What is an Operator Algebra?

Aristides Katavolos

6th Summer School, Athens, 3-7 July 2017
What is an Operator Algebra?

Short answer:

It is an algebra of bounded linear operators on a Hilbert space.
What is an Operator Algebra?

Better short answer:
It is a normed algebra \((\mathcal{A}, \| \cdot \|)\)
that can be isometrically represented as an algebra
of bounded linear operators on a **Hilbert** space.

So \(\mathcal{A}\) is:
• a vector space,
• a ring,
• a normed space with \(\|ab\| \leq \|a\| \|b\|\) [usually complete].

[• Sometimes closed under weaker topologies.]

Need to consider all the (completely) isometric representations of \(\mathcal{A}\) as operators on Hilbert spaces.
Let \mathcal{H} be a Hilbert space. The algebra of all bounded linear operators $T : \mathcal{H} \to \mathcal{H}$ is denoted $\mathcal{B}(\mathcal{H})$. It is complete under the norm

$$\| T \| := \sup\{ \| Tx \| : x \in b_1(\mathcal{H}) \}$$

Additionally, it has an *involution* $T \to T^*$ defined via

$$\langle T^* x, y \rangle = \langle x, Ty \rangle \quad \text{for all } x, y \in \mathcal{H}.$$

[Theorem: There exists $T^* \in \mathcal{B}(\mathcal{H})$ satisfying this equality.] This satisfies

$$\| T^* T \| = \| T \|^2$$

the C^*-property.
The algebras $C(K), C_0(X)$

Let K be a compact Hausdorff [or metric] space.

$$C(K) := \{ f : K \to \mathbb{C} : \text{continuous} \}$$

- a vector space for pointwise operations,
- a ring for to pointwise multiplication,
- a Banach space for the supremum norm $\|f\|_\infty := \sup |f(t)|$.
- has involution $f \to \bar{f}$

which determines real functions ($f = \bar{f}$), positive functions $\bar{f}f$.

Let X be a locally compact Hausdorff [or metric] space.

$$C_0(X) := \{ f \in C(X) : \forall \varepsilon > 0 \exists K \subseteq X \text{ compact s.t. } |f|_{K^c} < \varepsilon \}$$
The algebra $C_0(X)$ can always be **faithfully represented** as an operator algebra (on some Hilbert space \mathcal{H}):

There exists an isometric $*$-morphism (a **faithful $*$-representation**) $\pi : C_0(X) \rightarrow \mathcal{B}(\mathcal{H})$:

\[
\|\pi(f)\| = \|f\|_{\infty} \\
\pi(\overline{f}) = (\pi(f))^* \\
\pi(f + \lambda g) = \pi(f) + \lambda \pi(g) \\
\pi(fg) = \pi(f) \circ \pi(g) \quad f, g \in C_0(X), \lambda \in \mathbb{C}.
\]
Abstraction: C*-algebras

Definition

• A Banach algebra \mathcal{A} is a complex algebra equipped with a complete submultiplicative norm:

$$\|ab\| \leq \|a\| \|b\|.$$

• A C*-algebra \mathcal{A} is a Banach algebra equipped with an involution\(^1\) $a \rightarrow a^*$ and a complete submultiplicative norm satisfying the C*-condition

$$\|a^*a\| = \|a\|^2 \quad \text{for all} \quad a \in \mathcal{A}.$$

\(^1\)that is, a map on \mathcal{A} such that $(a + \lambda b)^* = a^* + \overline{\lambda} b^*$, $(ab)^* = b^* a^*$, $a^{**} = a$ for all $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{C}$
A *-morphism $\phi : \mathcal{A} \to \mathcal{B}$ between C*-algebras is a linear map that preserves products and the involution.

It can be shown that morphisms are automatically contractive, and 1-1 morphisms are isometric (algebra forces topology).
Basic Examples of C*-algebras

- \mathbb{C}
- $C(K): K$ compact Hausdorff: abelian, unital.
- $C_0(X): X$ locally compact Hausdorff: abelian, nonunital (iff X non-compact).

 Commutative Gelfand-Naimark: All abelian C*-algebras can be represented as $C_0(X)$ for a unique X.

- $M_n(\mathbb{C}): A^* = \text{conjugate transpose, } \|A\| = \text{sup}\{\|Ax\|_2: x \in \ell^2(n), \|x\|_2 = 1\}$: non-abelian, unital.
- $B(\mathcal{H}):$ non-abelian, unital.

