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Restricted invertibility

The restricted invertibility principle of Bourgain and Tzafriri states that if A is an n × n
matrix whose columns Aej have Euclidean norm equal to 1 then there exists σ ⊂ [n] of
cardinality |σ| > cn/‖A‖22 such that the restriction Aσ of A to span{ej : j ∈ σ} is
well-invertible.

Bourgain-Tzafriri

There exist absolute constants δ, γ > 0 such that if A : `n2 −→ `n2 is a linear operator with
|Aej | = 1 for all j = 1, . . . , n then one may find a subset σ ⊆ [n] of cardinality
|σ| > δn/‖A‖22 such that ∣∣∣∑

j∈σ

tjAej
∣∣∣2 > γ

∑
j∈σ

|tj |2

for any choice of scalars {tj}j∈σ.

Recall that the stable rank of A is defined by srank(A) := ‖A‖2HS/‖A‖22.

Assuming that |Aej | = 1 for all j = 1, . . . , n we have ‖A‖2HS = n, therefore the
cardinality of the set σ provided by this theorem is proportional to the stable rank of
A.
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Restricted invertibility

Note also that if Aσ is the restriction of A to span{ej : j ∈ σ} then the theorem is
equivalent to the fact that smin(Aσ) > γ, where

smin(T ) = λmin(
√
T tT ) = λmin(

√
TT t)

denotes the smallest singular number of an operator T .

The original proof uses random selection, the Sauer-Shelah lemma and
Grothendieck’s factorization theorem.

Vershynin generalized this result as follows.

Vershynin

Let In =
∑m

j=1 uju
t
j be an arbitrary decomposition of the identity and A : `n2 → `n2 be a

linear operator. Then, for any ε ∈ (0, 1) one can find σ ⊂ [m] of cardinality
|σ| > (1− ε) srank(A) such that for any choice of scalars (tj)j∈σ,∣∣∣∑

j∈σ

tj
Auj
|Auj |

∣∣∣ > c(ε)
(∑

j∈σ

t2j

)1/2
,

where c(ε) > 0 is a constant depending only on ε.
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Restricted invertibility

Note that if |Aej | = 1 for all j then, applying Vershynin’s theorem for the standard
decomposition In =

∑n
j=1 eje

t
j we recover the Bourgain-Tzafriri theorem.

Moreover, we may now find σ ⊆ [n] of cardinality greater than (1− ε)n/‖A‖22 for
any ε ∈ (0, 1) so that ∣∣∣∑

j∈σ

tjAej

∣∣∣2 > γ
∑
j∈σ

|tj |2

will hold true, of course with a constant γ = γ(ε) depending on ε.

Spielman and Srivastava gave a generalization, in the spirit of Vershynin’s theorem, with
optimal dependence on ε.

Spielman-Srivastava

Let ε ∈ (0, 1) and u1, . . . , um ∈ Rn such that In =
∑m

j=1 uju
t
j . Let A : `n2 → `n2 be a linear

operator. We can find σ ⊆ [m] of cardinality |σ| > b(1− ε)2srank(A)c such that the set
{Auj : j ∈ σ} is linearly independent and

λmin

(∑
j∈σ

(Auj)(Auj)
t
)
> ε2
‖A‖2HS

m
,

where the smallest eigenvalue λmin is computed on the subspace span{Auj : j ∈ σ}.
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Restricted invertibility

The inequality

λmin

(∑
j∈σ

(Auj)(Auj)
t
)
> ε2
‖A‖2HS

m
,

is equivalent to the fact that, for any choice of scalars (tj)j∈σ,∣∣∣∑
j∈σ

tjAuj
∣∣∣ > ε

‖A‖HS√
m

(∑
j∈σ

t2j

)1/2
.

The Bourgain-Tzafriri theorem follows with constants γ(ε) = ε2 δ(ε) = (1− ε)2;
consider the standard decomposition of the identity In =

∑n
i=1 eje

t
j , where

{ej : j = 1, . . . , n} and recall that ‖A‖2HS = n.
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Strong restricted invertibility

Strong B-T

There exists an absolute constant γ > 0 with the following property: for every B > 0
there exists r = r(B) ∈ N such that if A : `n2 → `n2 is a linear operator with ‖A‖ 6 B and
|Aej | = 1 for all i = 1, . . . , n, then we may find a partition {σk}rk=1 of [n] such that for
every k = 1, . . . , r and any choice of real coefficients (tj)j∈σk ,∣∣∣∑

j∈σk

tjAej
∣∣∣2 > γ

∑
j∈σk

|tj |2.

