Introduction to compact quantum groups

Adam Skalski

IMPAN

July 2019, Athens

Motivations

Primary motivations behind introducing compact quantum groups:

- general framework of noncommutative mathematics (seeing C*-algebras as 'noncommutative topological spaces')
- wish to generalize Pontriagin duality for locally compact abelian groups (and a common language for apparently different objects);
- natural examples of 'deformations' of (Hopf) algebras of functions on classical compact groups
- need to develop good tools to study certain operator algebras.

Commutative C*-algebras

Recall the Gelfand-Najmark duality, including morphisms: a continuous map

$$T:X\to Y$$

induces a unital *-homomorphism

 $\alpha_T : \mathsf{C}(Y) \to \mathsf{C}(X).$

Further note that

 $C(X \times X) = C(X) \otimes C(X)$

Compact quantum semigroups

Definition

We call a unital C*-algebra A the algebra of functions on a compact quantum semigroup if it admits a unital *-homomorphism (called the coproduct)

 $\Delta: A \to A \otimes A$

which is coassociative:

 $(\mathrm{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathrm{id})\circ\Delta$ (coassociativity)

Exercise

Show that if A is a commutative C^{*}-algebra as above, it must arise as C(S) for a compact semigroup S.

Classical cancellation rules

Theorem

A compact semigroup G for which the cancellation rules hold, i.e. for any $g_1,g_2,h\in {\cal G}$

$$g_1h = g_2h \Longrightarrow g_1 = g_2,$$

 $hg_1 = hg_2 \Longrightarrow g_1 = g_2,$

is in fact a compact group.

Quantum cancellation rules

Definition (Woronowicz, 1989)

An algebra of continuous functions on a compact quantum group is a unital C^{*}-algebra A with a unital *-algebra homomorphism $\Delta : A \rightarrow A \otimes A$ such that

 $(\mathrm{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathrm{id})\circ\Delta\quad(\text{coassociativity})$

and the quantum cancellation rules hold:

$$\overline{\mathrm{Lin}}\{\Delta(a)(b\otimes \mathbf{1}); a, b\in\mathsf{A}\} = \overline{\mathrm{Lin}}\{\Delta(a)(\mathbf{1}\otimes b); a, b\in\mathsf{A}\} = \mathsf{A}\otimes\mathsf{A}$$

The tensor products are all the time in the C^{*}-algebraic category. We will write $A = C(\mathbb{G})$ and call \mathbb{G} a compact quantum group. Sometimes (A, Δ) is called a compact quantum group.

Quantum cancellation rules

Definition (Woronowicz, 1989)

An algebra of continuous functions on a compact quantum group is a unital C^{*}-algebra A with a unital *-algebra homomorphism $\Delta: A \to A \otimes A$ such that

 $(\mathrm{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathrm{id})\circ\Delta$ (coassociativity)

and the quantum cancellation rules hold:

 $\overline{\mathrm{Lin}}\{\Delta(a)(b\otimes \mathbf{1}); a, b\in \mathsf{A}\} = \overline{\mathrm{Lin}}\{\Delta(a)(\mathbf{1}\otimes b); a, b\in \mathsf{A}\} = \mathsf{A}\otimes\mathsf{A}$

Exercise

Check that if A is commutative, so that we have a compact semigroup S such that A = C(S), the density conditions above are equivalent to cancellation rules.

