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C∗-algebras

Definition

Let A be a Banach algebra. An involution on A is a map a → a∗ on A
s.t.

(a + b)∗ = a∗ + b∗

(λa)∗ = λa∗, λ ∈ C
a∗∗ = a

(ab)∗ = b∗a∗
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C∗-algebras

Definition

A C∗-algebra is a Banach algebra with an involution which satisfies

‖a∗a‖ = ‖a‖2.
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C∗-algebras

Examples

C(X), for X compact.

‖g‖ = supx∈X |g(x)|,
g(x) = g(x).

B(H) , for H Hilbert space

‖T‖ = supx∈H,‖x‖≤1 ‖Tx‖
〈Tx, y〉 = 〈x, T∗y〉.
A a closed subalgebra of B(H) s.t. a ∈ A ⇒ a∗ ∈ A.
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C∗-algebras

Theorem

Let A be a C∗-algebra. Then A is isometrically isomorphic to a closed

subalgebra of B(H) for some Hilbert space H.
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states

Definition

Let A be a C∗-algebra. An element a ∈ A is selfadjoint if a = a∗.

Definition

Let A be a C∗-algebra. An element a ∈ A is positive if it is selfadjoint

and σ(a) ⊆ R+.
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states

Theorem

Let A be a C∗-algebra and a ∈ A. The following are equivalent:

a is positive.

a = b∗b for some b ∈ A.

If A ⊆ B(H), 〈ax, x〉 ≥ 0, ∀x ∈ H.
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states

Definition

Let A be a C∗-algebra. A linear form on A is positive if f(a∗a) ≥ 0

∀a ∈ A.

Definition

Let A be a C∗-algebra. A state is a linear form on A which is positive

and satisfies f(e) = 1.
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states

The set of states S(A) of a C∗-algebra A is a w∗-compact set of the

dual of A. It is convex, hence by the Krein-Milman theorem it has

extreme points.

Definition

A state is pure if it is an extreme point of S(A).
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states

Examples

C(X), for X compact. A state on C(X) is a probability measure. A

pure state is a Dirac measure.

B(H) for a Hilbert space H. If ξ ∈ H, f(a) = 〈aξ, ξ〉 is a state.

States of this form are called vector states.
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states

Examples

Let D be the C∗-algebra of 2× 2 diagonal complex matrices.

A linear form on D is of the form

f

((
a 0

0 d

))
= xa + yd

for some x, y ∈ C.

f is a state if and only if

x + y = 1 and xa + yd ≥ 0 when a ≥ 0 and d ≥ 0.

That is x ≥ 0 and y ≥ 0.
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states

Examples

f is pure iff x = 0 or y = 0.

Indeed if f = (1, 0) and f1 = (x1, y1), f2 = (x2, y2), α ∈ (0, 1) are such

that

f = αf1 + (1− α)f2,

we obtain

f

((
a 0

0 d

))
= (αx1 + (1− α)x2)a + (αy1 + (1− α)y2)d = a.

It follows that

αy1 + (1− α)y2 = 0

which implies that y1 = y2 = 0 and f1 = f2 = f .
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states

Examples

If f = (x, y), with x 6= 0, y 6= 0, then f = xf1 + yf2 where f1 = (1, 0)
and f2 = (0, 1).
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states

Examples

Let A be the C∗-algebra of 2× 2 complex matrices.

A linear form on A is of the form

f

((
a b

c d

))
= xa + yb + zc + wd

for some x, y, z,w ∈ C. Hence if A ∈ A, f(A) = tr(GA) where

G =

(
x z

y w

)
.
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states

Notation

Let x, y ∈ H.

Define an operator |y〉〈x| on H by:

|y〉〈x|(|w〉) = |y〉〈x|w〉 = 〈x|w〉|y〉.
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states

Proposition

1 (|x〉〈y|)∗ = |y〉〈x|.
2 (|x〉〈y|) ◦ (|z〉〈w|) = 〈y|z〉|x〉〈w|.
3 tr(|x〉〈y|) = 〈y|x〉.
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states

Examples

f : A→ tr(GA) is a state if and only if

tr G = 1 and G is positive. (G positive⇔ 〈x,Gx〉 ≥ 0, ∀x ∈ H.)