This statement is called the strong Bourgain-Tzafriri conjecture.

It is now a theorem, after the proof of the paving conjecture by Marcus, Spielman
and Srivastava.

In fact, the paving theorem is equivalent to the statement above, and also provides
an affirmative answer to the Kadison-Singer problem.
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Paving theorem

Paving

For every ε > 0 there exists r = r(ε) ∈ N such that: if S : `n2 → `n2 is a linear operator
with diagonal D(S) = 0 then we may find a partition {σk}rk=1 of [n] such that for every
k = 1, . . . , r

‖RσkSRσk ‖ 6 ε‖S‖.

Here, Rσ is the restriction map (orthogonal projection) onto the subspace
span{ej : j ∈ σ}.
The delicate point is that r should depend only on ε and not on n.

Summer School - 2019 (Part I) Interlacing polynomials July 2019 7 / 23



Paving theorem

Paving

For every ε > 0 there exists r = r(ε) ∈ N such that: if S : `n2 → `n2 is a linear operator
with diagonal D(S) = 0 then we may find a partition {σk}rk=1 of [n] such that for every
k = 1, . . . , r

‖RσkSRσk ‖ 6 ε‖S‖.

Here, Rσ is the restriction map (orthogonal projection) onto the subspace
span{ej : j ∈ σ}.

The delicate point is that r should depend only on ε and not on n.

Summer School - 2019 (Part I) Interlacing polynomials July 2019 7 / 23



Paving theorem

Paving

For every ε > 0 there exists r = r(ε) ∈ N such that: if S : `n2 → `n2 is a linear operator
with diagonal D(S) = 0 then we may find a partition {σk}rk=1 of [n] such that for every
k = 1, . . . , r

‖RσkSRσk ‖ 6 ε‖S‖.

Here, Rσ is the restriction map (orthogonal projection) onto the subspace
span{ej : j ∈ σ}.
The delicate point is that r should depend only on ε and not on n.

Summer School - 2019 (Part I) Interlacing polynomials July 2019 7 / 23



Paving implies restricted invertibility

Let A : `n2 → `n2 satisfy |Aej | = 1 for all i 6 n. Then, B = AtA has diagonal
D(B) = (1, . . . , 1) and ‖B‖ = ‖AtA‖ = ‖A‖2.

Write B = In + S . Then, D(S) = 0 and applying the paving theorem we may find
r = r(‖A‖) and a partition {σk}rk=1 of [n] such that for every k = 1, . . . , r

‖Rσk (B − In)Rσk ‖ 6 ε.

It follows that for every x ∈ `n2 and every k 6 r we have

〈BRσk x ,Rσk x〉 = 〈RσkBRσk x ,Rσk x〉
= 〈Rσk x ,Rσk x〉 − 〈Rσk (In − B)Rσk x ,Rσk x〉

> |Rσk x |
2 − |Rσk (In − B)Rσk x | |Rσk x |

> |Rσk x |
2 − ε|Rσk x |

2 = (1− ε)|Rσk x |
2.

This verifies the strong Bourgain-Tzafriri conjecture.
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The case of `n1

Schechtman

Let S : `n1 → `n1 with D(S) = 0. For every ε > 0 there exists σ ⊂ [n] with |σ| > εn
2‖S‖ such

that
‖RσSRσ‖ 6 ε.

If S : Rn → Rn is a linear operator and aij = 〈Sej , ei 〉 then

‖S : `n1 → `n1‖ = max
16i6n

n∑
j=1

|aij |

and

‖S : `n∞ → `n∞‖ = max
16j6n

n∑
i=1

|aij |.

Therefore, we may replace S by S ′, which is defined by 〈S ′ej , ei 〉 = |aij |, and assume
that all aij are non-negative.
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The case of `n1

Paving in `n1

Let A = (aij)
n
i,j=1 be an n × n matrix such that:

aij > 0 and aii = 0.

For all i 6 n,
∑n

j=1 aij 6 1.