Compact matrix quantum groups

Definition (Woronowicz)

An algebra of continuous functions on a compact matrix quantum group is a unital C^{*}-algebra A together with a unitary matrix $U = (u_{ij})_{i,j=1}^n \in M_n(A)$ such that

- the *-algebra \mathcal{A} spanned by the entries of U is dense in A;
- the formula

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj}, \quad i, j = 1, \ldots, n,$$

extends to a well-defined *-homomorphism $\Delta: \mathsf{A} \to \mathsf{A} \otimes \mathsf{A};$

ullet there is a linear antimultiplicative map $S:\mathcal{A}
ightarrow\mathcal{A}$ such that

$$S \circ * \circ S \circ * = \mathsf{id}_{\mathcal{A}},$$

$$\sum_{k=1}^{n} S(u_{ik})u_{kj} = \delta_{ij}1, \quad \sum_{k=1}^{n} u_{ik}S(u_{kj}) = \delta_{ij}1, \quad i, j = 1, \ldots, n.$$

Compact matrix quantum groups continued

Exercise

Check that every algebra A as above yields a compact quantum group $\mathbb G$ (i.e. $A=C(\mathbb G)).$

The unitary $U = (u_{ij})_{i,j=1}^n \in M_n(A)$ is then called the fundamental representation of \mathbb{G} . We will come back to this definition later.

Examples - classical and dual to classical

• every classical compact group G is also a quantum group; that is, C(G) and the map $\Delta : C(G) \rightarrow C(G) \otimes C(G) \cong C(G \times G)$

 $\Delta(f)(g,h) := f(g \cdot h), \quad f \in C(G), g, h \in G,$

satisfy Woronowicz's axioms. Moreover if \mathbb{G} is a compact quantum group and $C(\mathbb{G})$ is commutative, it must arise in this way.

for Γ- discrete group both the algebras C^{*}(Γ) and C^{*}_r(Γ), with the coproducts informally given by

$$\Delta(\gamma) = \gamma \otimes \gamma, \quad \gamma \in \Gamma$$

yield compact quantum groups. They are both viewed as certain algebras of continuous functions on $\hat{\Gamma}$: the 'quantum dual' of Γ ; $C^*(\Gamma)$ is naturally an 'abstract' C*-algebra, $C_r^*(\Gamma) \subset B(\ell^2(\Gamma))$ a concrete one.

Deformations of classical compact Lie groups

Recall that C(SU(2)) is a commutative unital C^* -algebra generated by the functions $\alpha, \gamma : SU(2) \to \mathbb{C}$ such that

$$\alpha^* \alpha + \gamma^* \gamma = 1.$$

Group multiplication on SU(2) induces on C(SU(2)) the coproduct

$$\Delta(\alpha) = \alpha \otimes \alpha - \gamma^* \otimes \gamma, \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

Let $q \in [-1,1) \setminus \{0\}$. Define $C(SU_q(2))$ – universal unital C^{*}-algebra generated by operators α, γ such that:

$$\begin{aligned} \alpha^* \alpha + \gamma^* \gamma &= 1, \quad \alpha \alpha^* + q^2 \gamma^* \gamma &= 1, \\ \gamma^* \gamma &= \gamma \gamma^*, \quad q \gamma \alpha &= \alpha \gamma, \quad q \gamma^* \alpha &= \alpha \gamma^*. \end{aligned}$$

The coproduct making $SU_q(2)$ a compact quantum group is given by the formulas

$$\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

Free (liberated) compact quantum groups

Let $n \in \mathbb{N}$ and let A be the universal C*-algebra generated by the elements $\{p_{ij}: i, j = 1, \dots, n\}$ such that

•
$$p_{ij} = p_{ij}^2 = p_{ij}^*$$
, $i, j = 1, ..., n$;
• $\sum_{i=1}^n p_{ij} = \sum_{i=1}^n p_{ji} = \delta_{ij} 1, j = 1, ..., n$

Then the formula

$$\Delta(p_{ij}) = \sum_{k=1}^{n} p_{ik} \otimes p_{kj}, \quad i, j = 1, \dots, n,$$

defines a coproduct, making A the algebra of continuous functions on a compact quantum group, usually denoted S_n^+ and called a *free permutation group*.

Exercises related to examples

Exercise

Show rigorously that all the examples above fit into the Woronowicz framework.

Exercise

Find the connection between S_n^+ and the usual permutation group S_n .