 Gelfand-Naimark: All C*-algebras can be represented as closed selfadjoint subalgebras of $B(\mathcal{H})$ for ‘suitable’ \mathcal{H}.
$A(\mathbb{D}) := \{ f \in C(\mathbb{T}) : \hat{f}(k) = 0 \text{ for all } k < 0 \}.$

A *-subalgebra of the C*-algebra $C(\mathbb{T})$ but not a

Representations on Hilbert space

- Restrict any *-representation of $C(\mathbb{T})$; for instance, multiplication operators on $L^2(\mathbb{T})$. The C*-algebra generated by this representation is abelian.

- But also, represent as operators on $\ell^2(\mathbb{Z}_+)$: $f \to [a_{ij}]$ where $a_{ij} = \hat{f}(i - j)$. The C*-algebra generated by this representation is not abelian: It contains the unilateral shift S and hence also its adjoint S^*, which do not commute.
Other Operator Algebras:

- $T_n = \{(a_{ij}) \in M_n(\mathbb{C}) : a_{ij} = 0 \text{ for } i > j\}$ (upper triangular matrices).
 A closed subalgebra of the C^*-algebra $M_n(\mathbb{C})$ but not a *-subalgebra. Here $T_n \cap T_n^* = D_n$, the diagonal matrices: a maximal abelian selfadjoint algebra (masa) in M_n.

- $M_{\infty}(\mathbb{C})$: infinite matrices with finite support.
 To define norm (and operations), consider its elements as operators acting on $\ell^2(\mathbb{N})$ with its usual basis. This is a selfadjoint algebra, but not complete. Its completion is \mathcal{K}, the set of compact operators on ℓ^2: a non-unital, non-abelian C^*-algebra.
Let G be a (countable) group (think of \mathbb{Z} or \mathbb{F}_2). The Hilbert space $\ell^2(G)$ has o.n. basis $\{\delta_s : s \in G\}$. The group G acts on $\ell^2(G)$ via

$$t \mapsto \lambda_t \in \mathcal{B}(\ell^2(G)) \quad \text{where } \lambda_t(\delta_s) = \delta_{ts}, \ s \in G$$

(or $\lambda_t(f)(s) = f(t^{-1}s), f \in \ell^2(G)$).

- The reduced C*-algebra $C^*_r(G) := \overline{\text{span}\{\lambda_s : s \in G\}}^{op}$ - closed in the norm of $\mathcal{B}(\ell^2(G))$.

Each λ_s commutes with the right repr. ρ where $\rho_t(\delta_s) = \delta_{st}$. Hence $C^*_r(G)$ commutes with every ρ_t. Can consider

- The von Neumann algebra of G

$\mathcal{L}(G) := \{X \in \mathcal{B}(\ell^2(G)) : X \rho_t = \rho_t X \forall t \in G\}$.

This is larger than $C^*_r(G)$, when $|G| = \infty$ (why?)

What about a semigroup $S \subseteq G$??
Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra \mathcal{A} is isometrically *-isomorphic to $C_0(\sigma(\mathcal{A}))$ where $\sigma(\mathcal{A})$ is the set of nonzero morphisms $\phi : \mathcal{A} \to \mathbb{C}$ which, equipped with the topology of pointwise convergence, is a locally compact Hausdorff space. The map is the Gelfand transform:

$$\mathcal{A} \to C_0(\sigma(\mathcal{A})) : a \to \hat{a} \text{ where } \hat{a}(\phi) = \phi(a), \ (\phi \in \sigma(\mathcal{A})).$$

The algebra \mathcal{A} is unital iff $\sigma(\mathcal{A})$ is compact.
In more detail:
\(\sigma(\mathcal{A}) \) is the set of all *nonzero* multiplicative linear forms (characters) \(\phi : \mathcal{A} \to \mathbb{C} \), (necessarily \(\|\phi\| \leq 1 \) and, when \(\mathcal{A} \) is unital, \(\|\phi\| = \phi(1) = 1 \)) equipped with the w*-topology: \(\phi_i \to \phi \) iff \(\phi_i(a) \to \phi(a) \) for all \(a \in \mathcal{A} \).

When \(\mathcal{A} \) is non-abelian there may be no characters (consider \(M_2(\mathbb{C}) \) or \(\mathcal{B}(\mathcal{H}) \), for example).

When \(\mathcal{A} \) is abelian there are ‘many’ characters: for each \(a \in \mathcal{A} \) there exists \(\phi \in \sigma(\mathcal{A}) \) such that \(\|a\| = |\phi(a)| \).

