# Entanglement, games and quantum correlations 

M. Anoussis

7th Summerschool in Operator Theory Athens, July 2018

(1) states
(2) tensor products
(3) separabilty and entanglement
(4) games
(5) correlations
(6) quantum chromatic numbers
(7) bibliography

## C*-algebras

## Definition

Let $\mathcal{A}$ be a Banach algebra. An involution on $\mathcal{A}$ is a map $a \rightarrow a^{*}$ on $\mathcal{A}$ s.t.

- $(a+b)^{*}=a^{*}+b^{*}$
- $(\lambda a)^{*}=\bar{\lambda} a^{*}, \lambda \in \mathbb{C}$
- $a^{* *}=a$
- $(a b)^{*}=b^{*} a^{*}$


## C*-algebras

## Definition

A C*-algebra is a Banach algebra with an involution which satisfies

$$
\left\|a^{*} a\right\|=\|a\|^{2} .
$$

## C*-algebras

## Examples

- $\mathcal{C}(X)$, for $X$ compact.

$$
\begin{aligned}
& \|g\|=\sup _{x \in X}|g(x)| \\
& \bar{g}(x)=\bar{g}(x)
\end{aligned}
$$

- $\mathcal{B}(H)$, for $H$ Hilbert space

$$
\begin{aligned}
& \|T\|=\sup _{x \in H,\|x\| \leq 1}\|T x\| \\
& \langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle .
\end{aligned}
$$

- $\mathcal{A}$ a closed subalgebra of $\mathcal{B}(H)$ s.t. $a \in \mathcal{A} \Rightarrow a^{*} \in \mathcal{A}$.


## C*-algebras

## Theorem

Let $\mathcal{A}$ be a $C^{*}$-algebra. Then $\mathcal{A}$ is isometrically isomorphic to a closed subalgebra of $\mathcal{B}(H)$ for some Hilbert space $H$.

## states

## Definition

Let $\mathcal{A}$ be a $C^{*}$-algebra. An element $a \in \mathcal{A}$ is selfadjoint if $a=a^{*}$.

## Definition

Let $\mathcal{A}$ be a $C^{*}$-algebra. An element $a \in \mathcal{A}$ is positive if it is selfadjoint and $\sigma(a) \subseteq \mathbb{R}^{+}$.

## states

## Theorem

Let $\mathcal{A}$ be a $C^{*}$-algebra and $a \in \mathcal{A}$. The following are equivalent:

- $a$ is positive.
- $a=b^{*} b$ for some $b \in \mathcal{A}$.
- If $\mathcal{A} \subseteq \mathcal{B}(H),\langle a x, x\rangle \geq 0, \forall x \in H$.


## states

## Definition

Let $\mathcal{A}$ be a $C^{*}$-algebra. A linear form on $\mathcal{A}$ is positive if $f\left(a^{*} a\right) \geq 0$ $\forall a \in \mathcal{A}$.

## Definition

Let $\mathcal{A}$ be a $C^{*}$-algebra. A state is a linear form on $\mathcal{A}$ which is positive and satisfies $f(e)=1$.

## states

The set of states $S(\mathcal{A})$ of a $C^{*}$-algebra $\mathcal{A}$ is a $w^{*}$-compact set of the dual of $\mathcal{A}$. It is convex, hence by the Krein-Milman theorem it has extreme points.

## Definition

A state is pure if it is an extreme point of $S(\mathcal{A})$.

## states

## Examples

- $\mathcal{C}(X)$, for $X$ compact. A state on $\mathcal{C}(X)$ is a probability measure. A pure state is a Dirac measure.
- $\mathcal{B}(H)$ for a Hilbert space $H$. If $\xi \in H, f(a)=\langle a \xi, \xi\rangle$ is a state. States of this form are called vector states.


## states

## Examples

- Let $\mathcal{D}$ be the $C^{*}$-algebra of $2 \times 2$ diagonal complex matrices. A linear form on $\mathcal{D}$ is of the form

$$
f\left(\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\right)=x a+y d
$$

for some $x, y \in \mathbb{C}$.
$f$ is a state if and only if
$x+y=1$ and $x a+y d \geq 0$ when $a \geq 0$ and $d \geq 0$.
That is $x \geq 0$ and $y \geq 0$.

