INTRODUCTION TO VON NEUMANN ALGEBRAS

G. K. ELEFTHERAKIS

1. Operators and Spectrum

Let H be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\xi\|_2 = \sqrt{\langle \xi, \xi \rangle}$. A linear map $T: H \to H$ is called bounded operator if

 $||T|| = \sup\{||T(\xi)||_2 : ||\xi||_2 \le 1\} < +\infty.$

We denote

$$B(H) = \{T : H \to H, T \text{ is bounded operator}\}.$$

The space B(H) is a Banach algebra under the composition of operators. If $T \in B(H)$ there exists unique $S \in B(H)$ such that

 $< T(\xi_1), \xi_2 > = <\xi_1, S(\xi_2) >, \quad \forall \xi_1, \xi_2 \in H.$

We denote in this case $S = T^*$ and we call T^* adjoint of T. Exercise: If $T \in B(H)$, then $||T||^2 = ||T^*T||$.

Definition 1.1. Let $T \in B(H)$.

(i) If $T = T^*$ we call T selfadjoint operator.

(ii) If $TT^* = T^*T$ we call T normal operator.

(iii) If $T^*T = Id_H$ we call T isometry. (Prove that $T^*T = Id_H \Leftrightarrow ||T(\xi)||_2 = ||\xi||_2$, for all $\xi \in H$).

(iv) If $TT^* = T^*T = Id_H$ we call T unitary. (Thus the unitaries are the onto isometries).

Examples 1.1. (i) Let $H = l^2(\mathbb{N}) = \{\xi = (\xi_n)_n : \sum_{n=1}^{\infty} |\xi_n|^2\} < +\infty$ and $(a_n)_n$ be a bounded sequence. Then the operator $T : H \to H$, $T(\xi) = (a_1\xi_1, a_2\xi_2, ...)$ is a bounded operator and $||T|| = \sup\{|a_n| : n \in \mathbb{N}\}.$

(ii) Let

$$S_1: H \to H, S_1((\xi_1, \xi_2, ...)) = (0, \xi_1, \xi_2, ...), \quad S_2: H \to H, S_1((\xi_1, \xi_2, ...)) = (\xi_2, \xi_3, ...)$$

Prove that $S_1^* = S_2, S_1$ is an isometry, S_1 is not normal.

(iii) Let

$$H = l^{2}(\mathbb{Z}) = \{\xi = (\dots, \xi_{-2}, \xi_{-1}, \xi_{0}, \xi_{1}, \xi_{2}, \dots) : \sum_{n \in \mathbb{Z}}^{\infty} |\xi_{n}|^{2} < +\infty\}.$$

The operator $S: H \to H, S((\xi_k)_k) = (\xi_{k+1})_k$ is unitary.

(iii) Let (X, μ) be a measure space, $H = L^2(X, \mu)$ and $f \in L^{\infty}(X, \mu)$. Then the operator

$$T: H \to H, \quad T(g) = fg$$

is normal and $||T|| = ||f||_{\infty}$.

Let H be a Hilbert space and $T \in B(H)$. We call T positive if $\langle T(\xi), \xi \rangle \geq 0$ for all $\xi \in H$. We write $T \geq 0$.

Theorem 1.2. Let $T \in B(H), T \ge 0$. Then there exists a unique positive operator $S \in B(H)$ such that $S^2 = T$. We write $S = T^{\frac{1}{2}}$.

We shall sketch the proof later.

Definition 1.2. If $T \in B(H)$ then we can easily see that $T^*T \ge 0$. Thus there exists $S \in B(H)$ such that $S = (T^*T)^{\frac{1}{2}}$. We denote S = |T|.

Definition 1.3. Let H be a Hilbert space and $K \subseteq H$ be a closed subspace. If $T \in B(H)$ such that the restriction $T|_K$ is an isometry and $T|_{K^{\perp}} = 0$ we call T partial isometry. We also call K initial space of T and T(K) final space of T.

Theorem 1.3. (Polar decomposition) Let $T \in B(H)$. There exists a partial isometry V with initial space $\overline{|T|(H)}$ and final space $\overline{T(H)}$ such that T = V|T|.