Indeed, we have:

f is positive⇔ tr(G|x〉〈x|) ≥ 0 ∀x ∈ H

⇔ 〈x|G|x〉 ≥ 0 ∀x ∈ H ⇔ G is positive.
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states

Examples

G =
1

2

(
1 1

1 1

)

G =
1

2

(
1 0

0 1

)
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states

Proposition

Let H be a Hilbert space with dim H < +∞ and f a state on B(H)
determined by the matrix G. Then f is pure iff G is a rank-one operator.

proof Consider

G =
dim H∑
i=1

λi |xi〉〈xi |

with λi ≥ 0 and
∑
λi = 1. �
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tensor products of linear spaces

Let E1, E2 be linear spaces over a field K. Consider Ei ↪→ KXi where Xi is

some set (e.g. a basis of Ei). Set

ξ ⊗ η : X1 × X2 → K : (s, t)→ ξ(s)η(t).

Definition (algebraic tensor product)

E1 � E2 := span{ξ ⊗ η : ξ ∈ E1, η ∈ E2} ⊆ KX1×X2 .

Remark

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2,

(λx)⊗ y = λ(x ⊗ y) = x ⊗ (λy) .
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tensor products of linear spaces

Let π : E1 × E2 → E1 � E2, be the map π(x, y) = x ⊗ y.

Theorem (Universal property of (E1 � E2,⊗))

If F is a linear space and b : E1 × E2 → F a bilinear map, then there

exists a unique linear map

B : E1 � E2 → F such that B(x ⊗ y) = b(x, y) ∀x ∈ E1, y ∈ E2.

i.e. the following diagram commutes:

E1 × E2

b //

π

��

F

E1 � E2

B

99
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tensor products of Hilbert spaces

Definition

Let H1,H2 be Hilbert spaces. On H1 � H2 set

〈x1 ⊗ x2, y1 ⊗ y2〉hs
= 〈x1, y1〉1 · 〈x2, y2〉2 .

Define

H1 ⊗ H2 := (H1 � H2, ‖·‖hs
).

If {ei}i∈I is an orthonormal basis of H1 and {fj}j∈J is an orthonormal

basis of H2, then H1 ⊗ H2 has {ei ⊗ fj}(i,j)∈I×J as orthonormal basis.
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Remark

If dim H1 < +∞ and dim H2 < +∞, then H1 � H2 = H1 ⊗ H2.

Moreover if {ei}i∈I is a basis of H1 and {fj}j∈J is a basis of H2, then

{ei ⊗ fj}(i,j)∈I×J is a basis of H1 ⊗ H2.

Example

Ck ⊗ Cn = Cn ⊗ Ck = Cnk .
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operators on tensor products

If A ∈ B(H1) and B ∈ B(H2) we define A⊗ B : H1 ⊗ H2 → H1 ⊗ H2.

First we define A⊗ B on H1 � H2 by:

(A⊗ B)(
∑

i

xi ⊗ yi) =
∑

i

Axi ⊗ Byi .

The operator A⊗ B is well defined and we have

‖
∑

i
Axi ⊗ Byi‖ ≤ ‖A‖ ‖B‖ ‖

∑
i
xi ⊗ yi‖.

Hence A⊗ B defines a bounded operator

A⊗ B : H1 ⊗ H2 → H1 ⊗ H2 with ‖A⊗ B‖ = ‖A‖ ‖B‖.
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separabilty and entanglement

Consider two Hilbert spaces H1 and H2.

Set H = H1 ⊗ H2.

Definition

A vector χ ∈ H is a product vector if there exist χ1 ∈ H1, χ2 ∈ H2 s.t.

χ = χ1 ⊗ χ2.

