
INTRODUCTION TO VON NEUMANN ALGEBRAS

G. K. ELEFTHERAKIS

1. Operators and Spectrum

Let H be a complex Hilbert space with inner product < ·, · > and norm ‖ξ‖2 =√
< ξ, ξ >. A linear map T : H → H is called bounded operator if

‖T‖ = sup{‖T (ξ)‖2 : ‖ξ‖2 ≤ 1} < +∞.
We denote

B(H) = {T : H → H, T is bounded operator}.
The space B(H) is a Banach algebra under the composition of operators. If T ∈
B(H) there exists unique S ∈ B(H) such that

< T (ξ1), ξ2 >=< ξ1, S(ξ2) >, ∀ ξ1, ξ2 ∈ H.

We denote in this case S = T ∗ and we call T ∗ adjoint of T.
Exercise: If T ∈ B(H), then ‖T‖2 = ‖T ∗T‖.

Definition 1.1. Let T ∈ B(H).
(i) If T = T ∗ we call T selfadjoint operator.
(ii) If TT ∗ = T ∗T we call T normal operator.
(iii) If T ∗T = IdH we call T isometry. (Prove that T ∗T = IdH ⇔ ‖T (ξ)‖2 =

‖ξ‖2, for all ξ ∈ H ).
(iv) If TT ∗ = T ∗T = IdH we call T unitary. (Thus the unitaries are the onto

isometries).

Examples 1.1. (i) Let H = l2(N) = {ξ = (ξn)n :
∑∞
n=1 |ξn|2} < +∞ and (an)n

be a bounded sequence. Then the operator T : H → H, T (ξ) = (a1ξ1, a2ξ2, ...) is
a bounded operator and ‖T‖ = sup{|an| : n ∈ N}.

(ii) Let

S1 : H → H,S1((ξ1, ξ2, ...)) = (0, ξ1, ξ2, ...), S2 : H → H,S1((ξ1, ξ2, ...)) = (ξ2, ξ3, ...)

Prove that S∗1 = S2, S1 is an isometry, S1 is not normal.
(iii) Let

H = l2(Z) = {ξ = (..., ξ−2, ξ−1, ξ0, ξ1, ξ2, ...) :

∞∑
n∈Z
|ξn|2 < +∞}.

The operator S : H → H,S((ξk)k) = (ξk+1)k is unitary.
(iii) Let (X,µ) be a measure space, H = L2(X,µ) and f ∈ L∞(X,µ). Then the

operator
T : H → H, T (g) = fg

is normal and ‖T‖ = ‖f‖∞.

Let H be a Hilbert space and T ∈ B(H). We call T positive if < T (ξ), ξ >≥ 0
for all ξ ∈ H. We write T ≥ 0.
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Theorem 1.2. Let T ∈ B(H), T ≥ 0. Then there exists a unique positive operator

S ∈ B(H) such that S2 = T. We write S = T
1
2 .

We shall sketch the proof later.

Definition 1.2. If T ∈ B(H) then we can easily see that T ∗T ≥ 0. Thus there

exists S ∈ B(H) such that S = (T ∗T )
1
2 . We denote S = |T |.

Definition 1.3. Let H be a Hilbert space and K ⊆ H be a closed subspace. If
T ∈ B(H) such that the restriction T |K is an isometry and T |K⊥ = 0 we call T
partial isometry. We also call K initial space of T and T (K) final space of T.

Theorem 1.3. (Polar decomposition) Let T ∈ B(H). There exists a partial isom-

etry V with initial space |T |(H) and final space T (H) such that T = V |T |.

Proof. If ξ ∈ H then

‖T (ξ)‖22 =< T (ξ), T (ξ) >=< T ∗T (ξ), ξ >=< |T |2(ξ), ξ >=< |T |(ξ), |T |(ξ) >= ‖|T (ξ)|‖2.

Then the map

V0 : |T |(H)→ T (H), |T |(ξ)→ T (ξ)

is a linear isometry. Therefore V0 extends to an isometry V1 : |T |(H) → T (H).

We define V : H → H such that V (ξ) = V1(ξ) if ξ ∈ |T |(H) and V (ξ) = 0 if
ξ ∈ |T |(H)⊥. Then V is partial isometry and T = V |T |. �

Definition 1.4. Let H be a Hilbert space and P ∈ B(H). We call P a projection
if P 2 = P = P ∗.

For every closed subspace M ⊆ H there exists a unique projection P ∈ B(H)
such that P (H) = M and vice versa.