When \(\mathcal{A} \) is unital \(\sigma(\mathcal{A}) \) is compact and \(\mathcal{A} \) is isometrically *-isomorphic to \(C(\sigma(\mathcal{A})) \).
Spectrum and Positivity

Let a be an element of a unital C*-algebra \mathcal{A}. Its spectrum is

$$\sigma(a) := \{ \lambda \in \mathbb{C} : \lambda 1 - a \text{ not invertible in } \mathcal{A} \}.$$

This is a compact, nonempty subset of \mathbb{C}.

Definition

An element a of a C*-algebra \mathcal{A} is **positive** ($a \geq 0$) if a is selfadjoint ($a = a^*$) and $\sigma(a) \subseteq \mathbb{R}_+$. Write $\mathcal{A}_+ = \{ a \in \mathcal{A} : a \geq 0 \}$. If a, b are selfadjoint, we define $a \leq b$ by $b - a \in \mathcal{A}_+$.

Examples

In $C(X)$: $f \geq 0$ iff $f(t) \in \mathbb{R}_+$ for all $t \in X$ because $\sigma(f) = f(X)$.

In $B(H)$: $T \geq 0$ iff $\langle T \xi, \xi \rangle \geq 0$ for all $\xi \in H$.

Proposition

In a C-algebra, every positive element has a unique positive square root.*

Theorem

In any C-algebra, any element of the form \(a^*a \) is positive.*

(Obvious in \(\mathcal{B}(\mathcal{H}) \), key result for Gelfand - Naimark Theorem)
The GNS construction

Definition

A state on a C*-algebra \mathcal{A} is a positive linear map of norm 1, i.e. $\phi : \mathcal{A} \to \mathbb{C}$ linear such that $\phi(a^*a) \geq 0$ for all $a \in \mathcal{A}$ and $\|\phi\| = 1$. A state is called faithful if $\phi(a^*a) > 0$ whenever $a \neq 0$.

NB. When \mathcal{A} is unital and ϕ is positive, $\|\phi\| = \phi(1)$.

Examples

- On $\mathcal{B}(\mathcal{H})$, $\phi(T) = \langle T\xi, \xi \rangle$ for a unit vector $\xi \in \mathcal{H}$, or $\phi(T) = \sum_i \langle T\xi_i, \xi_i \rangle$ where the ξ_i are \perp and $\sum \|\xi_i\|^2 = 1$ (diagonal ‘density matrix’).
- On $C(K)$, $\phi(f) = \int f d\mu$ for a probability measure μ (in particular $\phi(f) = f(t_0)$ for $t_0 \in K$ - Dirac measure at t_0).
- For a C*-algebra \mathcal{A}, if $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a *-representation and $\xi \in \mathcal{H}$ a unit vector, $\phi(a) = \langle \pi(a)\xi, \xi \rangle$.

Conversely,
Conversely,

Theorem (Gelfand, Naimark, Segal)

For every state ϕ on a C*-algebra \mathcal{A} there is a triple $(\pi_\phi, \mathcal{H}_\phi, \xi_\phi)$ where π_ϕ is a *-representation of \mathcal{A} on \mathcal{H}_ϕ and $\xi_\phi \in \mathcal{H}_\phi$ a cyclic \(^2\) unit vector such that

$$\phi(a) = \langle \pi_\phi(a)\xi_\phi, \xi_\phi \rangle \quad \text{for all } a \in \mathcal{A}.$$

The GNS triple $(\pi_\phi, \mathcal{H}_\phi, \xi_\phi)$ is uniquely determined by this relation up to unitary equivalence.

\(^2\)i.e. $\pi_\phi(\mathcal{A})\xi_\phi$ is dense in \mathcal{H}_ϕ.
Consequence: The universal representation

Theorem (Gelfand, Naimark)

For every C-algebra \(\mathcal{A} \) there exists a \(*\)-representation \((\pi, \mathcal{H})\) which is faithful (one to one).*

Idea of proof Enough to assume \(\mathcal{A} \) unital. Let \(\mathcal{S}(\mathcal{A}) \) be the set of all states. For each \(\phi \in \mathcal{S}(\mathcal{A}) \) consider \((\pi_{\phi}, \mathcal{H}_{\phi})\) and ‘add them up’ to obtain \((\pi, \mathcal{H})\). Why is this faithful? Because

Lemma

*For each nonzero \(a \in \mathcal{A} \) there exists \(\phi \in \mathcal{S}(\mathcal{A}) \) such that \(\phi(a^*a) > 0 \).*