Definition

A pure state

|χ〉〈χ|

on B(H) is called pure separable if χ is a product vector.

M. Anoussis Entanglement, games and quantum correlations



states
tensor products

separabilty and entanglement
games

correlations
quantum chromatic numbers

bibliography

separabilty and entanglement

Definition

A state ρ on B(H) is called separable if it is a convex combination of

pure separable states.

Definition

A state ρ on B(H) is called entangled if it is not separable.

Remark

There exist vectors which are not product vectors. Hence there exist

entangled states: Take a unit vector ψ ∈ H which is not a product

vector. Then the state ρ = |ψ〉〈ψ| is entangled.
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separabilty and entanglement

Example

Take H1 = H2 = Cd .

Take an orthonormal basis {ei}d
i=1 of Cd . Then if

χ =
1√
d

d∑
i=1

ei ⊗ ei ,

the state

ρ = |χ〉〈χ|

is entangled. A state of this form is called maximally entangled.
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games

We consider a two-person game in which there are two players Alice

and Bob and a referee R.

Let IA, IB be finite input sets and OA,OB finite output sets.

The game has a rule:

λ : IA × IB × OA × OB → {0, 1}.
Alice, Bob and the referee are aware of the rule.
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games

The game begins when the referee gives Alice an element of the set IA

and Bob an element of the set IB . Alice and Bob do not know what the

other has been given.

They produce outputs x ∈ OA, y ∈ OB independently. They win if

λ(a, b, x, y) = 1 and they lose if λ(a, b, x, y) = 0.

Alice and Bob are allowed to collaborate to decide any strategy

before the game begins. When the game begins they are not allowed

to communicate.
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games

Definition

A deterministic strategy is a pair of functions (fA, gB)
fA : IA → OA

gB : IB → OB

such that

λ(a, b, fA(a), gB(b)) = 1.

If Alice and Bob have a deterministic strategy they can always win.
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games

Let π : IA × IB → [0, 1] be a probability density.

i.e.

π(a, b) ≥ 0∑
a,b π(a, b) = 1.

Definition

If f : IA → OA, g : IB → OB and π is a probability density, the value of

(f , g) is ∑
a,b

π(a, b)λ(a, b, f(a), g(b))
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games

Since
∑
π(a, b) = 1 and λ(a, b, x, y) ∈ {0, 1},∑

a,b

π(a, b)λ(a, b, f(a), g(b)) ≤ 1

Remark

If π(a, b) > 0 ∀a, b, then:

∑
a,b

π(a, b)λ(a, b, f(a), g(b)) = 1⇔ λ(a, b, f(a), g(b)) = ∀a, b

⇔ (f , g) is a deterministic strategy.
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the graph colouring game

Definition

A graph G is a pair (V , E) where V is a set and E is a subset of the set

of 2-element subsets of V .

Definition

The chromatic number of G is

χ(G) = inf{k : G has a k colouring}.
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the graph colouring game

Example

We describe the graph colouring game. We consider a graph

G = (V , E).

We set IA = IB = V and

OA = OB = a set of colours.

If u,w ∈ V , we write u ∼ w if u and w are adjacent.
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the graph colouring game

Example

The rule is as follows:

If u ∼ w ,

λ(u,w, a, b) = 1 if a 6= b

λ(u,w, a, b) = 0 if a = b.

If u � w and u 6= w

λ(u,w, a, b) = 1

If u = w

λ(u, u, a, b) = 1 if a = b

λ(u, u, a, b) = 0 if a 6= b.
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the graph colouring game

Alice and Bob try to convince the referee that they have a colouring of

the graph G.

If |OA| ≥ χ(G) there are more colours than the chromatic number.

Hence Alice and Bob can find a colouring. This gives a function

f = g : V → OA = OB ,

such that for each u,w ∈ V we have:

λ(u,w, f(u), f(w)) = 1.