Then, for every ε > 0 there exists σ ⊂ [n] with |σ| > εn
2

such that: for every i ∈ σ,∑
j∈σ aij 6 ε.

In fact, we have something stronger.

Bourgain

Let A = (aij)
n
i,j=1 be an n × n matrix such that:

aij > 0 and aii = 0.

For every i 6 n,
∑n

j=1 aij 6 1.

Then, for every k ∈ N there exists a partition {σ1, . . . , σk} of [n] such that: for all ` 6 k
and any i ∈ σ`, ∑

j∈σ`

aij 6
2

k
.
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The case of `n1

This implies paving.

Paving in `n1

For any k ∈ N and any S : `n1 → `n1 with D(S) = 0 there exists a partition {σ1, . . . , σk} of
[n] such that: for all ` 6 k

‖Rσ`SRσ`‖ 6
2

k
‖S‖.
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The case of `n1

The next argument is due to K. Ball.

We may assume that aij > 0 if i 6= j and that
for every i 6 n we have

∑n
j=1 aij = 1.

Then ρ = 1 is an eigenvalue of A with right eigenvector 1 = (1, . . . , 1). So, there
exists non zero γ = (γ1, . . . , γn) with γA = γ.

Claim 1

We may assume that γi > 0 for all i 6 n.

Since γA = γ we have
∑n

i=1 γiaij = γj for all j 6 n.

It follows that

n∑
j=1

|γj | =
n∑

j=1

∣∣∣ n∑
i=1

γiaij
∣∣∣ 6 n∑

j=1

n∑
i=1

|γi |aij =
n∑

i=1

|γi |
n∑

j=1

aij =
n∑

i=1

|γi |.

Since we have equality everywhere, all γj have the same sign. So, we may assume
that γj > 0 for all j 6 n. We shall show that γj > 0 for all j 6 n.

Suppose that γj = 0 for some j . Since aij > 0 if i 6= j , from the equation∑n
i=1 γiaij = γj we get γ = 0, a contradiction.
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The case of `n1

Let k > 2 and for any partition ∆ = {δ1, . . . , δk} of [n] define

f (∆) =
k∑
`=1

∑
i,j∈δ`

γiaij .

Choose a partition Σ = {σ1, . . . , σk} that minimizes f (∆) over all such partitions.

Claim 2

For all ` 6 k and i ∈ σ` we have
∑

j∈σ`
aij 6 2

k
.

Assuming the contrary, there exists r ∈ σ1 such that θ :=
∑

j∈σ1 arj >
2
k

.

We define (k − 1) new partitions Σ2, . . . ,Σk as follows: for every s = 2, . . . , k we
define Σs = {σs

1, . . . , σ
s
k} where

σs
1 = σ1 \ {r}, σs

s = σs ∪ {r} and σs
` = σ` if ` 6= 1, s.
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The case of `n1

Observe that

f (Σ)− f (Σs) =
∑
i,j∈σ1

γiaij +
∑
i,j∈σs

γiaij −
∑

i,j∈σ1\{r}

γiaij −
∑

i,j∈σs∪{r}

γiaij

= γr
∑
j∈σ1

arj +
∑
i∈σ1

γiair − γr
∑
j∈σs

arj −
∑
i∈σs

γiair .

Adding these equations we see that

k∑
s=2

(
f (Σ)− f (Σs)

)
= (k − 1)γr

∑
j∈σ1

arj + (k − 1)
∑
i∈σ1

γiair − γr
∑
j /∈σ1

arj −
∑
i /∈σ1

γiair

> (k − 1)γr
∑
j∈σ1

arj − γr
∑
j /∈σ1

arj −
n∑

i=1

γiair

= (k − 1)γrθ − γr (1− θ)− γr
= γr (kθ − 2) > 0.

Therefore, for some s ∈ {2, . . . , k} we must have f (Σ) > f (Σs), a contradiction.
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The Bourgain-Tzafriri argument

Random selection

Let A : `n2 → `n2 such that |Aei | = 1 for all i 6 n. There exists σ1 ⊂ [n] with
|σ1| > c1n/‖A‖2 such that, for all i ∈ σ1,∣∣P〈Aej :j∈σ1\{i}〉(Aei )∣∣ < 1√

2
.

We fix δ ∈ (0, 1) and consider independent 0-1 random variables ξ1, . . . , ξn with
E (ξi ) = δ on a probability space (Ω,Σ, µ).

