Entanglement, games and quantum correlations

M. Anoussis

7th Summerschool in Operator Theory Athens, July 2018

- 2 tensor products
- 3 separability and entanglement

5 correlations

- 6 quantum chromatic numbers
- bibliography

(日)

Definition

Let $\mathcal A$ be a Banach algebra. An involution on $\mathcal A$ is a map $a o a^*$ on $\mathcal A$ s.t.

•
$$(a+b)^* = a^* + b^*$$

•
$$(\lambda a)^* = \overline{\lambda} a^*$$
 , $\lambda \in \mathbb{C}$

イロン 不良 とくほど 不良 とう

Definition

A C*-algebra is a Banach algebra with an involution which satisfies

$$||a^*a|| = ||a||^2.$$

イロン 不良 とくほど 不良 とう

C*-algebras

Examples

• C(X), for X compact. $||a|| = \sup_{x \in X} |g(x)|$,

$$\|g\| = \sup_{x \in X} |g(x)|$$

$$\overline{g}(x) = \overline{g(x)}.$$

• $\mathcal{B}(H)$, for H Hilbert space $\|T\| = \sup_{x \in H, \|x\| \le 1} \|Tx\|$ $\langle Tx, y \rangle = \langle x, T^*y \rangle.$

• \mathcal{A} a closed subalgebra of $\mathcal{B}(\mathcal{H})$ s.t. $a \in \mathcal{A} \Rightarrow a^* \in \mathcal{A}$.

Theorem

Let \mathcal{A} be a C^{*}-algebra. Then \mathcal{A} is isometrically isomorphic to a closed subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

э

states

Definition

Let \mathcal{A} be a C^* -algebra. An element $a \in \mathcal{A}$ is selfadjoint if $a = a^*$.

Definition

Let \mathcal{A} be a C^* -algebra. An element $a \in \mathcal{A}$ is positive if it is selfadjoint and $\sigma(a) \subseteq \mathbb{R}^+$.

イロン 不良 とくほど 不良 とう

states

Theorem

Let \mathcal{A} be a C^* -algebra and a $\in \mathcal{A}$. The following are equivalent:

- a is positive.
- $a = b^*b$ for some $b \in \mathcal{A}$.
- If $\mathcal{A} \subseteq \mathcal{B}(H)$, $\langle ax, x \rangle \geq 0$, $\forall x \in H$.

イロト イポト イヨト イヨト

states

Definition

Let \mathcal{A} be a C^* -algebra. A linear form on \mathcal{A} is positive if $f(a^*a) \geq 0$ $\forall a \in \mathcal{A}.$

Definition

Let A be a C^* -algebra. A state is a linear form on A which is positive and satisfies f(e) = 1.

イロト 人間 とくほ とくほ とう

states

The set of states S(A) of a C^* -algebra A is a w^* -compact set of the dual of A. It is convex, hence by the Krein-Milman theorem it has extreme points.

Definition

A state is pure if it is an extreme point of S(A).

(日)

states

Examples

- C(X), for X compact. A state on C(X) is a probability measure. A pure state is a Dirac measure.
- $\mathcal{B}(H)$ for a Hilbert space H. If $\xi \in H$, $f(a) = \langle a\xi, \xi \rangle$ is a state. States of this form are called vector states.

イロン 不良 とくほど 不良 とう

states

Examples

• Let ${\mathcal D}$ be the C^* -algebra of 2 \times 2 diagonal complex matrices. A linear form on ${\mathcal D}$ is of the form

$$f\left(\left(\begin{array}{cc}a&0\\0&d\end{array}\right)\right)=xa+yd$$

for some $x, y \in \mathbb{C}$. f is a state if and only if x + y = 1 and $xa + yd \ge 0$ when $a \ge 0$ and $d \ge 0$. That is $x \ge 0$ and $y \ge 0$.

イロト 人間 とくほ とくほ とう

states

Examples

f is pure iff x = 0 or y = 0. Indeed if f = (1, 0) and $f_1 = (x_1, y_1)$, $f_2 = (x_2, y_2)$, $\alpha \in (0, 1)$ are such that

$$f = \alpha f_1 + (1 - \alpha) f_2,$$

we obtain

$$f\left(\left(\begin{array}{cc}a&0\\0&d\end{array}\right)\right)=(\alpha x_1+(1-\alpha)x_2)a+(\alpha y_1+(1-\alpha)y_2)d=a.$$

It follows that

$$\alpha y_1 + (1 - \alpha)y_2 = 0$$

which implies that $y_1 = y_2 = 0$ and $f_1 = f_2 = f$.

states

Examples

If f = (x, y), with $x \neq 0$, $y \neq 0$, then $f = xf_1 + yf_2$ where $f_1 = (1, 0)$ and $f_2 = (0, 1)$.