The pair (f , f) is then a deterministic strategy.
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games

Definition

A probabilistic strategy is a conditional probability density p(x, y|a, b),

the probability that Alice and Bob produce x and y when they receive

a and b.

We have p(x, y|a, b) ≥ 0 and ∀a, b∑
(x,y)∈OA×OB

(x, y|a, b) = 1

M. Anoussis Entanglement, games and quantum correlations



states
tensor products

separabilty and entanglement
games

correlations
quantum chromatic numbers

bibliography

games

Definition

p(x, y|a, b) is a perfect strategy if

λ(a, b, x, y) = 0⇒ p(x, y|a, b) = 0.

Definition

Given a strategy p and a density π(a, b), π : IA × IB → [0, 1]
the value of p is ∑

x,y,a,b

π(a, b)λ(a, b, x, y)p(x, y|a, b).
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games

Remark

Since

∑
x,y,a,b

π(a, b)p(x, y|a, b) =
∑
a,b

π(a, b)

(∑
x,y

p(x, y|a, b)

)
=

∑
a,b

π(a, b) = 1.

the value of p is ≤ 1.
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games

Remark

If π(a, b) > 0 ∀a, b
then the value of p is 1 iff p is perfect.

Since
∑

x,y,a,b π(a, b)p(x, y|a, b) = 1, we have:∑
x,y,a,b

π(a, b)λ(a, b, x, y)p(x, y|a, b) = 1⇔

{p(x, y|a, b) 6= 0⇒ λ(a, b, x, y) 6= 0} ⇔

{λ(a, b, x, y) = 0⇒ p(x, y|a, b) = 0} ⇔ p(x, y|a, b) is perfect.
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games

Questions

1 Decide whether there exists a perfect strategy.

2 If not, find the supremum of the values, over all allowed

probabilities.

3 Consider different models of ‘‘quantum probability densities’’.
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correlations

Alice and Bob have a common probability space (Ω, µ) and for each

a ∈ IA Alice has a function

fa : Ω→ OA

such that

µ({ω ∈ Ω : fa(ω) = x})

is the probability that Alice produces x , given that she received a.
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correlations

Similarly, for each b ∈ OB Bob has a function

gb : Ω→ OB

such that

µ({ω ∈ Ω : gb(ω) = y})

is the probability that Bob produces y , given that he received b.
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correlations

We set

p(x, y|a, b) = µ({ω ∈ Ω : fa(ω) = x, gb(ω) = y})

The set of all such p is the set of local densities.

When IA = IB and OA = OB with |IA| = n and |OA| = k it is contained

in Rn2k2

and it is denoted by

Cloc(n, k).
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correlations

We have a Hilbert space HA with dim HA < +∞.

For each a ∈ IA we consider a family

{Ea,x}x∈OA

such that

Ea,x ∈ B(HA) ∀x ∈ OA

Ea,x ≥ 0 ∀x ∈ OA∑
x∈OA

Ea,x = I.
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correlations

We have a Hilbert space HB with dim HB < +∞.

For each b ∈ IB we consider a family

{Fb,y}y∈OB

such that

Fb,y ∈ B(HB) ∀x ∈ OB

Fb,y ≥ 0 ∀y ∈ OB∑
y∈OB

Fb,y = I.
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correlations

The strategy is as follows:

Consider a unit vector ψ ∈ HA ⊗ HB and the state |ψ〉〈ψ|.
Set

p(x, y, |a, b) = 〈ψ|(Ea,x ⊗ Fb,y)ψ〉.

When IA = IB and OA = OB with |IA| = n and |OA| = k these are

n2k2-tuples.

The set of all such tuples is denoted by

Cq(n, k).

