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Reminder

A C ∗-algebra A is a Banach algebra with an involution such that
‖a∗a‖ = ‖a‖2 for all a ∈ A.

A von Neumann algebra M is a unital subalgebra of B(H) (H: Hilbert
space) which is selfadjoint and WOT-closed.

Here unital means I ∈ M, selfadjoint means T ∈ M ⇒ T ∗ ∈ M and
WOT-closed menas that if 〈Tx , y〉 = lim

i
〈Tix , y〉 ∀x , y ∈ H and each

Ti ∈ M then T ∈ M.
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Reminder

Theorem

Let A be a unital C*-algebra and let π : A→ B(H) be a *-homomorphism
(linear, multiplicative, *-preserving). Then ‖π(a)‖ ≤ ‖a‖ for all a ∈ A.
Moreover, if π is injective, then it is isometric: ‖π(a)‖ = ‖a‖ for all a ∈ A.

Theorem (Gelfand-Naimark)

Let A be a unital C*-algebra. There exists some Hilbert space H and an
injective *-homomorphism π : A→ B(H).
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Reminder

A *-subalgebra A ⊆ B(H) is called non-degenerate if

span{T ξ : T ∈ A, ξ ∈ H} = H.

Theorem (von Neumann’s bicommutant theorem)

Let A ⊆ B(H) be a non-degenerate *-subalgebra. Then

A′′ = A
sot

= A
wot

.

Theorem (Kaplansky density theorem)

Let A ⊆ B(H) be a non-degenerate *-subalgebra. Then

ball(A′′)sa = ball(A)sa
sot

and ball(A′′) = ball(A)
sot
.

(Here Asa = {T ∈ A : T = T ∗}.)
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A useful characterisation

Corollary

A non-degenerate *-subalgebra A ⊆ B(H) is a von Neumann algebra iff
ball(A) is WOT-compact.

Proof:
Exercise 1.

Observe that T ∈ ball(B(H)) iff | 〈Tx , y〉 | ≤ 1 for all x , y ∈ ball(H), i.e.
φ(T ) ∈

∏
x ,y∈ball(H)

D where φ(T ) = {〈Tx , y〉}x ,y∈H .

Conclude that ball(B(H)) is WOT-compact (use Tihonof).

Exercise 2

If A ⊆ B(H) is a von Neumann algebra, show that ball(A) is WOT-closed
in ball(B(H)) (use bicommutant theorem).

Exercise 3

If conversely ball(A) is WOT-compact, take any T ∈ A′′ and show that
T ∈ A, by considering S = T

‖T‖ and using Kaplansky density.

Aristides Katavolos Introduction to von Neumann algebras
Eighth Summer School in Operator Theory Athens, July 2019 5

/ 13



Constructions with projections

Basic Exercise

Let p ∈ B(H) be a projection and A ⊆ B(H) a von Neumann algebra. The
space pH is A-invariant iff p ∈ A′.

Definition

For every T ∈ B(H), the projection onto ImT is called the range
projection of (also called the left support of T). The range projection of T
is denoted R(T ).

Exercise

If T belongs to a von Neumann algebra A, then R(T ) ∈ A.

Hint: Observe that R(T ) = proj(ker(T ∗)⊥). But ker(T ∗) is A′-invariant,
so its projection commutes with A′. So R(T ) ∈ A′′ = A.
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Constructions with projections

Definition

If {Pi} is a family of projections on H, then define ∧Pi to be the
projection on ∩iPi (H) and ∨Pi to be the projection on spanPi (H).

Proposition

If A is von Neumann algebra and {Pi} ⊆ A is a family of projections, then
∧Pi and ∨Pi are in A.

Proof Since Pi ∈ A, its range is A′ invariant. So spanPi (H) is
A′-invariant, hence so is spanPi (H). Hence the projection ∨Pi onto
spanPi (H) is in A′′ = A.
For ∧Pi , take ⊥.
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Constructions with projections

Definition

The centre of a von Neumann algebra A is defined to be Z (A) := A ∩ A′.
A projection p ∈ A is said to be a central projection if it is contained in
the centre of A.
A von Neumann algebra A is said to be a factor if
Z (A) = CI = {λI : λ ∈ C}.