Exercise

How one could define the 'free orthogonal group' O_N^+ ?

Convolution of probability measures on a compact group

Let G – compact group. Given two finite measures $\mu,\,\nu$ on G their convolution $\mu\star\nu$ is defined by

$$\int_G f(g)d_{\mu\star\nu}(g) = \int_G \int_G f(g_1g_2)d_{\mu}(g_1)d_{\nu}(g_2), \ f\in C(G).$$

Here finite (signed) measures – continuous functionals on C(G). The convolution of probability measures remains a probability measure.

The **Haar measure** on *G* is the unique bi-invariant measure $\mu_h \in Prob(G)$: for any $g \in G$ and a Borel set $X \subset G$

$$\mu_h(gX) = \mu_h(Xg) = \mu_h(X).$$

In other words, it is a unique measure such that

$$\nu \star \mu_h = \mu_h = \mu_h \star \nu, \quad \nu \in \operatorname{Prob}(G).$$

Convolution of probability measures on a compact quantum group

Definition

Let \mathbb{G} be a compact quantum group. Given two functionals $\varphi, \psi \in C(\mathbb{G})^*$ their convolution is defined by

$$\varphi \star \psi = (\varphi \otimes \psi) \circ \Delta.$$

Convolution of states (normalised positive functionals) is a state. We view states on $C(\mathbb{G})$ as probability measures on \mathbb{G} (and may write simply $Prob(\mathbb{G})$).

Haar state

Definition

A state $h \in \operatorname{Prob}(\mathbb{G})$ is called a Haar state if for all $a \in C(\mathbb{G})$

$$(h \otimes id)(\Delta(a)) = (id \otimes h)(\Delta(a)) = h(a)\mathbf{1};$$

equivalently for each $\mu \in \mathsf{C}(\mathbb{G})^*$

$$h\star \mu=\mu\star h=\mu(1)h;$$

equivalently for each $\omega \in \mathsf{Prob}(\mathbb{G})$

$$h \star \omega = \omega \star h = h.$$

Haar state continued

Theorem

Every compact quantum group has a unique Haar state.

Haar state continued

Theorem

Every compact quantum group has a unique Haar state.

This uses cancellation laws! Another idea of the proof: take a faithful state $\omega \in Prob(\mathbb{G})$ and show that

$$h = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \omega^{\star k}.$$

For C(G) the Haar state is given by the integration with respect to the Haar measure. On $C_r^*(\Gamma)$ it is given by $h(\sum_{\gamma \in \Gamma} c_\gamma \lambda_\gamma) = c_e$.

Representations

A (finite-dimensional, unitary, continuous) representation of a compact group G is a continuous map $U: G \rightarrow U(n)$ such that

$$U(gh) = U(g)U(h), \quad g,h \in G.$$

Looking at matrix entries we can view it as a single element $U \in M_n(C(G)) \cong B(\mathbb{C}^n) \otimes C(G)$.

Definition

A unitary, continuous representation of a compact quantum group \mathbb{G} on a finite-dimensional Hilbert space H is a unitary $U \in B(H) \otimes C(\mathbb{G})$ such that

$$(\mathsf{id} \otimes \Delta)(U) = U_{12}U_{13}.$$

Equivalently, choosing an orthonormal basis in H we can write $U = [u_{ij}]_{i,j=1}^n \in M_n(C(\mathbb{G}))$ and obtain

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj}, \quad i, j = 1, \ldots, n.$$

Representations continued

Definition

A unitary, continuous representation of a compact quantum group \mathbb{G} on a finite-dimensional Hilbert space H is a unitary $U \in B(H) \otimes C(\mathbb{G})$ such that

 $(\mathsf{id} \otimes \Delta)(U) = U_{12}U_{13}.$

Choosing an orthonormal basis in H we can write $U = [u_{ij}]_{i,j=1}^n \in M_n(C(\mathbb{G}))$. We will write simply $U \in \operatorname{Rep}_f(\mathbb{G})$.

