Interlacing polynomials, restricted invertibility and multi-paving

Summer School in Operator Theory

Part I

July 9, 2019

Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if A is an $n \times n$ matrix whose columns $A e_{j}$ have Euclidean norm equal to 1 then there exists $\sigma \subset[n]$ of cardinality $|\sigma| \geqslant c n /\|A\|_{2}^{2}$ such that the restriction A_{σ} of A to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ is well-invertible.

Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if A is an $n \times n$ matrix whose columns $A e_{j}$ have Euclidean norm equal to 1 then there exists $\sigma \subset[n]$ of cardinality $|\sigma| \geqslant c n /\|A\|_{2}^{2}$ such that the restriction A_{σ} of A to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ is well-invertible.

Bourgain-Tzafriri

There exist absolute constants $\delta, \gamma>0$ such that if $A: \ell_{2}^{n} \longrightarrow \ell_{2}^{n}$ is a linear operator with $\left|A e_{j}\right|=1$ for all $j=1, \ldots, n$ then one may find a subset $\sigma \subseteq[n]$ of cardinality $|\sigma| \geqslant \delta n /\|A\|_{2}^{2}$ such that

$$
\left|\sum_{j \in \sigma} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma}\left|t_{j}\right|^{2}
$$

for any choice of scalars $\left\{t_{j}\right\}_{j \in \sigma}$.

Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if A is an $n \times n$ matrix whose columns $A e_{j}$ have Euclidean norm equal to 1 then there exists $\sigma \subset[n]$ of cardinality $|\sigma| \geqslant c n /\|A\|_{2}^{2}$ such that the restriction A_{σ} of A to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ is well-invertible.

Bourgain-Tzafriri

There exist absolute constants $\delta, \gamma>0$ such that if $A: \ell_{2}^{n} \longrightarrow \ell_{2}^{n}$ is a linear operator with $\left|A e_{j}\right|=1$ for all $j=1, \ldots, n$ then one may find a subset $\sigma \subseteq[n]$ of cardinality $|\sigma| \geqslant \delta n /\|A\|_{2}^{2}$ such that

$$
\left|\sum_{j \in \sigma} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma}\left|t_{j}\right|^{2}
$$

for any choice of scalars $\left\{t_{j}\right\}_{j \in \sigma}$.

- Recall that the stable rank of A is defined by $\operatorname{srank}(A):=\|A\|_{\text {HS }}^{2} /\|A\|_{2}^{2}$.

Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if A is an $n \times n$ matrix whose columns $A e_{j}$ have Euclidean norm equal to 1 then there exists $\sigma \subset[n]$ of cardinality $|\sigma| \geqslant c n /\|A\|_{2}^{2}$ such that the restriction A_{σ} of A to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ is well-invertible.

Bourgain-Tzafriri

There exist absolute constants $\delta, \gamma>0$ such that if $A: \ell_{2}^{n} \longrightarrow \ell_{2}^{n}$ is a linear operator with $\left|A e_{j}\right|=1$ for all $j=1, \ldots, n$ then one may find a subset $\sigma \subseteq[n]$ of cardinality $|\sigma| \geqslant \delta n /\|A\|_{2}^{2}$ such that

$$
\left|\sum_{j \in \sigma} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma}\left|t_{j}\right|^{2}
$$

for any choice of scalars $\left\{t_{j}\right\}_{j \in \sigma}$.

- Recall that the stable rank of A is defined by $\operatorname{srank}(A):=\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$.
- Assuming that $\left|A e_{j}\right|=1$ for all $j=1, \ldots, n$ we have $\|A\|_{\text {HS }}^{2}=n$, therefore the cardinality of the set σ provided by this theorem is proportional to the stable rank of A.

Restricted invertibility

- Note also that if A_{σ} is the restriction of A to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ then the theorem is equivalent to the fact that $s_{\min }\left(A_{\sigma}\right) \geqslant \gamma$, where

$$
S_{\text {min }}(T)=\lambda_{\text {min }}\left(\sqrt{T^{t} T}\right)=\lambda_{\text {min }}\left(\sqrt{T T^{t}}\right)
$$

denotes the smallest singular number of an operator T.

Restricted invertibility

- Note also that if A_{σ} is the restriction of A to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ then the theorem is equivalent to the fact that $s_{\min }\left(A_{\sigma}\right) \geqslant \gamma$, where

$$
s_{\text {min }}(T)=\lambda_{\min }\left(\sqrt{T^{t} T}\right)=\lambda_{\text {min }}\left(\sqrt{T T^{t}}\right)
$$

denotes the smallest singular number of an operator T.

- The original proof uses random selection, the Sauer-Shelah lemma and Grothendieck's factorization theorem.

Restricted invertibility

- Note also that if A_{σ} is the restriction of A to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ then the theorem is equivalent to the fact that $s_{\min }\left(A_{\sigma}\right) \geqslant \gamma$, where

$$
s_{\min }(T)=\lambda_{\min }\left(\sqrt{T^{t} T}\right)=\lambda_{\min }\left(\sqrt{T T^{t}}\right)
$$

denotes the smallest singular number of an operator T.

- The original proof uses random selection, the Sauer-Shelah lemma and Grothendieck's factorization theorem.

Vershynin generalized this result as follows.

Vershynin

Let $I_{n}=\sum_{j=1}^{m} u_{j} u_{j}^{t}$ be an arbitrary decomposition of the identity and $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. Then, for any $\epsilon \in(0,1)$ one can find $\sigma \subset[m]$ of cardinality $|\sigma| \geqslant(1-\epsilon) \operatorname{srank}(A)$ such that for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\left|\sum_{j \in \sigma} t_{j} \frac{A u_{j}}{\left|A u_{j}\right|}\right| \geqslant c(\epsilon)\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2}
$$

where $c(\varepsilon)>0$ is a constant depending only on ϵ.

Restricted invertibility

- Note that if $\left|A e_{j}\right|=1$ for all j then, applying Vershynin's theorem for the standard decomposition $I_{n}=\sum_{j=1}^{n} e_{j} e_{j}^{t}$ we recover the Bourgain-Tzafriri theorem.

Restricted invertibility

- Note that if $\left|A e_{j}\right|=1$ for all j then, applying Vershynin's theorem for the standard decomposition $I_{n}=\sum_{j=1}^{n} e_{j} e_{j}^{t}$ we recover the Bourgain-Tzafriri theorem.
- Moreover, we may now find $\sigma \subseteq[n]$ of cardinality greater than $(1-\epsilon) n /\|A\|_{2}^{2}$ for any $\epsilon \in(0,1)$ so that

$$
\left|\sum_{j \in \sigma} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma}\left|t_{j}\right|^{2}
$$

will hold true, of course with a constant $\gamma=\gamma(\epsilon)$ depending on ϵ.

Restricted invertibility

- Note that if $\left|A e_{j}\right|=1$ for all j then, applying Vershynin's theorem for the standard decomposition $I_{n}=\sum_{j=1}^{n} e_{j} e_{j}^{t}$ we recover the Bourgain-Tzafriri theorem.
- Moreover, we may now find $\sigma \subseteq[n]$ of cardinality greater than $(1-\epsilon) n /\|A\|_{2}^{2}$ for any $\epsilon \in(0,1)$ so that

$$
\left|\sum_{j \in \sigma} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma}\left|t_{j}\right|^{2}
$$

will hold true, of course with a constant $\gamma=\gamma(\epsilon)$ depending on ϵ.
Spielman and Srivastava gave a generalization, in the spirit of Vershynin's theorem, with optimal dependence on ϵ.

Spielman-Srivastava

Let $\epsilon \in(0,1)$ and $u_{1}, \ldots, u_{m} \in \mathbb{R}^{n}$ such that $I_{n}=\sum_{j=1}^{m} u_{j} u_{j}^{t}$. Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. We can find $\sigma \subseteq[m]$ of cardinality $|\sigma| \geqslant\left\lfloor(1-\epsilon)^{2} \operatorname{srank}(A)\right\rfloor$ such that the set $\left\{A u_{j}: j \in \sigma\right\}$ is linearly independent and

$$
\lambda_{\min }\left(\sum_{j \in \sigma}\left(A u_{j}\right)\left(A u_{j}\right)^{t}\right) \geqslant \epsilon^{2} \frac{\|A\|_{\mathrm{HS}}^{2}}{m}
$$

where the smallest eigenvalue $\lambda_{\text {min }}$ is computed on the subspace $\operatorname{span}\left\{A u_{j}: j \in \sigma\right\}$.

