Connes' Embedding Conjecture

M. Anoussis

8th Summerschool in Operator Theory Athens, July 2019

2 the hyperfinite factor

3 ultrapowers

イロト イポト イヨト イヨト

"We now construct an approximate imbedding of N in R. Apparently such an imbedding ought to exist for all II_1 factors because it does for the regular representation of free groups" Alain Connes, Ann. Math. 104, (1976) p. 105.

von Neumann algebras

Definition

A von Neumann algebra is a selfadjoint unital subalgebra of $\mathcal{B}(H)$ which is WOT closed.

Examples

- $\mathcal{B}(H)$
- $H = H_1 \oplus H_2$,

$$\left\{ \left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right) : A \in \mathcal{B}(H_1), B \in \mathcal{B}(H_2) \right\}$$

• G discrete group, $\ell^\infty(G)$ acting on $\ell^2(G)$

(日)

von Neumann algebras

Examples

• G discrete group, $g \in G$. Let $\lambda(g)$ be the operator acting on $\ell^2(G)$ given by:

$$\lambda(g)f(x)=f(g^{-1}x),$$

 $f \in \ell^2(G).$

 $\mathrm{vN}(G)$ is the wot closed subalgebra of $\mathcal{B}(\ell^2(G))$ generated by the operators

 $\{\lambda(g), g \in G\}.$

Let
$$\delta_x(y) = 0$$
 if $x \neq y$ and $\delta_x(y) = 1$ if $x = y$.
Then $\lambda(g)\delta_x = \delta_{gx}$.

von Neumann algebras

Definition

The center of a von Neumann algebra ${\cal A}$ is the set

 $\{z \in \mathcal{A} : za = az, \forall a \in \mathcal{A}\}.$

Definition

If the center of a von Neumann algebra \mathcal{A} is equal to $\mathbb{C}I$, the von Neumann algebra is called a factor.

Examples

- $\mathcal{B}(H)$ is a factor.
- If G is a discrete group, then vN(G) is a factor iff every conjugacy class (except the conjugacy class of e) is infinite.
- $vN(\mathbb{F}_n)$, $n \ge 2$ is a factor.

von Neumann algebras

If \mathcal{A} is a factor of type II_1 there exists a linear form $\tau: \mathcal{A} \to \mathbb{C}$ such that:

•
$$\tau(x^*x) \geq 0$$
, for all $x \in \mathcal{A}$

- $\tau(1) = 1$
- If $x \in \mathcal{A}$, $au(x^*x) = 0 \Rightarrow x = 0$
- au(xy)= au(yx), for all $x,y\in\mathcal{A}$
- $\bullet\,$ the restriction of τ to the unit ball is WOT continuous
- $\tau(P(\mathcal{A})) = [0, 1]$, where $P(\mathcal{A})$ is the set of projections in \mathcal{A} .

The function above is called the tracial state on \mathcal{A} .

von Neumann algebras

Example

If G is a discrete icc group, then vN(G) is a factor of type II_1 and the tracial state is given by

$$\tau(\mathbf{x}) = \langle \mathbf{x} \delta_{\mathbf{e}}, \delta_{\mathbf{e}} \rangle$$
.

・ロト ・ 同ト ・ ヨト ・ ヨト

the hyperfinite factor

Definition

 \mathcal{S}^{fin}_∞ is the group of all permutations of $\mathbb N,$ fixing all but finitely many elements of $\mathbb N.$

We have

$$S_{\infty}^{\text{fin}} = \bigcup_{n=1}^{\infty} S_n.$$

Definition

The hyperfinite factor \mathcal{R} is the von Neumann algebra vN($\mathcal{S}^{\mathrm{fin}}_{\infty}$).

イロト イポト イヨト イヨト

the hyperfinite factor

Lemma

Let G be a discrete group and H a subgroup of G. The restriction of λ_G to H is a multiple of λ_H .

proof

Write G as disjoint union of right H-cosets, $G = \bigcup_{s \in S} Hs$, where S is a system of representatives of H/G in G. Then

$$\ell^2(G) = \bigoplus_{s \in S} \ell^2(Hs).$$

The space $\ell^2(Hs)$ is invariant under the restriction of λ_G to H and this restriction is equivalent to λ_H .

the hyperfinite factor

A factor \mathcal{M} is AF if there exists an increasing sequence (\mathcal{Q}_n) of finite dimensional *-subalgebras of \mathcal{M} with the same unit, such that $\mathcal{M} = (\bigcup_{n=1}^{\infty} \mathcal{Q}_n)''$ (equivalently $\mathcal{M} = \overline{(\bigcup_{n=1}^{\infty} \mathcal{Q}_n)}^{\text{wot}}$).

