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Motivations

Primary motivations behind introducing compact quantum groups:

general framework of noncommutative mathematics (seeing C∗-algebras as
‘noncommutative topological spaces’)

wish to generalize Pontriagin duality for locally compact abelian groups (and
a common language for apparently different objects);

natural examples of ‘deformations’ of (Hopf) algebras of functions on
classical compact groups

need to develop good tools to study certain operator algebras.
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Commutative C∗-algebras

Recall the Gelfand-Najmark duality, including morphisms: a continuous map

T : X → Y

induces a unital ∗-homomorphism

αT : C(Y )→ C(X ).

Further note that
C(X × X ) = C(X )⊗ C(X )
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Compact quantum semigroups

Definition

We call a unital C∗-algebra A the algebra of functions on a compact quantum
semigroup if it admits a unital ∗-homomorphism (called the coproduct)

∆ : A→ A⊗ A

which is coassociative:

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity)

Exercise

Show that if A is a commutative C∗-algebra as above, it must arise as C(S) for a
compact semigroup S .
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Classical cancellation rules

Theorem
A compact semigroup G for which the cancellation rules hold, i.e. for any
g1, g2, h ∈ G

g1h = g2h =⇒ g1 = g2,

hg1 = hg2 =⇒ g1 = g2,

is in fact a compact group.

Adam Skalski (IMPAN) CQGroups July 2019, Athens 5 / 40



Quantum cancellation rules

Definition (Woronowicz, 1989)

An algebra of continuous functions on a compact quantum group is a unital
C∗-algebra A with a unital ∗-algebra homomorphism ∆ : A→ A⊗ A such that

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity)

and the quantum cancellation rules hold:

Lin{∆(a)(b ⊗ 1); a, b ∈ A} = Lin{∆(a)(1⊗ b); a, b ∈ A} = A⊗ A

The tensor products are all the time in the C∗-algebraic category. We will write
A = C (G) and call G a compact quantum group.
Sometimes (A,∆) is called a compact quantum group.

Adam Skalski (IMPAN) CQGroups July 2019, Athens 6 / 40



Quantum cancellation rules

Definition (Woronowicz, 1989)

An algebra of continuous functions on a compact quantum group is a unital
C∗-algebra A with a unital ∗-algebra homomorphism ∆ : A→ A⊗ A such that

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity)

and the quantum cancellation rules hold:

Lin{∆(a)(b ⊗ 1); a, b ∈ A} = Lin{∆(a)(1⊗ b); a, b ∈ A} = A⊗ A

Exercise
Check that if A is commutative, so that we have a compact semigroup S such
that A = C(S), the density conditions above are equivalent to cancellation rules.

Adam Skalski (IMPAN) CQGroups July 2019, Athens 7 / 40



Compact matrix quantum groups

Definition (Woronowicz)

An algebra of continuous functions on a compact matrix quantum group is a
unital C∗-algebra A together with a unitary matrix U = (uij)

n
i,j=1 ∈ Mn(A) such

that

the ∗-algebra A spanned by the entries of U is dense in A;

the formula

∆(uij) =
n∑

k=1

uik ⊗ ukj , i , j = 1, . . . , n,

extends to a well-defined ∗-homomorphism ∆ : A→ A⊗ A;

there is a linear antimultiplicative map S : A → A such that

S ◦ ∗ ◦ S ◦ ∗ = idA,

n∑
k=1

S(uik)ukj = δij1,
n∑

k=1

uikS(ukj) = δij1, i , j = 1, . . . , n.
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Compact matrix quantum groups continued

Exercise

Check that every algebra A as above yields a compact quantum group G (i.e.
A = C(G)).