イロン イボン イヨン イヨン 三日

states

Examples

• Let \mathcal{A} be the C^* -algebra of 2 \times 2 complex matrices. A linear form on \mathcal{A} is of the form

$$f\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right)=xa+yb+zc+wa$$

for some $x, y, z, w \in \mathbb{C}$. Hence if $A \in \mathcal{A}$, f(A) = tr(GA) where $G = \begin{pmatrix} x & z \\ y & w \end{pmatrix}$.

イロト イヨト イヨト イヨト

э

states

Notation

Let $x, y \in H$. Define an operator $|y\rangle\langle x|$ on H by:

$$|y\rangle\langle x|(|w\rangle) = |y\rangle\langle x|w\rangle = \langle x|w\rangle|y\rangle.$$

イロト イヨト イヨト イヨト

ъ

states

Proposition

$$\bigcirc (|x\rangle\langle y|)^* = |y\rangle\langle x|.$$

$$(|x\rangle\langle y|) \circ (|z\rangle\langle w|) = \langle y|z\rangle |x\rangle\langle w|.$$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

states

Examples

 $f: A \rightarrow tr(GA)$ is a state if and only if tr G = 1 and G is positive. (G positive $\Leftrightarrow \langle x, Gx \rangle \ge 0, \forall x \in H$.)

Indeed, we have:

f is positive $\Leftrightarrow \operatorname{tr}(G|x\rangle\langle x|) \geq 0 \quad \forall x \in H$

 $\Leftrightarrow \langle x | G | x \rangle \ge 0 \ \forall x \in H \Leftrightarrow G \text{ is positive.}$

states tensor products separabilty and entanglement games

correlations quantum chromatic numbers

bibliography

states

Examples

$$G = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
$$G = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

states

Proposition

Let H be a Hilbert space with dim $H < +\infty$ and f a state on $\mathcal{B}(H)$ determined by the matrix G. Then f is pure iff G is a rank-one operator.

proof Consider

$$G = \sum_{i=1}^{\dim H} \lambda_i |\mathbf{x}_i\rangle \langle \mathbf{x}_i|$$

with $\lambda_i \geq 0$ and $\sum \lambda_i = 1$.

イロト 人間 とくほ とくほ とう

tensor products of linear spaces

Let E_1, E_2 be linear spaces over a field \mathbb{K} . Consider $E_i \hookrightarrow \mathbb{K}^{X_i}$ where X_i is some set (e.g. a basis of E_i). Set

$$\xi \otimes \eta : X_1 \times X_2 \to \mathbb{K} : (s, t) \to \xi(s)\eta(t).$$

Definition (algebraic tensor product)

 $E_1 \odot E_2 := \operatorname{span} \{ \xi \otimes \eta : \xi \in E_1, \eta \in E_2 \} \subseteq \mathbb{K}^{X_1 \times X_2}.$

Remark

$$\begin{aligned} &(x_1+x_2)\otimes y=x_1\otimes y+x_2\otimes y, x\otimes (y_1+y_2)=x\otimes y_1+x\otimes y_2,\\ &(\lambda x)\otimes y=\lambda(x\otimes y)=x\otimes (\lambda y)\,. \end{aligned}$$

tensor products of linear spaces

Let $\pi: E_1 \times E_2 \to E_1 \odot E_2$, be the map $\pi(x, y) = x \otimes y$.

Theorem (Universal property of $(E_1 \odot E_2, \otimes)$)

If F is a linear space and b : $E_1 \times E_2 \rightarrow F$ a bilinear map, then there exists a unique linear map

 $B: E_1 \odot E_2 \rightarrow F$ such that $B(x \otimes y) = b(x, y) \ \forall x \in E_1, y \in E_2.$

i.e. the following diagram commutes:

э

tensor products of Hilbert spaces

Definition

Let H_1, H_2 be Hilbert spaces. On $H_1 \odot H_2$ set

$$\langle x_1 \otimes x_2, y_1 \otimes y_2 \rangle_{hs} = \langle x_1, y_1 \rangle_1 \cdot \langle x_2, y_2 \rangle_2.$$

Define

$$H_1 \otimes H_2 := \overline{(H_1 \odot H_2, \|\cdot\|_{hs})}.$$

If $\{e_i\}_{i \in I}$ is an orthonormal basis of H_1 and $\{f_j\}_{j \in J}$ is an orthonormal basis of H_2 , then $H_1 \otimes H_2$ has $\{e_i \otimes f_j\}_{(i,j) \in I \times J}$ as orthonormal basis.