Proof. If $\xi \in H$ then

 $\|T(\xi)\|_2^2 = < T(\xi), T(\xi) > = < T^*T(\xi), \xi > = < |T|^2(\xi), \xi > = < |T|(\xi), |T|(\xi) > = \||T(\xi)|\|^2.$ Then the map

 $V_0: |T|(H) \to T(H), \quad |T|(\xi) \to T(\xi)$

is a linear isometry. Therefore V_0 extends to an isometry $V_1 : \overline{|T|(H)} \to \overline{T(H)}$. We define $V : H \to H$ such that $V(\xi) = V_1(\xi)$ if $\xi \in \overline{|T|(H)}$ and $V(\xi) = 0$ if $\xi \in |T|(H)^{\perp}$. Then V is partial isometry and T = V|T|.

Definition 1.4. Let H be a Hilbert space and $P \in B(H)$. We call P a projection if $P^2 = P = P^*$.

For every closed subspace $M \subseteq H$ there exists a unique projection $P \in B(H)$ such that P(H) = M and vice versa.

Definition 1.5. Let P, Q be projections. We say that P and Q are mutually orthogonal if $P(H) \perp Q(H)$. We write $P \perp Q$.

Exercise: Prove that $P \perp Q$ iff PQ = 0.

Definition 1.6. Let $\{P_i : i \in I\} \subseteq B(H)$ be projections. We denote by $\wedge_{i \in I} P_i$ the projection onto $\cap_{i \in I} P_i(H)$ and by $\vee_{i \in I} P_i$ the projection onto $\overline{span\{\cup_{i \in I} P_i(H)\}}$.

Definition 1.7. Let $T \in B(H)$. We call spectrum of T the subset of \mathbb{C} given by

 $\sigma(T) = \{\lambda \in \mathbb{C} : \text{ there does not exist } S \in B(H) \text{ such that } (\lambda Id_H - T)S = S(\lambda Id_H - T) = Id_H\}.$

Theorem 1.4. (i) The spectrum $\sigma(T)$ is a nonempty compact subset of \mathbb{C} . (ii) Let $T \in B(H)$. Then $T = T^* \Leftrightarrow \sigma(T) \subseteq \mathbb{R}$ (iii) Let $T = T^* \in B(H)$. Then $T \ge 0 \Leftrightarrow \sigma(T) \subseteq [0, +\infty)$.

Theorem 1.5. Let $T = T^* \in B(H)$. Then $||T|| = \sup\{|\lambda| : \lambda \in \sigma(T)\}$.

Definition 1.8. Let $T \in B(H)$ and $p(x) = \alpha_k x^k + \ldots + a_1 x + a_0 \in \mathbb{C}[x]$ be a polynomial. We denote by p(T) the operator $\alpha_k T^k + \ldots + a_1 T + a_0 I d_H$.

Theorem 1.6. Let $T \in B(H)$ and $p \in \mathbb{C}[x]$. Then

$$\sigma(p(T)) = \{ p(\lambda) : \lambda \in \sigma(T) \},\$$

in other words $\sigma(p(T)) = p(\sigma(T))$.

Proof. Let $\lambda \in \mathbb{C}$ and consider the polynomial $q(x) = p(x) - \lambda$. By the Fundamental Theorem of Algebra

$$q(x) = a(x - a_1)...(x - a_n)$$

Thus

$$q(T) = p(T) - \lambda I d_H = a(T - a_1 I d_H) ... (T - a_n I d_H).$$

Therefore

 $\lambda \in \sigma(p(T)) \Rightarrow p(T) - \lambda Id_H$ is not invertible $\Rightarrow \exists k \text{ such that } T - a_k Id_H$ is not invertible \Rightarrow $\exists k \text{ such that } a_i \in \sigma(T) \Rightarrow \lambda - n(a_i) \in n(\sigma(T))$

$$\exists k \text{ such that } a_k \in \sigma(I) \Rightarrow \lambda = p(a_k) \in p(\sigma(I)),$$

thus
$$\sigma(p(T)) \subseteq p(\sigma(T))$$
. If $\mu \in \sigma(T)$ then $T - \mu I d_H$ is not invertible. Also since
 $p(\lambda) - p(\mu) = (\lambda - \mu)\phi(\lambda) \Rightarrow p(T) - p(\mu)I d_H = (T - \mu I d_h)\phi(T)$

$$p(\lambda) - p(\mu) = (\lambda - \mu)\phi(\lambda) \Rightarrow p(T) - p(\mu)Id_H = (T - \mu Id_h)\phi(T)$$

the operator $p(T) - p(\mu)Id_H$ is not invertible. Therefore $p(\mu) \in \sigma(p(T))$. Thus, $p(\sigma(T)) \subseteq \sigma(p(T)).$