The unitary U = (uij)
n
i,j=1 ∈ Mn(A) is then called the fundamental representation

of G. We will come back to this definition later.
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Examples – classical and dual to classical

every classical compact group G is also a quantum group; that is, C(G ) and
the map ∆ : C(G )→ C(G )⊗ C(G ) ∼= C(G × G )

∆(f )(g , h) := f (g · h), f ∈ C(G ), g , h ∈ G ,

satisfy Woronowicz’s axioms. Moreover if G is a compact quantum group
and C(G) is commutative, it must arise in this way.

for Γ– discrete group both the algebras C∗(Γ) and C∗r (Γ), with the
coproducts informally given by

∆(γ) = γ ⊗ γ, γ ∈ Γ

yield compact quantum groups. They are both viewed as certain algebras of
continuous functions on Γ̂: the ‘quantum dual’ of Γ; C∗(Γ) is naturally an
‘abstract’ C∗-algebra, C∗r (Γ) ⊂ B(`2(Γ)) a concrete one.
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Deformations of classical compact Lie groups

Recall that C(SU(2)) is a commutative unital C∗-algebra generated by the
functions α, γ : SU(2)→ C such that

α∗α + γ∗γ = 1.

Group multiplication on SU(2) induces on C(SU(2)) the coproduct

∆(α) = α⊗ α− γ∗ ⊗ γ, ∆(γ) = γ ⊗ α + α∗ ⊗ γ.

Let q ∈ [−1, 1) \ {0}. Define C(SUq(2)) – universal unital C∗-algebra generated
by operators α, γ such that:

α∗α + γ∗γ = 1, αα∗ + q2γ∗γ = 1,

γ∗γ = γγ∗, qγα = αγ, qγ∗α = αγ∗.

The coproduct making SUq(2) a compact quantum group is given by the formulas

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α + α∗ ⊗ γ.
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Free (liberated) compact quantum groups

Let n ∈ N and let A be the universal C∗-algebra generated by the elements
{pij : i , j = 1, . . . , n} such that

pij = p2
ij = p∗ij , i , j = 1, . . . , n;∑n

i=1 pij =
∑n

i=1 pji = δij1, j = 1, . . . , n,

Then the formula

∆(pij) =
n∑

k=1

pik ⊗ pkj , i , j = 1, . . . , n,

defines a coproduct, making A the algebra of continuous functions on a compact
quantum group, usually denoted S+

n and called a free permutation group.

Adam Skalski (IMPAN) CQGroups July 2019, Athens 12 / 40



Exercises related to examples

Exercise
Show rigorously that all the examples above fit into the Woronowicz framework.

Exercise

Find the connection between S+
n and the usual permutation group Sn.

Exercise

How one could define the ‘free orthogonal group’ O+
N ?
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Convolution of probability measures on a compact group

Let G – compact group. Given two finite measures µ, ν on G their convolution
µ ? ν is defined by∫

G

f (g)dµ?ν(g) =

∫
G

∫
G

f (g1g2)dµ(g1)dν(g2), f ∈ C (G ).

Here finite (signed) measures – continuous functionals on C (G ). The convolution
of probability measures remains a probability measure.

The Haar measure on G is the unique bi-invariant measure µh ∈ Prob(G ): for
any g ∈ G and a Borel set X ⊂ G

µh(gX ) = µh(Xg) = µh(X ).

In other words, it is a unique measure such that

ν ? µh = µh = µh ? ν, ν ∈ Prob(G ).
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Convolution of probability measures on a compact
quantum group

Definition

Let G be a compact quantum group. Given two functionals ϕ,ψ ∈ C (G)∗ their
convolution is defined by

ϕ ? ψ = (ϕ⊗ ψ) ◦∆.

Convolution of states (normalised positive functionals) is a state. We view states
on C (G) as probability measures on G (and may write simply Prob(G)).
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Haar state

Definition

A state h ∈ Prob(G) is called a Haar state if for all a ∈ C(G)

(h ⊗ id)(∆(a)) = (id⊗ h)(∆(a)) = h(a)1;

equivalently for each µ ∈ C(G)∗

h ? µ = µ ? h = µ(1)h;

equivalently for each ω ∈ Prob(G)

h ? ω = ω ? h = h.
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Haar state continued

Theorem
Every compact quantum group has a unique Haar state.
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Haar state continued

Theorem
Every compact quantum group has a unique Haar state.