Coefficients of U – linear combinations of u_{ij} . Non-degenerate representation – invertible $U \in M_n(C(\mathbb{G}))$ + the formulas above.

Fourier transforms relative to a representation

Let $U \in \operatorname{Rep}_{f}(\mathbb{G})$. Define for $a \in C(\mathbb{G})$ the Fourier transform of a with respect to U $E_{a} = (\operatorname{id} \otimes h_{2})(U^{*})$

$$F_a = (\operatorname{Id} \otimes \operatorname{ha})(U),$$
$$A(U) = \overline{\{F_a : a \in C(\mathbb{G})\}}.$$

Theorem

The set A(U) is a non-degenerate (unital) C^{*}-subalgebra of $B(H_U)$ and $U \in A(U) \otimes C(\mathbb{G})$. Moreover

$$\mathsf{A}(U) = \{ (\mathsf{id} \otimes \mathsf{ah})(U) : \mathsf{a} \in \mathsf{C}(\mathbb{G}) \}.$$

The key formula is

$$F_a F_b^* = F_{a \star b^* h}$$

Fourier transforms relative to a representation

Recall

$$F_{a} = (\mathrm{id} \otimes ha)(U^{*}),$$
$$A(U) = \overline{\{F_{a} : a \in \mathrm{C}(\mathbb{G})\}}.$$

Exercise

Find the interpretation of F_a if \mathbb{G} is classical and U corresponds to a representation of G on H.

Invariant subspaces

Proposition

Let $U \in \operatorname{Rep}_{f}(\mathbb{G})$, $K \subset H_{U}$ a subspace, $P := P_{K}$. The following are equivalent:

- $(P \otimes 1)U(P \otimes 1) = U(P \otimes 1)$
- $(P \otimes 1)U = U(P \otimes 1);$
- K is invariant for A(U) (so that P commutes with elements of A(U)).

We then call K an invariant subspace. Furthermore A(U)' is commutative.

We say that $U \in \operatorname{Rep}_{f}(\mathbb{G})$ is irreducible if H_{U} has no non-trivial invariant subspaces.

Theorem (Exercise)

Every $U \in \operatorname{Rep}_{f}(\mathbb{G})$ decomposes into a direct sum of irreducible representations.

Morphisms

Let $U, V \in \operatorname{Rep}_{f}(\mathbb{G})$. A morphism from U to V is an operator $T \in B(H_{U}; H_{V})$ such that

$$(T\otimes 1)U = V(T\otimes 1).$$

We write $U \approx V$ if there is a morphism from U to V which is invertible.

Fact

Any non-degenerate representation V is equivalent to a unitary one (in the sense extending this above).

Exercise

Show the above statement, using the operator $y = (id \otimes h)(V^*V)$.

Morphisms – Schur Lemma

Theorem (Schur Lemma)

Let $U, V \in \operatorname{Rep}_{f}(\mathbb{G})$ be irreducible. Then if $U \approx V$ then $\operatorname{Mor}(U, V) = \{\lambda T : \lambda \in \mathbb{C}\}$ for an invertible morphism T; and if U and V are not equivalent then $\operatorname{Mor}(U, V) = \{0\}$.

Operations on finite-dimensional representations

Operations on representations $(U, V \in \operatorname{Rep}_{f}(\mathbb{G}))$:

• direct sum:
$$U \oplus V \in M_{n+m}(C(\mathbb{G}));$$

• tensor product: $U \otimes V \in M_{nm}(C(\mathbb{G}))$:

$$(U \otimes V)_{(i,k),(j,l)} = u_{ij}v_{kl}, \quad i,j = 1,\ldots,n_U, k, l = 1,\ldots,n_V$$

• ... there will be one more!

 $Irr(\mathbb{G})$ – the set of all (equivalence classes) of irreducible representations.