2. Continuous Functional Calculus, Spectral Theorem for Selfadjoint Operators

Definition 2.1. Let \mathcal{A} be a subspace of B(H). We call \mathcal{A} C^* -algebra if (i)

$$T, S \in \mathcal{A} \Rightarrow TS \in \mathcal{A},$$

(ii)

$$T \in \mathcal{A} \Rightarrow T^* \in \mathcal{A},$$

(iii)

$$A = \overline{\mathcal{A}}$$

Definition 2.2. Let $T = T^* \in B(H)$ we denote by $C^*(T)$ the unital C^* -algebra generated by T. Observe that

$$C^*(T) = \{p(T) : p \text{ is polynomial}\}.$$

If X is a compact metric space, we denote by C(X) the algebra of continuous functions from X to C. This is a Banach algebra under the norm $||f||_X =$ $\sup\{|f(x)|: x \in X\}.$

Theorem 2.1. Let $T \in B(H)$ be a selfadjoint operator. Then there exists an isometric homomorphism $\Phi: C(\sigma(T)) \to C^*(T)$ such that

(i) $\Phi(p) = p(T)$ for all polynomials p, (ii) $\Phi(\overline{f}) = \Phi(f)^*$ for all $f \in C(\sigma(T))$.

Proof. If p is a real polynomial then $p(T)^* = p(T)$, so

$$\|p(T)\| = \sup\{|\mu|: \ \mu \in \sigma(p(T))\}.$$

But $\sigma(p(T)) = p(\sigma(T))$. Thus,

 $||p(T)|| = \sup\{|p(t)|: t \in p(\sigma(T))\} = ||p||_{\sigma(T)}.$

Let p be an arbitrary real polynomial. We define $q = \overline{p}p$. This is a real polynomial and

$$q(T) = \overline{p}(T)p(T) = p(T)^*p(T).$$

Thus,

$$||p(T)||^{2} = ||p(T)^{*}p(T)|| = ||q(T)|| = ||q||_{\sigma(T)} = ||\overline{p}p||_{\sigma(T)} = ||p|^{2}||_{\sigma(T)} = ||p^{2}||_{\sigma(T)}.$$

Therefore $||p(T)|| = ||p||_{\sigma(T)}$. We conclude that the map

 $\Phi: \mathcal{P}_{\mathbb{R}}(\sigma(T)) \to C^*(T), \quad \Phi(p) = p(T),$

where $\mathcal{P}_{\mathbb{R}}(\sigma(T))$ is the algebra of real polynomials on $\sigma(T)$, is isometric homomorphism. Since by Stone Weierstrass Theorem $\overline{\mathcal{P}(\sigma(T))} = C(\sigma(T))$ and since

$$C^*(T) = \overline{\{p(T): p \ real \ polynomial\}}$$

we conclude that Φ extends to an isometric homomorphism from $C(\sigma(T))$ onto $C^*(T)$.

Notation: For every $f \in C(\sigma(T))$ we denote $\Phi(f) = f(T)$.

Corollary 2.2. Let $T \in B(H)$ be a positive operator. Then there exists $S \in B(H)$ such that $S \ge 0$ and $S^2 = T$.

Proof. We define the continuous functions $f_0(t) = t$, $f(t) = \sqrt{t}$, $t \in \sigma(T)$ and we denote $S = \Phi(f) = f(T)$. Since $\sigma(S) = f(\sigma(T))$ and $f(\sigma(T)) \subseteq [0, +\infty)$ we conclude that $S \ge 0$. Since $f^2 = f_0$ we have $f^2(T) = f_0(T) \Rightarrow S^2 = T$. \Box

Exercise: Prove that S is the unique operator such that $S \ge 0$ and $S^2 = T$.