Restricted invertibility

- The inequality

$$
\lambda_{\min }\left(\sum_{j \in \sigma}\left(A u_{j}\right)\left(A u_{j}\right)^{t}\right) \geqslant \epsilon^{2} \frac{\|A\|_{\mathrm{HS}}^{2}}{m},
$$

is equivalent to the fact that, for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\left|\sum_{j \in \sigma} t_{j} A u_{j}\right| \geqslant \epsilon \frac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2}
$$

Restricted invertibility

- The inequality

$$
\lambda_{\min }\left(\sum_{j \in \sigma}\left(A u_{j}\right)\left(A u_{j}\right)^{t}\right) \geqslant \epsilon^{2} \frac{\|A\|_{\mathrm{HS}}^{2}}{m},
$$

is equivalent to the fact that, for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\left|\sum_{j \in \sigma} t_{j} A u_{j}\right| \geqslant \epsilon \frac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} .
$$

- The Bourgain-Tzafriri theorem follows with constants $\gamma(\epsilon)=\epsilon^{2} \delta(\epsilon)=(1-\epsilon)^{2}$; consider the standard decomposition of the identity $I_{n}=\sum_{i=1}^{n} e_{j} e_{j}^{t}$, where $\left\{e_{j}: j=1, \ldots, n\right\}$ and recall that $\|A\|_{\text {HS }}^{2}=n$.

Strong restricted invertibility

Strong B-T

There exists an absolute constant $\gamma>0$ with the following property: for every $B>0$ there exists $r=r(B) \in \mathbb{N}$ such that if $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ is a linear operator with $\|A\| \leqslant B$ and $\left|A e_{j}\right|=1$ for all $i=1, \ldots, n$, then we may find a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of $[n]$ such that for every $k=1, \ldots, r$ and any choice of real coefficients $\left(t_{j}\right)_{j \in \sigma_{k}}$,

$$
\left|\sum_{j \in \sigma_{k}} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma_{k}}\left|t_{j}\right|^{2}
$$

- This statement is called the strong Bourgain-Tzafriri conjecture.

Strong restricted invertibility

Strong B-T

There exists an absolute constant $\gamma>0$ with the following property: for every $B>0$ there exists $r=r(B) \in \mathbb{N}$ such that if $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ is a linear operator with $\|A\| \leqslant B$ and $\left|A e_{j}\right|=1$ for all $i=1, \ldots, n$, then we may find a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of $[n]$ such that for every $k=1, \ldots, r$ and any choice of real coefficients $\left(t_{j}\right)_{j \in \sigma_{k}}$,

$$
\left|\sum_{j \in \sigma_{k}} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma_{k}}\left|t_{j}\right|^{2}
$$

- This statement is called the strong Bourgain-Tzafriri conjecture.
- It is now a theorem, after the proof of the paving conjecture by Marcus, Spielman and Srivastava.

Strong restricted invertibility

Strong B-T

There exists an absolute constant $\gamma>0$ with the following property: for every $B>0$ there exists $r=r(B) \in \mathbb{N}$ such that if $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ is a linear operator with $\|A\| \leqslant B$ and $\left|A e_{j}\right|=1$ for all $i=1, \ldots, n$, then we may find a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of $[n]$ such that for every $k=1, \ldots, r$ and any choice of real coefficients $\left(t_{j}\right)_{j \in \sigma_{k}}$,

$$
\left|\sum_{j \in \sigma_{k}} t_{j} A e_{j}\right|^{2} \geqslant \gamma \sum_{j \in \sigma_{k}}\left|t_{j}\right|^{2}
$$

- This statement is called the strong Bourgain-Tzafriri conjecture.
- It is now a theorem, after the proof of the paving conjecture by Marcus, Spielman and Srivastava.
- In fact, the paving theorem is equivalent to the statement above, and also provides an affirmative answer to the Kadison-Singer problem.

Paving theorem

Paving

For every $\varepsilon>0$ there exists $r=r(\varepsilon) \in \mathbb{N}$ such that: if $S: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ is a linear operator with diagonal $D(S)=0$ then we may find a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of [n] such that for every $k=1, \ldots, r$

$$
\left\|R_{\sigma_{k}} S R_{\sigma_{k}}\right\| \leqslant \varepsilon\|S\| .
$$

Paving theorem

Paving

For every $\varepsilon>0$ there exists $r=r(\varepsilon) \in \mathbb{N}$ such that: if $S: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ is a linear operator with diagonal $D(S)=0$ then we may find a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of [n] such that for every $k=1, \ldots, r$

$$
\left\|R_{\sigma_{k}} S R_{\sigma_{k}}\right\| \leqslant \varepsilon\|S\| .
$$

- Here, R_{σ} is the restriction map (orthogonal projection) onto the subspace $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$.

Paving theorem

Paving

For every $\varepsilon>0$ there exists $r=r(\varepsilon) \in \mathbb{N}$ such that: if $S: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ is a linear operator with diagonal $D(S)=0$ then we may find a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of [n] such that for every $k=1, \ldots, r$

$$
\left\|R_{\sigma_{k}} S R_{\sigma_{k}}\right\| \leqslant \varepsilon\|S\| .
$$

- Here, R_{σ} is the restriction map (orthogonal projection) onto the subspace $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$.
- The delicate point is that r should depend only on ε and not on n.

Paving implies restricted invertibility

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ satisfy $\left|A e_{j}\right|=1$ for all $i \leqslant n$. Then, $B=A^{t} A$ has diagonal $D(B)=(1, \ldots, 1)$ and $\|B\|=\left\|A^{t} A\right\|=\|A\|^{2}$.

Paving implies restricted invertibility

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ satisfy $\left|A e_{j}\right|=1$ for all $i \leqslant n$. Then, $B=A^{t} A$ has diagonal $D(B)=(1, \ldots, 1)$ and $\|B\|=\left\|A^{t} A\right\|=\|A\|^{2}$.
- Write $B=I_{n}+S$. Then, $D(S)=0$ and applying the paving theorem we may find $r=r(\|A\|)$ and a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of $[n]$ such that for every $k=1, \ldots, r$

$$
\left\|R_{\sigma_{k}}\left(B-I_{n}\right) R_{\sigma_{k}}\right\| \leqslant \varepsilon .
$$

Paving implies restricted invertibility

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ satisfy $\left|A e_{j}\right|=1$ for all $i \leqslant n$. Then, $B=A^{t} A$ has diagonal $D(B)=(1, \ldots, 1)$ and $\|B\|=\left\|A^{t} A\right\|=\|A\|^{2}$.
- Write $B=I_{n}+S$. Then, $D(S)=0$ and applying the paving theorem we may find $r=r(\|A\|)$ and a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of $[n]$ such that for every $k=1, \ldots, r$

$$
\left\|R_{\sigma_{k}}\left(B-I_{n}\right) R_{\sigma_{k}}\right\| \leqslant \varepsilon .
$$

- It follows that for every $x \in \ell_{2}^{n}$ and every $k \leqslant r$ we have

$$
\begin{aligned}
\left\langle B R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle & =\left\langle R_{\sigma_{k}} B R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle \\
& =\left\langle R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle-\left\langle R_{\sigma_{k}}\left(I_{n}-B\right) R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle \\
& \geqslant\left|R_{\sigma_{k}} x\right|^{2}-\left|R_{\sigma_{k}}\left(I_{n}-B\right) R_{\sigma_{k}} x\right|\left|R_{\sigma_{k}} x\right| \\
& \geqslant\left|R_{\sigma_{k}} x\right|^{2}-\varepsilon\left|R_{\sigma_{k}} x\right|^{2}=(1-\varepsilon)\left|R_{\sigma_{k}} x\right|^{2} .
\end{aligned}
$$

Paving implies restricted invertibility

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ satisfy $\left|A e_{j}\right|=1$ for all $i \leqslant n$. Then, $B=A^{t} A$ has diagonal $D(B)=(1, \ldots, 1)$ and $\|B\|=\left\|A^{t} A\right\|=\|A\|^{2}$.
- Write $B=I_{n}+S$. Then, $D(S)=0$ and applying the paving theorem we may find $r=r(\|A\|)$ and a partition $\left\{\sigma_{k}\right\}_{k=1}^{r}$ of $[n]$ such that for every $k=1, \ldots, r$

$$
\left\|R_{\sigma_{k}}\left(B-I_{n}\right) R_{\sigma_{k}}\right\| \leqslant \varepsilon
$$

- It follows that for every $x \in \ell_{2}^{n}$ and every $k \leqslant r$ we have

$$
\begin{aligned}
\left\langle B R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle & =\left\langle R_{\sigma_{k}} B R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle \\
& =\left\langle R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle-\left\langle R_{\sigma_{k}}\left(I_{n}-B\right) R_{\sigma_{k}} x, R_{\sigma_{k}} x\right\rangle \\
& \geqslant\left|R_{\sigma_{k}} x\right|^{2}-\left|R_{\sigma_{k}}\left(I_{n}-B\right) R_{\sigma_{k}} x\right|\left|R_{\sigma_{k}} x\right| \\
& \geqslant\left|R_{\sigma_{k}} x\right|^{2}-\varepsilon\left|R_{\sigma_{k}} x\right|^{2}=(1-\varepsilon)\left|R_{\sigma_{k}} x\right|^{2} .
\end{aligned}
$$

- This verifies the strong Bourgain-Tzafriri conjecture.