It is contained in Rn2k2

and is called the set of quantum densities.
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correlations

Remark

Cloc(n, k) ⊆ Cq(n, k)

Remark

There are games that have perfect q strategies but not local perfect

strategies.
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correlations

There is a universal state space H, two families of operators

{Ea,x}x∈OA
, {Fb,y}y∈OB

such that

Ea,x ∈ B(H) ∀x ∈ OA

Ea,x ≥ 0 ∀x ∈ OA∑
x∈OA

Ea,x = I

Fb,y ∈ B(H) ∀y ∈ OB

Fb,y ≥ 0 ∀y ∈ OB∑
y∈OB

Fb,y = I

Ea,xFb,y = Fb,yEa,x , ∀a, x, b, y .
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correlations

Take a unit vector ψ ∈ H and consider:

p(x, y|a, b) = 〈ψ|Ea,xFb,yψ〉.

When IA = IB and OA = OB with |IA| = n and |OA| = k these are

n2k2-tuples.

The set of all such tuples is denoted by

Cqc(n, k).

It is contained in Rn2k2

and is called the set of quantum commuting

densities.
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correlations

We have

Cloc(n, k) ⊆ Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqc(n, k).

Here, Cqs is defined as Cq , but we allow dim HA and dim HB to be

infinite.

We have also that:

Cloc(n, k) ( Cq(n, k).

This follows from Bell’s inequalities.
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Tsirelson’s problem

Tsirelson’s problem is the following: Is

Cq(n, k)− = Cqc(n, k)

for all n, k? Here − is the closure in Rn2k2

.

Theorem (Ozawa)

The following are equivalent:

1 Connes’ Embedding Conjecture has an affirmative answer.

2

Cq(n, k)− = Cqc(n, k)

for all n, k.
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quantum chromatic numbers

Definition

Let t ∈ {loc, q, qs, qc}. A game G = {IA, IB,OA,OB, λ} has a perfect

t-strategy if there exists p ∈ Ct(n, k) s.t.

λ(a, b, x, y) = 0⇒ p(x, y|a, b) = 0.

Definition

Given a probability density π : Ia × IB → [0, 1] and t as above the

t-value of the game G is

wt(G, π) = sup{
∑

π(a, b)p(x, y|a, b)λ(a, b, x, y) : p ∈ Ct(n, k)}.
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Idea:

Distinguish Ct(n, k) by finding a game with perfect strategies for one t

but without perfect strategies for another t .

Theorem ( Slofstra, 2017)

Cq(n, k) is not closed for n ∼ 100, k = 8.

He constructed a game with a perfect qa-strategy but no perfect

q-strategy (Cqa = C−q ). The construction is based on group theoretic

techniques.

Dykema-Paulsen-Prakash: Cq(5, 2) is not closed.
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Consider the graph colouring game.

Definition

For t ∈ {loc, q, qs, qc} we set

χt(G) = min{c ∈ N : ∃ p ∈ Ct(n, c), p perfect}.

Since Cloc ⊆ Cq , we have

χloc(G) ≥ χq(G).
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question

Calculate χt(G) for different graphs.

Example

Tsirelson’s problem has a positive answer⇒ χqa = χqc .
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The Hadamard graph:

Let N ∈ N. The set of vertices V of the Hadamard graph ΩN is the set of

N-tuples with entries ±1 and, for u,w ∈ V , u ∼ w ⇔ 〈u,w〉 = 0. That

is, dH(u,w) = N/2. The graph ΩN has 2N vertices.

Theorem (Frankl-Rodl, 1987)

For all large enough n, χ(Ω2n) > 2n.

Theorem

χloc(G) = χ(G).

Theorem (Broussard-Cleve-Tapp, 1999)

χq(Ω2n) ≤ 2n.
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Corollary

For all large enough n, χ(Ω2n) 6= χq(Ω2n).

Corollary

For all large enough n, Cloc(2N ,N) ( Cq(2N ,N), where N = 2n.

More general results were obtained by Avis-Hasegawa-Kikuchi-Sasaki

(2006) and Paulsen-Todorov (2015).
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V. Paulsen, Entanglement and nonlocality, PMATH 990/QIC 890,

(Notes by S. J. Harris and S. K. Pandey)

http://www.math.uwaterloo.ca/ vpaulsen/
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