Definition

We write $Pol(\mathbb{G})$ for the span of coefficients of all finite-dimensional unitary representations of \mathbb{G} . It is now easy to see it is a unital subalgebra of $C(\mathbb{G})$.

Infinite-dimensional representations

Definition

If H is any Hilbert space then a representation of \mathbb{G} on H is any unitary $U \in M(K(H) \otimes C(\mathbb{G}))$ such that

 $(\mathsf{id} \otimes \Delta)(U) = U_{12}U_{13}.$

Here M(A) denotes the multiplier algebra of A.

Theorem

Any $U \in \text{Rep}(\mathbb{G})$ decomposes as a direct sum of (irreducible) finite-dimensional representations.

The right-regular representation

Let $L^2(\mathbb{G})$ denote the GNS space of $C(\mathbb{G})$ with respect to the Haar state h, with the GNS cyclic vector Ω_h and the representation $\pi_h : C(\mathbb{G}) \to B(L^2(\mathbb{G}))$. Assume further that $C(\mathbb{G})$ acts on a Hilbert space H.

Theorem

There exists a unique unitary $\mathcal{U} \in B(L^2(\mathbb{G}) \otimes H)$ such that for all $a \in C(\mathbb{G})$, $\xi \in H$ we have

$$\mathcal{U}(\pi_h(a)\Omega_h\otimes\xi)=(\pi_h\otimes \mathrm{id})(\Delta(a))(\Omega_h\otimes\xi).$$

Further $\mathcal{U} \in M(K(L^2(\mathbb{G})) \otimes C(\mathbb{G}))$ is a representation of \mathbb{G} .

Moreover for $a \in \mathsf{C}(\mathbb{G}), \tau \in \mathsf{C}(\mathbb{G})^*$ we have

$$(\mathsf{id}\otimes au)(\mathcal{U})(\pi_h(a)\Omega_h)=\pi_h(au\star a)\Omega.$$

Usefulness of the right-regular representation

Exercise

Check that the right-regular representation as above for classical G coincides with the usual right-regular representation.

The next two results use the right-regular representation.

Theorem

```
The algebra Pol(\mathbb{G}) is dense in C(\mathbb{G}).
```

Theorem

Every irreducible representation of $\mathbb G$ is (equivalent to) a subrepresentation of the right-regular representation.

Finite-dimensional representations revisited

Theorem

The set

$$\{u_{ij}^{lpha}: lpha \in \mathsf{Irr}(\mathbb{G}), i, j = 1, \dots, n_{lpha}\}$$

is a linear basis of $Pol(\mathbb{G})$.

Finite-dimensional representations revisited again

Theorem

For each $\alpha \in Irr(\mathbb{G})$ there exists a (unique) $\beta \in Irr(\mathbb{G})$ such that the

$$\operatorname{Lin}\{(u_{ij}^{\alpha})^{*}: i, j = 1, \ldots, n_{\alpha}\} = \operatorname{Lin}\{u_{ij}^{\beta}: i, j = 1, \ldots, n_{\beta}\}$$

(we have $n_{\beta} = n_{\alpha}$).

The last result implies that $Pol(\mathbb{G})$ is a unital *-algebra.

Exercise

The above theorem can be now given at least two different proofs: one using the fact that non-degenerate representations are equivalent to unitary ones and using the right regular representation, and another using the density of $Pol(\mathbb{G})$. Try to find them!

Theorem

The Haar state is faithful on $Pol(\mathbb{G})$.

Operations on finite-dimensional representations revisited

Operations on representations $(U, V \in \operatorname{Rep}_{f}(\mathbb{G}))$:

- direct sum: $U \oplus V \in M_{n+m}(C(\mathbb{G}));$
- tensor product: $U \otimes V \in M_{nm}(C(\mathbb{G}))$:

 $(U\otimes V)_{(i,k),(j,l)}=u_{ij}v_{kl}$

• adjoint operation:

 \overline{U}_{ij} equals up to equivalence U_{ij}^* .

