the shift operator C^* algebras the Kadison-Singer problem groups and operator algebras

introductory lecture

M. Anoussis

07/2019

- 1 the shift operator
- 2 C* algebras
- 3 the Kadison-Singer problem
- groups and operator algebras

H separable Hilbert space with orthonormal basis $\{e_n: n=0,1,2...\}$.

An operator is a bounded linear map $H \to H$.

If T is an operator, the adjoint of T is an operator T^* which satisfies:

$$\langle T^*x, y \rangle = \langle x, Ty \rangle$$
.

Definition

S is the operator on H defined by $Se_n = e_{n+1}$.

- The adjoint operator S^* satisfies $S^*e_n=e_{n-1}$ for n=1,2,3,... and $S^*e_0=0$.
- the operator S is 1-1 but not onto
- ullet the operator \mathcal{S}^* is onto but not 1-1
- $S^*S = I$
- $SS^* = P$ where $P(e_n) = e_n$ for $e_n : n = 1, 2, 3, 4, ...$ and $P(e_0) = 0$.
- ||Sx|| = ||x|| for every $x \in H$.
- $(S^*)^n x \to 0$ for every $x \in H$.

The matrix of S is

and the matrix of S^* is

Definition

The spectrum of an operator T is the set

$$\{\lambda \in \mathbb{C} : T - \lambda I \text{ not invertible}\}$$

Example

If T is an operator on a finite dimensional space over \mathbb{C} , the spectrum is the set of eigenvalues.

Theorem

The spectrum of S is $\{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$.

proof Let $\lambda \in \mathbb{C}$, $|\lambda| < 1$.

$$S^*(\sum_{n=0}^{\infty}\lambda^ne_n)=\sum_{n=1}^{\infty}\lambda^ne_{n-1}=\sum_{n=0}^{\infty}\lambda^{n+1}e_n=\lambda\sum_{n=0}^{\infty}\lambda^ne_n.$$

 λ is an eigenvalue of \mathcal{S}^* and so, $\{\lambda \in \mathbb{C} : |\lambda| \leq 1\} \subseteq \operatorname{sp}(\mathcal{S}^*)$. Since $\|\mathcal{S}^*\| \leq 1$ we have $\operatorname{sp}(\mathcal{S}^*) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$. We obtain $\operatorname{sp}(\mathcal{S}^*) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$. Hence

$$\mathrm{sp}(S) = \{\overline{\lambda} : \lambda \in \mathrm{sp}(S^*)\} = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$$

Remark

S has no eigenvalues

0 is not an eigenvalue, since S is 1-1.

If $\lambda \neq 0$ is an eigenvalue of S with eigenvector $\sum_{n=0}^{\infty} a_n e_n$ then:

$$S(\sum_{n=0}^{\infty} a_n e_n) = \lambda \left(\sum_{n=0}^{\infty} a_n e_n\right) \Leftrightarrow \sum_{n=0}^{\infty} a_n e_{n+1} = \sum_{n=0}^{\infty} \lambda a_n e_n$$

and we will have $\lambda a_0=0$ and $\lambda a_{n+1}=a_n$ for all n. Hence $a_n=0$ for all n.

invariant subspaces

Definition

Let T be an operator on a Banach space X. A subspace V of X is invariant if $Tx \in V$ for all $x \in V$.

Example

If T is an operator on a finite dimensional space over $\mathbb C$, and v is an eigenvector of T, then the space $\{\mu v: \mu \in \mathbb C\}$ is an invariant subspace for T.

Question

Let X be a separable Banach space. Does every operator on X have a closed invariant subspace, different from $\{0\}$ and X?

invariant subspaces

Theorem (Enflo, 1975)

There exists an infinite dimensional separable Banach space X, and an operator T on X with no invariant closed subspace, different from $\{0\}$ and X.

Theorem (Argyros-Haydon, 2011)

There exists an infinite dimensional separable Banach space X, such that every operator on X has non trivial closed invariant subspace.

The answer to the following question is unknown.

Question

Let H be a separable Hilbert space (i.e. ℓ^2). Does every operator on H have a closed invariant subspace, different from $\{0\}$ and X?

We will describe the invariant subspaces of the shift. We will need another representation of the operator *S*.

Definition

$$L^{2}(\mathbb{T}) = \{f : \mathbb{T} \to \mathbb{C} : \|f\|_{2}^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{ix})|^{2} dx < +\infty\}$$

 $L^2(\mathbb{T})$ is a Hilbert space for the scalar product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(e^{ix}) \overline{g(e^{ix})} dx$$

and the family

$$\{\zeta_n : n \in \mathbb{Z}\}$$
 where $\zeta_n(e^{ix}) = e^{inx}$

is orthonormal: $\langle \zeta_n, \zeta_m \rangle = \delta_{nm}$.