The case of ℓ_{1}^{n}

Schechtman

Let $S: \ell_{1}^{n} \rightarrow \ell_{1}^{n}$ with $D(S)=0$. For every $\varepsilon>0$ there exists $\sigma \subset[n]$ with $|\sigma| \geqslant \frac{\varepsilon n}{2\|S\|}$ such that

$$
\left\|R_{\sigma} S R_{\sigma}\right\| \leqslant \varepsilon
$$

The case of ℓ_{1}^{n}

Schechtman

Let $S: \ell_{1}^{n} \rightarrow \ell_{1}^{n}$ with $D(S)=0$. For every $\varepsilon>0$ there exists $\sigma \subset[n]$ with $|\sigma| \geqslant \frac{\varepsilon n}{2\|S\|}$ such that

$$
\left\|R_{\sigma} S R_{\sigma}\right\| \leqslant \varepsilon
$$

- If $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator and $a_{i j}=\left\langle S e_{j}, e_{i}\right\rangle$ then

$$
\left\|S: \ell_{1}^{n} \rightarrow \ell_{1}^{n}\right\|=\max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

and

$$
\left\|S: \ell_{\infty}^{n} \rightarrow \ell_{\infty}^{n}\right\|=\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

The case of ℓ_{1}^{n}

Schechtman

Let $S: \ell_{1}^{n} \rightarrow \ell_{1}^{n}$ with $D(S)=0$. For every $\varepsilon>0$ there exists $\sigma \subset[n]$ with $|\sigma| \geqslant \frac{\varepsilon n}{2\|S\|}$ such that

$$
\left\|R_{\sigma} S R_{\sigma}\right\| \leqslant \varepsilon
$$

- If $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator and $a_{i j}=\left\langle S e_{j}, e_{i}\right\rangle$ then

$$
\left\|S: \ell_{1}^{n} \rightarrow \ell_{1}^{n}\right\|=\max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

and

$$
\left\|S: \ell_{\infty}^{n} \rightarrow \ell_{\infty}^{n}\right\|=\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

- Therefore, we may replace S by S^{\prime}, which is defined by $\left\langle S^{\prime} e_{j}, e_{i}\right\rangle=\left|a_{i j}\right|$, and assume that all $a_{i j}$ are non-negative.

The case of ℓ_{1}^{n}

Paving in ℓ_{1}^{n}

Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be an $n \times n$ matrix such that:

- $a_{i j} \geqslant 0$ and $a_{i i}=0$.
- For all $i \leqslant n, \sum_{j=1}^{n} a_{i j} \leqslant 1$.

Then, for every $\varepsilon>0$ there exists $\sigma \subset[n]$ with $|\sigma| \geqslant \frac{\varepsilon n}{2}$ such that: for every $i \in \sigma$, $\sum_{j \in \sigma} a_{i j} \leqslant \varepsilon$.

The case of ℓ_{1}^{n}

Paving in ℓ_{1}^{n}

Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be an $n \times n$ matrix such that:

- $a_{i j} \geqslant 0$ and $a_{i i}=0$.
- For all $i \leqslant n, \sum_{j=1}^{n} a_{i j} \leqslant 1$.

Then, for every $\varepsilon>0$ there exists $\sigma \subset[n]$ with $|\sigma| \geqslant \frac{\varepsilon n}{2}$ such that: for every $i \in \sigma$, $\sum_{j \in \sigma} a_{i j} \leqslant \varepsilon$.

- In fact, we have something stronger.

The case of ℓ_{1}^{n}

Paving in ℓ_{1}^{n}

Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be an $n \times n$ matrix such that:

- $a_{i j} \geqslant 0$ and $a_{i i}=0$.
- For all $i \leqslant n, \sum_{j=1}^{n} a_{i j} \leqslant 1$.

Then, for every $\varepsilon>0$ there exists $\sigma \subset[n]$ with $|\sigma| \geqslant \frac{\varepsilon n}{2}$ such that: for every $i \in \sigma$, $\sum_{j \in \sigma} a_{i j} \leqslant \varepsilon$.

- In fact, we have something stronger.

Bourgain

Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be an $n \times n$ matrix such that:

- $a_{i j} \geqslant 0$ and $a_{i i}=0$.
- For every $i \leqslant n, \sum_{j=1}^{n} a_{i j} \leqslant 1$.

Then, for every $k \in \mathbb{N}$ there exists a partition $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ of [n] such that: for all $\ell \leqslant k$ and any $i \in \sigma_{\ell}$,

$$
\sum_{j \in \sigma_{\ell}} a_{i j} \leqslant \frac{2}{k}
$$

The case of ℓ_{1}^{n}

This implies paving.

Paving in ℓ_{1}^{n}

For any $k \in \mathbb{N}$ and any $S: \ell_{1}^{n} \rightarrow \ell_{1}^{n}$ with $D(S)=0$ there exists a partition $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ of [n] such that: for all $\ell \leqslant k$

$$
\left\|R_{\sigma_{\ell}} S R_{\sigma_{\ell}}\right\| \leqslant \frac{2}{k}\|S\| .
$$

The case of ℓ_{1}^{n}

- The next argument is due to K. Ball.

The case of ℓ_{1}^{n}

- The next argument is due to K. Ball. We may assume that $a_{i j}>0$ if $i \neq j$ and that for every $i \leqslant n$ we have $\sum_{j=1}^{n} a_{i j}=1$.

The case of ℓ_{1}^{n}

- The next argument is due to K. Ball. We may assume that $a_{i j}>0$ if $i \neq j$ and that for every $i \leqslant n$ we have $\sum_{j=1}^{n} a_{i j}=1$.
- Then $\rho=1$ is an eigenvalue of A with right eigenvector $\mathbf{1}=(1, \ldots, 1)$. So, there exists non zero $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma \boldsymbol{A}=\gamma$.

The case of ℓ_{1}^{n}

- The next argument is due to K. Ball. We may assume that $a_{i j}>0$ if $i \neq j$ and that for every $i \leqslant n$ we have $\sum_{j=1}^{n} a_{i j}=1$.
- Then $\rho=1$ is an eigenvalue of A with right eigenvector $\mathbf{1}=(1, \ldots, 1)$. So, there exists non zero $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma \boldsymbol{A}=\gamma$.

Claim 1

We may assume that $\gamma_{i}>0$ for all $i \leqslant n$.

The case of ℓ_{1}^{n}

- The next argument is due to K. Ball. We may assume that $a_{i j}>0$ if $i \neq j$ and that for every $i \leqslant n$ we have $\sum_{j=1}^{n} a_{i j}=1$.
- Then $\rho=1$ is an eigenvalue of A with right eigenvector $\mathbf{1}=(1, \ldots, 1)$. So, there exists non zero $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma \boldsymbol{A}=\gamma$.

Claim 1

We may assume that $\gamma_{i}>0$ for all $i \leqslant n$.

- Since $\gamma \boldsymbol{A}=\gamma$ we have $\sum_{i=1}^{n} \gamma_{i} a_{i j}=\gamma_{j}$ for all $j \leqslant n$.

The case of ℓ_{1}^{n}

- The next argument is due to K . Ball. We may assume that $a_{i j}>0$ if $i \neq j$ and that for every $i \leqslant n$ we have $\sum_{j=1}^{n} a_{i j}=1$.
- Then $\rho=1$ is an eigenvalue of A with right eigenvector $\mathbf{1}=(1, \ldots, 1)$. So, there exists non zero $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma \boldsymbol{A}=\gamma$.

Claim 1

We may assume that $\gamma_{i}>0$ for all $i \leqslant n$.

- Since $\gamma \boldsymbol{A}=\gamma$ we have $\sum_{i=1}^{n} \gamma_{i} a_{i j}=\gamma_{j}$ for all $j \leqslant n$.
- It follows that

$$
\sum_{j=1}^{n}\left|\gamma_{j}\right|=\sum_{j=1}^{n}\left|\sum_{i=1}^{n} \gamma_{i} a_{i j}\right| \leqslant \sum_{j=1}^{n} \sum_{i=1}^{n}\left|\gamma_{i}\right| a_{i j}=\sum_{i=1}^{n}\left|\gamma_{i}\right| \sum_{j=1}^{n} a_{i j}=\sum_{i=1}^{n}\left|\gamma_{i}\right|
$$

The case of ℓ_{1}^{n}

- The next argument is due to K . Ball. We may assume that $a_{i j}>0$ if $i \neq j$ and that for every $i \leqslant n$ we have $\sum_{j=1}^{n} a_{i j}=1$.
- Then $\rho=1$ is an eigenvalue of A with right eigenvector $\mathbf{1}=(1, \ldots, 1)$. So, there exists non zero $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma \boldsymbol{A}=\gamma$.