Remark 2.3. We know from Linear Algebra that if $T : \mathbb{C}^n \to \mathbb{C}^n$ is a selfadjoint operator, then there exists a unitary $U : \mathbb{C}^n \to \mathbb{C}^n$ such that $U^*TU = diag(\lambda_1, ..., \lambda_n)$ where $\lambda_i \in \mathbb{R}$. The set of eigenvalues of T is $\{\lambda_1, ..., \lambda_n\}$. But if $T = T^* \in B(H)$, where H is an infinite dimensional Hilbert space T does not have eigenvalues necessarily. For example the operator $T : L^2([0,1]) \to L^2([0,1])$ given by T(f)(t) = tf(t) has not eigenvalues. Nevertheless the following theorem known as spectral theorem holds:

Theorem 2.4. Let T be a bounded selfadjoint operator acting on a Hilbert space H. Then there exists a measure space (X, μ) a unitary $U : L^2(X, \mu) \to H$ and a function $f : X \to \mathbb{R}$ in $L^{\infty}(X, \mu)$ such that $U^*TU = M_f$ where $M_f(g) = fg$ for all $g \in L^2(X, \mu)$. When H is separable, X can be taken to be a locally compact Hausdorff space and μ be a regular Borel prabability measure.

We sketch the proof:

Definition 2.3. A vector ξ is called cyclic vector for T if $H = \overline{\{p(T)\xi : p \in \mathbb{C}[x]\}}$.

Assume that ξ is a cyclic unit vector for T. Let $X = \sigma(T)$. By the continuous functional calculus there exists an isometric *-isomorphism

$$\Phi: C(X) \to C^*(T): \Phi(f) = f(T).$$

Define the linear functional

$$\rho: C(X) \to \mathbb{C}, \ \rho(f) = < f(T)\xi, \xi > .$$

Then ρ is a positive linear functional on C(X) and $\rho(1_X) = 1$. By Riesz's representation theorem there exists a unique regular probability measure μ such that

$$\rho(f) = \int_X f d\mu, \quad \forall \ f \ \in \ C(X).$$

If $g \in C(X)$ then

$$||g||_2^2 = \int_X |g|^2 d\mu = \rho(|g|^2) = \langle g(T)^* g(T)\xi, \xi \rangle = ||g(T)\xi||_2^2.$$

Thus the map

$$U_0: C(X) \to H, \quad U_0(g) = g(T)\xi$$

is linear isometry in $\|\cdot\|_2$ norm. Since C(X) is dense in $\|\cdot\|_2$ norm in $L^2(X, \mu), U_0$ extends to an isometry $U: L^2(X, \mu) \to H$. Since ξ is cyclic for T, U is onto, thus it is a unitary. Let $f(t) = t, t \in X$. For all $g \in C(X)$ we have

$$UM_f(g) = U_0(fg) = fg(T)\xi = f(T)g(T)\xi = Tg(T)(\xi) = TU_0(g) = TU(g).$$

Thus $UM_f = TU$. The proof is complete.

We drop the assumption of the existence of a cyclic vector. By Zorn's Lemma there exists a family $\{H_i : i \in I\}$ of mutually orthogonal closed subspaces of H such that

(i)

$$T(H_i) \subseteq H_i, \ \forall i$$

(ii) For every *i* there exists a cyclic vector for the operator $T|_{H_i}: H_i \to H_i$

(iii) H is equal with $\sum \bigoplus_i H_i$.

From the first part of the proof there exist unitaries $U_i: L^2(X_i, \mu_i) \to H_i$ such that $U_i^*T|_{H_i}U_i = M_{f_i}$ where $f_i: X \to \mathbb{R}$ are functions in $L^{\infty}(X_i, \mu_i)$. Define (X, μ) to be the disjoint union $\cup_i(X_i, \mu_i)$. Then $L^2(X, \mu)$ is the sum $\sum_i \bigoplus_i L^2(X_i, \mu_i)$. We define the operator $U = \sum_i \bigoplus_i U_i: L^2(X, \mu)$ and the map $f: X \to \mathbb{R}, f|_{X_i} = f_i$. Clearly $UM_f = TU$. The proof is complete.