## states

## Examples

$f$ is pure iff $x=0$ or $y=0$.
Indeed if $f=(1,0)$ and $f_{1}=\left(x_{1}, y_{1}\right), f_{2}=\left(x_{2}, y_{2}\right), \alpha \in(0,1)$ are such that

$$
f=\alpha f_{1}+(1-\alpha) f_{2},
$$

we obtain

$$
f\left(\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\right)=\left(\alpha x_{1}+(1-\alpha) x_{2}\right) a+\left(\alpha y_{1}+(1-\alpha) y_{2}\right) d=a
$$

It follows that

$$
\alpha y_{1}+(1-\alpha) y_{2}=0
$$

which implies that $y_{1}=y_{2}=0$ and $f_{1}=f_{2}=f$.

## states

## Examples

If $f=(x, y)$, with $x \neq 0, y \neq 0$, then $f=x f_{1}+y f_{2}$ where $f_{1}=(1,0)$ and $f_{2}=(0,1)$.

## states

## Examples

- Let $\mathcal{A}$ be the $C^{*}$-algebra of $2 \times 2$ complex matrices.

A linear form on $\mathcal{A}$ is of the form

$$
f\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=x a+y b+z c+w d
$$

for some $x, y, z, w \in \mathbb{C}$. Hence if $A \in \mathcal{A}, f(A)=\operatorname{tr}(G A)$ where $G=\left(\begin{array}{ll}x & z \\ y & w\end{array}\right)$.

## states

## Notation

Let $x, y \in H$.
Define an operator $|y\rangle\langle x|$ on $H$ by:

$$
|y\rangle\langle x|(|w\rangle)=|y\rangle\langle x \mid w\rangle=\langle x \mid w\rangle|y\rangle .
$$

## states

Proposition
(1) $(|x\rangle\langle y|)^{*}=|y\rangle\langle x|$.
(2) $(|x\rangle\langle y|) \circ(|z\rangle\langle w|)=\langle y \mid z\rangle|x\rangle\langle w|$.
(0) $\operatorname{tr}(|x\rangle\langle y|)=\langle y \mid x\rangle$.

## states

## Examples

$f: A \rightarrow \operatorname{tr}(G A)$ is a state if and only if
$\operatorname{tr} G=1$ and $G$ is positive. ( $G$ positive $\Leftrightarrow\langle x, G x\rangle \geq 0, \forall x \in H$.)
Indeed, we have:

$$
\begin{aligned}
& f \text { is positive } \Leftrightarrow \operatorname{tr}(G|x\rangle\langle x|) \geq 0 \quad \forall x \in H \\
& \Leftrightarrow\langle x| G|x\rangle \geq 0 \quad \forall x \in H \Leftrightarrow G \text { is positive. }
\end{aligned}
$$

## states

## Examples

$$
\begin{aligned}
& G=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
& G=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

## states

## Proposition

Let $H$ be a Hilbert space with $\operatorname{dim} H<+\infty$ and $f$ a state on $\mathcal{B}(H)$ determined by the matrix $\mathcal{G}$. Then $f$ is pure iff $\mathcal{G}$ is a rank-one operator.

## proof Consider

$$
G=\sum_{i=1}^{\operatorname{dim} H} \lambda_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right|
$$

with $\lambda_{i} \geq 0$ and $\sum \lambda_{i}=1$.

## tensor products of linear spaces

Let $E_{1}, E_{2}$ be linear spaces over a field $\mathbb{K}$. Consider $E_{i} \hookrightarrow \mathbb{K}^{X_{i}}$ where $X_{i}$ is some set (e.g. a basis of $E_{i}$ ). Set

$$
\xi \otimes \eta: X_{1} \times X_{2} \rightarrow \mathbb{K}:(s, t) \rightarrow \xi(s) \eta(t) .
$$

Definition (algebraic tensor product)

$$
E_{1} \odot E_{2}:=\operatorname{span}\left\{\xi \otimes \eta: \xi \in E_{1}, \eta \in E_{2}\right\} \subseteq \mathbb{K}^{x_{1} \times x_{2}} .
$$