Corollary

The algebra $Pol(\mathbb{G})$ is a dense unital *-subalgebra of $C(\mathbb{G})$.

 $U \in \operatorname{Rep}_{f}(\mathbb{G})$ is called fundamental if its coefficients generate $C(\mathbb{G})$ as a C*-algebra.

Hopf*- algebra

Theorem

Recall that the set

$$\{u_{ij}^{lpha}: lpha \in \mathsf{Irr}(\mathbb{G}), i, j = 1, \dots, n_{lpha}\}$$

is a linear basis of $\mathsf{Pol}(\mathbb{G})$. With

$$\epsilon(u_{ij}^{\alpha}) = \delta_{ij}, \quad S(u_{ij}^{\alpha}) = (u_{ji}^{\alpha})^*$$

 $Pol(\mathbb{G})$ becomes a Hopf*-algebra.

Neither ϵ nor S need to extend to $C(\mathbb{G})!$

Orthogonality

Theorem

For each $\alpha \in \operatorname{Irr}(\mathbb{G})$ there exists a unique positive matrix $Q_{\alpha} \in GL(n_{\alpha})$ such that $\operatorname{Tr}(Q_{\alpha}) = \operatorname{Tr}(Q_{\alpha}^{-1}) := d_{\alpha} \ge n_{\alpha}$ and we have for all $\alpha, \beta \in \operatorname{Irr}(\mathbb{G})$

•
$$h\left(u_{ij}^{\alpha}(u_{kl}^{\beta})^*\right) = \delta_{\alpha\beta}\delta_{ik}\frac{(Q_{\alpha})_{l,j}}{d_{\alpha}};$$

•
$$h\left((u_{ij}^{\alpha})^* u_{kl}^{\beta}\right) = \delta_{\alpha\beta}\delta_{jl}\frac{(Q_{\alpha}^{-1})_{k,i}}{d_{\alpha}}.$$

The matrices Q have various incarnations:

- as so-called Woronowicz characters on Pol(G)
- generators of the 'scaling automorphism group' τ ;
- witnesses of non-traciality of h;
- witnesses of unboundedness of S

Woronowicz characters

Theorem (Woronowicz characters)

The algebra $Pol(\mathbb{G})$ admits a (unique!) family of unital multiplicative functionals $(f_z)_{z\in\mathbb{C}}$ such that

$$\forall_{a \in \mathsf{Pol}(\mathbb{G})} z \mapsto f_z(a) \text{ is holomorphic;}$$

2
$$\forall_{z_1, z_2 \in \mathbb{C}} f_{z_1+z_2} = f_{z_1} \star f_{z_2};$$

$$\forall_{a \in \mathsf{Pol}(\mathbb{G}), z \in \mathbb{C}} f_z(S(a)) = f_{-z}(a), \quad f_{\overline{z}}(a) = \overline{f_{-z}(a)}, \quad f_0(a) = \epsilon(a), \quad S^2(a) = f_{-1} \star a \star f_1;$$

On the formula a → σ_t(a) := f_{it} ★ a ★ f_{it}, t ∈ ℝ, defines a one-parameter semigroup of automorphisms of Pol(G), which is the KMS group of the Haar state:

$$h(ab) = h(b\sigma_{-i}(a)), a, b \in Pol(\mathbb{G}).$$

Exercise

Find the relation between f_z and the matrices Q_α from the previous slide.

Kac property

Definition

A compact quantum group \mathbb{G} is of Kac type if all $Q_{\alpha} = I$; equivalently, $S^2 = \mathrm{id}_{\mathrm{Pol}(\mathbb{G})}$; equivalently h is a trace; equivalently the 'quantum dimensions' d_{α} are equal to n_{α} ; equivalently the Woronowicz characters trivialise.