3. Topologies on B(H). Double Commutant Theorem. Kaplansky Density Theorem

Definition 3.1. The weak operator topology (WOT) is the topology on B(H), whose the basis for every $T \in B(H)$ is the collection of sets

$$V(T, x_1, ..., x_n, y_1, ..., y_n) = \{ S \in B(H) : | < (T - S)(x_i), y_i > | < 1, 1 \le i \le n \}.$$

Observe that a net $(S_{\lambda})_{\lambda} \subseteq B(H)$ converges to $S \in B(H)$ in the WOT iff

$$< S_{\lambda}(x), y > \rightarrow < S(x), y >$$

for all $x, y \in H$.

Definition 3.2. The strong operator topology (SOT) is the topology on B(H), whose the basis for every $T \in B(H)$ is the collection of sets

$$U(T, x_1, ..., x_n) = \{ S \in B(H) : ||(T - S)(x_i)|| < 1, 1 \le i \le n \}.$$

Observe that a net $(S_{\lambda})_{\lambda} \subseteq B(H)$ converges to $S \in B(H)$ in the SOT iff

$$||S_{\lambda}(x) - y||_2 \to 0$$

for all $x \in H$.

Remarks 3.1. (i) The SOT is strictly stronger than the WOT.

- (ii) The unit ball Ball(B(H)) is WOT compact but not SOT compact.
- (iii) If *H* is separable, Ball(B(H)) is metrizable in the WOT and in the SOT. (iii) If *C* is a convex subset of B(H) then $\overline{C}^{WOT} = \overline{C}^{SOT}$.

Definition 3.3. Let \mathcal{A} be a selfadjoint algebra which is WOT closed and which contains the identity operator Id_H . We call \mathcal{A} von Neumann Algebra.

Definition 3.4. For a set $X \subseteq B(H)$, the commutant of X is the set

$$X' = \{T \in B(H) : TS = ST \forall S \in B(H)\}$$

Also the double commutant of X is the set X'' = (X')'.

Remarks 3.2. (i) X' is WOT closed algebra.

(ii) $X \subseteq X''$. (iii) X' = X'''.

Theorem 3.3. Let $\mathcal{A} \subseteq B(H)$ be a *-subalgebra such that $\overline{span}(\mathcal{A}(H)) = H$. Then

$$\mathcal{A}'' = \overline{\mathcal{A}}^{WOT} = \overline{\mathcal{A}}^{SOT}$$

We can easily see that

$$\overline{\mathcal{A}}^{SOT} \subseteq \overline{\mathcal{A}}^{WOT} \subseteq \mathcal{A}''.$$

So it suffices to prove that if $T \in \mathcal{A}''$ then $T \in \overline{\mathcal{A}}^{SOT}$. Equivalently we have to prove that for all $\xi_1, ..., \xi_n \in H$ the set $U(T, \xi_1, ..., \xi_n) \cap \mathcal{A}$ is nonempty, or equivalently there exists $A \in \mathcal{A}$ such that $||T(\xi_i) - A(\xi_i)|| < 1$ for all i = 1, ..., n.

Step 1: Proof for n=1.

Claim: If $P \in B(H)$ is a projection such that $\mathcal{A}P(H) \subseteq P(H)$ then $P \in \mathcal{A}'$. Indeed if $T \in \mathcal{A}$ then for all $\xi \in H$

$$PTP(\xi) = TP(\xi) \Rightarrow P^{\perp}TP(\xi) = 0$$

Thus, $P^{\perp}TP = 0$. Since $\mathcal{A}^* \subseteq \mathcal{A}$ by the same argument $P^{\perp}T^*P = 0 \Rightarrow PTP^{\perp} = 0$. Thus TP = PTP = PT. Therefore $P \in \mathcal{A}'$.