Proposition

The hyperfinite factor ${\cal R}$ is AF.

proof The algebra \mathcal{A}_n generated by $\{\lambda_G(h) : h \in S_n\}$ is finite dimensional and $\bigcup_{n=1}^{\infty} \mathcal{A}_n$ is dense in \mathcal{A} .

・ロト ・ ア・ ・ ア・ ・ ア・ ア

the hyperfinite factor

Proposition (Murray-von Neumann)

 \mathcal{R} is the unique AF type II₁ factor.

the hyperfinite factor

Proposition

 \mathcal{R} embedds in every II₁ factor \mathcal{M} .

Take a projection $p \in \mathcal{M}$ such that $\tau(p) = 1/2$, where τ is the tracial state of \mathcal{M} . Take u a partial isometry in \mathcal{M} such that $uu^* = p$, $u^*u = 1 - p$. The subalgebra \mathcal{M}_2 of \mathcal{M} generated by

$$\left(\begin{array}{cc} \rho & 0\\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & u\\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0\\ u^* & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0\\ 0 & 1-\rho \end{array}\right)$$

is isomorphic to $M_2(\mathbb{C})$. A similar construction shows that there exists a subalgebra \mathcal{M}_{2^n} of \mathcal{M} , isomorphic to $M_{2^n}(\mathbb{C})$.

ヘロン 人間 とくほ とくほ とう

the hyperfinite factor

One can show that

$$\overline{\cup_{n=1}^{\infty}\mathcal{M}_{2^{n}}}^{wot}$$

is a II_1 factor. By uniqueness of the AF type II_1 factor, this factor is isomorphic to \mathcal{R} . Hence \mathcal{R} embedds into \mathcal{M} .

ultrafilters

Definition

Let X be a set. A filter \mathcal{F} on X is a collection of subsets of X s.t.

- $X \in \mathcal{F}$
- $\emptyset \notin \mathcal{F}$
- $A \in \mathcal{F}$, $B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- $A \in \mathcal{F}$, $A \subseteq B \Rightarrow B \in \mathcal{F}$.

イロト 人間 とくほ とくほ とう

ultrafilters

Examples

- Let X be a set and $x_0 \in X$. Then $\mathcal{F} = \{A \subseteq X : x_0 \in A\}$ is a filter.
- $X = \mathbb{N}$. Set $\mathcal{F} = \{A \subseteq \mathbb{N} : \mathbb{N} A \text{ is finite}\}$. Then \mathcal{F} is a filter.

ultrafilters

Definition

Let X be a set. An ultrafilter \mathcal{U} on X is a filter which is maximal.

Proposition

Every filter \mathcal{F} is contained in an ultrafilter.

Proposition

A filter \mathcal{F} is an ultrafilter iff for every $A \subseteq X$ we have $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$.

イロン 不良 とくほど 不良 とう

ultrafilters

Example

• Let X be a set and $x_0 \in X$. Then $\mathcal{U} = \{A \subseteq X, x_0 \in A\}$ is an ultrafilter. These are called principal.

Let $\mathcal{F} = \{A \subseteq \mathbb{N} : \mathbb{N} - A \text{ is finite}\}$. There is no principal ultrafilter that contains \mathcal{F} . Hence there are ultrafilters that are not principal. These are called free ultrafilters.

ultrafilters

Definition

Let (a_n) be a bounded sequence in \mathbb{R} and \mathcal{U} an ultrafilter on \mathbb{N} . We say that x is a \mathcal{U} -limit of (a_n) if for every neighbourhood S of x, the set $\{n \in \mathbb{N} : a_n \in S\}$ is in \mathcal{U} .