## Remark

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right) \otimes y=x_{1} \otimes y+x_{2} \otimes y, x \otimes\left(y_{1}+y_{2}\right)=x \otimes y_{1}+x \otimes y_{2}, \\
& (\lambda x) \otimes y=\lambda(x \otimes y)=x \otimes(\lambda y) .
\end{aligned}
$$

## tensor products of linear spaces

Let $\pi: E_{1} \times E_{2} \rightarrow E_{1} \odot E_{2}$, be the map $\pi(x, y)=x \otimes y$.

## Theorem (Universal property of $\left(E_{1} \odot E_{2}, \otimes\right)$ )

If $F$ is a linear space and $b: E_{1} \times E_{2} \rightarrow F$ a bilinear map, then there exists a unique linear map
$B: E_{1} \odot E_{2} \rightarrow F$ such that $B(x \otimes y)=b(x, y) \forall x \in E_{1}, y \in E_{2}$.
i.e. the following diagram commutes:


## tensor products of Hillbert spaces

## Definition

Let $H_{1}, H_{2}$ be Hilbert spaces. On $H_{1} \odot H_{2}$ set

$$
\left\langle x_{1} \otimes x_{2}, y_{1} \otimes y_{2}\right\rangle_{h s}=\left\langle x_{1}, y_{1}\right\rangle_{1} \cdot\left\langle x_{2}, y_{2}\right\rangle_{2} .
$$

Define

$$
H_{1} \otimes H_{2}:=\overline{\left(H_{1} \odot H_{2},\|\cdot\|_{n s}\right)} .
$$

If $\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis of $H_{1}$ and $\left\{f_{j}\right\}_{f \in J}$ is an orthonormal basis of $H_{2}$, then $H_{1} \otimes H_{2}$ has $\left\{e_{i} \otimes f_{j}\right\}_{(i, j) \in I \times J}$ as orthonormal basis.

## Remark

If $\operatorname{dim} H_{1}<+\infty$ and $\operatorname{dim} H_{2}<+\infty$, then $H_{1} \odot H_{2}=H_{1} \otimes H_{2}$.
Moreover if $\left\{e_{i}\right\}_{i \in I}$ is a basis of $H_{1}$ and $\left\{f_{j}\right\}_{f \in J}$ is a basis of $H_{2}$, then $\left\{e_{i} \otimes f_{j}\right\}_{(i, j) \in \mid \times J}$ is a basis of $H_{1} \otimes H_{2}$.

## Example

$\mathbb{C}^{k} \otimes \mathbb{C}^{n}=\mathbb{C}^{n} \otimes \mathbb{C}^{k}=\mathbb{C}^{n k}$.

## operators on tensor products

If $A \in \mathcal{B}\left(H_{1}\right)$ and $B \in \mathcal{B}\left(H_{2}\right)$ we define $A \otimes B: H_{1} \otimes H_{2} \rightarrow H_{1} \otimes H_{2}$. First we define $A \otimes B$ on $H_{1} \odot H_{2}$ by:

$$
(A \otimes B)\left(\sum_{i} x_{i} \otimes y_{i}\right)=\sum_{i} A x_{i} \otimes B y_{i} .
$$

The operator $A \otimes B$ is well defined and we have
$\left\|\sum_{i} A x_{i} \otimes B y_{i}\right\| \leq\|A\|\|B\|\left\|\sum_{i} x_{i} \otimes y_{i}\right\|$.
Hence $A \otimes B$ defines a bounded operator
$A \otimes B: H_{1} \otimes H_{2} \rightarrow H_{1} \otimes H_{2}$ with $\|A \otimes B\|=\|A\|\|B\|$.

## separabilty and entanglement

Consider two Hilbert spaces $H_{1}$ and $H_{2}$.
Set $H=H_{1} \otimes H_{2}$.

## Definition

A vector $\chi \in H$ is a product vector if there exist $\chi_{1} \in H_{1}, \chi_{2} \in H_{2}$ s.t.

$$
\chi=\chi_{1} \otimes \chi_{2} .
$$

## Definition

A pure state

$$
|\chi\rangle\langle\chi|
$$

on $\mathcal{B}(H)$ is called pure separable if $\chi$ is a product vector.