... and then

\[
\| \pi(a) \xi_{\phi} \|^2 = \langle \pi(a^*a) \xi_{\phi}, \xi_{\phi} \rangle = \langle \pi_{\phi}(a^*a) \xi_{\phi}, \xi_{\phi} \rangle = \phi(a^*a) > 0
\]

so \(\pi(a) \neq 0 \).
Complete positivity

For $n \in \mathbb{N}$, each $A \in \mathcal{B}(\mathcal{H}^n)$ gives $n \times n$ matrix $[a_{ij}]$ with $a_{ij} \in \mathcal{B}(\mathcal{H})$ given by

$$A \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{2n} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$

$(\xi_i \in \mathcal{H})$

The map $A \mapsto [a_{ij}] : \mathcal{B}(\mathcal{H}^n) \to M_n(\mathcal{B}(\mathcal{H}))$ is a *-isomorphism. So $M_n(\mathcal{B}(\mathcal{H}))$ is a C*-algebra with the norm of $\mathcal{B}(\mathcal{H}^n)$.

Hence if $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is any operator algebra, $M_n(\mathcal{A})$ becomes an operator algebra.

If $\phi : \mathcal{A} \to \mathcal{B}$ is a linear map between operator algebras, define

$$\phi_n : M_n(\mathcal{A}) \to M_n(\mathcal{B}) \text{ by } \phi_n([a_{ij}]) = [\phi(a_{ij})].$$

If \mathcal{A}, \mathcal{B} are C*-algebras and ϕ is *-linear, so is ϕ_n.

If ϕ is a *-morphism, so is ϕ_n.

Complete positivity

\[\phi_n : M_n(\mathcal{A}) \rightarrow M_n(\mathcal{B}) \text{ by } \phi_n([a_{ij}]) = [\phi(a_{ij})]. \]

Definition

A map \(\phi : \mathcal{A} \rightarrow \mathcal{B} \) between C*-algebras is **positive** if

\[a \geq 0 \Rightarrow \phi(a) \geq 0. \]

It does NOT follow that \(\phi_n \) is positive. Example: take \(\phi(a) = a^\dagger \) (transpose) on \(\mathcal{A} = M_2 \); clearly positive. Then

\[
A = \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}
\]

is +ive, but \(\phi_2(A) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \)

is not +ive.

Definition

A map \(\phi : \mathcal{A} \rightarrow \mathcal{B} \) between C*-algebras is **completely positive** if \(\phi_n \) is positive for all \(n \in \mathbb{N} \).
Examples of completely positive (cp) maps:
A $*$-morphism π is positive (because $\pi(a^*a) = \pi(a)^*\pi(a) \geq 0 \ \forall a$). Hence a $*$-morphism is a cp map (because π_n is a $*$-morphism).
A map $a \rightarrow V^*aV$ is a cp map. (here $A \subseteq B(H)$ and $V \in B(H,K)$).
Hence $a \rightarrow V^*\pi(a)V$ is a cp map. There are no others:

Theorem (Stinespring)

For every unital cp map ϕ from a C^-algebra A to $B(H)$ there is a triple (π, H, V) where π is a $*$-representation of A on H and $V : H \rightarrow K$ is an isometry such that*

$$\phi(a) = V^*\pi(a)V \quad \text{for all } a \in A.$$

We say the $$-rep. π is a dilation of the cp map ϕ via the embedding $V : H \rightarrow K$. [There is also a uniqueness condition.]*
In the remainder of these notes, we will sketch the proofs of the GNS construction and of Stinespring’s theorem, to emphasize the idea that Stinespring’s theorem is in essence an ‘operator-valued GNS construction’.
The GNS construction

Theorem (Gelfand, Naimark, Segal)

For every state ϕ on a C*-algebra \mathcal{A} there is a triple $(\pi_\phi, \mathcal{H}_\phi, \xi_\phi)$ where π_ϕ is a *-representation of \mathcal{A} on \mathcal{H}_ϕ and $\xi_\phi \in \mathcal{H}_\phi$ a cyclic unit vector such that

$$\phi(a) = \langle \pi_\phi(a) \xi_\phi, \xi_\phi \rangle \quad \text{for all } a \in \mathcal{A}.$$

The GNS triple $(\pi_\phi, \mathcal{H}_\phi, \xi_\phi)$ is uniquely determined by this relation up to unitary equivalence.