For $f \in L^1(\mathbb{T})$ define

$$\hat{f}(n) = rac{1}{2\pi} \int_0^{2\pi} f(e^{ix}) e^{-inx} dx, \qquad n \in \mathbb{Z}.$$

The map

$$\mathcal{F}:f o(\hat{f}(n))_{n\in\mathbb{Z}}$$

is the Fourier transform and defines an isometry $L^2(\mathbb{T}) o \ell^2(\mathbb{Z})$.

Definition

$$H^{2}(\mathbb{T}) = \{ f \in L^{2}(\mathbb{T}) : \hat{f}(-k) = 0 \text{ for all } k = 1, 2, \ldots \}.$$

Let $T: H^2(\mathbb{T}) \to H^2(\mathbb{T})$ be the map $Tf = \zeta_1 f$.

We have

$$S\mathcal{F} = \mathcal{F}T$$

A function $\phi \in H^2(\mathbb{T})$ with $|\phi(z)|=1$ for almost all $z\in\mathbb{T}$ is called an inner function. If ϕ is an inner function the space

$$\phi H^2 = \{ \phi f : f \in H^2(\mathbb{T}) \}$$

is a closed subspace of $H^2(\mathbb{T})$ and is invariant under T.

Theorem (Beurling)

A closed nonzero subspace $E\subseteq H^2(\mathbb{T})$ is T-invariant if and only if there exists $\phi\in H^2(\mathbb{T})$ with $|\phi(z)|=1$ for almost all $z\in\mathbb{T}$ such that $E=\phi H^2$. Moreover, ϕ is essentially unique in the sence that if $E=\psi H^2(\mathbb{T})$ where $|\psi|=1$ a.e. then $\frac{\phi}{\psi}$ is (a.e. equal to) a constant (of modulus 1).

Definition

Let ${\mathcal A}$ be a Banach algebra. An involution on ${\mathcal A}$ is a map $a o a^*$ on ${\mathcal A}$ s.t.

•
$$(a+b)^* = a^* + b^*$$

•
$$(\lambda a)^* = \overline{\lambda} a^*, \lambda \in \mathbb{C}$$

•
$$a^{**} = a$$

•
$$(ab)^* = b^*a^*$$

Definition

A C^* -algebra is a Banach algebra with an involution wich satisfies

$$||a^*a|| = ||a||^2.$$

Examples

• C

$$||z|| = |z|$$

$$z^* = \overline{z}$$

• C(X), for X compact.

$$\|g\| = \sup_{x \in X} |g(x)|,$$

 $g^*(x) = \overline{g(x)}$

• $\mathcal{B}(H)$, for a Hilbert space H

$$||T|| = \sup_{x \in H, ||x|| \le 1} ||Tx||$$

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

If H is a Hilbert space, $\mathcal{B}(H)$ is the space of bounded linear operators on H.

Theorem

Let $\mathcal A$ be a C^* -algebra. Then $\mathcal A$ is isometrically isomorphic to a closed subalgebra of $\mathcal B(H)$ for some Hilbert space H.

Definition

Let \mathcal{A} be a C^* -algebra with unit e. A state is a linear form f on \mathcal{A} which is positive and satisfies f(e) = 1.

The set of states S(A) of a C^* -algebra A is a w^* -compact subset of the dual of A. It is convex, hence by the Krein-Milman theorem it has extreme points.

Definition

A state is pure if it is an extreme point of S(A).

Examples

- X compact topological space, $\mathcal{C}(X)$ the C^* -algebra of continuous functions $X \to \mathbb{C}$. A state on $\mathcal{C}(X)$ is a probability measure. A pure state is a Dirac measure.
- $\mathcal{B}(H)$ for a Hilbert space H. If $\xi \in H$, $\|\xi\| = 1$, then $f(a) = \langle a\xi, \xi \rangle$ is a state. These are called vector states.

Let \mathcal{D} be the C^* -algebra of diagonal operators on ℓ^2 . Let f be a pure state on \mathcal{D} .

The Kadison-Singer problem is the following:

Problem (Kadison-Singer, 1959)

Does f have a unique extension on $\mathcal{B}(\ell^2)$?

The answer is positive.

Marcus-Spielman-Srivastava (2015)

Definition

A diagonal projection is an orthogonal projection on ℓ^2 which lies in \mathcal{D} .

P is a diagonal projection iff there exists a subset S of \mathbb{N} such that P is the orthogonal projection on the subspace of ℓ^2 spanned by $\{e_n : n \in S\}$.

Theorem

The f.a.e.:

- The Kadison-Singer problem has a positive answer.
- Let $A \in \mathcal{B}(\ell^2)$ with 0 diagonal and $\epsilon > 0$. There exist $r \in \mathbb{N}$ and r pairwise orthogonal diagonal projections $P_1, P_2, ..., P_r$ such that $\sum_{i=1}^r P_i = 1$ and

$$\|\sum_{i=1}^r P_i A P_i\| \le \epsilon \|A\|$$

Definition

A topological group is a group G which is a topological space such that the maps

$$(x, y) \mapsto xy$$

 $x \mapsto x^{-1}$

$$x \mapsto x^{-1}$$

are continuous.