Claim 1

We may assume that $\gamma_{i}>0$ for all $i \leqslant n$.

- Since $\gamma \boldsymbol{A}=\gamma$ we have $\sum_{i=1}^{n} \gamma_{i} a_{i j}=\gamma_{j}$ for all $j \leqslant n$.
- It follows that

$$
\sum_{j=1}^{n}\left|\gamma_{j}\right|=\sum_{j=1}^{n}\left|\sum_{i=1}^{n} \gamma_{i} a_{i j}\right| \leqslant \sum_{j=1}^{n} \sum_{i=1}^{n}\left|\gamma_{i}\right| a_{i j}=\sum_{i=1}^{n}\left|\gamma_{i}\right| \sum_{j=1}^{n} a_{i j}=\sum_{i=1}^{n}\left|\gamma_{i}\right|
$$

- Since we have equality everywhere, all γ_{j} have the same sign. So, we may assume that $\gamma_{j} \geqslant 0$ for all $j \leqslant n$. We shall show that $\gamma_{j}>0$ for all $j \leqslant n$.

The case of ℓ_{1}^{n}

- The next argument is due to K . Ball. We may assume that $a_{i j}>0$ if $i \neq j$ and that for every $i \leqslant n$ we have $\sum_{j=1}^{n} a_{i j}=1$.
- Then $\rho=1$ is an eigenvalue of A with right eigenvector $\mathbf{1}=(1, \ldots, 1)$. So, there exists non zero $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma \boldsymbol{A}=\gamma$.

Claim 1

We may assume that $\gamma_{i}>0$ for all $i \leqslant n$.

- Since $\gamma \boldsymbol{A}=\gamma$ we have $\sum_{i=1}^{n} \gamma_{i} a_{i j}=\gamma_{j}$ for all $j \leqslant n$.
- It follows that

$$
\sum_{j=1}^{n}\left|\gamma_{j}\right|=\sum_{j=1}^{n}\left|\sum_{i=1}^{n} \gamma_{i} a_{i j}\right| \leqslant \sum_{j=1}^{n} \sum_{i=1}^{n}\left|\gamma_{i}\right| a_{i j}=\sum_{i=1}^{n}\left|\gamma_{i}\right| \sum_{j=1}^{n} a_{i j}=\sum_{i=1}^{n}\left|\gamma_{i}\right|
$$

- Since we have equality everywhere, all γ_{j} have the same sign. So, we may assume that $\gamma_{j} \geqslant 0$ for all $j \leqslant n$. We shall show that $\gamma_{j}>0$ for all $j \leqslant n$.
- Suppose that $\gamma_{j}=0$ for some j. Since $a_{i j}>0$ if $i \neq j$, from the equation $\sum_{i=1}^{n} \gamma_{i} a_{i j}=\gamma_{j}$ we get $\gamma=0$, a contradiction.

The case of ℓ_{1}^{n}

- Let $k \geqslant 2$ and for any partition $\Delta=\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ of $[n]$ define

$$
f(\Delta)=\sum_{\ell=1}^{k} \sum_{i, j \in \delta_{\ell}} \gamma_{i} a_{i j} .
$$

The case of ℓ_{1}^{n}

- Let $k \geqslant 2$ and for any partition $\Delta=\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ of $[n]$ define

$$
f(\Delta)=\sum_{\ell=1}^{k} \sum_{i, j \in \delta_{\ell}} \gamma_{i} a_{i j} .
$$

- Choose a partition $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ that minimizes $f(\Delta)$ over all such partitions.

The case of ℓ_{1}^{n}

- Let $k \geqslant 2$ and for any partition $\Delta=\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ of $[n]$ define

$$
f(\Delta)=\sum_{\ell=1}^{k} \sum_{i, j \in \delta_{\ell}} \gamma_{i} a_{i j} .
$$

- Choose a partition $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ that minimizes $f(\Delta)$ over all such partitions.

Claim 2

For all $\ell \leqslant k$ and $i \in \sigma_{\ell}$ we have $\sum_{j \in \sigma_{\ell}} a_{i j} \leqslant \frac{2}{k}$.

- Assuming the contrary, there exists $r \in \sigma_{1}$ such that $\theta:=\sum_{j \in \sigma_{1}} a_{r j}>\frac{2}{k}$.

The case of ℓ_{1}^{n}

- Let $k \geqslant 2$ and for any partition $\Delta=\left\{\delta_{1}, \ldots, \delta_{k}\right\}$ of $[n]$ define

$$
f(\Delta)=\sum_{\ell=1}^{k} \sum_{i, j \in \delta_{\ell}} \gamma_{i} a_{i j} .
$$

- Choose a partition $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ that minimizes $f(\Delta)$ over all such partitions.

Claim 2

For all $\ell \leqslant k$ and $i \in \sigma_{\ell}$ we have $\sum_{j \in \sigma_{\ell}} a_{i j} \leqslant \frac{2}{k}$.

- Assuming the contrary, there exists $r \in \sigma_{1}$ such that $\theta:=\sum_{j \in \sigma_{1}} a_{r j}>\frac{2}{k}$.
- We define $(k-1)$ new partitions $\Sigma^{2}, \ldots, \Sigma^{k}$ as follows: for every $s=2, \ldots, k$ we define $\Sigma^{s}=\left\{\sigma_{1}^{s}, \ldots, \sigma_{k}^{s}\right\}$ where

$$
\sigma_{1}^{s}=\sigma_{1} \backslash\{r\}, \quad \sigma_{s}^{s}=\sigma_{s} \cup\{r\} \text { and } \sigma_{\ell}^{s}=\sigma_{\ell} \text { if } \ell \neq 1, s
$$

The case of ℓ_{1}^{n}

- Observe that

$$
\begin{aligned}
f(\Sigma)-f\left(\Sigma^{s}\right) & =\sum_{i, j \in \sigma_{1}} \gamma_{i} a_{i j}+\sum_{i, j \in \sigma_{s}} \gamma_{i} a_{i j}-\sum_{i, j \in \sigma_{1} \backslash\{r\}} \gamma_{i} a_{i j}-\sum_{i, j \in \sigma_{s} \cup\{r\}} \gamma_{i} a_{i j} \\
& =\gamma_{r} \sum_{j \in \sigma_{1}} a_{r j}+\sum_{i \in \sigma_{1}} \gamma_{i} a_{i r}-\gamma_{r} \sum_{j \in \sigma_{s}} a_{r j}-\sum_{i \in \sigma_{s}} \gamma_{i} a_{i r}
\end{aligned}
$$

The case of ℓ_{1}^{n}

- Observe that

$$
\begin{aligned}
f(\Sigma)-f\left(\Sigma^{s}\right) & =\sum_{i, j \in \sigma_{1}} \gamma_{i} a_{i j}+\sum_{i, j \in \sigma_{s}} \gamma_{i} a_{i j}-\sum_{i, j \in \sigma_{1} \backslash\{r\}} \gamma_{i} a_{i j}-\sum_{i, j \in \sigma_{s} \cup\{r\}} \gamma_{i} a_{i j} \\
& =\gamma_{r} \sum_{j \in \sigma_{1}} a_{r j}+\sum_{i \in \sigma_{1}} \gamma_{i} a_{i r}-\gamma_{r} \sum_{j \in \sigma_{s}} a_{r j}-\sum_{i \in \sigma_{s}} \gamma_{i} a_{i r} .
\end{aligned}
$$

- Adding these equations we see that

$$
\begin{aligned}
\sum_{s=2}^{k}\left(f(\Sigma)-f\left(\Sigma^{s}\right)\right) & =(k-1) \gamma_{r} \sum_{j \in \sigma_{1}} a_{r j}+(k-1) \sum_{i \in \sigma_{1}} \gamma_{i} a_{i r}-\gamma_{r} \sum_{j \notin \sigma_{1}} a_{r j}-\sum_{i \notin \sigma_{1}} \gamma_{i} a_{i r} \\
& \geqslant(k-1) \gamma_{r} \sum_{j \in \sigma_{1}} a_{r j}-\gamma_{r} \sum_{j \notin \sigma_{1}} a_{r j}-\sum_{i=1}^{n} \gamma_{i} a_{i r} \\
& =(k-1) \gamma_{r} \theta-\gamma_{r}(1-\theta)-\gamma_{r} \\
& =\gamma_{r}(k \theta-2)>0 .
\end{aligned}
$$

The case of ℓ_{1}^{n}

- Observe that

$$
\begin{aligned}
f(\Sigma)-f\left(\Sigma^{s}\right) & =\sum_{i, j \in \sigma_{1}} \gamma_{i} a_{i j}+\sum_{i, j \in \sigma_{s}} \gamma_{i} a_{i j}-\sum_{i, j \in \sigma_{1} \backslash\{r\}} \gamma_{i} a_{i j}-\sum_{i, j \in \sigma_{s} \cup\{r\}} \gamma_{i} a_{i j} \\
& =\gamma_{r} \sum_{j \in \sigma_{1}} a_{r j}+\sum_{i \in \sigma_{1}} \gamma_{i} a_{i r}-\gamma_{r} \sum_{j \in \sigma_{s}} a_{r j}-\sum_{i \in \sigma_{s}} \gamma_{i} a_{i r} .
\end{aligned}
$$