3i.e. $\pi_\phi(\mathcal{A}) \xi_\phi$ is dense in \mathcal{H}_ϕ.
Proof of GNS and Stinespring (Sketch)

1. Consider the linear space \mathcal{A}.

2. Define semi-scalar product $\langle a, b \rangle_\phi := \phi(b^*a)$. If $\mathcal{A} = C(X)$ then $\langle a, b \rangle_\phi = \int_X a(x)b(x)d\mu(x)$.

3. Since ϕ is positive, $\langle a, a \rangle_\phi = \phi(a^*a) \geq 0$. By Cauchy-Schwarz the set $\mathcal{N} := \{ u \in \mathcal{A} : \langle u, u \rangle_\phi = 0 \}$ is a linear space.

4. Define $\mathcal{H}_0 := \mathcal{A} / \mathcal{N}$ and complete with respect to $\| [u] \|_\phi := \sqrt{\langle [u], [u] \rangle_\phi}$ to get the Hilbert space \mathcal{H} (here $[u] = u + \mathcal{N}$).
5. \mathcal{A} acts on \mathcal{A} via $\pi_0(a)(b) = ab$.

6. Now $\pi_0(a)(\mathcal{N}) \subseteq \mathcal{N}$ so $\pi_0(a)$ induces $\pi_1(a)$ on \mathcal{H}_0.

7. Prove that $\|\pi_1(a)([u])\|_\phi \leq \|a\| \|[u]\|_\phi$.

 [For $\mathcal{A} = C(\mathcal{X})$, $\|au\|_2 \leq \|a\|_\infty \|u\|_2$.]

 Hence $\pi_1(a)$ extends to a bdd operator $\pi(a)$ on \mathcal{H}.

 Easy: $\pi : a \to \pi(a) : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a $*$-representation.

8. Set $\xi_\phi = [1_\mathcal{A}]$. Then

 \[
 \langle \pi(a)\xi_\phi, \xi_\phi \rangle_\mathcal{H} = \langle \pi(a)[1], [1] \rangle_\mathcal{H} = \langle a, 1 \rangle_\mathcal{H} = \phi(1^*a) = \phi(a). \]

 \square
Theorem (Stinespring)

For every unital cp map ϕ from a C*-algebra \mathcal{A} to $B(\mathcal{H})$ there is a triple (π, \mathcal{K}, V) where π is a *-representation of \mathcal{A} on \mathcal{K} and $V: \mathcal{H} \to \mathcal{K}$ is an isometry such that

$$\phi(a) = V^* \pi(a) V \quad \text{for all} \quad a \in \mathcal{A}.$$
1. Consider the linear space
\[\mathcal{A} \otimes \mathcal{H} = \text{span}\{a \otimes \xi : a \in \mathcal{A}, \xi \in \mathcal{H}\} \]
(see the Appendix [30]).
When \(\mathcal{H} = \mathbb{C} \) then \(\mathcal{A} \otimes \mathcal{H} \simeq \mathcal{A} \).

2. Define semi-inner product
\[\langle a \otimes \xi, b \otimes \eta \rangle_\phi := \langle \phi(b^* a)\xi, \eta \rangle_\mathcal{H} \]
(extend linearly [30]).
When \(\mathcal{H} = \mathbb{C} \) then \(\langle a, b \rangle_\phi = \phi(b^* a) \).

3. Since \(\phi \) is cp prove \(\langle \sum_n a_n \otimes \xi_n, \sum_m a_m \otimes \xi_m \rangle_\phi \geq 0 \).
By Cauchy-Schwarz the set \(\mathcal{N} := \{u \in \mathcal{A} \otimes \mathcal{H} : \langle u, u \rangle_\phi = 0\} \)
is a linear space.

4. Define \(\mathcal{K}_0 := (\mathcal{A} \otimes \mathcal{H})/\mathcal{N} \) and complete with respect to
\[\| [u] \|_\phi := \sqrt{\langle [u], [u] \rangle_\phi} \]
to get the Hilbert space \(\mathcal{K} \)
(beer \([u] = u + \mathcal{N} \)).
5. \(A \) acts on \(A \otimes \mathcal{H} \) via \(\pi_0(a)(b \otimes \xi) = ab \otimes \xi \) \((\pi_0(a)(b) = ab) \).

6. Now \(\pi_0(a)(\mathcal{N}) \subseteq \mathcal{N} \) so \(\pi_0(a) \) induces a map \(\pi_1(a) \) on \(\mathcal{K}_0 \).

7. Prove that \(\|\pi_1(a)([u])\|_{\phi} \leq \|a\| \|[u]\|_{\phi} \). Hence \(\pi_1(a) \) extends to a bdd operator \(\pi(a) \) on \(\mathcal{K} \).

