafriri argument

@ By the independence of the &;'s we get
n ) n 5
E( D &i(w)|Pie(yagizi (Aer)| ) = > (E&(w)) E|Pe;(w)acjiy (Aei)|
i=1 i=1

= SE( D |Pigrngssn (Ae]’) <G E( D |Piengicn (Ae)[)
i=1 i=1
= 0 E||Pgmneicn Allis < SIAIP B[ Pryerngicn s
— S1AIP E Rim((&(@)Ae . < m)] < SIAIP B( 3 6(w)
j=1

= 6%n|| Al

e From Markov's inequality, with probability greater than or equal to 1/2 we get

< 2
> Ei(w) | Piejyaeizi (Aer)|” < 28%n]| A%,
i=1
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The Bourgain-Tzafriri argument

@ So, we may find wo € Q such that ¢ := o(wo) satisfies |oo| > dn/2

2
> |Piagiicon (im (Ae)|” < 26%n||A|I%.

i€og
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The Bourgain-Tzafriri argument

@ So, we may find wo € Q such that ¢ := o(wo) satisfies |oo| > dn/2
2
D |Puagican in (Ae)|” < 26| AJ1.
i€og

o We define
7= {i € 00 1 |Piaejea\ (11 (Aei)| > 4[| AIV6}.
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The Bourgain-Tzafriri argument

@ So, we may find wo € Q such that ¢ := o(wo) satisfies |oo| > dn/2
2
D |Puagican in (Ae)|” < 26| AJ1.
i€og

o We define
7= {i € 00 1 |Piaejea\ (11 (Aei)| > 4[| AIV6}.

@ Applying Markov's inequality once again we get
I7|(163]|Al[*) < 28| A|%,

which gives
|T] < dn/8.

Summer School - 2019 (Part 1) Interlacing polynomials July 2019 17 /23



The Bourgain-Tzafriri argument

@ So, we may find wo € Q such that ¢ := o(wo) satisfies |oo| > dn/2

2
> |Piagiicon (im (Ae)|” < 26%n||A|I%.

i€og
o We define
7= {i € 00 1 |Piaejea\ (11 (Aei)| > 4[| AIV6}.
@ Applying Markov's inequality once again we get

I7|(165]|A]*) < 20°n]|A|1%,

which gives
|T] < dn/8.

o If we set o1 = 09 \ 7, then |o1| > 36n/8 and, for all i € o7,

|P(Aej:j601\{i})(Aef)‘ < ‘P(Ae/:jEUO\{"})(Ae")l < 4HA”\/5
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The Bourgain-Tzafriri argument

@ So, we may find wo € Q such that ¢ := o(wo) satisfies |oo| > dn/2

2
> |Piagiicon (im (Ae)|” < 26%n||A|I%.

i€og
o We define
7= {i € 00 1 |Piaejea\ (11 (Aei)| > 4[| AIV6}.
@ Applying Markov's inequality once again we get

I7|(165]|A]*) < 20°n]|A|1%,

which gives
|T] < dn/8.

o If we set o1 = 09 \ 7, then |o1| > 36n/8 and, for all i € o7,

|P(Aej:j601\{i})(Aef)‘ < ‘P(Ae/:jEUO\{"})(Ae")l < 4HA”\/5

Choosing d = 1/(32||A||?) we get the result.
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The Bourgain-Tzafriri argument

Sauer-Shelah
Let D be a subset of Ej = {—1,1}" and k < n. If

k—1 @
D|>>" (]
= \J

then there exists o C [n] with cardinality |o| = k such that R,(D) = E5 = {-1,1}°,
where R, is the restriction to the coordinates of o.
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The Bourgain-Tzafriri argument

Combinatorial step

Let A : ¢5 — ¢35 such that |Aej| = 1 for all i < n. There exists o2 C [n] with
|o2| > can/||Al|? such that, for any choice of coefficients (t/)ico,,

> o ZiEcrz |ti| )

‘ tiAe;
’.EZGZ i i ,7|0_2|

@ We had found o1 with |o1] > cin/||A||* such that, for all i € o1,

1
| Pacjeor ity (Aei)| < NG
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The Bourgain-Tzafriri argument

Combinatorial step

Let A : ¢5 — ¢35 such that |Aej| = 1 for all i < n. There exists o2 C [n] with
|o2| > can/||Al|? such that, for any choice of coefficients (t/)ico,,

> o ZiEcrz |ti| )

i€oy \% |U2|

@ We had found o1 with |o1] > cin/||A||* such that, for all i € o1,

1
| Pacjeor ity (Aei)| < NG

o For every i € o1 we define uj = Aei — Piac;jeo,\(i}) (Aer) and uj = uj/|uf|. Then,
|uil| =1 and, for all i € o1,

(Aei, ui) > and (Aej,u)) =0 j#i.