- Adding these equations we see that

$$
\begin{aligned}
\sum_{s=2}^{k}\left(f(\Sigma)-f\left(\Sigma^{s}\right)\right) & =(k-1) \gamma_{r} \sum_{j \in \sigma_{1}} a_{r j}+(k-1) \sum_{i \in \sigma_{1}} \gamma_{i} a_{i r}-\gamma_{r} \sum_{j \notin \sigma_{1}} a_{r j}-\sum_{i \notin \sigma_{1}} \gamma_{i} a_{i r} \\
& \geqslant(k-1) \gamma_{r} \sum_{j \in \sigma_{1}} a_{r j}-\gamma_{r} \sum_{j \notin \sigma_{1}} a_{r j}-\sum_{i=1}^{n} \gamma_{i} a_{i r} \\
& =(k-1) \gamma_{r} \theta-\gamma_{r}(1-\theta)-\gamma_{r} \\
& =\gamma_{r}(k \theta-2)>0 .
\end{aligned}
$$

- Therefore, for some $s \in\{2, \ldots, k\}$ we must have $f(\Sigma)>f\left(\Sigma^{s}\right)$, a contradiction.

The Bourgain-Tzafriri argument

Random selection

Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\left|A e_{i}\right|=1$ for all $i \leqslant n$. There exists $\sigma_{1} \subset[n]$ with $\left|\sigma_{1}\right| \geqslant c_{1} n /\|A\|^{2}$ such that, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A_{j} j: j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|<\frac{1}{\sqrt{2}} .
$$

- We fix $\delta \in(0,1)$ and consider independent 0-1 random variables ξ_{1}, \ldots, ξ_{n} with $\mathbb{E}\left(\xi_{i}\right)=\delta$ on a probability space (Ω, Σ, μ).

The Bourgain-Tzafriri argument

Random selection

Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\left|A e_{i}\right|=1$ for all $i \leqslant n$. There exists $\sigma_{1} \subset[n]$ with $\left|\sigma_{1}\right| \geqslant c_{1} n /\|A\|^{2}$ such that, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A_{j} j: j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|<\frac{1}{\sqrt{2}} .
$$

- We fix $\delta \in(0,1)$ and consider independent $0-1$ random variables ξ_{1}, \ldots, ξ_{n} with $\mathbb{E}\left(\xi_{i}\right)=\delta$ on a probability space (Ω, Σ, μ).
- For each $\omega \in \Omega$ we set $\sigma(\omega)=\left\{i \leqslant n: \xi_{i}(\omega)=1\right\}$

The Bourgain-Tzafriri argument

Random selection

Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\left|A e_{i}\right|=1$ for all $i \leqslant n$. There exists $\sigma_{1} \subset[n]$ with $\left|\sigma_{1}\right| \geqslant c_{1} n /\|A\|^{2}$ such that, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A_{j} j: j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|<\frac{1}{\sqrt{2}} .
$$

- We fix $\delta \in(0,1)$ and consider independent 0-1 random variables ξ_{1}, \ldots, ξ_{n} with $\mathbb{E}\left(\xi_{i}\right)=\delta$ on a probability space (Ω, Σ, μ).
- For each $\omega \in \Omega$ we set $\sigma(\omega)=\left\{i \leqslant n: \xi_{i}(\omega)=1\right\}$
- Note that $|\sigma(\omega)|=\sum_{i=1}^{n} \xi_{i}(\omega)$.

The Bourgain-Tzafriri argument

Random selection

Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\left|A e_{i}\right|=1$ for all $i \leqslant n$. There exists $\sigma_{1} \subset[n]$ with $\left|\sigma_{1}\right| \geqslant c_{1} n /\|A\|^{2}$ such that, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A_{j} j: j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|<\frac{1}{\sqrt{2}} .
$$

- We fix $\delta \in(0,1)$ and consider independent $0-1$ random variables ξ_{1}, \ldots, ξ_{n} with $\mathbb{E}\left(\xi_{i}\right)=\delta$ on a probability space (Ω, Σ, μ).
- For each $\omega \in \Omega$ we set $\sigma(\omega)=\left\{i \leqslant n: \xi_{i}(\omega)=1\right\}$
- Note that $|\sigma(\omega)|=\sum_{i=1}^{n} \xi_{i}(\omega)$.
- From Bernstein's inequality we have

$$
\mu\left(\left\{\omega:|\sigma(\omega)|<\frac{\delta n}{2}\right\}\right) \leqslant \exp (-\delta n / 10) .
$$

The Bourgain-Tzafriri argument

- By the independence of the ξ_{i} 's we get

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{i=1}^{n} \xi_{i}(\omega)\left|P_{\left\langle\xi_{j}(\omega) A e_{j} j ; \neq i\right\rangle}\left(A e_{i}\right)\right|^{2}\right)=\sum_{i=1}^{n}\left(\mathbb{E} \xi_{i}(\omega)\right) \mathbb{E}\left|P_{\left\langle\xi_{j}(\omega) A e_{j} j ; \neq i\right\rangle}\left(A e_{i}\right)\right|^{2} \\
& \quad= \\
& =\delta \mathbb{E}\left(\sum_{i=1}^{n}\left|P_{\left\langle\xi_{j}(\omega) A e_{j} j ; \neq i\right\rangle}\left(A e_{i}\right)\right|^{2}\right) \leqslant \delta \mathbb{E}\left(\sum_{i=1}^{n}\left|P_{\left\langle\xi_{j}(\omega) A_{j} j ; j \leqslant n\right\rangle}\left(A e_{i}\right)\right|^{2}\right) \\
& \quad=\delta \mathbb{E}\left\|P_{\left\langle\xi_{j}(\omega) A e_{j} j \leqslant n\right\rangle} A\right\|_{H S}^{2} \leqslant \delta\|A\|^{2} \mathbb{E}\left\|P_{\left\langle\xi_{j}(\omega) A e_{j j} j \leqslant n\right\rangle}\right\|_{H S}^{2} \\
& \quad=\delta\|A\|^{2} \mathbb{E}\left[\operatorname{dim}\left(\left\langle\xi_{j}(\omega) A e_{j}: j \leqslant n\right\rangle\right)\right] \leqslant \delta\|A\|^{2} \mathbb{E}\left(\sum_{j=1}^{n} \xi_{i}(\omega)\right) \\
& =\delta^{2} n\|A\|^{2} .
\end{aligned}
$$

The Bourgain-Tzafriri argument

- By the independence of the ξ_{i} 's we get

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{i=1}^{n} \xi_{i}(\omega)\left|P_{\left\langle\xi_{j}(\omega) A e_{j}: j \neq i\right\rangle}\left(A e_{i}\right)\right|^{2}\right)=\sum_{i=1}^{n}\left(\mathbb{E} \xi_{i}(\omega)\right) \mathbb{E}\left|P_{\left\langle\xi_{j}(\omega) A e_{j}: j \neq i\right\rangle}\left(A e_{i}\right)\right|^{2} \\
& \quad=\delta \mathbb{E}\left(\sum_{i=1}^{n}\left|P_{\left\langle\xi_{j}(\omega) A e_{j}: j \neq i\right\rangle}\left(A e_{i}\right)\right|^{2}\right) \leqslant \delta \mathbb{E}\left(\sum_{i=1}^{n}\left|P_{\left\langle\xi_{j}(\omega) A e_{j}: j \leqslant n\right\rangle}\left(A e_{i}\right)\right|^{2}\right) \\
& \quad=\delta \mathbb{E}\left\|P_{\left\langle\xi_{j}(\omega) A e_{j}: j \leqslant n\right\rangle} A\right\|_{H S}^{2} \leqslant \delta\|A\|^{2} \mathbb{E}\left\|P_{\left\langle\xi_{j}(\omega) A e_{j}: j \leqslant n\right\rangle}\right\|_{H S}^{2} \\
& \quad=\delta\|A\|^{2} \mathbb{E}\left[\operatorname{dim}\left(\left\langle\xi_{j}(\omega) A e_{j}: j \leqslant n\right\rangle\right)\right] \leqslant \delta\|A\|^{2} \mathbb{E}\left(\sum_{j=1}^{n} \xi_{i}(\omega)\right) \\
& \quad=\delta^{2} n\|A\|^{2} .
\end{aligned}
$$

- From Markov's inequality, with probability greater than or equal to $1 / 2$ we get

$$
\sum_{i=1}^{n} \xi_{i}(\omega)\left|P_{\left\langle\xi_{j}(\omega) A e_{j}: j \neq i\right\rangle}\left(A e_{i}\right)\right|^{2} \leqslant 2 \delta^{2} n\|A\|^{2}
$$