Definition 1.5. Let P,Q be projections. We say that P and Q are mutually or-
thogonal if P (H)⊥Q(H). We write P⊥Q.

Exercise: Prove that P⊥Q iff PQ = 0.

Definition 1.6. Let {Pi : i ∈ I} ⊆ B(H) be projections. We denote by ∧i∈IPi the

projection onto ∩i∈IPi(H) and by ∨i∈IPi the projection onto span{∪i∈IPi(H)}.

Definition 1.7. Let T ∈ B(H). We call spectrum of T the subset of C given by

σ(T ) = {λ ∈ C : there does not exist S ∈ B(H) such that (λIdH−T )S = S(λIdH−T ) = IdH}.

Theorem 1.4. (i) The spectrum σ(T ) is a nonempty compact subset of C.
(ii) Let T ∈ B(H). Then T = T ∗ ⇔ σ(T ) ⊆ R
(iii) Let T = T ∗ ∈ B(H). Then T ≥ 0⇔ σ(T ) ⊆ [0,+∞).

Theorem 1.5. Let T = T ∗ ∈ B(H). Then ‖T‖ = sup{|λ| : λ ∈ σ(T )}.

Definition 1.8. Let T ∈ B(H) and p(x) = αkx
k + ... + a1x + a0 ∈ C[x] be a

polynomial. We denote by p(T ) the operator αkT
k + ...+ a1T + a0IdH .

Theorem 1.6. Let T ∈ B(H) and p ∈ C[x]. Then

σ(p(T )) = {p(λ) : λ ∈ σ(T )},

in other words σ(p(T )) = p(σ(T )).
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Proof. Let λ ∈ C and consider the polynomial q(x) = p(x)−λ. By the Fundamental
Theorem of Algebra

q(x) = a(x− a1)...(x− an).

Thus
q(T ) = p(T )− λIdH = a(T − a1IdH)...(T − anIdH).

Therefore

λ ∈ σ(p(T ))⇒ p(T )−λIdH is not invertible⇒ ∃ k such that T−akIdH is not invertible⇒
∃ k such that ak ∈ σ(T )⇒ λ = p(ak) ∈ p(σ(T )),

thus σ(p(T )) ⊆ p(σ(T )). If µ ∈ σ(T ) then T − µIdH is not invertible. Also since

p(λ)− p(µ) = (λ− µ)φ(λ)⇒ p(T )− p(µ)IdH = (T − µIdh)φ(T )

the operator p(T ) − p(µ)IdH is not invertible. Thertefore p(µ) ∈ σ(p(T )). Thus,
p(σ(T )) ⊆ σ(p(T )). �

2. Continuous Functional Calculus, Spectral Theorem for
Selfadjoint Operators

Definition 2.1. Let A be a subspace of B(H). We call A C∗−algebra if
(i)

T, S ∈ A ⇒ TS ∈ A,
(ii)

T ∈ A ⇒ T ∗ ∈ A,
(iii)

A = A

Definition 2.2. Let T = T ∗ ∈ B(H) we denote by C∗(T ) the unital C∗−algebra
generated by T. Observe that

C∗(T ) = {p(T ) : p is polynomial}.

If X is a compact metric space, we denote by C(X) the algebra of continu-
ous functions from X to C. This is a Banach algebra under the norm ‖f‖X =
sup{|f(x)| : x ∈ X}.

Theorem 2.1. Let T ∈ B(H) be a selfadjoint operator. Then there exists an
isometric homomorphism Φ : C(σ(T ))→ C∗(T ) such that

(i) Φ(p) = p(T ) for all polynomials p,
(ii) Φ(f) = Φ(f)∗ for all f ∈ C(σ(T )).

Proof. If p is a real polynomial then p(T )∗ = p(T ), so

‖p(T )‖ = sup{|µ| : µ ∈ σ(p(T ))}.
But σ(p(T )) = p(σ(T )). Thus,

‖p(T )‖ = sup{|p(t)| : t ∈ p(σ(T ))} = ‖p‖σ(T ).

Let p be an arbitrary real polynomial. We define q = pp. This is a real polynomial
and

q(T ) = p(T )p(T ) = p(T )∗p(T ).
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Thus,
‖p(T )‖2 = ‖p(T )∗p(T )‖ = ‖q(T )‖ = ‖q‖σ(T ) = ‖pp‖σ(T ) =

‖|p|2‖σ(T ) = ‖p2‖σ(T ).