1
V2
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The Bourgain-Tzafriri argument

Combinatorial step

Let A : ¢5 — ¢35 such that |Aej| = 1 for all i < n. There exists o2 C [n] with
|o2| > can/||Al|? such that, for any choice of coefficients (t/)ico,,

> o ZiEcrz |ti| )

i€oy \% |U2|

@ We had found o1 with |o1] > cin/||A||* such that, for all i € o1,

1
| Pacjeor ity (Aei)| < NG

o For every i € o1 we define uj = Aei — Piac;jeo,\(i}) (Aer) and uj = uj/|uf|. Then,
|uil| =1 and, for all i € o1,

(Aei, ui) > and (Aej,u)) =0 j#i.

1
V2
@ By the parallelogram law,

2
Ave{‘ Z Ejuj-’ tej = :tl} = Z lu;|* = |o].

Jj€o1 Jj€o1
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The Bourgain-Tzafriri argument

o Consider the set

D := {(Ej)jeo-l € EJ: ‘ Zajuj

Jj€o1

< V2al}.

Summer School - 2019 (Part 1) Interlacing polynomials July 2019



The Bourgain-Tzafriri argument

o Consider the set

D := {(Ej)jeo-l € EJ: ‘ Zajuj

Jj€o1

< V2al}.

e From Markov's inequality we have |D| > 2/e1/=1,
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The Bourgain-Tzafriri argument

o Consider the set

D= {(51)1601 €E" ‘ ZEJUJ

Jj€o1

< 2|01|}

e From Markov's inequality we have |D| > 2/e1/=1,

@ By the Sauer-Shelah lemma (with k > |o1|/2) we find o2 C o1 with
loa| > |o1]/2 = (c1/2)n/||A|* such that

Ro,(conv(D)) = conv({—l, 1}‘72) =[-1,1]72.
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The Bourgain-Tzafriri argument

Consider the set

D= {(51)1601 €E" ‘ ZEJUJ

Jj€o1

< 2|01|}

From Markov’s inequality we have |D| > 2/o1/=1,

By the Sauer-Shelah lemma (with k > |01]/2) we find 02 C o1 with
loa| > |o1]/2 = (c1/2)n/||A|* such that

Ro,(conv(D)) = conv({—l, 1}‘72) =[-1,1]72.

By the definition of D, if (gj)jco, € conv(D) then

|13 qu| < V2ol <2Vl

Jj€or
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The Bourgain-Tzafriri argument

o Let (ti)ico,. We write

% Z [ti| < < Z tiAei, Z Sign(fj)uj'>.

i€oy i€op Jj€o2
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The Bourgain-Tzafriri argument

o Let (ti)ico,. We write
1 .
ﬁ Z [ti| < < Z tiAei, Z Slgn(fj)uj'>.
i€oy i€op Jj€o2

o Observe that
(sign(tj-))jeg2 € [-1,1]7 C Ry, (conv(D)).
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The Bourgain-Tzafriri argument

o Let (ti)ico,. We write

% Z [ti| < < Z tiAei, Z Sign(fj)uj'>.

i€op i€oy JjEoT2

o Observe that
(sign(tj-))jeg2 € [-1,1]7 C Ry, (conv(D)).

@ Therefore, we may find (gj)jco; € conv(D) such that

q; = sign(t;) if j € o».
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The Bourgain-Tzafriri argument

o Let (ti)ico,. We write
1 .
ﬁ Z [ti| < < Z tiAei, Z Slgn(fj)uj'>.
i€oy i€op Jj€o2

o Observe that
(sign(tj-))jeg2 € [-1,1]7 C Ry, (conv(D)).