For each ω ∈ Ω we set σ(ω) = {i 6 n : ξi (ω) = 1}
Note that |σ(ω)| =

∑n
i=1 ξi (ω).

From Bernstein’s inequality we have

µ
({
ω : |σ(ω)| < δn

2

})
6 exp(−δn/10).
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The Bourgain-Tzafriri argument

By the independence of the ξi ’s we get

E
( n∑

i=1

ξi (ω)
∣∣P〈ξj (ω)Aej :j 6=i〉(Aei )

∣∣2) =
n∑

i=1

(Eξi (ω)) E
∣∣P〈ξj (ω)Aej :j 6=i〉(Aei )

∣∣2
= δ E

( n∑
i=1

∣∣P〈ξj (ω)Aej :j 6=i〉(Aei )
∣∣2) 6 δ E

( n∑
i=1

∣∣P〈ξj (ω)Aej :j6n〉(Aei )
∣∣2)

= δ E
∥∥P〈ξj (ω)Aej :j6n〉A

∥∥2
HS

6 δ‖A‖2 E
∥∥P〈ξj (ω)Aej :j6n〉

∥∥2
HS

= δ‖A‖2 E [dim(〈ξj(ω)Aej : j 6 n〉)] 6 δ‖A‖2 E
( n∑

j=1

ξi (ω)
)

= δ2n‖A‖2.

From Markov’s inequality, with probability greater than or equal to 1/2 we get

n∑
i=1

ξi (ω)
∣∣P〈ξj (ω)Aej :j 6=i〉(Aei )

∣∣2 6 2δ2n‖A‖2.
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The Bourgain-Tzafriri argument

So, we may find ω0 ∈ Ω such that σ0 := σ(ω0) satisfies |σ0| > δn/2∑
i∈σ0

∣∣P〈Aej :j∈σ0\{i}〉(Aei )∣∣2 6 2δ2n‖A‖2.

We define
τ := {i ∈ σ0 : |P〈Aej :j∈σ0\{i}〉(Aei )| > 4‖A‖

√
δ}.

Applying Markov’s inequality once again we get

|τ |(16δ‖A‖2) 6 2δ2n‖A‖2,

which gives
|τ | 6 δn/8.

If we set σ1 = σ0 \ τ , then |σ1| > 3δn/8 and, for all i ∈ σ1,

|P〈Aej :j∈σ1\{i}〉(Aei )| 6 |P〈Aej :j∈σ0\{i}〉(Aei )| 6 4‖A‖
√
δ.

Choosing δ = 1/(32‖A‖2) we get the result.
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The Bourgain-Tzafriri argument

Sauer-Shelah

Let D be a subset of E n
2 = {−1, 1}n and k 6 n. If

|D| >
k−1∑
j=0

(
n

j

)
,

then there exists σ ⊂ [n] with cardinality |σ| = k such that Rσ(D) = Eσ2 = {−1, 1}σ,
where Rσ is the restriction to the coordinates of σ.
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The Bourgain-Tzafriri argument

Combinatorial step

Let A : `n2 → `n2 such that |Aei | = 1 for all i 6 n. There exists σ2 ⊂ [n] with
|σ2| > c2n/‖A‖2 such that, for any choice of coefficients (ti )i∈σ2 ,∣∣∣∑

i∈σ2

tiAei
∣∣∣ > c2

∑
i∈σ2 |ti |√
|σ2|

.

We had found σ1 with |σ1| > c1n/‖A‖2 such that, for all i ∈ σ1,∣∣P〈Aej :j∈σ1\{i}〉(Aei )∣∣ < 1√
2
.

For every i ∈ σ1 we define u′i = Aei − P〈Aej :j∈σ1\{i}〉(Aei ) and ui = u′i /|u′i |. Then,
|ui | = 1 and, for all i ∈ σ1,

〈Aei , ui 〉 >
1√
2

and 〈Aei , uj〉 = 0 j 6= i .

By the parallelogram law,

Ave
{∣∣∣∑

j∈σ1

εjuj

∣∣∣2 : εj = ±1
}

=
∑
j∈σ1

|uj |2 = |σ1|.
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The Bourgain-Tzafriri argument

Consider the set

D :=
{

(εj)j∈σ1 ∈ Eσ12 :
∣∣∣∑
j∈σ1

εjuj
∣∣∣ 6√2|σ1|

}
.