Therefore ‖p(T )‖ = ‖p‖σ(T ). We conclude that the map

Φ : PR(σ(T ))→ C∗(T ), Φ(p) = p(T ),

where PR(σ(T )) is the algebra of real polynomials on σ(T ), is isometric homomor-

phism. Since by Stone Weierstrass Theorem P(σ(T )) = C(σ(T )) and since

C∗(T ) = {p(T ) : p real polynomial}
we conclude that Φ extends to an isometric homomorphism from C(σ(T )) onto
C∗(T ). �

Notation: For every f ∈ C(σ(T )) we denote Φ(f) = f(T ).

Corollary 2.2. Let T ∈ B(H) be a positive operator. Then there exists S ∈ B(H)
such that S ≥ 0 and S2 = T.

Proof. We define the continuous functions f0(t) = t, f(t) =
√
t, t ∈ σ(T ) and

we denote S = Φ(f) = f(T ). Since σ(S) = f(σ(T )) and f(σ(T )) ⊆ [0,+∞) we
conclude that S ≥ 0. Since f2 = f0 we have f2(T ) = f0(T )⇒ S2 = T. �

Exercise: Prove that S is the unique operator such that S ≥ 0 and S2 = T.

Remark 2.3. We know from Linear Algebra that if T : Cn → Cn is a selfadjoint op-
erator, then there exists a unitary U : Cn → Cn such that U∗TU = diag(λ1, ..., λn)
where λi ∈ R. The set of eigenvalues of T is {λ1, ..., λn}. But if T = T ∗ ∈ B(H),
where H is an infinite dimensional Hilbert space T does not have eigenvalues neces-
sarily. For example the operator T : L2([0, 1])→ L2([0, 1]) given by T (f)(t) = tf(t)
has not eigenvalues. Nevertheless the following theorem known as spectral theorem
holds:

Theorem 2.4. Let T be a bounded selfadjoint operator acting on a Hilbert space
H. Then there exists a measure space (X,µ) a unitary U : L2(X,µ) → H and a
function f : X → R in L∞(X,µ) such that U∗TU = Mf where Mf (g) = fg for
all g ∈ L2(X,µ). When H is separable, X can be taken to be a locally compact
Hausdorff space and µ be a regular Borel prabability measure.

We sketch the proof:

Definition 2.3. A vector ξ is called cyclic vector for T if H = {p(T )ξ : p ∈ C[x]}.

Assume that ξ is a cyclic unit vector for T. Let X = σ(T ). By the continuous
functional calculus there exists an isometric ∗-isomorphism

Φ : C(X)→ C∗(T ) : Φ(f) = f(T ).

Define the linear functional

ρ : C(X)→ C, ρ(f) =< f(T )ξ, ξ > .

Then ρ is a positive linear functional on C(X) and ρ(1X) = 1. By Riesz’s represen-
tation theorem there exists a unique regular probability measure µ such that

ρ(f) =

∫
X

fdµ, ∀ f ∈ C(X).
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If g ∈ C(X) then

‖g‖22 =

∫
X

|g|2dµ = ρ(|g|2) =< g(T )∗g(T )ξ, ξ >= ‖g(T )ξ‖22.

Thus the map

U0 : C(X)→ H, U0(g) = g(T )ξ

is linear isometry in ‖ · ‖2 norm. Since C(X) is dense in ‖ · ‖2 norm in L2(X,µ), U0

extends to an isometry U : L2(X,µ)→ H. Since ξ is cyclic for T,U is onto, thus it
is a unitary. Let f(t) = t, t ∈ X. For all g ∈ C(X) we have

UMf (g) = U0(fg) = fg(T )ξ = f(T )g(T )ξ = Tg(T )(ξ) = TU0(g) = TU(g).

Thus UMf = TU. The proof is complete.

We drop the assumption of the existence of a cyclic vector. By Zorn’s Lemma
there exists a family {Hi : i ∈ I} of mutually orthogonal closed subspaces of H
such that

(i)

T (Hi) ⊆ Hi, ∀ i
(ii) For every i there exists a cyclic vector for the operator T |Hi : Hi → Hi

(iii) H is equal with
∑
⊕iHi.

From the first part of the proof there exist unitaries Ui : L2(Xi, µi) → Hi such
that U∗i T |HiUi = Mfi where fi : X → R are functions in L∞(Xi, µi). Define (X,µ)
to be the disjoint union ∪i(Xi, µi). Then L2(X,µ) is the sum

∑
i⊕iL2(Xi, µi). We

define the operator U =
∑
i⊕iUi : L2(X,µ) and the map f : X → R, f |Xi = fi.

Clearly UMf = TU. The proof is complete.