The Bourgain-Tzafriri argument

- So, we may find $\omega_{0} \in \Omega$ such that $\sigma_{0}:=\sigma\left(\omega_{0}\right)$ satisfies $\left|\sigma_{0}\right| \geqslant \delta n / 2$

$$
\sum_{i \in \sigma_{0}}\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|^{2} \leqslant 2 \delta^{2} n\|A\|^{2}
$$

The Bourgain-Tzafriri argument

- So, we may find $\omega_{0} \in \Omega$ such that $\sigma_{0}:=\sigma\left(\omega_{0}\right)$ satisfies $\left|\sigma_{0}\right| \geqslant \delta n / 2$

$$
\sum_{i \in \sigma_{0}}\left|P_{\left\langle A e_{j} j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|^{2} \leqslant 2 \delta^{2} n\|A\|^{2} .
$$

- We define

$$
\tau:=\left\{i \in \sigma_{0}:\left|P_{\left\langle A e_{j} j: \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|>4\|A\| \sqrt{\delta}\right\} .
$$

The Bourgain-Tzafriri argument

- So, we may find $\omega_{0} \in \Omega$ such that $\sigma_{0}:=\sigma\left(\omega_{0}\right)$ satisfies $\left|\sigma_{0}\right| \geqslant \delta n / 2$

$$
\sum_{i \in \sigma_{0}}\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|^{2} \leqslant 2 \delta^{2} n\|A\|^{2}
$$

- We define

$$
\tau:=\left\{i \in \sigma_{0}:\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|>4\|A\| \sqrt{\delta}\right\} .
$$

- Applying Markov's inequality once again we get

$$
|\tau|\left(16 \delta\|A\|^{2}\right) \leqslant 2 \delta^{2} n\|A\|^{2}
$$

which gives

$$
|\tau| \leqslant \delta n / 8
$$

The Bourgain-Tzafriri argument

- So, we may find $\omega_{0} \in \Omega$ such that $\sigma_{0}:=\sigma\left(\omega_{0}\right)$ satisfies $\left|\sigma_{0}\right| \geqslant \delta n / 2$

$$
\sum_{i \in \sigma_{0}}\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|^{2} \leqslant 2 \delta^{2} n\|A\|^{2}
$$

- We define

$$
\tau:=\left\{i \in \sigma_{0}:\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|>4\|A\| \sqrt{\delta}\right\}
$$

- Applying Markov's inequality once again we get

$$
|\tau|\left(16 \delta\|A\|^{2}\right) \leqslant 2 \delta^{2} n\|A\|^{2}
$$

which gives

$$
|\tau| \leqslant \delta n / 8
$$

- If we set $\sigma_{1}=\sigma_{0} \backslash \tau$, then $\left|\sigma_{1}\right| \geqslant 3 \delta n / 8$ and, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A e_{j}: j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right| \leqslant\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right| \leqslant 4\|A\| \sqrt{\delta}
$$

The Bourgain-Tzafriri argument

- So, we may find $\omega_{0} \in \Omega$ such that $\sigma_{0}:=\sigma\left(\omega_{0}\right)$ satisfies $\left|\sigma_{0}\right| \geqslant \delta n / 2$

$$
\sum_{i \in \sigma_{0}}\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|^{2} \leqslant 2 \delta^{2} n\|A\|^{2}
$$

- We define

$$
\tau:=\left\{i \in \sigma_{0}:\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|>4\|A\| \sqrt{\delta}\right\}
$$

- Applying Markov's inequality once again we get

$$
|\tau|\left(16 \delta\|A\|^{2}\right) \leqslant 2 \delta^{2} n\|A\|^{2}
$$

which gives

$$
|\tau| \leqslant \delta n / 8
$$

- If we set $\sigma_{1}=\sigma_{0} \backslash \tau$, then $\left|\sigma_{1}\right| \geqslant 3 \delta n / 8$ and, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A e_{j}: j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right| \leqslant\left|P_{\left\langle A e_{j}: j \in \sigma_{0} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right| \leqslant 4\|A\| \sqrt{\delta}
$$

- Choosing $\delta=1 /\left(32\|A\|^{2}\right)$ we get the result.

The Bourgain-Tzafriri argument

Sauer-Shelah

Let D be a subset of $E_{2}^{n}=\{-1,1\}^{n}$ and $k \leqslant n$. If

$$
|D|>\sum_{j=0}^{k-1}\binom{n}{j}
$$

then there exists $\sigma \subset[n]$ with cardinality $|\sigma|=k$ such that $R_{\sigma}(D)=E_{2}^{\sigma}=\{-1,1\}^{\sigma}$, where R_{σ} is the restriction to the coordinates of σ.

The Bourgain-Tzafriri argument

Combinatorial step

Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\left|A e_{i}\right|=1$ for all $i \leqslant n$. There exists $\sigma_{2} \subset[n]$ with $\left|\sigma_{2}\right| \geqslant c_{2} n /\|A\|^{2}$ such that, for any choice of coefficients $\left(t_{i}\right)_{i \in \sigma_{2}}$,

$$
\left|\sum_{i \in \sigma_{2}} t_{i} A e_{i}\right| \geqslant c_{2} \frac{\sum_{i \in \sigma_{2}}\left|t_{i}\right|}{\sqrt{\left|\sigma_{2}\right|}} .
$$

- We had found σ_{1} with $\left|\sigma_{1}\right| \geqslant c_{1} n /\|A\|^{2}$ such that, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A e_{j} j ; \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|<\frac{1}{\sqrt{2}} .
$$

The Bourgain-Tzafriri argument

Combinatorial step

Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\left|A e_{i}\right|=1$ for all $i \leqslant n$. There exists $\sigma_{2} \subset[n]$ with $\left|\sigma_{2}\right| \geqslant c_{2} n /\|A\|^{2}$ such that, for any choice of coefficients $\left(t_{i}\right)_{i \in \sigma_{2}}$,

$$
\left|\sum_{i \in \sigma_{2}} t_{i} A e_{i}\right| \geqslant c_{2} \frac{\sum_{i \in \sigma_{2}}\left|t_{i}\right|}{\sqrt{\left|\sigma_{2}\right|}} .
$$

- We had found σ_{1} with $\left|\sigma_{1}\right| \geqslant c_{1} n /\|A\|^{2}$ such that, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A e_{j} j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|<\frac{1}{\sqrt{2}} .
$$

- For every $i \in \sigma_{1}$ we define $u_{i}^{\prime}=A e_{i}-P_{\left\langle A e_{j} j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)$ and $u_{i}=u_{i}^{\prime} /\left|u_{i}^{\prime}\right|$. Then, $\left|u_{i}\right|=1$ and, for all $i \in \sigma_{1}$,

$$
\left\langle A e_{i}, u_{i}\right\rangle \geqslant \frac{1}{\sqrt{2}} \text { and }\left\langle A e_{i}, u_{j}\right\rangle=0 \quad j \neq i .
$$

The Bourgain-Tzafriri argument

Combinatorial step

Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\left|A e_{i}\right|=1$ for all $i \leqslant n$. There exists $\sigma_{2} \subset[n]$ with $\left|\sigma_{2}\right| \geqslant c_{2} n /\|A\|^{2}$ such that, for any choice of coefficients $\left(t_{i}\right)_{i \in \sigma_{2}}$,

$$
\left|\sum_{i \in \sigma_{2}} t_{i} A e_{i}\right| \geqslant c_{2} \frac{\sum_{i \in \sigma_{2}}\left|t_{i}\right|}{\sqrt{\left|\sigma_{2}\right|}} .
$$

- We had found σ_{1} with $\left|\sigma_{1}\right| \geqslant c_{1} n /\|A\|^{2}$ such that, for all $i \in \sigma_{1}$,

$$
\left|P_{\left\langle A e_{j} j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)\right|<\frac{1}{\sqrt{2}} .
$$

- For every $i \in \sigma_{1}$ we define $u_{i}^{\prime}=A e_{i}-P_{\left\langle A e_{j} j \in \sigma_{1} \backslash\{i\}\right\rangle}\left(A e_{i}\right)$ and $u_{i}=u_{i}^{\prime} /\left|u_{i}^{\prime}\right|$. Then, $\left|u_{i}\right|=1$ and, for all $i \in \sigma_{1}$,

$$
\left\langle A e_{i}, u_{i}\right\rangle \geqslant \frac{1}{\sqrt{2}} \text { and }\left\langle A e_{i}, u_{j}\right\rangle=0 \quad j \neq i .
$$

- By the parallelogram law,

$$
\text { Ave }\left\{\left|\sum_{j \in \sigma_{1}} \varepsilon_{j} u_{j}\right|^{2}: \varepsilon_{j}= \pm 1\right\}=\sum_{j \in \sigma_{1}}\left|u_{j}\right|^{2}=\left|\sigma_{1}\right| .
$$

The Bourgain-Tzafriri argument

- Consider the set

$$
D:=\left\{\left(\varepsilon_{j}\right)_{j \in \sigma_{1}} \in E_{2}^{\sigma_{1}}:\left|\sum_{j \in \sigma_{1}} \varepsilon_{j} u_{j}\right| \leqslant \sqrt{2\left|\sigma_{1}\right|}\right\}
$$

The Bourgain-Tzafriri argument

- Consider the set

$$
D:=\left\{\left(\varepsilon_{j}\right)_{j \in \sigma_{1}} \in E_{2}^{\sigma_{1}}:\left|\sum_{j \in \sigma_{1}} \varepsilon_{j} u_{j}\right| \leqslant \sqrt{2\left|\sigma_{1}\right|}\right\}
$$

- From Markov's inequality we have $|D| \geqslant 2^{\left|\sigma_{1}\right|-1}$.