From $Pol(\mathbb{G})$ to $C(\mathbb{G})$

Definition

A Hopf *-algebra A is called a *CQG algebra* or a Hopf algebra *of compact type* if it is spanned by coefficients of its finite dimensional unitary corepresentations.

Theorem

Every CQG algebra arises as $\mathsf{Pol}(\mathbb{G})$ for a compact quantum group \mathbb{G} .

Why? And how?

From $Pol(\mathbb{G})$ to $C(\mathbb{G})$ continued

We need 'good' C^{*}-norms on $Pol(\mathbb{G})$.

• universal norm:

 $||a||_u := \sup\{||\pi(a)|| : \pi : \operatorname{Pol}(\mathbb{G}) \to B(\mathsf{H}), \pi \text{ unital *-homomorphism}\}$

Completion of $Pol(\mathbb{G})$ in this norm – $C_u(\mathbb{G})$ admits good Δ_u , h_u , etc..

• reduced norm:

 $||a||_r := ||\pi_h(a)||,$

where π_h is the GNS representation of the Haar state on Pol(G). Completion of Pol(G) in this norm – $C_r(G)$ admits good Δ_r , h_r , etc.. Of course $\|\cdot\|_u \ge \|\cdot\|_r$.

Definition

A compact quantum group \mathbb{G} is coamenable if $\|\cdot\|_u = \|\cdot\|_r$; equivalently, h_u is faithful on $C_u(\mathbb{G})$; equivalently, ϵ extends to a character on $C_r(\mathbb{G})$.

And a word on a von Neumann algebraic approach

Given $C(\mathbb{G})$ and its Haar state *h* we can construct the GNS Hilbert space $L^2(\mathbb{G})$, represent say $Pol(\mathbb{G})$ on $B(L^2(\mathbb{G}))$ and consider the von Neumann algebra

$$L^{\infty}(\mathbb{G}) := \mathsf{Pol}(\mathbb{G})'' \subset B(L^2(\mathbb{G}))$$

Definition

We call a von Neumann algebra M with a coassociative normal unital *-homomorphism

$$\Delta:\mathsf{M}\to\mathsf{M}\overline{\otimes}\mathsf{M}$$

the algebra of essentially bounded measurable functions on a compact quantum group \mathbb{G} if it admits a Haar state: a faithful normal state $h \in M_*$ such that

$$(h \otimes \mathrm{id}_{\mathsf{M}}) \circ \Delta = (\mathrm{id}_{\mathsf{M}} \otimes h) \circ \Delta = h(\cdot)1.$$

One can show that each M as above arises as $L^{\infty}(\mathbb{G})$ for a compact quantum group $\mathbb{G}!$

So this is just the beginning...

Finally I would like to list some broad themes of study of quantum groups which are important in recent years

- extensions to locally compact quantum groups
- categorical approaches (related to intertwiners)
- study of abstract harmonic analysis: versions of Fourier multipliers
- probabilistic aspects: random walks, topological/probabilistic boundaries of the dual discrete quantum groups
- notion of quantum subgroups, quantum ergodic actions; resulting algebraic and operator algebraic 'quantum symmetric spaces'
- study of resulting operator algebras!

Some references

M.S. Dijkhuizen and T.H. Koornwinder, CQG algebras: a direct algebraic approach to compact quantum groups, *Lett. Math. Phys.* **32** (1994), no. 4, 315–330.

G. Murphy and L. Tuset, Aspects of compact quantum group theory, *Proc. Amer. Math. Soc.* **132** (2004), no. 10, 3055–3067.

S.L. Woronowicz, Compact matrix pseudogroups, *Comm. Math. Phys.* **111** (1987) no. 4, 613–665.

S.L. Woronowicz, Compact quantum groups, *in* "Symétries Quantiques," Proceedings, Les Houches 1995, *eds. A. Connes, K. Gawedzki & J. Zinn-Justin*, North-Holland, Amsterdam 1998, pp. 845–884.