Examples

The algebra B(H) is a factor.
If G is an ICC group, then vN(G ) is a factor.

A group G is an ICC group if for every s ∈ G , s 6= e the conjugacy class
{tst−1; t ∈ G} is infinite.
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Ideals in von Neumann algebras

Theorem

Let A be a von Neumann algebra, and let J ⊆ A be a WOT- closed
(2-sided) ideal. Then J = J∗ and, moreover, there exists a central
projection p ∈ Z (A) such that J = pA.

Proof If x ∈ J, write x = u|x | for the polar decomposition. Then |x | =
√
x∗x is

in J (functional calculus) and so x∗ = |x |u∗ ∈ J. So J = J∗.
Now let K = J(H). If a ∈ J and ξ ∈ H, for each b ∈ A we have baξ ∈ K . Hence
K is A-invariant so p := proj(K ) ∈ A′. But also for each c ∈ A′ we have
caξ = acξ ∈ K , so K is A′-invariant and thus p ∈ A. Thus p ∈ Z (A).

Let B = {a|K : a ∈ J}. Note that K is A-invariant so B ⊆ B(K ). Verify that B is

a von Neumann algebra on K and hence contains the identity on K , namely p|K .

It follows that p ∈ J (∃q ∈ J s.t. p|K = q|K or (p − q)|K = 0; but also

p|K⊥ = 0 = q|K⊥ so p = q.) Finally, if a ∈ J then a = pa ∈ pA, so J ⊆ pA, but

also pA ⊆ J because p ∈ J. Hence J = pA.

Corollary

A is a factor iff it has no non-trivial WOT closed ideals.
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Constructions with projections

Definition

Let A be a von Neumann algebra. For every a ∈ A, the central cover of a
(also called the central support or central carrier) is the projection

ca := ∧{p ∈ Z (A) : ap = a} .

Exercise

If p is a projection in a von Neumann algebra A ⊆ B(H), prove that cp is
the orthogonal projection onto the subspace

[ApH] := {aξ : ξ ∈ p(H)} .
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Constructions with projections

If A is a von Neumann algebra on H and p ∈ B(H) a projection, define

Ap = {pa|pH : a ∈ A}.

When p ∈ A, then Ap is a *-subalgebra of B(pH), called the reduced
algebra.
When p ∈ A′, then Ap is a *-subalgebra of B(pH), called the induced
algebra.

Proposition

Let A be a von Neumann algebra on H, and let p ∈ A be a projection.
Then Ap and (A′)p are von Neumann algebras on pH, and they are mutual
commutants: (Ap)′ = (A′)p.

Remark . The inclusion Ap ⊆ (A′p)′ is immediate. Now take b ∈ (A′p)′, put
c =

[
b 0
0 0

]
and show that b ∈ A′′ = A to conclude that b ∈ Ap.

To show that (Ap)′ ⊆ A′p is a challenge! (see the file compress.pdf)
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Commutative von Neumann algebras

Theorem

Let H be a separable Hilbert space, A ⊆ B(H) an abelian von Neumann
algebra. Then there is a selfadjoint operator a ∈ A such that A = {a}′′.

Definition

Let A ⊆ B(H) be a *-algebra. A vector ξ ∈ H is said to be cyclic for A if
Aξ is dense in H. It is said to be separating for A if for all a ∈ A, aξ = 0
implies that a = 0.

Lemma

If ξ ∈ H is cyclic for a *-algebra A then it is separating for A′. The
converse is also true when A is non-degenerate.

Proposition

Every commutative von Neumann algebra on a separable Hilbert space has
a separating vector.
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Commutative von Neumann algebras

Theorem

Let A be a commutative von Neumann algebra on a separable Hilbert
space. Then there exists a regular, compactly supported, Borel probablity
measure µ on R such that A is *-isomorphic to L∞(µ).

Theorem

Let µ be a compactly supported and continuous regular Borel probability
measure on the real line. Then L∞(µ) is *-isomorphic to L∞([0, 1]).

Conclusion

Every commutative von Neumann algebra on a separable Hilbert space has
one of the following forms (up to *-isomorphism):

1 L∞([0, 1]).

2 `∞(Ω), for a countable set Ω

3 L∞([0, 1])⊕ `∞(Ω), for a countable set Ω.
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