The Bourgain-Tzafriri argument

- Consider the set

$$
D:=\left\{\left(\varepsilon_{j}\right)_{j \in \sigma_{1}} \in E_{2}^{\sigma_{1}}:\left|\sum_{j \in \sigma_{1}} \varepsilon_{j} u_{j}\right| \leqslant \sqrt{2\left|\sigma_{1}\right|}\right\}
$$

- From Markov's inequality we have $|D| \geqslant 2^{\left|\sigma_{1}\right|-1}$.
- By the Sauer-Shelah lemma (with $k \geqslant\left|\sigma_{1}\right| / 2$) we find $\sigma_{2} \subset \sigma_{1}$ with $\left|\sigma_{2}\right| \geqslant\left|\sigma_{1}\right| / 2 \geqslant\left(c_{1} / 2\right) n /\|A\|^{2}$ such that

$$
R_{\sigma_{2}}(\operatorname{conv}(D))=\operatorname{conv}\left(\{-1,1\}^{\sigma_{2}}\right)=[-1,1]^{\sigma_{2}} .
$$

The Bourgain-Tzafriri argument

- Consider the set

$$
D:=\left\{\left(\varepsilon_{j}\right)_{j \in \sigma_{1}} \in E_{2}^{\sigma_{1}}:\left|\sum_{j \in \sigma_{1}} \varepsilon_{j} u_{j}\right| \leqslant \sqrt{2\left|\sigma_{1}\right|}\right\}
$$

- From Markov's inequality we have $|D| \geqslant 2^{\left|\sigma_{1}\right|-1}$.
- By the Sauer-Shelah lemma (with $k \geqslant\left|\sigma_{1}\right| / 2$) we find $\sigma_{2} \subset \sigma_{1}$ with $\left|\sigma_{2}\right| \geqslant\left|\sigma_{1}\right| / 2 \geqslant\left(c_{1} / 2\right) n /\|A\|^{2}$ such that

$$
R_{\sigma_{2}}(\operatorname{conv}(D))=\operatorname{conv}\left(\{-1,1\}^{\sigma_{2}}\right)=[-1,1]^{\sigma_{2}} .
$$

- By the definition of D, if $\left(q_{j}\right)_{j \in \sigma_{1}} \in \operatorname{conv}(D)$ then

$$
\left|\sum_{j \in \sigma_{1}} q_{j} u_{j}\right| \leqslant \sqrt{2\left|\sigma_{1}\right|} \leqslant 2 \sqrt{\left|\sigma_{2}\right|} .
$$

The Bourgain-Tzafriri argument

- Let $\left(t_{i}\right)_{i \in \sigma_{2}}$. We write

$$
\frac{1}{\sqrt{2}} \sum_{i \in \sigma_{2}}\left|t_{i}\right| \leqslant\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{2}} \operatorname{sign}\left(t_{j}\right) u_{j}\right\rangle
$$

The Bourgain-Tzafriri argument

- Let $\left(t_{i}\right)_{i \in \sigma_{2}}$. We write

$$
\frac{1}{\sqrt{2}} \sum_{i \in \sigma_{2}}\left|t_{i}\right| \leqslant\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{2}} \operatorname{sign}\left(t_{j}\right) u_{j}\right\rangle
$$

- Observe that

$$
\left(\operatorname{sign}\left(t_{j}\right)\right)_{j \in \sigma_{2}} \in[-1,1]^{\sigma_{2}} \subset R_{\sigma_{2}}(\operatorname{conv}(D)) .
$$

The Bourgain-Tzafriri argument

- Let $\left(t_{i}\right)_{i \in \sigma_{2}}$. We write

$$
\frac{1}{\sqrt{2}} \sum_{i \in \sigma_{2}}\left|t_{i}\right| \leqslant\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{2}} \operatorname{sign}\left(t_{j}\right) u_{j}\right\rangle
$$

- Observe that

$$
\left(\operatorname{sign}\left(t_{j}\right)\right)_{j \in \sigma_{2}} \in[-1,1]^{\sigma_{2}} \subset R_{\sigma_{2}}(\operatorname{conv}(D))
$$

- Therefore, we may find $\left(q_{j}\right)_{j \in \sigma_{1}} \in \operatorname{conv}(D)$ such that

$$
q_{j}=\operatorname{sign}\left(t_{j}\right) \text { if } j \in \sigma_{2}
$$

The Bourgain-Tzafriri argument

- Let $\left(t_{i}\right)_{i \in \sigma_{2}}$. We write

$$
\frac{1}{\sqrt{2}} \sum_{i \in \sigma_{2}}\left|t_{i}\right| \leqslant\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{2}} \operatorname{sign}\left(t_{j}\right) u_{j}\right\rangle
$$

- Observe that

$$
\left(\operatorname{sign}\left(t_{j}\right)\right)_{j \in \sigma_{2}} \in[-1,1]^{\sigma_{2}} \subset R_{\sigma_{2}}(\operatorname{conv}(D))
$$

- Therefore, we may find $\left(q_{j}\right)_{j \in \sigma_{1}} \in \operatorname{conv}(D)$ such that

$$
q_{j}=\operatorname{sign}\left(t_{j}\right) \text { if } j \in \sigma_{2}
$$

- Since $\left\langle A e_{i}, u_{j}\right\rangle=0$ whenever $i \in \sigma_{2}$ and $j \in \sigma_{1} \backslash \sigma_{2}$, we have

$$
\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{2}} \operatorname{sign}\left(t_{j}\right) u_{j}\right\rangle=\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{1}} q_{j} u_{j}\right\rangle
$$

The Bourgain-Tzafriri argument

- Let $\left(t_{i}\right)_{i \in \sigma_{2}}$. We write

$$
\frac{1}{\sqrt{2}} \sum_{i \in \sigma_{2}}\left|t_{i}\right| \leqslant\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{2}} \operatorname{sign}\left(t_{j}\right) u_{j}\right\rangle
$$

- Observe that

$$
\left(\operatorname{sign}\left(t_{j}\right)\right)_{j \in \sigma_{2}} \in[-1,1]^{\sigma_{2}} \subset R_{\sigma_{2}}(\operatorname{conv}(D))
$$

- Therefore, we may find $\left(q_{j}\right)_{j \in \sigma_{1}} \in \operatorname{conv}(D)$ such that

$$
q_{j}=\operatorname{sign}\left(t_{j}\right) \text { if } j \in \sigma_{2}
$$

- Since $\left\langle A e_{i}, u_{j}\right\rangle=0$ whenever $i \in \sigma_{2}$ and $j \in \sigma_{1} \backslash \sigma_{2}$, we have

$$
\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{2}} \operatorname{sign}\left(t_{j}\right) u_{j}\right\rangle=\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{1}} q_{j} u_{j}\right\rangle .
$$

- From the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\frac{1}{\sqrt{2}} \sum_{i \in \sigma_{2}}\left|t_{i}\right| & \leqslant\left\langle\sum_{i \in \sigma_{2}} t_{i} A e_{i}, \sum_{j \in \sigma_{1}} q_{j} u_{j}\right\rangle \leqslant\left|\sum_{j \in \sigma_{1}} q_{j} u_{j}\right|\left|\sum_{i \in \sigma_{2}} t_{j} A e_{j}\right| \\
& \leqslant 2 \sqrt{\left|\sigma_{2}\right|}\left|\sum_{i \in \sigma_{2}} t_{j} A e_{j}\right|
\end{aligned}
$$

The final step

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left|A e_{i}\right|=1$ for all $i=1, \ldots, n$.

The final step

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left|A e_{i}\right|=1$ for all $i=1, \ldots, n$.
- We set $x_{i}=A e_{i}$ and, by the previous step, we have $\sigma_{2} \subset[n]$ such that $\left|\sigma_{2}\right| \geqslant c_{2} n /\|A\|^{2}$ and for the operator $S: X=\left\langle x_{i}: i \in \sigma_{2}\right\rangle \rightarrow \ell_{1}^{n}$ defined by

$$
S x_{i}=\frac{e_{i}}{\sqrt{\left|\sigma_{2}\right|}}, \quad i \in \sigma_{2}
$$

we have that $\|S\| \leqslant 1 / c_{2}$.