Examples

- G any group with the discrete topology
- \bullet (\mathbb{R} , +), (\mathbb{R}^* , ·), (\mathbb{R}^* , ·)
- $\bullet \ (\mathbb{T},\cdot), \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$
- $GL(n, \mathbb{R}) = \{A = (a_{ij}) : n \times n \text{ matrix}, a_{ij} \in \mathbb{R}, \text{ det } A \neq 0\}$
- $\bullet \ \ \mathcal{O}(n,\mathbb{R}) = \{ A \in GL(n,\mathbb{R}) : A^t A = I \}$
- ullet the free group on n generators \mathbb{F}_n

Proposition

G locally compact topological group. Then G has a left invariant measure. This measure is unique up to a scalar, is called the Haar measure and is denoted by $d\mu$.

Definition

G topological group and H a Hilbert space . A unitary representation π of G on H is a map $G \to \mathcal{B}(H)$ such that:

- $\pi(x)^*\pi(x) = \pi(x)\pi(x)^* = I, \ \forall x \in G.$
- ② $x \to \pi(x)$ is a homomorphism of groups from G into the group of unitary operators on H.
- **3** For each $v \in H$ the map $x \mapsto \pi(x)v$ is continuous.

Examples

- The trivial representation of G on \mathbb{C} , $\pi(x)=1$ for all $x\in G$.
- $L^2(G)$ the Hilbert space with inner product

$$\langle f, g \rangle = \int_{\mathfrak{S}} f(x) \overline{g(x)} d\mu(x).$$

The representation λ defined by:

$$\lambda(y)f(x) = f(y^{-1}x)$$

is called the left regular representation of G.

$$C^*(G)$$

$$L^1(G) = \{ f \text{ measurable} : G \to \mathbb{C}, \int_G |f(x)| d\mu(x) < +\infty \}$$

Define

$$f * g(x) = \int_{G} f(xy^{-1})g(y)d\mu(y)$$
$$f^{*}(x) = \overline{f(x^{-1})}\Delta_{G}(x^{-1}).$$

Proposition

 (π, H) representation of G. Define for $f \in L^1(G)$,

$$\pi(t) = \int_{\mathfrak{S}} f(x)\pi(x)d\mu(x).$$

Then:

$$\bullet$$
 $\pi: L^1(G) \to \mathcal{B}(H)$ is linear.

$$2 \pi(f*g) = \pi(f)\pi(g)$$

$$\pi(f^*) = \pi(f)^*$$

$$\overline{\pi(L^1(G))H} = H$$

Define a norm on $L^1(G)$

$$||f|| = \sup_{\pi} ||\pi(f)||,$$

where the sup is taken over the family of unitary representations of G.

Definition

The C^* algebra of G, $C^*(G)$ is the completion of $L^1(G)$ with respect to this norm.

Examples

- $C^*(\mathbb{R}) \simeq C_0(\mathbb{R})$.
- $C^*(\mathbb{T}) \simeq C_0(\mathbb{Z})$.
- $C^*(\mathbb{Z}) \simeq C(\mathbb{T})$.

Theorem (Cuntz,1980)

 $C^*(\mathbb{F}_m)$ is not isomorphic to $C^*(\mathbb{F}_n)$ for $n \neq m$.

VN(G)

G topological group, λ the left regular representation of G. If H is a Hilbert space the weak operator topology (WOT) on $\mathcal{B}(H)$ is the topology defined by the family of seminorms $\{p_{x,y}\}_{x,y\in H}$ with $p_{x,y}(T)=\langle Tx,y\rangle$.

Definition

The von Neumann algebra vN(G) of G is the WOT closure of the linear span of $\{\lambda(x): x \in G\}$. It is a subalgebra of $\mathcal{B}(L^2(G))$.

Examples

- $\mathsf{vN}(\mathbb{R}) \simeq \mathsf{L}^\infty(\mathbb{R})$.
- $vN(\mathbb{T}) \simeq \ell^{\infty}(\mathbb{Z})$.
- $vN(\mathbb{Z}) \simeq L^{\infty}(\mathbb{T})$.

Definition

The reduced C^* -algebra $C^*_r(G)$ of G is the norm closure of the linear span of $\{\lambda(x):x\in G\}$. It is a subalgebra of $\mathcal{B}(L^2(G))$.

Theorem (Pimsner-Voiculescu, 1982)

 $C_r^*(\mathbb{F}_m)$ is not isomorphic to $C_r^*(\mathbb{F}_n)$ for $n \neq m$.

The answer to the following question is unknown.

Question

Is $\mathsf{vN}(\mathbb{F}_n)$ isomorphic to $\mathsf{vN}(\mathbb{F}_m)$ for $n \neq m$?

In particular, is $vN(\mathbb{F}_2)$ isomorphic to $vN(\mathbb{F}_3)$?