3. Topologies on B(H). Double Commutant Theorem. Kaplansky
Density Theorem

Definition 3.1. The weak operator topology (WOT) is the topology on B(H), whose
the basis for every T ∈ B(H) is the collection of sets

V (T, x1, ..., xn, y1, ..., yn) = {S ∈ B(H) : | < (T − S)(xi), yi > | < 1, 1 ≤ i ≤ n}.

Observe that a net (Sλ)λ ⊆ B(H) converges to S ∈ B(H) in the WOT iff

< Sλ(x), y >→< S(x), y >

for all x, y ∈ H.

Definition 3.2. The strong operator topology (SOT) is the topology on B(H), whose
the basis for every T ∈ B(H) is the collection of sets

U(T, x1, ..., xn) = {S ∈ B(H) : ‖(T − S)(xi)‖ < 1, 1 ≤ i ≤ n}.

Observe that a net (Sλ)λ ⊆ B(H) converges to S ∈ B(H) in the SOT iff

‖Sλ(x)− y‖2 → 0

for all x ∈ H.
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Remarks 3.1. (i) The SOT is strictly stronger than the WOT.
(ii) The unit ball Ball(B(H)) is WOT compact but not SOT compact.
(iii) If H is separable, Ball(B(H)) is metrizable in the WOT and in the SOT.

(iii) If C is a convex subset of B(H) then C
WOT

= C
SOT

.

Definition 3.3. Let A be a selfadjoint algebra which is WOT closed and which
contains the identity operator IdH . We call A von Neumann Algebra.

Definition 3.4. For a set X ⊆ B(H), the commutant of X is the set

X ′ = {T ∈ B(H) : TS = ST ∀ S ∈ B(H)}.
Also the double commutant of X is the set X ′′ = (X ′)′.

Remarks 3.2. (i) X ′ is WOT closed algebra.
(ii) X ⊆ X ′′.
(iii) X ′ = X ′′′.

Theorem 3.3. Let A ⊆ B(H) be a ∗-subalgebra such that span(A(H)) = H. Then

A′′ = AWOT
= ASOT .

We can easily see that

ASOT ⊆ AWOT ⊆ A′′.
So it suffices to prove that if T ∈ A′′ then T ∈ ASOT . Equivalently we have to prove
that for all ξ1, ..., ξn ∈ H the set U(T, ξ1, ..., ξn) ∩ A is nonempty, or equivalently
there exists A ∈ A such that ‖T (ξi)−A(ξi)‖ < 1 for all i = 1, ..., n.

Step 1: Proof for n=1.
Claim: If P ∈ B(H) is a projection such that AP (H) ⊆ P (H) then P ∈ A′.
Indeed if T ∈ A then for all ξ ∈ H

PTP (ξ) = TP (ξ)⇒ P⊥TP (ξ) = 0

Thus, P⊥TP = 0. Since A∗ ⊆ A by the same argument P⊥T ∗P = 0⇒ PTP⊥ = 0.
Thus TP = PTP = PT. Therefore P ∈ A′.

Let P = Aξ1. From the claim we conclude that P ∈ A′. If A ∈ A then

AP⊥ξ1 = P⊥Aξ1 = 0.

Thus

< AP⊥ξ1, ω >= 0, ∀ ω ∈ H, ∀ A ∈ A ⇒< P⊥ξ1, Aω >= 0, ∀ ω ∈ H, ∀ A ∈ A
Since H = span{A(ω) : A ∈ A, ω ∈ H} we have

P⊥ξ1 = 0⇒ ξ1 = Pξ1 ⇒ ξ1 ∈ P (H).

Also, since T ∈ A′′ ⇒ TP = PT ⇒ TP (H) ⊆ P (H). Therefore since ξ1 ∈ P (H)
we have T (ξ1) ∈ P (H) = Aξ1. Therefore there exists A ∈ A : ‖T (ξ1)−A(ξ1)‖ < 1.

Step 2: Proof for n arbitrary.
Define the Hilbert space Hn = H ⊕H ⊕ ...⊕H. Then

B(Hn) = Mn(B(H)) = {(Tij)1≤i,j≤n : Tij ∈ B(H)}.
If S ∈ B(H) we denote Sn = diag(S, ..., S). We denote An = {Sn : S ∈ A}. We
can easily see that

(An)′ = Mn(A′)⇒ (An)′′ = Mn(A′)′ = (A′′)n.
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Now let ξ = (ξ1, ..., ξn)t ∈ Hn. From step 1, there exists An ∈ An such that

‖Tn(ξ)−An(ξ)‖ < 1⇒ ‖T (ξi)−A(ξi)‖ < 1, i = 1, ..., n.