Let $P = \overline{\mathcal{A}\xi_1}$. From the claim we conclude that $P \in \mathcal{A}'$. If $A \in \mathcal{A}$ then

$$AP^{\perp}\xi_1 = P^{\perp}A\xi_1 = 0$$

Thus

$$\langle AP^{\perp}\xi_{1}, \omega \rangle = 0, \ \forall \ \omega \in H, \ \forall A \in \mathcal{A} \Rightarrow \langle P^{\perp}\xi_{1}, A\omega \rangle = 0, \ \forall \ \omega \in H, \ \forall A \in \mathcal{A}$$

Since $H = \overline{span}\{A(\omega) : A \in \mathcal{A}, \ \omega \in H\}$ we have

$$P^{\perp}\xi_1 = 0 \Rightarrow \xi_1 = P\xi_1 \Rightarrow \xi_1 \in P(H).$$

Also, since $T \in \mathcal{A}'' \Rightarrow TP = PT \Rightarrow TP(H) \subseteq P(H)$. Therefore since $\xi_1 \in P(H)$ we have $T(\xi_1) \in P(H) = \overline{\mathcal{A}\xi_1}$. Therefore there exists $A \in \mathcal{A} : ||T(\xi_1) - A(\xi_1)|| < 1$.

Step 2: Proof for n arbitrary.

Define the Hilbert space $H^n = H \oplus H \oplus ... \oplus H$. Then

$$B(H^n) = M_n(B(H)) = \{ (T_{ij})_{1 \le i,j \le n} : T_{ij} \in B(H) \}.$$

If $S \in B(H)$ we denote $S^n = diag(S, ..., S)$. We denote $\mathcal{A}^n = \{S^n : S \in \mathcal{A}\}$. We can easily see that

$$(\mathcal{A}^n)' = M_n(\mathcal{A}') \Rightarrow (\mathcal{A}^n)'' = M_n(\mathcal{A}')' = (\mathcal{A}'')^n$$

6

Now let $\xi = (\xi_1, ..., \xi_n)^t \in H^n$. From step 1, there exists $A^n \in \mathcal{A}^n$ such that $\|T^n(\xi) - A^n(\xi)\| < 1 \Rightarrow \|T(\xi_i) - A(\xi_i)\| < 1, \ i = 1, ..., n.$

Definition 3.5. Let

 $C(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{C}, \ f \ is \ continuous \},\$

$$C_0(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{C}, f \text{ is continuous which vanishes at } \infty \}.$$

If $T \in B(H)$ is a selfadjoint operator and $f \in C(\mathbb{R})$ then $\sigma(T) \subseteq \mathbb{R}$ and $f|_{\sigma(T)} \in C(\sigma(T))$ which implies that $f|_{\sigma(T)}(T) \in C^*(T)$. We denote $f(T) = f|_{\sigma(T)}(T)$ and we have

$$||f(T)|| = ||f|_{\sigma(T)}||_{\infty} \le \sup\{|f(t)|: t \in \mathbb{R}\}.$$

Lemma 3.4. Let $(T_{\lambda})_{\lambda} \subseteq B(H)$ be a net of selfadjoint operators such that $SOT - \lim_{\lambda} T_{\lambda} = T$ and $f \in C_0(\mathbb{R})$. Then

$$f(T) = SOT - \lim_{\lambda} f(T_{\lambda}).$$

Theorem 3.5. Kaplansky Density Theorem Let $\mathcal{A} \subseteq B(H)$ be a C^{*}-algebra such that $\overline{span}(\mathcal{A}(H)) = H$. Then

(i)

$$\overline{Ball(\mathcal{A})_{sa}}^{SOT} = Ball(\mathcal{A}'')_{sa}$$

(ii)

$$\overline{Ball(A)}^{SOT} = Ball(\mathcal{A}'')$$

Proof. (i) Let $T = T^* \in \mathcal{A}''$, with norm $||T|| \leq 1$. By Double Commutant Theorem there exists a net $(T_{\lambda})_{\lambda} \subseteq \mathcal{A}$ such that $T = WOT - \lim_{\lambda} T_{\lambda}$. Thus,