 Easy: \(\pi : a \rightarrow \pi(a) : A \rightarrow \mathcal{B}(\mathcal{K}) \) is a \(*\)-representation.

8. Define \(V : \mathcal{H} \rightarrow \mathcal{K} : \xi \rightarrow \mathbf{1}_A \otimes \xi \rightarrow [\mathbf{1}_A \otimes \xi] \). \(V \) satisfies

\[
\|V\xi\|_{\phi}^2 = \langle [1 \otimes \xi], [1 \otimes \xi] \rangle_{\phi} = \langle \phi(1^*1)\xi, \xi \rangle_{\mathcal{H}} = \|\xi\|_{\mathcal{H}}^2
\]

hence is an isometry \(V : \mathcal{H} \rightarrow \mathcal{K} \) and for all \(\xi, \eta \in \mathcal{H} \),

\[
\langle V^*\pi(a)V\xi, \eta \rangle_{\mathcal{H}} = \langle \pi(a)V\xi, V\eta \rangle_{\mathcal{H}} = \langle \pi(a)[1 \otimes \xi], [1 \otimes \eta] \rangle_{\mathcal{H}}
= \langle [a \otimes \xi], [1 \otimes \eta] \rangle_{\mathcal{H}} = \langle \phi(1^*a)\xi, \eta \rangle_{\mathcal{H}}
\]

so \(V^*\pi(a)V = \phi(a) \). \(\square \)
The (algebraic) tensor product

Consider the linear space \mathcal{A} as a space of complex-valued functions on a set S and the linear space \mathcal{H} as a space of complex-valued functions on a set T.

If $a \in \mathcal{A}$ and $\xi \in \mathcal{H}$ define $a \otimes \xi : S \times T \to \mathbb{C}$ by
\[(a \otimes \xi)(s, t) := a(s)\xi(t).\]

The (algebraic) tensor product $\mathcal{A} \otimes \mathcal{H}$ is defined to be the linear span of such functions; it consists of all functions $u : S \times T \to \mathbb{C}$ of the form $u(s, t) = \sum_{i=1}^{n} a_i(s)\xi_i(t)$, where $a_i \in \mathcal{A}$ and $\xi_i \in \mathcal{H}$.

Thus the semi-inner product $\langle \cdot, \cdot \rangle_\phi$ is defined on $\mathcal{A} \otimes \mathcal{H}$ by
\[
\left\langle \sum_{i=1}^{n} a_i \otimes \xi_i, \sum_{i=1}^{n} b_i \otimes \eta_i \right\rangle_\phi := \sum_{i,j=1}^{n} \langle \phi(b^*_j a_i)\xi_i, \eta_j \rangle_{\mathcal{H}}.
\]
Kenneth R. Davidson.
C-algebras by example*, volume 6 of *Fields Institute Monographs*.
American Mathematical Society, Providence, RI, 1996.

Jacques Dixmier.
C-algebras.

Jacques Dixmier.
von Neumann algebras, volume 27 of *North-Holland Mathematical Library*.
With a preface by E. C. Lance, Translated from the second French edition by F. Jellett.
Jacques Dixmier.
Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann).

Jacques Dixmier.
Les C^*-algèbres et leurs représentations.

Peter A. Fillmore.
Notes on operator theory.
Peter A. Fillmore.
A user’s guide to operator algebras.

I. Gel’fand and M. Neumark.
On the imbedding of normed rings into the ring of operators in Hilbert space.

Richard V. Kadison and John R. Ringrose.

Richard V. Kadison and John R. Ringrose.

Richard V. Kadison and John R. Ringrose.
Gerard J. Murphy.
\textit{C*-algebras and operator theory.}

F. J. Murray and J. Von Neumann.
On rings of operators.

Vern Paulsen.
\textit{Completely bounded maps and operator algebras.}

Gert K. Pedersen.
\textit{C*-algebras and their automorphism groups,} volume 14 of \textit{London Mathematical Society Monographs.}
Academic Press Inc. [Harcourt Brace Jovanovich Publishers],
Shôichirô Sakai.
C-algebras and *W*-algebras.

M. Takesaki.

M. Takesaki.
M. Takesaki.
Theory of operator algebras. III, volume 127 of *Encyclopaedia of Mathematical Sciences.*
Operator Algebras and Non-commutative Geometry, 8.

J. von Neumann.
Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren.

N. E. Wegge-Olsen.
K-theory and C-algebras.*
A friendly approach.