Definition 3.5. Let

C(R) = {f : R→ C, f is continuous},

C0(R) = {f : R→ C, f is continuous which vanishes at∞}.
If T ∈ B(H) is a selfadjoint operator and f ∈ C(R) then σ(T ) ⊆ R and f |σ(T ) ∈
C(σ(T )) which implies that f |σ(T )(T ) ∈ C∗(T ). We denote f(T ) = f |σ(T )(T ) and
we have

‖f(T )‖ = ‖f |σ(T )‖∞ ≤ sup{|f(t)| : t ∈ R}.

Lemma 3.4. Let (Tλ)λ ⊆ B(H) be a net of selfadjoint operators such that SOT −
limλ Tλ = T and f ∈ C0(R). Then

f(T ) = SOT − lim
λ
f(Tλ).

Theorem 3.5. Kaplansky Density Theorem Let A ⊆ B(H) be a C∗-algebra
such that span(A(H)) = H. Then

(i)

Ball(A)sa
SOT

= Ball(A′′)sa
(ii)

Ball(A)
SOT

= Ball(A′′)

Proof. (i) Let T = T ∗ ∈ A′′, with norm ‖T‖ ≤ 1. By Double Commutant Theorem
there exists a net (Tλ)λ ⊆ A such that T = WOT − limλ Tλ. Thus,

T = WOT − lim
λ

Tλ + T ∗λ
2

.

Therefore we may consider that there exists a net (Sλ)λ ⊆ A such that S∗λ = Sλ
and T = WOT − limλ Sλ. We proved that T is an element of the WOT closure
of the set of the selfadjoint operators, Asa. But Asa is a convex set, thus we may
consider that there exists a net (Sλ)λ ⊆ Asa such that T = SOT − limλ Sλ. Choose
a real function f ∈ C0(R) such that f(t) = t for all −1 ≤ t ≤ 1 and ‖f‖∞ ≤ 1.
Since σ(T ) ⊆ [−1, 1] we have f(t) = t for all t ∈ σ(T ) thus f(T ) = T. By the above
Lemma

T = f(T ) = SOT − lim
λ
f(Sλ).

Since ‖f |σ(Sλ)‖∞ ≤ 1 we have ‖f(Sλ)‖ ≤ 1 for all λ. Since f = f we have

f(Sλ) ∈ C∗(Sλ)sa ⊆ Asa.
The proof of (i) is complete.

(ii) Let T = T ∗ ∈ A′′ with norm ‖T‖ ≤ 1. Define the selfadjoint operator

S =

(
0 T
T ∗ 0

)
. This operator is an element of the ball of the set of 2 × 2

matrices with entries in A′′ : M2(A′′). Observe that

M2(A′′) = M2(AWOT ) = M2(A)
WOT

= M2(A)′′.
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Thus S ∈ Ball(M2(A)′′)sa. By the first part of the proof there exists a net

Sλ =

(
Aλ Bλ
Cλ Dλ

)
in the algebra M2(A) such that ‖Sλ‖ ≤ 1 for all λ and S = SOT − limλ Sλ. We
conclude that T = SOT − limλBλ. Since ‖Bλ‖ ≤ 1 and Bλ ∈ A for all λ the proof
is complete. �

It remains to prove the Lemma in page 2.

Definition 3.6. (i)Let f ∈ C(R). We call f strongly continuous if for every net
Sλ = S∗λ ⊆ B(H) such that S = SOT − limλSλ ⇒ f(S) = SOT − limλ f(Sλ).

(ii) V = {f ∈ C(R) : f is strongly continuous}
(iii) V b = {f ∈ V ; ‖f‖∞ <∞}.

It suffices to prove that C0(R) ⊆ V. Let

hs(t) =
1

1 + s2t2
, s ∈ R.

We can prove that hs ∈ V b. Since the function h(t) = t belongs to V and V bV ⊆ V
The functions

ks(t) = h(t)hs(t) =
st

1 + s2t2
, s ∈ R

belong to V. Observe that

{ks : s ∈ R} ⊆ V ∩ C0(R).

Since the set {ks : s ∈ R} separates the points of R the set V ∩ C0(R) separates
the points of R. But we can easily see that V ∩ C0(R) is an algebra. Thus by
Stone-Weierstrass Theorem

V ∩ C0(R)
‖·‖∞

= C0(R).

If (fn) is a sequence of functions in V and ‖fn − f‖∞ → 0 then f ∈ V. Thus
C0(R) ⊆ V. The proof is complete.