イロン 不良 とくほど 不良 とう

Remark

If dim $H_1 < +\infty$ and dim $H_2 < +\infty$, then $H_1 \odot H_2 = H_1 \otimes H_2$. Moreover if $\{e_i\}_{i \in I}$ is a basis of H_1 and $\{f_j\}_{j \in J}$ is a basis of H_2 , then $\{e_i \otimes f_j\}_{(i,j) \in I \times J}$ is a basis of $H_1 \otimes H_2$.

Example

 $\mathbb{C}^k \otimes \mathbb{C}^n = \mathbb{C}^n \otimes \mathbb{C}^k = \mathbb{C}^{nk}.$

イロト イポト イヨト イヨト 一日

operators on tensor products

If $A \in \mathcal{B}(H_1)$ and $B \in \mathcal{B}(H_2)$ we define $A \otimes B : H_1 \otimes H_2 \to H_1 \otimes H_2$. First we define $A \otimes B$ on $H_1 \odot H_2$ by:

$$(A \otimes B)(\sum_{i} x_i \otimes y_i) = \sum_{i} Ax_i \otimes By_i.$$

The operator $A \otimes B$ is well defined and we have $\|\sum_{i} Ax_i \otimes By_i\| \le \|A\| \|B\| \|\sum_{i} x_i \otimes y_i\|.$ Hence $A \otimes B$ defines a bounded operator $A \otimes B : H_1 \otimes H_2 \to H_1 \otimes H_2$ with $\|A \otimes B\| = \|A\| \|B\|.$

separability and entanglement

Consider two Hilbert spaces H_1 and H_2 . Set $H = H_1 \otimes H_2$.

Definition

A vector $\chi \in H$ is a product vector if there exist $\chi_1 \in H_1$, $\chi_2 \in H_2$ s.t.

 $\chi = \chi_1 \otimes \chi_2.$

Definition

A pure state

$$|\chi\rangle\langle\chi|$$

on $\mathcal{B}(H)$ is called pure separable if χ is a product vector.

イロト イポト イヨト イヨト

э

separabilty and entanglement

Definition

A state ρ on $\mathcal{B}(H)$ is called separable if it is a convex combination of pure separable states.

Definition

A state ρ on $\mathcal{B}(\mathcal{H})$ is called entangled if it is not separable.

Remark

There exist vectors which are not product vectors. Hence there exist entangled states: Take a unit vector $\psi \in H$ which is not a product vector. Then the state $\rho = |\psi\rangle\langle\psi|$ is entangled.

イロト イポト イヨト イヨト

э

separabilty and entanglement

Example

Take $H_1 = H_2 = \mathbb{C}^d$.

Take an orthonormal basis $\{e_i\}_{i=1}^d$ of \mathbb{C}^d . Then if

$$\chi = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} \boldsymbol{e}_i \otimes \boldsymbol{e}_i,$$

the state

 $\rho = |\chi\rangle\langle\chi|$

is entangled. A state of this form is called maximally entangled.

イロト 人間 とくほ とくほ とう

games

We consider a two-person game in which there are two players Alice

and Bob and a referee R.

Let I_A , I_B be finite input sets and O_A , O_B finite output sets.

The game has a rule:

 $\lambda: I_{A} \times I_{B} \times O_{A} \times O_{B} \rightarrow \{0, 1\}.$

Alice, Bob and the referee are aware of the rule.

イロト イヨト イヨト

states tensor products separability and entanglement games correlations quantum chromatic numbers bibliography	

games

The game begins when the referee gives Alice an element of the set I_A and Bob an element of the set I_B . Alice and Bob do not know what the other has been given.

They produce outputs $x \in O_A$, $y \in O_B$ independently. They win if $\lambda(a, b, x, y) = 1$ and they lose if $\lambda(a, b, x, y) = 0$.