## separabilty and entanglement

## Definition

A state $\rho$ on $\mathcal{B}(H)$ is called separable if it is a convex combination of pure separable states.

## Definition

A state $\rho$ on $\mathcal{B}(H)$ is called entangled if it is not separable.

## Remark

There exist vectors which are not product vectors. Hence there exist entangled states: Take a unit vector $\psi \in H$ which is not a product vector. Then the state $\rho=|\psi\rangle\langle\psi|$ is entangled.

## separabilty and entanglement

## Example

Take $H_{1}=H_{2}=\mathbb{C}^{d}$.
Take an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{d}$ of $\mathbb{C}^{d}$. Then if

$$
\chi=\frac{1}{\sqrt{d}} \sum_{i=1}^{d} e_{i} \otimes e_{i},
$$

the state

$$
\rho=|\chi\rangle\langle\chi|
$$

is entangled. A state of this form is called maximally entangled.

## games

We consider a two-person game in which there are two players Alice and Bob and a referee $R$.
Let $I_{A}, I_{B}$ be finite input sets and $O_{A}, O_{B}$ finite output sets.
The game has a rule:
$\lambda: I_{A} \times I_{B} \times O_{A} \times O_{B} \rightarrow\{0,1\}$.
Alice, Bob and the referee are aware of the rule.

## games

The game begins when the referee gives Alice an element of the set $I_{A}$ and Bob an element of the set $I_{B}$. Alice and Bob do not know what the other has been given.
They produce outputs $x \in O_{A}, y \in O_{B}$ independently. They win if $\lambda(a, b, x, y)=1$ and they lose if $\lambda(a, b, x, y)=0$.
Alice and Bob are allowed to collaborate to decide any strategy before the game begins. When the game begins they are not allowed to communicate.

## games

## Definition

A deterministic strategy is a pair of functions $\left(f_{A}, g_{B}\right)$
$f_{A}: I_{A} \rightarrow O_{A}$
$g_{B}: I_{B} \rightarrow O_{B}$
such that
$\lambda\left(a, b, f_{A}(a), g_{B}(b)\right)=1$.
If Alice and Bob have a deterministic strategy they can always win.

## games

Let $\pi: I_{A} \times I_{B} \rightarrow[0,1]$ be a probability density.
i.e.
$\pi(a, b) \geq 0$
$\sum_{a, b} \pi(a, b)=1$.

## Definition

If $f: I_{A} \rightarrow O_{A}, g: I_{B} \rightarrow O_{B}$ and $\pi$ is a probability density, the value of $(f, g)$ is

$$
\sum_{a, b} \pi(a, b) \lambda(a, b, f(a), g(b))
$$

## games

Since $\sum \pi(a, b)=1$ and $\lambda(a, b, x, y) \in\{0,1\}$,

$$
\sum_{a, b} \pi(a, b) \lambda(a, b, f(a), g(b)) \leq 1
$$

## Remark

If $\pi(a, b)>0 \forall a, b$, then:

$$
\sum_{a, b} \pi(a, b) \lambda(a, b, f(a), g(b))=1 \Leftrightarrow \lambda(a, b, f(a), g(b))=\forall a, b
$$

$\Leftrightarrow(f, g)$ is a deterministic strategy.

## the graph colouring game

## Definition

A graph $G$ is a pair $(V, E)$ where $V$ is a set and $E$ is a subset of the set of 2-element subsets of $V$.

## Definition

The chromatic number of $G$ is

$$
\chi(G)=\inf \{k: G \text { has a } k \text { colouring }\} .
$$

## the graph colouring game

## Example

We describe the graph colouring game. We consider a graph $G=(V, E)$.
We set $I_{A}=I_{B}=V$ and
$O_{A}=O_{B}=a$ set of colours.
If $u, w \in V$, we write $u \sim w$ if $u$ and $w$ are adjacent.