Proposition

Let (a_n) be a bounded sequence in \mathbb{R} and \mathcal{U} an ultrafilter on \mathbb{N} . Then there exists an x which is the \mathcal{U} -limit of (a_n) . We denote $x = \lim_{\mathcal{U}} a_n$.

ultrafilters

Proposition

Let $(a_n),(b_n)$ be bounded sequences in $\mathbb R$ and $\mathcal U$ an ultrafilter on $\mathbb N.$ Then

• $\lim_{\mathcal{U}}(a_n + b_n) = \lim_{\mathcal{U}} a_n + \lim_{\mathcal{U}} b_n$

•
$${\sf lim}_{\mathcal{U}}(\lambda a_n) = \lambda {\sf lim}_{\mathcal{U}} a_n$$
 for $\lambda \in \mathbb{R}$

•
$$\lim_{\mathcal{U}}(a_nb_n) = \lim_{\mathcal{U}} a_n \lim_{\mathcal{U}} b_n$$
.

イロン イボン イヨン イヨン 三日

ultrapowers

Let \mathcal{U} be an ultrafilter over \mathbb{N} . Let X_n be a set, for $n \in \mathbb{N}$.

The set theoretic ultraproduct of the family $\{X_n\}_{n\in\mathbb{N}}$ with respect to \mathcal{U} is defined as follows:

Let $\prod_{n \in \mathbb{N}} X_n$ be the product of the family $\{X_n\}_{n \in \mathbb{N}}$. Define a relation on $\prod_{n \in \mathbb{N}} X_n$:

$$x_n \sim y_n \Leftrightarrow \{n : x_n = y_n\} \in \mathcal{U}.$$

The ultraproduct of the family $\{X_n\}_{n\in\mathbb{N}}$ with respect to the ultrafilter \mathcal{U} is X/\sim .

If $X_n = X$ for all $n \in \mathbb{N}$, we use the word ultrapower of X. In that case, X embedds in the ultrapower of X, via the map

$$x \mapsto (x, x, x, ...).$$

Examples

The ultrapower of \mathbb{R} with respect to a free ultrafilter on \mathbb{N} is the set of hyperreal numbers. It is a field, containing \mathbb{R} .

remark

Let \mathcal{U} be a free ultrafilter, and $\mathbb{R}^{\mathcal{U}}$ the ultrapower of \mathbb{R} with respect to \mathcal{U} . The class of $(\frac{1}{n})_{n \in \mathbb{N}}$ in $\mathbb{R}^{\mathcal{U}}$ is strictly smaller than any positive real number (infinitesimal).

ultrapowers

Let \mathcal{U} be an ultrafilter over \mathbb{N} . Let X_n be a Banach space for $n \in \mathbb{N}$ The ultraproduct of the family $\{X_n\}_{n \in \mathbb{N}}$ with respect to \mathcal{U} is defined as follows:

let

$$\widetilde{X} = \{x = (x_n) \in \prod_{n \in \mathbb{N}} X_n : \sup \|x_n\| < +\infty\}.$$

Let

$$J = \{x = (x_n) \in \widetilde{X} : \lim_{\mathcal{U}} \|x_n\| = 0\}.$$

The Banach space ultraproduct of the family $\{X_n\}_{n\in\mathbb{N}}$ with respect to the ultrafilter \mathcal{U} is the Banach space \widetilde{X}/J , with norm defined by

$$\|x+J\|=\lim_{\mathcal{U}}\|x_n\|_{X_n},$$

where $x = (x_n) \in \widetilde{X}$. イロト イポト イヨト イヨト **Connes' Embedding Conjecture**

ultrapowers

If $X_n = X$ for all $n \in \mathbb{N}$, we use the word Banach space ultrapower of X and we denote it $X^{\mathcal{U}}$.

In that case, X embedds in the ultrapower $X^{\mathcal{U}}$ of X, via the map

$$x \mapsto (x, x, x, ...).$$

Examples

- The Banach space ultrapower of $\mathbb R$ with respect to a free ultrafilter over $\mathbb N$ is isomorphic to $\mathbb R.$
- The Banach space ultrapower of a finite-dimensional Banach space X with respect to a free ultrafilter over \mathbb{N} is isomorphic to X.

ultrapowers

Let \mathcal{U} be an ultrafilter over \mathbb{N} . Let \mathcal{M}_n be a type II_1 factor with tracial state τ_n for $n \in \mathbb{N}$.