Alice and Bob are allowed to collaborate to decide any strategy before the game begins. When the game begins they are not allowed to communicate.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

games

Definition

A deterministic strategy is a pair of functions (f_A, g_B)

 $egin{array}{lll} f_A: I_A &
ightarrow O_A \ g_B: I_B &
ightarrow O_B \ {
m such that} \ \lambda(a,b,f_A(a),g_B(b)) = 1. \end{array}$

If Alice and Bob have a deterministic strategy they can always win.

イロト イポト イヨト イヨト

games

Let $\pi : I_A \times I_B \rightarrow [0, 1]$ be a probability density. i.e. $\pi(a, b) \ge 0$ $\sum_{a, b} \pi(a, b) = 1.$

Definition

If $f:I_A o O_A, g:I_B o O_B$ and π is a probability density, the value of (f,g) is

$$\sum_{a,b} \pi(a,b) \lambda(a,b,f(a),g(b))$$

games

Since
$$\sum \pi(a,b) = 1$$
 and $\lambda(a,b,x,y) \in \{0,1\}$, $\sum_{a,b} \pi(a,b)\lambda(a,b,f(a),g(b)) \leq 1$

Remark

If $\pi(a, b) > 0 \ \forall a, b$, then:

$$\sum_{a,b} \pi(a,b)\lambda(a,b,f(a),g(b)) = 1 \Leftrightarrow \lambda(a,b,f(a),g(b)) = orall a,b$$

 \Leftrightarrow (f,g) is a deterministic strategy.

the graph colouring game

Definition

A graph G is a pair (V, E) where V is a set and E is a subset of the set of 2-element subsets of V.

Definition

The chromatic number of G is

$$\chi(G) = \inf\{k : G \text{ has a } k \text{ colouring}\}.$$

(日)

the graph colouring game

Example

We describe the graph colouring game. We consider a graph G = (V, E). We set $I_A = I_B = V$ and $O_A = O_B = a$ set of colours. If $u, w \in V$, we write $u \sim w$ if u and w are adjacent.

イロト イポト イヨト イヨト 二日

the graph colouring game

Example

The rule is as follows:

- If $u \sim w$, $\lambda(u, w, a, b) = 1$ if $a \neq b$ $\lambda(u, w, a, b) = 0$ if a = b.
- If $u \nsim w$ and $u \neq w$ $\lambda(u, w, a, b) = 1$
- If *u* = *w*

$$\lambda(u, u, a, b) = 1$$
 if $a = b$
 $\lambda(u, u, a, b) = 0$ if $a \neq b$.

the graph colouring game

Alice and Bob try to convince the referee that they have a colouring of the graph *G*.

If $|\mathcal{O}_{\mathcal{A}}| \geq \chi(\mathcal{G})$ there are more colours than the chromatic number.

Hence Alice and Bob can find a colouring. This gives a function

$$f = g: V o O_A = O_B$$
,

such that for each $u, w \in V$ we have:

$$\lambda(u, w, f(u), f(w)) = 1.$$

The pair (f, f) is then a deterministic strategy.

games

Definition

A probabilistic strategy is a conditional probability density p(x, y | a, b), the probability that Alice and Bob produce x and y when they receive a and b.

We have $p(x, y | a, b) \ge 0$ and $\forall a, b$

$$\sum_{(x,y)\in O_A\times O_B} (x,y|a,b) = 1$$

games

Definition

p(x, y | a, b) is a perfect strategy if

$$\lambda(a, b, x, y) = 0 \Rightarrow p(x, y | a, b) = 0.$$

Definition

Given a strategy p and a density $\pi(a, b)$, $\pi: I_A \times I_B \rightarrow [0, 1]$ the value of p is

$$\sum_{x,y,a,b} \pi(a,b)\lambda(a,b,x,y)p(x,y|a,b).$$

イロン 不良 とくほど 不良 とう

э

games

Remark

Since

$$\sum_{x,y,a,b} \pi(a,b) p(x,y|a,b) = \sum_{a,b} \pi(a,b) \left(\sum_{x,y} p(x,y|a,b) \right) =$$
$$\sum_{a,b} \pi(a,b) = 1.$$

the value of p is ≤ 1 .