## the graph colouring game

## Example

The rule is as follows:

- If $u \sim w$,

$$
\begin{aligned}
& \lambda(u, w, a, b)=1 \text { if } a \neq b \\
& \lambda(u, w, a, b)=0 \text { if } a=b .
\end{aligned}
$$

- If $u \nsim w$ and $u \neq w$
$\lambda(u, w, a, b)=1$
- If $u=w$
$\lambda(u, u, a, b)=1$ if $a=b$
$\lambda(u, u, a, b)=0$ if $a \neq b$.


## the graph colouring game

Alice and Bob try to convince the referee that they have a colouring of the graph $G$.
If $\left|O_{A}\right| \geq \chi(G)$ there are more colours than the chromatic number. Hence Alice and Bob can find a colouring. This gives a function
$f=g: V \rightarrow O_{A}=O_{B}$,
such that for each $u, w \in V$ we have:
$\lambda(u, w, f(u), f(w))=1$.
The pair $(f, f)$ is then a deterministic strategy.

## games

## Definition

A probabilistic strategy is a conditional probability density $p(x, y \mid a, b)$, the probability that Alice and Bob produce $x$ and $y$ when they receive $a$ and $b$.
We have $p(x, y \mid a, b) \geq 0$ and $\forall a, b$

$$
\sum_{(x, y) \in O_{A} \times O_{B}}(x, y \mid a, b)=1
$$

## games

## Definition

$p(x, y \mid a, b)$ is a perfect strategy if

$$
\lambda(a, b, x, y)=0 \Rightarrow p(x, y \mid a, b)=0
$$

## Definition

Given a strategy $p$ and a density $\pi(a, b), \pi: I_{A} \times I_{B} \rightarrow[0,1]$ the value of $p$ is

$$
\sum_{x, y, a, b} \pi(a, b) \lambda(a, b, x, y) p(x, y \mid a, b)
$$

## games

## Remark

## Since

$$
\begin{gathered}
\sum_{x, y, a, b} \pi(a, b) p(x, y \mid a, b)=\sum_{a, b} \pi(a, b)\left(\sum_{x, y} p(x, y \mid a, b)\right)= \\
\sum_{a, b} \pi(a, b)=1 .
\end{gathered}
$$

the value of $p$ is $\leq 1$.

## games

## Remark

If $\pi(a, b)>0 \forall a, b$
then the value of $p$ is 1 iff $p$ is perfect.
Since $\sum_{x, y, a, b} \pi(a, b) p(x, y \mid a, b)=1$, we have:

$$
\begin{gathered}
\sum_{x, y, a, b} \pi(a, b) \lambda(a, b, x, y) p(x, y \mid a, b)=1 \Leftrightarrow \\
\{p(x, y \mid a, b) \neq 0 \Rightarrow \lambda(a, b, x, y) \neq 0\} \Leftrightarrow \\
\{\lambda(a, b, x, y)=0 \Rightarrow p(x, y \mid a, b)=0\} \Leftrightarrow p(x, y \mid a, b) \text { is perfect. }
\end{gathered}
$$

## games

## Questions

(1) Decide whether there exists a perfect strategy.
(2) If not, find the supremum of the values, over all allowed probabilities.
(3) Consider different models of "quantum probability densities".

## correlations

Alice and Bob have a common probability space $(\Omega, \mu)$ and for each $a \in I_{A}$ Alice has a function

$$
f_{a}: \Omega \rightarrow O_{A}
$$

such that

$$
\mu\left(\left\{\omega \in \Omega: f_{a}(\omega)=x\right\}\right)
$$

is the probability that Alice produces $x$, given that she received $a$.

## correlations

Similarly, for each $b \in O_{B}$ Bob has a function

$$
g_{b}: \Omega \rightarrow O_{B}
$$

such that

$$
\mu\left(\left\{\omega \in \Omega: g_{\mathrm{b}}(\omega)=y\right\}\right)
$$

is the probability that Bob produces $y$, given that he received $b$.