This uses cancellation laws! Another idea of the proof: take a faithful state
ω ∈ Prob(G) and show that

h = lim
n→∞

1

n

n∑
k=1

ω?k .

For C(G ) the Haar state is given by the integration with respect to the Haar
measure. On C∗r (Γ) it is given by h(

∑
γ∈Γ cγλγ) = ce .
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Representations
A (finite-dimensional, unitary, continuous) representation of a compact group G is
a continuous map U : G → U(n) such that

U(gh) = U(g)U(h), g , h ∈ G .

Looking at matrix entries we can view it as a single element
U ∈ Mn(C(G )) ∼= B(Cn)⊗ C(G ).

Definition
A unitary, continuous representation of a compact quantum group G on a
finite-dimensional Hilbert space H is a unitary U ∈ B(H)⊗ C(G) such that

(id⊗∆)(U) = U12U13.

Equivalently, choosing an orthonormal basis in H we can write
U = [uij ]

n
i,j=1 ∈ Mn(C (G)) and obtain

∆(uij) =
n∑

k=1

uik ⊗ ukj , i , j = 1, . . . , n.
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Representations continued

Definition
A unitary, continuous representation of a compact quantum group G on a
finite-dimensional Hilbert space H is a unitary U ∈ B(H)⊗ C(G) such that

(id⊗∆)(U) = U12U13.

Choosing an orthonormal basis in H we can write U = [uij ]
n
i,j=1 ∈ Mn(C (G)). We

will write simply U ∈ Repf (G).

Coefficients of U – linear combinations of uij .

Non-degenerate representation – invertible U ∈ Mn(C (G)) + the formulas above.
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Fourier transforms relative to a representation

Let U ∈ Repf (G). Define for a ∈ C(G) the Fourier transform of a with respect to
U

Fa = (id⊗ ha)(U∗),

A(U) = {Fa : a ∈ C(G)}.

Theorem

The set A(U) is a non-degenerate (unital) C∗-subalgebra of B(HU) and
U ∈ A(U)⊗ C(G). Moreover

A(U) = {(id⊗ ah)(U) : a ∈ C(G)}.

The key formula is
FaF

∗
b = Fa?b∗h
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Fourier transforms relative to a representation

Recall
Fa = (id⊗ ha)(U∗),

A(U) = {Fa : a ∈ C(G)}.

Exercise
Find the interpretation of Fa if G is classical and U corresponds to a
representation of G on H.
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Invariant subspaces

Proposition

Let U ∈ Repf (G), K ⊂ HU a subspace, P := PK. The following are equivalent:

(P ⊗ 1)U(P ⊗ 1) = U(P ⊗ 1)

(P ⊗ 1)U = U(P ⊗ 1);

K is invariant for A(U) (so that P commutes with elements of A(U)).

We then call K an invariant subspace. Furthermore A(U)′ is commutative.

We say that U ∈ Repf (G) is irreducible if HU has no non-trivial invariant
subspaces.

Theorem (Exercise)

Every U ∈ Repf (G) decomposes into a direct sum of irreducible representations.
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Morphisms

Let U,V ∈ Repf (G). A morphism from U to V is an operator T ∈ B(HU ; HV )
such that

(T ⊗ 1)U = V (T ⊗ 1).

We write U ≈ V if there is a morphism from U to V which is invertible.

Fact

Any non-degenerate representation V is equivalent to a unitary one (in the sense
extending this above).

Exercise

Show the above statement, using the operator y = (id⊗ h)(V ∗V ).
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Morphisms – Schur Lemma

Theorem (Schur Lemma)

Let U,V ∈ Repf (G) be irreducible. Then if U ≈ V then
Mor(U,V ) = {λT : λ ∈ C} for an invertible morphism T ; and if U and V are
not equivalent then Mor(U,V ) = {0}.
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Operations on finite-dimensional representations

Operations on representations (U,V ∈ Repf (G)):

direct sum: U ⊕ V ∈ Mn+m(C(G));

tensor product: U ⊗ V ∈ Mnm(C(G)):

(U ⊗ V )(i,k),(j,l) = uijvkl , i , j = 1, . . . , nU , k , l = 1, . . . , nV

... there will be one more!