ヘロア 人間 アメヨア 人間 アー

æ

games

Remark

If
$$\pi(a, b) > 0 \ \forall a, b$$

then the value of p is 1 iff p is perfect.
Since $\sum_{x,y,a,b} \pi(a, b) p(x, y | a, b) = 1$, we have:
 $\sum_{x,y,a,b} \pi(a, b) \lambda(a, b, x, y) p(x, y | a, b) = 1 \Leftrightarrow$
 $\{p(x, y | a, b) \neq 0 \Rightarrow \lambda(a, b, x, y) \neq 0\} \Leftrightarrow$
 $\{\lambda(a, b, x, y) = 0 \Rightarrow p(x, y | a, b) = 0\} \Leftrightarrow p(x, y | a, b) \text{ is perfect.}$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

games

Questions

- Decide whether there exists a perfect strategy.
- If not, find the supremum of the values, over all allowed probabilities.
- Onsider different models of ``quantum probability densities''.

state: tensor product separability and entanglemen game: correlation quantum chromatic number bibliography	
correlations	

Alice and Bob have a common probability space (Ω, μ) and for each $a \in I_A$ Alice has a function

$$f_a:\Omega o O_A$$

such that

$$\mu(\{\omega\in\Omega:f_{\sigma}(\omega)=x\})$$

is the probability that Alice produces x, given that she received a.

correlations

Similarly, for each $b \in O_B$ Bob has a function

$$g_b:\Omega
ightarrow O_B$$

such that

$$\mu(\{\omega\in\Omega:g_b(\omega)=y\})$$

is the probability that Bob produces y, given that he received b.

(日)

correlations

We set

$$p(x, y | a, b) = \mu(\{\omega \in \Omega : f_a(\omega) = x, g_b(\omega) = y\})$$

The set of all such p is the set of local densities.

When $I_A = I_B$ and $O_A = O_B$ with $|I_A| = n$ and $|O_A| = k$ it is contained in $\mathbb{R}^{n^2k^2}$ and it is denoted by

 $C_{loc}(n,k).$

イロト 人間 とくほ とくほ とう

э

correlations

We have a Hilbert space H_A with dim $H_A < +\infty$. For each $a \in I_A$ we consider a family

$${E_{a,x}}_{x\in O_A}$$

such that

- $E_{a,x} \in \mathcal{B}(H_A) \ \forall x \in O_A$
- $E_{a,x} \ge 0 \ \forall x \in O_A$

•
$$\sum_{x \in O_A} E_{a,x} = I.$$

correlations

We have a Hilbert space H_B with dim $H_B < +\infty$. For each $b \in I_B$ we consider a family

 $\{F_{b,y}\}_{y\in O_B}$

such that

- $F_{b,y} \in \mathcal{B}(H_B) \ \forall x \in O_B$
- $F_{b,y} \geq 0 \ \forall y \in O_B$

•
$$\sum_{y \in O_B} F_{b,y} = I.$$

correlations

The strategy is as follows:

Consider a unit vector $\psi \in H_A \otimes H_B$ and the state $|\psi\rangle\langle\psi|$. Set

$$p(x, y, |a, b) = \langle \psi | (E_{a,x} \otimes F_{b,y}) \psi \rangle.$$

When $I_A = I_B$ and $O_A = O_B$ with $|I_A| = n$ and $|O_A| = k$ these are n^2k^2 -tuples.

The set of all such tuples is denoted by

$$C_q(n,k).$$

It is contained in $\mathbb{R}^{n^2k^2}$ and is called the set of quantum densities.

correlations

Remark

$C_{loc}(n,k)\subseteq C_q(n,k)$

Remark

There are games that have perfect q strategies but not local perfect strategies.

イロト イヨト イヨト イヨト

э

There is a universal state space H, two families of operators $\{E_{\alpha,x}\}_{x\in O_A}, \{F_{b,y}\}_{y\in O_B}$ such that

•
$$E_{\alpha,x} \in \mathcal{B}(H) \ \forall x \in O_A$$

•
$$E_{a,x} \geq 0 \ \forall x \in O_A$$

•
$$\sum_{x \in O_A} E_{a,x} = I$$

•
$$F_{b,y} \in \mathcal{B}(H) \ \forall y \in O_B$$

• $F_{b,y} \ge 0 \ \forall y \in O_B$

•
$$\sum_{y \in O_B} F_{b,y} = I$$

•
$$E_{a,x}F_{b,y} = F_{b,y}E_{a,x}, \forall a, x, b, y.$$

日本・モート・モート

correlations

Take a unit vector $\psi \in H$ and consider:

$$p(x, y | a, b) = \langle \psi | E_{a,x} F_{b,y} \psi \rangle.$$

When $I_A = I_B$ and $O_A = O_B$ with $|I_A| = n$ and $|O_A| = k$ these are n^2k^2 -tuples.