## correlations

We set

$$
p(x, y \mid a, b)=\mu\left(\left\{\omega \in \Omega: f_{a}(\omega)=x, g_{b}(\omega)=y\right\}\right)
$$

The set of all such $p$ is the set of local densities.
When $I_{A}=I_{B}$ and $O_{A}=O_{B}$ with $\left|I_{A}\right|=n$ and $\left|O_{A}\right|=k$ it is contained in $\mathbb{R}^{n^{2} k^{2}}$ and it is denoted by

$$
C_{l o c}(n, k) .
$$

## correlations

We have a Hillbert space $H_{A}$ with $\operatorname{dim} H_{A}<+\infty$.
For each $a \in I_{A}$ we consider a family

$$
\left\{E_{a, x}\right\}_{x \in O_{A}}
$$

such that

- $E_{a, x} \in \mathcal{B}\left(H_{A}\right) \forall x \in O_{A}$
- $E_{a, x} \geq 0 \forall x \in O_{A}$
- $\sum_{x \in O_{A}} E_{a, x}=I$.


## correlations

We have a Hilbert space $H_{B}$ with $\operatorname{dim} H_{B}<+\infty$.
For each $b \in I_{B}$ we consider a family

$$
\left\{F_{b, y}\right\}_{y \in O_{B}}
$$

such that

- $F_{b, y} \in \mathcal{B}\left(H_{B}\right) \forall x \in O_{B}$
- $F_{b, y} \geq 0 \forall y \in O_{B}$
- $\sum_{y \in O_{B}} F_{b, y}=I$.


## correlations

The strategy is as follows:
Consider a unit vector $\psi \in H_{A} \otimes H_{B}$ and the state $|\psi\rangle\langle\psi|$.
Set

$$
p(x, y, \mid a, b)=\left\langle\psi \mid\left(E_{a, x} \otimes F_{b, y}\right) \psi\right\rangle
$$

When $I_{A}=I_{B}$ and $O_{A}=O_{B}$ with $\left|I_{A}\right|=n$ and $\left|O_{A}\right|=k$ these are $n^{2} k^{2}$-tuples.
The set of all such fuples is denoted by

$$
C_{q}(n, k) .
$$

It is contained in $\mathbb{R}^{n^{2} k^{2}}$ and is called the set of quantum densities.

## correlations

## Remark

$$
C_{l o c}(n, k) \subseteq C_{q}(n, k)
$$

## Remark

There are games that have perfect q strategies but not local perfect strategies.

## correlations

There is a universal state space $H$, two families of operators
$\left\{E_{a, x}\right\}_{x \in O_{A}},\left\{F_{b, y}\right\}_{y \in O_{B}}$ such that

- $E_{a, x} \in \mathcal{B}(H) \forall x \in O_{A}$
- $E_{a, x} \geq 0 \forall x \in O_{A}$
- $\sum_{x \in O_{A}} E_{a, x}=1$
- $F_{b, y} \in \mathcal{B}(H) \forall y \in O_{B}$
- $F_{b, y} \geq 0 \forall y \in O_{B}$
- $\sum_{y \in O_{B}} F_{b, y}=1$
- $E_{a, x} F_{b, y}=F_{b, y} E_{a, x}, \forall a, x, b, y$.


## correlations

Take a unit vector $\psi \in H$ and consider:

$$
p(x, y \mid a, b)=\left\langle\psi \mid E_{a, x} F_{b, y} \psi\right\rangle .
$$

When $I_{A}=I_{B}$ and $O_{A}=O_{B}$ with $\left|I_{A}\right|=n$ and $\left|O_{A}\right|=k$ these are $n^{2} k^{2}$-tuples.
The set of all such fuples is denoted by

$$
C_{q c}(n, k) .
$$

It is contained in $\mathbb{R}^{n^{2} k^{2}}$ and is called the set of quantum commuting densities.

## correlations

We have

$$
C_{l o c}(n, k) \subseteq C_{q}(n, k) \subseteq C_{q s}(n, k) \subseteq C_{q c}(n, k)
$$

Here, $C_{q s}$ is defined as $C_{q}$, but we allow $\operatorname{dim} H_{A}$ and $\operatorname{dim} H_{B}$ to be infinite.
We have also that:

$$
C_{l o c}(n, k) \subsetneq C_{q}(n, k) .
$$

This follows from Bell's inequalities.