Irr(G) – the set of all (equivalence classes) of irreducible representations.

Definition

We write Pol(G) for the span of coefficients of all finite-dimensional unitary
representations of G. It is now easy to see it is a unital subalgebra of C(G).
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Infinite-dimensional representations

Definition
If H is any Hilbert space then a representation of G on H is any unitary
U ∈ M(K (H)⊗ C(G)) such that

(id⊗∆)(U) = U12U13.

Here M(A) denotes the multiplier algebra of A.

Theorem

Any U ∈ Rep(G) decomposes as a direct sum of (irreducible) finite-dimensional
representations.
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The right-regular representation

Let L2(G) denote the GNS space of C(G) with respect to the Haar state h, with
the GNS cyclic vector Ωh and the representation πh : C(G)→ B(L2(G)). Assume
further that C(G) acts on a Hilbert space H.

Theorem

There exists a unique unitary U ∈ B(L2(G)⊗ H) such that for all a ∈ C(G),
ξ ∈ H we have

U(πh(a)Ωh ⊗ ξ) = (πh ⊗ id)(∆(a))(Ωh ⊗ ξ).

Further U ∈ M(K (L2(G))⊗ C(G)) is a representation of G.

Moreover for a ∈ C(G), τ ∈ C(G)∗ we have

(id⊗ τ)(U)(πh(a)Ωh) = πh(τ ? a)Ω.
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Usefulness of the right-regular representation

Exercise
Check that the right-regular representation as above for classical G coincides with
the usual right-regular representation.

The next two results use the right-regular representation.

Theorem

The algebra Pol(G) is dense in C(G).

Theorem

Every irreducible representation of G is (equivalent to) a subrepresentation of the
right-regular representation.
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Finite-dimensional representations revisited

Theorem
The set

{uαij : α ∈ Irr(G), i , j = 1, . . . , nα}

is a linear basis of Pol(G).
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Finite-dimensional representations revisited again

Theorem

For each α ∈ Irr(G) there exists a (unique) β ∈ Irr(G) such that the

Lin{(uαij )∗ : i , j = 1, . . . , nα} = Lin{uβij : i , j = 1, . . . , nβ}

(we have nβ = nα).

The last result implies that Pol(G) is a unital ∗-algebra.

Exercise
The above theorem can be now given at least two different proofs: one using the
fact that non-degenerate representations are equivalent to unitary ones and using
the right regular representation, and another using the density of Pol(G). Try to
find them!

Theorem

The Haar state is faithful on Pol(G).
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Operations on finite-dimensional representations revisited

Operations on representations (U,V ∈ Repf (G)):

direct sum: U ⊕ V ∈ Mn+m(C(G));

tensor product: U ⊗ V ∈ Mnm(C(G)):

(U ⊗ V )(i,k),(j,l) = uijvkl

adjoint operation:

U ij equals up to equivalence U∗ij .

Corollary

The algebra Pol(G) is a dense unital ∗-subalgebra of C(G).

U ∈ Repf (G) is called fundamental if its coefficients generate C(G) as a
C∗-algebra.
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Hopf∗- algebra

Theorem
Recall that the set

{uαij : α ∈ Irr(G), i , j = 1, . . . , nα}

is a linear basis of Pol(G). With

ε(uαij ) = δij , S(uαij ) = (uαji )∗

Pol(G) becomes a Hopf∗-algebra.