The set of all such tuples is denoted by

$$C_{qc}(n,k).$$

It is contained in $\mathbb{R}^{n^2k^2}$ and is called the set of quantum commuting densities.

イロト イポト イヨト イヨト

correlations

We have

$$C_{loc}(n,k) \subseteq C_q(n,k) \subseteq C_{qs}(n,k) \subseteq C_{qc}(n,k).$$

Here, C_{qs} is defined as C_q , but we allow dim H_A and dim H_B to be infinite.

We have also that:

$$C_{loc}(n,k) \subsetneq C_q(n,k).$$

This follows from Bell's inequalities.

(日)

Tsirelson's problem

Tsirelson's problem is the following: Is

$$C_q(n,k)^- = C_{qc}(n,k)$$

for all n, k? Here - is the closure in $\mathbb{R}^{n^2k^2}$.

Theorem (Ozawa)

The following are equivalent:

Connes' Embedding Conjecture has an affirmative answer.

2

$$C_q(n,k)^- = C_{qc}(n,k)$$

for all n, k.

イロン 不良 とくほど 不良 と

quantum chromatic numbers

Definition

Let $t \in \{loc, q, qs, qc\}$. A game $G = \{I_A, I_B, O_A, O_B, \lambda\}$ has a perfect t-strategy if there exists $p \in C_t(n, k)$ s.t. $\lambda(a, b, x, y) = 0 \Rightarrow p(x, y | a, b) = 0.$

Definition

Given a probability density $\pi: I_a \times I_B \to [0, 1]$ and t as above the t-value of the game G is

$$w_t(G,\pi) = \sup\{\sum \pi(a,b)p(x,y|a,b)\lambda(a,b,x,y) : p \in C_t(n,k)\}.$$

(日)

quantum chromatic numbers

ldea:

Distinguish $C_t(n, k)$ by finding a game with perfect strategies for one t but without perfect strategies for another t.

Theorem (Slofstra, 2017)

 $C_q(n,k)$ is not closed for $n \sim 100$, k = 8.

He constructed a game with a perfect qa-strategy but no perfect q-strategy ($C_{qa} = C_q^-$). The construction is based on group theoretic techniques.

Dykema-Paulsen-Prakash: $C_q(5,2)$ is not closed.

イロト イヨト イヨト イヨト

quantum chromatic numbers

Consider the graph colouring game.

Definition

For $t \in \{\mathrm{loc}, \mathrm{q}, \mathrm{qs}, \mathrm{qc}\}$ we set

 $\chi_t(G) = \min\{c \in \mathbb{N} : \exists \ p \in C_t(n, c), p \ \text{perfect}\}.$

Since $C_{loc} \subseteq C_q$, we have

$$\chi_{loc}(G) \geq \chi_q(G).$$

イロト 人間 とくほ とくほ とう

quantum chromatic numbers

question

Calculate $\chi_t(G)$ for different graphs.

Example

Tsirelson's problem has a positive answer $\Rightarrow \chi_{qa} = \chi_{qc}$.

イロト 人間 とくほ とくほ とう

quantum chromatic numbers

The Hadamard graph:

Let $N \in \mathbb{N}$. The set of vertices V of the Hadamard graph Ω_N is the set of N-tuples with entries ± 1 and, for $u, w \in V$, $u \sim w \Leftrightarrow \langle u, w \rangle = 0$. That is, $d_H(u, w) = N/2$. The graph Ω_N has 2^N vertices.

Theorem (Frankl-Rodl, 1987)

For all large enough n, $\chi(\Omega_{2^n}) > 2^n$.

Theorem

$$\chi_{loc}(G) = \chi(G).$$

Theorem (Broussard-Cleve-Tapp, 1999)

 $\chi_q(\Omega_{2^n}) \leq 2^n.$

quantum chromatic numbers

Corollary

For all large enough n, $\chi(\Omega_{2^n}) \neq \chi_q(\Omega_{2^n})$.

Corollary

For all large enough n, $C_{loc}(2^N, N) \subsetneq C_q(2^N, N)$, where $N = 2^n$.

More general results were obtained by Avis-Hasegawa-Kikuchi-Sasaki (2006) and Paulsen-Todorov (2015).

bibliography

V. Paulsen, Entanglement and nonlocality, PMATH 990/QIC 890, (Notes by S. J. Harris and S. K. Pandey) http://www.math.uwaterloo.ca/ vpaulsen/

イロン 不良 とくほう 不良 とう