Introduction to von Neumann algebras Lecture IV

Aristides Katavolos

Eighth Summer School in Operator Theory Athens, July 2019

Reminder

A C^* -algebra A is a Banach algebra with an involution such that $||a^*a|| = ||a||^2$ for all $a \in A$.

A von Neumann algebra M is a unital subalgebra of B(H) (H: Hilbert space) which is selfadjoint and WOT-closed.

Here unital means $I \in M$, selfadjoint means $T \in M \Rightarrow T^* \in M$ and WOT-closed menas that if $\langle Tx, y \rangle = \lim_i \langle T_i x, y \rangle \, \forall x, y \in H$ and each $T_i \in M$ then $T \in M$.

Reminder

Theorem

Let A be a unital C^* -algebra and let $\pi: A \to B(H)$ be a *-homomorphism (linear, multiplicative, *-preserving). Then $\|\pi(a)\| \leq \|a\|$ for all $a \in A$. Moreover, if π is injective, then it is isometric: $\|\pi(a)\| = \|a\|$ for all $a \in A$.

Theorem (Gelfand-Naimark)

Let A be a unital C*-algebra. There exists some Hilbert space H and an injective *-homomorphism $\pi:A\to B(H)$.

Reminder

A *-subalgebra $A \subseteq B(H)$ is called non-degenerate if

$$\overline{\operatorname{span}\{T\xi:T\in A,\,\xi\in H\}}=H.$$

Theorem (von Neumann's bicommutant theorem)

Let $A \subseteq B(H)$ be a non-degenerate *-subalgebra. Then

$$A'' = \overline{A}^{sot} = \overline{A}^{wot}$$
.

Theorem (Kaplansky density theorem)

Let $A \subseteq B(H)$ be a non-degenerate *-subalgebra. Then

$$\operatorname{ball}(A'')_{sa} = \overline{\operatorname{ball}(A)_{sa}}^{sot}$$
 and $\operatorname{ball}(A'') = \overline{\operatorname{ball}(A)}^{sot}$.

(Here
$$A_{sa} = \{ T \in A : T = T^* \}.$$
)

A useful characterisation

Corollary

A non-degenerate *-subalgebra $A \subseteq B(H)$ is a von Neumann algebra iff $\operatorname{ball}(A)$ is WOT-compact.

Proof:

Exercise 1.

Observe that
$$T \in \text{ball}(B(H))$$
 iff $|\langle Tx, y \rangle| \leq 1$ for all $x, y \in \text{ball}(H)$, i.e. $\phi(T) \in \prod_{x,y \in \text{ball}(H)} \overline{\mathbb{D}}$ where $\phi(T) = \{\langle Tx, y \rangle\}_{x,y \in H}$.

Conclude that ball(B(H)) is WOT-compact (use Tihonof).

Exercise 2

If $A \subseteq B(H)$ is a von Neumann algebra, show that ball(A) is WOT-closed in ball(B(H)) (use bicommutant theorem).

Exercise 3

If conversely $\mathrm{ball}(A)$ is WOT-compact, take any $T \in A''$ and show that $T \in A$, by considering $S = \frac{T}{\|T\|}$ and using Kaplansky density.

Basic Exercise

Let $p \in B(H)$ be a projection and $A \subseteq B(H)$ a von Neumann algebra. The space pH is A-invariant iff $p \in A'$.

Definition

For every $T \in B(H)$, the projection onto \overline{ImT} is called the range projection of (also called the left support of T). The range projection of T is denoted R(T).

Exercise

If T belongs to a von Neumann algebra A, then $R(T) \in A$.

Hint: Observe that $R(T) = \operatorname{proj}(\ker(T^*)^{\perp})$. But $\ker(T^*)$ is A'-invariant, so its projection commutes with A'. So $R(T) \in A'' = A$.

Definition

If $\{P_i\}$ is a family of projections on H, then define $\land P_i$ to be the projection on $\cap_i P_i(H)$ and $\lor P_i$ to be the projection on $\overline{\operatorname{span} P_i(H)}$.

Proposition

If A is von Neumann algebra and $\{P_i\}\subseteq A$ is a family of projections, then $\land P_i$ and $\lor P_i$ are in A.

Proof Since $P_i \in A$, its range is A' invariant. So $\operatorname{span} P_i(H)$ is A'-invariant, hence so is $\operatorname{\overline{span}} P_i(H)$. Hence the projection $\vee P_i$ onto $\operatorname{\overline{span}} P_i(H)$ is in A'' = A. For $\wedge P_i$, take \perp .

Definition

The centre of a von Neumann algebra A is defined to be $Z(A) := A \cap A'$. A projection $p \in A$ is said to be a central projection if it is contained in the centre of A.