The ultraproduct of the family $\{\mathcal{M}_n\}_{n\in\mathbb{N}}$ with respect to \mathcal{U} is defined as follows:

Let

$$\widetilde{\mathcal{M}} = \{x = (x_n) \in \prod_{n \in \mathbb{N}} \mathcal{M}_n : \sup \|x_n\| < \infty\}.$$

Let

$$J = \{x = (x_n) \in \widetilde{\mathcal{M}} : \lim_{\mathcal{U}} \tau(x_n^* x_n) = 0\}.$$

The ultraproduct of the family \mathcal{M}_n with respect to the ultrafilter \mathcal{U} is $\widetilde{\mathcal{M}}/J.$

ultrapowers

Then $\widetilde{\mathcal{M}}/J$ is a type II_1 factor with tracial state

$$\tau(\mathbf{x}+\mathbf{J})=\lim_{\mathcal{U}}\tau_n(\mathbf{x}_n),$$

for $x = (x_n) \in \widetilde{\mathcal{M}}$. If $\mathcal{M}_n = \mathcal{M}$ for all $n \in \mathbb{N}$, we use the word ultrapower of \mathcal{M} with respect to \mathcal{U} and we denote it $\mathcal{M}^{\mathcal{U}}$. In that case, \mathcal{M} embedds in the ultrapower $\mathcal{M}^{\mathcal{U}}$, via the map

$$x \mapsto (x, x, x, ...).$$

Definition

A factor is separable if it is faithfully representable in some $\mathcal{B}(H)$ for a separable Hilbert space H.

The Connes' Embedding Conjecture is the following:

conjecture

Every separable type II₁ factor \mathcal{M} is embeddable in $\mathcal{R}^{\mathcal{U}}$, where \mathcal{U} is a free ultrafilter over \mathbb{N} .

Embeddable means that there is an injective, trace preserving *-homomorphism from ${\cal M}$ into ${\cal R}^{{\cal U}}.$

ヘロン 人間 とくほ とくほ とう

Theorem (Ge-Hadwin, 2001)

Let \mathcal{U} and \mathcal{V} be two free ultrafilters over \mathbb{N} . Assuming Continuum Hypothesis (CH), the factors $\mathcal{R}^{\mathcal{U}}$ and $\mathcal{R}^{\mathcal{V}}$ are isomorphic.

Theorem (Farah-Hart-Sherman, 2013)

Let \mathcal{M} be a separable II₁ factor. Then, Continuum Hypothesis is equivalent to the statement that all the ultrapowers of \mathcal{M} with respect to free ultrafilters over \mathbb{N} are isomorphic.

Assuming CH, if the Connes' Embedding Conjecture is true, then there will be a universal type II_1 factor. Every separable II_1 factor will embedd into $\mathcal{R}^{\mathcal{U}}$, where \mathcal{U} is a free ultrafilter over \mathbb{N} .

Ozawa (2004): If there exists a II_1 factor N such that every separable II_1 factor embedds into N, then N is not separable.

Theorem

Let \mathcal{U} be a free ultrafilter over \mathbb{N} . The factor $\mathcal{R}^{\mathcal{U}}$ is not separable.

equivalent statements

Let *H* be a separable Hilbert space. We consider the set of von Neumann algebras vN(*H*) acting on *H* equipped with the Effros-Marechal topology. We denote: $\mathcal{J}_{l_{\mathrm{fin}}}$ the set of type *I* finite factors acting on *H*, \mathcal{J}_{l} the set of type *I* factors acting on *H*, $\mathcal{J}_{\mathrm{AF}}$ the set of AF factors acting on *H*.

Theorem (Haagerup-Winslow, 2000)

The f.a.e.:

- Connes' EC is true
- \mathcal{J}_{AF} is dense in vN(H)
- \mathcal{J}_l is dense in vN(H)
- \mathcal{J}_{fin} is dense in vN(H).

equivalent statements

If A, B are C^* -algebras we consider the following norms on the algebraic tensor product of A and B:

$$\|x\|_{\max} = \sup\{\pi(x) : \pi \ * - representation of A \otimes B\}$$

$$\|\mathbf{x}\|_{\min} = \sup\{\pi_1 \otimes \pi_2(\mathbf{x}) : \pi_1 \ * -\text{repr. of } A, \pi_2 \ * -\text{repr. of } B\}.$$

Let \mathbb{F}_∞ be the free group with a countable number of generators.

Theorem (Kirchberg, 1993) The f.a.e.: • Connes' EC is true • $C^*(\mathbb{F}_{\infty}) \otimes_{\min} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\max} C^*(\mathbb{F}_{\infty}).$

イロト 人間 とくほ とくほ とう

equivalent statements

CEC is equivalent to Tsirelson's Problem in Quantum Information Theory.

M. Anoussis Connes' Embedding Conjecture