$$T = WOT - \lim_{\lambda} \frac{T_{\lambda} + T_{\lambda}^*}{2}.$$

Therefore we may consider that there exists a net $(S_{\lambda})_{\lambda} \subseteq \mathcal{A}$ such that $S_{\lambda}^* = S_{\lambda}$ and $T = WOT - \lim_{\lambda} S_{\lambda}$. We proved that T is an element of the WOT closure of the set of the selfadjoint operators, \mathcal{A}_{sa} . But \mathcal{A}_{sa} is a convex set, thus we may consider that there exists a net $(S_{\lambda})_{\lambda} \subseteq \mathcal{A}_{sa}$ such that $T = SOT - \lim_{\lambda} S_{\lambda}$. Choose a real function $f \in C_0(\mathbb{R})$ such that f(t) = t for all $-1 \leq t \leq 1$ and $||f||_{\infty} \leq 1$. Since $\sigma(T) \subseteq [-1, 1]$ we have f(t) = t for all $t \in \sigma(T)$ thus f(T) = T. By the above Lemma

$$T = f(T) = SOT - \lim_{\lambda \to 0} f(S_{\lambda})$$

Since $||f|_{\sigma(S_{\lambda})}||_{\infty} \leq 1$ we have $||f(S_{\lambda})|| \leq 1$ for all λ . Since $f = \overline{f}$ we have

$$C(S_{\lambda}) \in C^*(S_{\lambda})_{sa} \subseteq \mathcal{A}_{sa}$$

The proof of (i) is complete.

(ii) Let $T = T^* \in \mathcal{A}''$ with norm $||T|| \leq 1$. Define the selfadjoint operator $S = \begin{pmatrix} 0 & T \\ T^* & 0 \end{pmatrix}$. This operator is an element of the ball of the set of 2×2 matrices with entries in \mathcal{A}'' : $M_2(\mathcal{A}'')$. Observe that

$$M_2(\mathcal{A}'') = M_2(\mathcal{A}^{WOT}) = \overline{M_2(\mathcal{A})}^{WOT} = M_2(\mathcal{A})''.$$

Thus $S \in Ball(M_2(\mathcal{A})'')_{sa}$. By the first part of the proof there exists a net

$$S_{\lambda} = \left(\begin{array}{cc} A_{\lambda} & B_{\lambda} \\ C_{\lambda} & D_{\lambda} \end{array}\right)$$

in the algebra $M_2(\mathcal{A})$ such that $||S_{\lambda}|| \leq 1$ for all λ and $S = SOT - \lim_{\lambda} S_{\lambda}$. We conclude that $T = SOT - \lim_{\lambda} B_{\lambda}$. Since $||B_{\lambda}|| \leq 1$ and $B_{\lambda} \in \mathcal{A}$ for all λ the proof is complete.

It remains to prove the Lemma in page 2.

Definition 3.6. (i)Let $f \in C(\mathbb{R})$. We call f strongly continuous if for every net $S_{\lambda} = S_{\lambda}^* \subseteq B(H)$ such that $S = SOT - \lim_{\lambda} S_{\lambda} \Rightarrow f(S) = SOT - \lim_{\lambda} f(S_{\lambda})$. (ii) $V = \{f \in C(\mathbb{R}) : f \text{ is strongly continuous}\}$ (iii) $V^b = \{f \in V; ||f||_{\infty} < \infty\}$.

It suffices to prove that $C_0(\mathbb{R}) \subseteq V$. Let

$$h_s(t) = \frac{1}{1+s^2t^2}, \ s \in \mathbb{R}.$$

We can prove that $h_s \in V^b$. Since the function h(t) = t belongs to V and $V^b V \subseteq V$ The functions

$$k_s(t) = h(t)h_s(t) = \frac{st}{1+s^2t^2}, \ s \in \mathbb{R}$$

belong to V. Observe that

$$\{k_s : s \in \mathbb{R}\} \subseteq V \cap C_0(\mathbb{R}).$$

Since the set $\{k_s : s \in \mathbb{R}\}$ separates the points of \mathbb{R} the set $V \cap C_0(\mathbb{R})$ separates the points of \mathbb{R} . But we can easily see that $V \cap C_0(\mathbb{R})$ is an algebra. Thus by Stone-Weierstrass Theorem

$$\overline{V \cap C_0(\mathbb{R})}^{\|\cdot\|_{\infty}} = C_0(\mathbb{R})$$

If (f_n) is a sequence of functions in V and $||f_n - f||_{\infty} \to 0$ then $f \in V$. Thus $C_0(\mathbb{R}) \subseteq V$. The proof is complete.