@ Therefore, we may find (gj)jco; € conv(D) such that
q; = sign(t;) if j € o».
@ Since (Aej, uj) = 0 whenever i € 02 and j € 01 \ 02, we have

< S tAe, 3 sign(t,-)u,-> = < > tiAe, Y CljUj>.

i€op jEo2 i€op jE€o1
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The Bourgain-Tzafriri argument

o Let (ti)ico,. We write

% Z [ti| < < Z tiAei, Z Sign(fj)uj'>.

i€oy i€op Jj€o2

Observe that

(sign(tj-))jeg2 € [-1,1]7 C Ry, (conv(D)).
@ Therefore, we may find (gj)jco; € conv(D) such that
q; = sign(t;) if j € o».
@ Since (Aej, uj) = 0 whenever i € 02 and j € 01 \ 02, we have
< Z tiAe;i, Z sign(t,-)u,-> = < Z tiAe;i, Z qjuj->.
i€op j€oa i€or j€o1

o From the Cauchy-Schwarz inequality,

% >l < < > tiAe, Y Cljuj> < ‘ > qjuJH > tiAe

i€op i€oyp JjEo1 JjEoy i€or
<2\/|G2“ E tjA6j .
i€op
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The final step

o Let A: (5 — €5 with |Aej|=1foralli=1,...,n.
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The final step

o Let A: (5 — €5 with |Aej|=1foralli=1,...,n.
o We set x; = Ae; and, by the previous step, we have o, C [n] such that
|o2| = can/||A||* and for the operator S : X = (x; : i € 02) — £] defined by

€j .
Sx; = — i € 0s.

Vo]’

we have that ||S|| < 1/c.
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The final step

o Let A: (5 — €5 with |Aej|=1foralli=1,...,n.
o We set x; = Ae; and, by the previous step, we have o, C [n] such that
|o2| = can/||A||* and for the operator S : X = (x; : i € 02) — £] defined by

€i

Vo]’

i € oa.

SX,' =

we have that ||S|| < 1/c.
@ The adjoint operator S* : £3, — X is 2-summing and
Ke

m(S") < Ke|S"[| < =<
(&)

July 2019 22 /23
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The final step

o Let A: (5 — €5 with |Aej|=1foralli=1,...,n.
o We set x; = Ae; and, by the previous step, we have o, C [n] such that
|o2| = can/||A||* and for the operator S : X = (x; : i € 02) — £] defined by

€j .
Sx; = — i € 0s.

Vo]’

we have that ||S|| < 1/c.
@ The adjoint operator S* : £3, — X is 2-summing and
Ke
C2 ’

m(S%) < KellS°|l <

@ Then, S* is factorized as S* = U o D, where U : £5 — X with ||U|| < m2(5%) and
D : ¢, — ¢35 is a diagonal operator with De; = Aje; for some A; € R with
PIEPIENE

22
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The final step

o Let A: (5 — €5 with |Aej|=1foralli=1,...,n.
o We set x; = Ae; and, by the previous step, we have o, C [n] such that
|o2| = can/||A||* and for the operator S : X = (x; : i € 02) — £] defined by

€j .
Sxj = — i € oa.

Vo]’

we have that ||S|| < 1/c.

@ The adjoint operator S* : £3, — X is 2-summing and

Ke

C2 ’

@ Then, S* is factorized as S* = U o D, where U : £5 — X with ||U|| < m2(5%) and
D : ¢, — ¢35 is a diagonal operator with De; = Aje; for some A; € R with
PIEPIENE

o It follows that S can be written as S = D* o U*, with D*e; = \;ei. Note that

1

i/ |o2]

m(S%) < KellS°|l <

U'(x) = &, JjEo
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The final step

@ We define
o=1{j €|\ < V2/|o2]}.

Summer School - 2019 (Part 1) Interlacing polynomials July 2019 23 /23



The final step

o We define
o ={j €oz:|N| <V2/|o2]}.
e From 37 A7 < 1 we see that

> Y A >2l02\0l/|oa].

JEaz\U
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The final step

@ We define
o=1{j €|\ < V2/|o2]}.

e From 37 A7 < 1 we see that

> Y A >2l02\0l/|oa].

JEaz\U

@ Therefore,
g
o1 > %L >
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The final step

@ We define
o=1{j €|\ < V2/|o2]}.

e From 37 A7 < 1 we see that
> Y A >2l02\0l/|oa].
JEaz\U
@ Therefore,
|o2|

lo| > o P C3’7/||AH2~

@ Finally, for any choice of real coefficients (t;)ico we have

SISz |0 (Sew)l= (Sl =00
T(Zt )1/2.

j€Eo
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The final step

@ We define
o=1{j €|\ < V2/|o2]}.

From "7, A7 < 1 we see that

> Y A >2l02\0l/|oa].

JEUz\U
@ Therefore,
g
o1 > %L >
@ Finally, for any choice of real coefficients (t;)ico we have

& v (T o)l = (Sl
— tixi| > |U tixi || =
ngfj ZJJ %;Aj o]

7(Zt )1/2.

j€Eo

This proves the theorem.
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