## Tsirelson's problem

Tsirelson's problem is the following: Is

$$
C_{q}(n, k)^{-}=C_{q c}(n, k)
$$

for all $n, k$ ? Here ${ }^{-}$is the closure in $\mathbb{R}^{n^{2} k^{2}}$.

## Theorem (Ozawa)

The following are equivalent:
(1) Connes' Embedding Conjecture has an affirmative answer.
(2)

$$
C_{q}(n, k)^{-}=C_{q c}(n, k)
$$

for all $n, k$.

## quantum chromatic numbers

## Definition

Let $t \in\{\operatorname{loc}, \mathrm{q}, \mathrm{qs}, \mathrm{qc}\}$. A game $G=\left\{I_{A}, I_{B}, O_{A}, O_{B}, \lambda\right\}$ has a perfect $t$-strategy if there exists $p \in C_{t}(n, k)$ s.t.
$\lambda(a, b, x, y)=0 \Rightarrow p(x, y \mid a, b)=0$.

## Definition

Given a probability density $\pi: I_{a} \times I_{B} \rightarrow[0,1]$ and $t$ as above the $t$-value of the game $G$ is

$$
w_{t}(G, \pi)=\sup \left\{\sum \pi(a, b) p(x, y \mid a, b) \lambda(a, b, x, y): p \in C_{t}(n, k)\right\}
$$

## quantum chromatic numbers

Idea:
Distinguish $C_{t}(n, k)$ by finding a game with perfect strategies for one $t$ but without perfect strategies for another $t$.

## Theorem (Slofstra, 2017)

$C_{q}(n, k)$ is not closed for $n \sim 100, k=8$.
He constructed a game with a perfect qa-strategy but no perfect $q$-strategy $\left(C_{q a}=C_{q}^{-}\right)$. The construction is based on group theoretic techniques.
Dykema-Paulsen-Prakash: $C_{q}(5,2)$ is not closed.

## quantum chromatic numbers

Consider the graph colouring game.

## Definition

For $t \in\{$ loc, q, qs, qc $\}$ we set

$$
\chi_{+}(G)=\min \left\{c \in \mathbb{N}: \exists p \in C_{t}(n, c), p \text { perfect }\right\}
$$

Since $C_{l o c} \subseteq C_{q}$, we have

$$
\chi_{l o c}(G) \geq \chi_{q}(G)
$$

## quantum chromatic numbers

## question

Calculate $\chi_{+}(G)$ for different graphs.

## Example

Tsirelson's problem has a positive answer $\Rightarrow \chi_{q a}=\chi_{q c}$.

## quantum chromatic numbers

## The Hadamard graph:

Let $N \in \mathbb{N}$. The set of vertices $V$ of the Hadamard graph $\Omega_{N}$ is the set of $N$-tuples with entries $\pm 1$ and, for $u, w \in V, u \sim w \Leftrightarrow\langle u, w\rangle=0$. That is, $d_{H}(u, w)=N / 2$. The graph $\Omega_{N}$ has $2^{N}$ vertices.

## Theorem (Frankl-Rodl, 1987)

For all large enough $n, \chi\left(\Omega_{2^{n}}\right)>2^{n}$.

## Theorem

$\chi_{\text {loc }}(G)=\chi(G)$.
Theorem (Broussard-Cleve-Tapp, 1999)
$\chi_{a}\left(\Omega_{2^{n}}\right) \leq 2^{n}$.

## quantum chromatic numbers

## Corollary

For all large enough $n, \chi\left(\Omega_{2^{n}}\right) \neq \chi_{q}\left(\Omega_{2^{n}}\right)$.

## Corollary

For all large enough $n, C_{l o c}\left(2^{N}, N\right) \subsetneq C_{q}\left(2^{N}, N\right)$, where $N=2^{n}$.
More general results were obtained by Avis-Hasegawa-Kikuchi-Sasaki (2006) and Paulsen-Todorov (2015).

## bibliography

V. Paulsen, Entanglement and nonlocality, PMATH 990/QIC 890, (Notes by S. J. Harris and S. K. Pandey) http://www.math.uwaterloo.ca/ vpaulsen/