A von Neumann algebra A is said to be a factor if

$$Z(A) = \mathbb{C}I = \{\lambda I : \lambda \in \mathbb{C}\}.$$

Examples

The algebra B(H) is a factor.

If G is an ICC group, then vN(G) is a factor.

A group G is an ICC group if for every $s \in G, s \neq e$ the conjugacy class $\{tst^{-1}; t \in G\}$ is infinite.

Ideals in von Neumann algebras

Theorem

Let A be a von Neumann algebra, and let $J \subseteq A$ be a WOT- closed (2-sided) ideal. Then $J = J^*$ and, moreover, there exists a central projection $p \in Z(A)$ such that J = pA.

Proof If $x \in J$, write x = u|x| for the polar decomposition. Then $|x| = \sqrt{x^*x}$ is in J (functional calculus) and so $x^* = |x|u^* \in J$. So $J = J^*$. Now let $K = \overline{J(H)}$. If $a \in J$ and $\xi \in H$, for each $b \in A$ we have $ba\xi \in K$. Hence K is A-invariant so $p := \operatorname{proj}(K) \in A'$. But also for each $c \in A'$ we have $ca\xi = ac\xi \in K$, so K is A'-invariant and thus $p \in A$. Thus $p \in Z(A)$. Let $B = \{a|_K : a \in J\}$. Note that K is A-invariant so $B \subseteq B(K)$. Verify that B is a von Neumann algebra on K and hence contains the identity on K, namely $p|_K$. It follows that $p \in J$ ($\exists q \in J$ s.t. $p|_K = q|_K$ or $(p - q)|_K = 0$; but also $p|_{K^\perp} = 0 = q|_{K^\perp}$ so p = q.) Finally, if $a \in J$ then $a = pa \in pA$, so $J \subseteq pA$, but also $pA \subseteq J$ because $p \in J$. Hence J = pA.

Corollary

A is a factor iff it has no non-trivial WOT closed ideals.

Definition

Let A be a von Neumann algebra. For every $a \in A$, the central cover of a (also called the central support or central carrier) is the projection

$$c_a:=\wedge\{p\in Z(A):ap=a\}.$$

Exercise

If p is a projection in a von Neumann algebra $A \subseteq B(H)$, prove that c_p is the orthogonal projection onto the subspace

$$[ApH] := \overline{\{a\xi : \xi \in p(H)\}}$$
.

If A is a von Neumann algebra on H and $p \in B(H)$ a projection, define

$$A_p = \{pa|_{pH} : a \in A\}.$$

When $p \in A$, then A_p is a *-subalgebra of B(pH), called the reduced algebra.

When $p \in A'$, then A_p is a *-subalgebra of B(pH), called the induced algebra.

Proposition

Let A be a von Neumann algebra on H, and let $p \in A$ be a projection. Then A_p and $(A')_p$ are von Neumann algebras on pH, and they are mutual commutants: $(A_p)' = (A')_p$.

Remark. The inclusion $A_p \subseteq (A'_p)'$ is immediate. Now take $b \in (A'_p)'$, put $c = \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$ and show that $b \in A'' = A$ to conclude that $b \in A_p$. To show that $(A_p)' \subseteq A'_p$ is a challenge! (see the file compress.pdf)

Commutative von Neumann algebras

Theorem

Let H be a separable Hilbert space, $A \subseteq B(H)$ an abelian von Neumann algebra. Then there is a selfadjoint operator $a \in A$ such that $A = \{a\}''$.

Definition

Let $A \subseteq B(H)$ be a *-algebra. A vector $\xi \in H$ is said to be cyclic for A if $A\xi$ is dense in H. It is said to be separating for A if for all $a \in A$, $a\xi = 0$ implies that a = 0.

Lemma

If $\xi \in H$ is cyclic for a *-algebra A then it is separating for A'. The converse is also true when A is non-degenerate.

Proposition

Every commutative von Neumann algebra on a separable Hilbert space has a separating vector.

Commutative von Neumann algebras

Theorem

Let A be a commutative von Neumann algebra on a separable Hilbert space. Then there exists a regular, compactly supported, Borel probablity measure μ on $\mathbb R$ such that A is *-isomorphic to $L^\infty(\mu)$.

Theorem

Let μ be a compactly supported and continuous regular Borel probability measure on the real line. Then $L^{\infty}(\mu)$ is *-isomorphic to $L^{\infty}([0,1])$.

Conclusion

Every commutative von Neumann algebra on a separable Hilbert space has one of the following forms (up to *-isomorphism):

- **1** $L^{\infty}([0,1]).$
- **3** $L^{\infty}([0,1]) \oplus \ell^{\infty}(\Omega)$, for a countable set Ω .