Neither ε nor S need to extend to C (G)!
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Orthogonality

Theorem

For each α ∈ Irr(G) there exists a unique positive matrix Qα ∈ GL(nα) such that
Tr(Qα) = Tr(Q−1

α ) := dα ≥ nα and we have for all α, β ∈ Irr(G)

h
(
uαij (uβkl)

∗
)

= δαβδik
(Qα)l,j
dα

;

h
(

(uαij )∗uβkl

)
= δαβδjl

(Q−1
α )k,i
dα

.

The matrices Q have various incarnations:

as so-called Woronowicz characters on Pol(G)

generators of the ‘scaling automorphism group’ τ ;

witnesses of non-traciality of h;

witnesses of unboundedness of S
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Woronowicz characters

Theorem (Woronowicz characters)

The algebra Pol(G) admits a (unique!) family of unital multiplicative functionals
(fz)z∈C such that

1 ∀a∈Pol(G) z 7→ fz(a) is holomorphic;

2 ∀z1,z2∈C fz1+z2 = fz1 ? fz2 ;

3 ∀a∈Pol(G),z∈C fz(S(a)) = f−z(a), fz̄(a) = f−z(a), f0(a) = ε(a), S2(a) =
f−1 ? a ? f1;

4 the formula a 7→ σt(a) := fit ? a ? fit , t ∈ R, defines a one-parameter
semigroup of automorphisms of Pol(G), which is the KMS group of the
Haar state:

h(ab) = h(bσ−i (a)), a, b ∈ Pol(G).

Exercise
Find the relation between fz and the matrices Qα from the previous slide.
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Kac property

Definition
A compact quantum group G is of Kac type if all Qα = I ; equivalently,
S2 = idPol(G); equivalently h is a trace; equivalently the ‘quantum dimensions’ dα
are equal to nα; equivalently the Woronowicz characters trivialise.
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From Pol(G) to C (G)

Definition
A Hopf ∗-algebra A is called a CQG algebra or a Hopf algebra of compact type if
it is spanned by coefficients of its finite dimensional unitary corepresentations.

Theorem

Every CQG algebra arises as Pol(G) for a compact quantum group G.

Why? And how?
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From Pol(G) to C (G) continued

We need ‘good’ C∗-norms on Pol(G).

universal norm:

‖a‖u := sup{‖π(a)‖ : π : Pol(G)→ B(H), π unital *-homomorphism}

Completion of Pol(G) in this norm – Cu(G) admits good ∆u, hu, etc..

reduced norm:
‖a‖r := ‖πh(a)‖,

where πh is the GNS representation of the Haar state on Pol(G).

Completion of Pol(G) in this norm – Cr (G) admits good ∆r , hr , etc..

Of course ‖ · ‖u ≥ ‖ · ‖r .

Definition

A compact quantum group G is coamenable if ‖ · ‖u = ‖ · ‖r ; equivalently, hu is
faithful on Cu(G); equivalently, ε extends to a character on Cr (G).
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And a word on a von Neumann algebraic approach

Given C(G) and its Haar state h we can construct the GNS Hilbert space L2(G),
represent say Pol(G) on B(L2(G)) and consider the von Neumann algebra

L∞(G) := Pol(G)′′ ⊂ B(L2(G))

Definition
We call a von Neumann algebra M with a coassociative normal unital
∗-homomorphism

∆ : M→ M⊗M

the algebra of essentially bounded measurable functions on a compact quantum
group G if it admits a Haar state: a faithful normal state h ∈ M∗ such that

(h ⊗ idM) ◦∆ = (idM ⊗ h) ◦∆ = h(·)1.

One can show that each M as above arises as L∞(G) for a compact quantum
group G!
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So this is just the beginning...

Finally I would like to list some broad themes of study of quantum groups which
are important in recent years

extensions to locally compact quantum groups

categorical approaches (related to intertwiners)

study of abstract harmonic analysis: versions of Fourier multipliers

probabilistic aspects: random walks, topological/probabilistic boundaries of
the dual discrete quantum groups

notion of quantum subgroups, quantum ergodic actions; resulting algebraic
and operator algebraic ‘quantum symmetric spaces’

study of resulting operator algebras!
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