From Markov’s inequality we have |D| > 2|σ1|−1.

By the Sauer-Shelah lemma (with k > |σ1|/2) we find σ2 ⊂ σ1 with
|σ2| > |σ1|/2 > (c1/2)n/‖A‖2 such that

Rσ2(conv(D)) = conv
(
{−1, 1}σ2

)
= [−1, 1]σ2 .

By the definition of D, if (qj)j∈σ1 ∈ conv(D) then∣∣∣∑
j∈σ1

qjuj
∣∣∣ 6√2|σ1| 6 2

√
|σ2|.
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The Bourgain-Tzafriri argument

Let (ti )i∈σ2 . We write

1√
2

∑
i∈σ2

|ti | 6
〈∑

i∈σ2

tiAei ,
∑
j∈σ2

sign(tj)uj
〉
.

Observe that (
sign(tj)

)
j∈σ2
∈ [−1, 1]σ2 ⊂ Rσ2(conv(D)).

Therefore, we may find (qj)j∈σ1 ∈ conv(D) such that

qj = sign(tj) if j ∈ σ2.

Since 〈Aei , uj〉 = 0 whenever i ∈ σ2 and j ∈ σ1 \ σ2, we have〈∑
i∈σ2

tiAei ,
∑
j∈σ2

sign(tj)uj
〉

=
〈∑

i∈σ2

tiAei ,
∑
j∈σ1

qjuj
〉
.

From the Cauchy-Schwarz inequality,

1√
2

∑
i∈σ2

|ti | 6
〈∑

i∈σ2

tiAei ,
∑
j∈σ1

qjuj
〉
6
∣∣∣∑
j∈σ1

qjuj
∣∣∣∣∣∣∑

i∈σ2

tjAej
∣∣∣

6 2
√
|σ2|
∣∣∣∑
i∈σ2

tjAej

∣∣∣.
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The final step

Let A : `n2 → `n2 with |Aei | = 1 for all i = 1, . . . , n.

We set xi = Aei and, by the previous step, we have σ2 ⊂ [n] such that
|σ2| > c2n/‖A‖2 and for the operator S : X = 〈xi : i ∈ σ2〉 → `n1 defined by

Sxi =
ei√
|σ2|

, i ∈ σ2.

we have that ‖S‖ 6 1/c2.

The adjoint operator S∗ : `n∞ → X is 2-summing and

π2(S∗) 6 KG‖S∗‖ 6
KG

c2
.

Then, S∗ is factorized as S∗ = U ◦ D, where U : `n2 → X with ‖U‖ 6 π2(S∗) and
D : `n∞ → `n2 is a diagonal operator with Dei = λiei for some λi ∈ R with∑n

i=1 λ
2
i 6 1.

It follows that S can be written as S = D∗ ◦ U∗, with D∗ei = λiei . Note that

U∗(xj) =
1

λj

√
|σ2|

ej , j ∈ σ2.
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Then, S∗ is factorized as S∗ = U ◦ D, where U : `n2 → X with ‖U‖ 6 π2(S∗) and
D : `n∞ → `n2 is a diagonal operator with Dei = λiei for some λi ∈ R with∑n

i=1 λ
2
i 6 1.

It follows that S can be written as S = D∗ ◦ U∗, with D∗ei = λiei . Note that

U∗(xj) =
1

λj

√
|σ2|

ej , j ∈ σ2.
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The final step

We define
σ = {j ∈ σ2 : |λj | 6

√
2/|σ2|}.

From
∑n

i=1 λ
2
i 6 1 we see that

1 >
∑

j∈σ2\σ

λ2
j > 2|σ2 \ σ|/|σ2|.

Therefore,

|σ| > |σ2|
2

> c3n/‖A‖2.

Finally, for any choice of real coefficients (ti )i∈σ we have

KG

c2

∣∣∣∑
j∈σ

tjxj
∣∣∣ > ∣∣∣U∗(∑

j∈σ

tjxj
)∣∣∣ =

(∑
j∈σ

∣∣∣ tj

λj

√
|σ2|

∣∣∣2)1/2
>

1√
2

(∑
j∈σ

t2j

)1/2
.

This proves the theorem.
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