The final step

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left|A e_{i}\right|=1$ for all $i=1, \ldots, n$.
- We set $x_{i}=A e_{i}$ and, by the previous step, we have $\sigma_{2} \subset[n]$ such that $\left|\sigma_{2}\right| \geqslant c_{2} n /\|A\|^{2}$ and for the operator $S: X=\left\langle x_{i}: i \in \sigma_{2}\right\rangle \rightarrow \ell_{1}^{n}$ defined by

$$
S x_{i}=\frac{e_{i}}{\sqrt{\left|\sigma_{2}\right|}}, \quad i \in \sigma_{2}
$$

we have that $\|S\| \leqslant 1 / c_{2}$.

- The adjoint operator $S^{*}: \ell_{\infty}^{n} \rightarrow X$ is 2 -summing and

$$
\pi_{2}\left(S^{*}\right) \leqslant K_{G}\left\|S^{*}\right\| \leqslant \frac{K_{G}}{c_{2}}
$$

The final step

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left|A e_{i}\right|=1$ for all $i=1, \ldots, n$.
- We set $x_{i}=A e_{i}$ and, by the previous step, we have $\sigma_{2} \subset[n]$ such that $\left|\sigma_{2}\right| \geqslant c_{2} n /\|A\|^{2}$ and for the operator $S: X=\left\langle x_{i}: i \in \sigma_{2}\right\rangle \rightarrow \ell_{1}^{n}$ defined by

$$
S x_{i}=\frac{e_{i}}{\sqrt{\left|\sigma_{2}\right|}}, \quad i \in \sigma_{2}
$$

we have that $\|S\| \leqslant 1 / c_{2}$.

- The adjoint operator $S^{*}: \ell_{\infty}^{n} \rightarrow X$ is 2 -summing and

$$
\pi_{2}\left(S^{*}\right) \leqslant K_{G}\left\|S^{*}\right\| \leqslant \frac{K_{G}}{c_{2}}
$$

- Then, S^{*} is factorized as $S^{*}=U \circ D$, where $U: \ell_{2}^{n} \rightarrow X$ with $\|U\| \leqslant \pi_{2}\left(S^{*}\right)$ and $D: \ell_{\infty}^{n} \rightarrow \ell_{2}^{n}$ is a diagonal operator with $D e_{i}=\lambda_{i} e_{i}$ for some $\lambda_{i} \in \mathbb{R}$ with $\sum_{i=1}^{n} \lambda_{i}^{2} \leqslant 1$.

The final step

- Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left|A e_{i}\right|=1$ for all $i=1, \ldots, n$.
- We set $x_{i}=A e_{i}$ and, by the previous step, we have $\sigma_{2} \subset[n]$ such that $\left|\sigma_{2}\right| \geqslant c_{2} n /\|A\|^{2}$ and for the operator $S: X=\left\langle x_{i}: i \in \sigma_{2}\right\rangle \rightarrow \ell_{1}^{n}$ defined by

$$
S x_{i}=\frac{e_{i}}{\sqrt{\left|\sigma_{2}\right|}}, \quad i \in \sigma_{2}
$$

we have that $\|S\| \leqslant 1 / c_{2}$.

- The adjoint operator $S^{*}: \ell_{\infty}^{n} \rightarrow X$ is 2 -summing and

$$
\pi_{2}\left(S^{*}\right) \leqslant K_{G}\left\|S^{*}\right\| \leqslant \frac{K_{G}}{c_{2}}
$$

- Then, S^{*} is factorized as $S^{*}=U \circ D$, where $U: \ell_{2}^{n} \rightarrow X$ with $\|U\| \leqslant \pi_{2}\left(S^{*}\right)$ and $D: \ell_{\infty}^{n} \rightarrow \ell_{2}^{n}$ is a diagonal operator with $D e_{i}=\lambda_{i} e_{i}$ for some $\lambda_{i} \in \mathbb{R}$ with $\sum_{i=1}^{n} \lambda_{i}^{2} \leqslant 1$.
- It follows that S can be written as $S=D^{*} \circ U^{*}$, with $D^{*} e_{i}=\lambda_{i} e_{i}$. Note that

$$
U^{*}\left(x_{j}\right)=\frac{1}{\lambda_{j} \sqrt{\left|\sigma_{2}\right|}} e_{j}, \quad j \in \sigma_{2}
$$

The final step

- We define

$$
\sigma=\left\{j \in \sigma_{2}:\left|\lambda_{j}\right| \leqslant \sqrt{2 /\left|\sigma_{2}\right|}\right\} .
$$

The final step

- We define

$$
\sigma=\left\{j \in \sigma_{2}:\left|\lambda_{j}\right| \leqslant \sqrt{2 /\left|\sigma_{2}\right|}\right\} .
$$

- From $\sum_{i=1}^{n} \lambda_{i}^{2} \leqslant 1$ we see that

$$
1 \geqslant \sum_{j \in \sigma_{2} \backslash \sigma} \lambda_{j}^{2} \geqslant 2\left|\sigma_{2} \backslash \sigma\right| /\left|\sigma_{2}\right| .
$$

The final step

- We define

$$
\sigma=\left\{j \in \sigma_{2}:\left|\lambda_{j}\right| \leqslant \sqrt{2 /\left|\sigma_{2}\right|}\right\} .
$$

- From $\sum_{i=1}^{n} \lambda_{i}^{2} \leqslant 1$ we see that

$$
1 \geqslant \sum_{j \in \sigma_{2} \backslash \sigma} \lambda_{j}^{2} \geqslant 2\left|\sigma_{2} \backslash \sigma\right| /\left|\sigma_{2}\right| .
$$

- Therefore,

$$
|\sigma| \geqslant \frac{\left|\sigma_{2}\right|}{2} \geqslant c_{3} n /\|A\|^{2} .
$$

The final step

- We define

$$
\sigma=\left\{j \in \sigma_{2}:\left|\lambda_{j}\right| \leqslant \sqrt{2 /\left|\sigma_{2}\right|}\right\} .
$$

- From $\sum_{i=1}^{n} \lambda_{i}^{2} \leqslant 1$ we see that

$$
1 \geqslant \sum_{j \in \sigma_{2} \backslash \sigma} \lambda_{j}^{2} \geqslant 2\left|\sigma_{2} \backslash \sigma\right| /\left|\sigma_{2}\right| .
$$

- Therefore,

$$
|\sigma| \geqslant \frac{\left|\sigma_{2}\right|}{2} \geqslant c_{3} n /\|A\|^{2} .
$$

- Finally, for any choice of real coefficients $\left(t_{i}\right)_{i \in \sigma}$ we have

$$
\begin{aligned}
\frac{K_{G}}{c_{2}}\left|\sum_{j \in \sigma} t_{j} x_{j}\right| & \geqslant\left|U^{*}\left(\sum_{j \in \sigma} t_{j} x_{j}\right)\right|=\left(\sum_{j \in \sigma}\left|\frac{t_{j}}{\lambda_{j} \sqrt{\left|\sigma_{2}\right|}}\right|^{2}\right)^{1 / 2} \\
& \geqslant \frac{1}{\sqrt{2}}\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} .
\end{aligned}
$$

The final step

- We define

$$
\sigma=\left\{j \in \sigma_{2}:\left|\lambda_{j}\right| \leqslant \sqrt{2 /\left|\sigma_{2}\right|}\right\} .
$$

- From $\sum_{i=1}^{n} \lambda_{i}^{2} \leqslant 1$ we see that

$$
1 \geqslant \sum_{j \in \sigma_{2} \backslash \sigma} \lambda_{j}^{2} \geqslant 2\left|\sigma_{2} \backslash \sigma\right| /\left|\sigma_{2}\right| .
$$

- Therefore,

$$
|\sigma| \geqslant \frac{\left|\sigma_{2}\right|}{2} \geqslant c_{3} n /\|A\|^{2} .
$$

- Finally, for any choice of real coefficients $\left(t_{i}\right)_{i \in \sigma}$ we have

$$
\begin{aligned}
\frac{K_{G}}{c_{2}}\left|\sum_{j \in \sigma} t_{j} x_{j}\right| & \geqslant\left|U^{*}\left(\sum_{j \in \sigma} t_{j} x_{j}\right)\right|=\left(\sum_{j \in \sigma}\left|\frac{t_{j}}{\lambda_{j} \sqrt{\left|\sigma_{2}\right|}}\right|^{2}\right)^{1 / 2} \\
& \geqslant \frac{1}{\sqrt{2}}\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} .
\end{aligned}
$$

- This proves the theorem.

