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(Classical) Dynamical System (X ,φ)

X : compact Hausdorff space (compact metric space)
φ : X → X homeomorphism (more generally: continuous)

Study behaviour of φn := φ ◦φ ◦ · · · ◦φ , n ∈ N, so study action of
group Z or semigroup Z+ on X .
Can also study actions of more general (semi-) groups G on X .

Consider the C*-algebra C = C(X ) = {f : X → C : continuous}.
Transfer action from X to C by defining:

α : C → C : f → f ◦φ .

Advantage: α preserves algebraic as well as topological
structure: preserves sum, product, involution as well as norm.



C*-Dynamical System (C ,α)

C : (unital) C*-algebra (possibly non-abelian)
α : C → C *-automorphism (more generally: *-endomorphism)

Aim: To construct algebra encoding the dynamical behaviour of
(C ,α): the algebra should ‘contain’ both C and Z (or Z+) so
that the action is reflected in the algebraic/topological structure.



Construction

For each x ∈ X , the forward orbit is
O+(x) := {x ,φ(x),φ (2)(x), . . .}.

Let f ∈ C(X ) act on O+(x) to get
(f (x), f (φ(x)), f (φ (2)(x)), . . .) ∈ `∞(Z+).

This gives repr. of C = C(X ) on `2(Z+) by diagonal operators:

Let ξ = (ξ0,ξ1, . . .) ∈ `2(Z+). Define

πx(f )ξ = (f (x)ξ0,(f ◦φ)(x)ξ1,(f ◦φ
(2))(x)ξ2, . . .).

Let S be the forward shift

Sξ = (0,ξ0,ξ1,ξ2, . . .).



The generators acting on Hx := `2(Z+)

πx(f ) =


f (x) 0 0 . . . . . .

0 f (φ(x)) 0 . . . . . .

0 0 f (φ (2)(x)) . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .



S =


0 0 0 . . . . . .
1 0 0 . . . . . .
0 1 0 . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .





The semicrossed product

The operator algebra C(X )×φ Z+ is the norm closed algebra
generated by the operators
π̃(f ) :=

⊕
x∈X

πx(f ), f ∈ C(X ) and

S̃ :=
⊕

x∈X
S,

acting on the space
⊕

x∈X
Hx (where each Hx := `2(Z+)).

It is the closure of the space of ‘analytic trigonometric
polynomials’

n

∑
k=0

S̃k
π̃(fk )

in the norm of B(
⊕

x∈X
Hx).

The generators satisfy the covariance relation

π̃(f )S̃ = S̃π̃(α(f )) (f ∈ C ). (C)



Another representation

Let X be a (locally) compact Hausdorff space, φ a
homeomorphism of X , µ a φ -invariant Borel measure on X
(thus µ(φ−1(S)) = µ(S) for all S ⊆ X Borel).
Let C = C0(X ) and α(f ) = f ◦φ .
Represent C on H = L2(X ,µ) as multiplication operators:

ρ(f )ξ = f ξ (f ∈ C , ξ ∈ H).

Represent Z on H by composition: 1

Uξ = ξ ◦φ
−1

The covariance relation: ρ(f )U = Uρ(α(f )).
If µ(S)> 0 for every nonempty open set S ⊆ X then the closed
algebra generated by {ρ(f ) : f ∈ C } and U in B(L2(X ,µ) is
(completely isometrically) isomorphic to C(X )×φ Z+.

1The fact that U is unitary follows from the fact that µ is φ -invariant.



The classification problem for C0(X )×φ Z+

When are two semicrossed products
C0(X )×φ Z+ and C0(Y )×ψ Z+ isomorphic as algebras?

A sufficient condition: Assume that φ and ψ are topologically
conjugate, i.e., there exists a homeomorphism

γ : X → Y

so that

X

X

Y

Y

φ

γ

γ

ψ

Then the semicrossed products C0(X )×φ Z+ and
C0(Y )×ψ Z+ are isomorphic as algebras.



The classification problem for C0(X )×φ Z+

Necessity, under the following assumptions:

Arveson and Josephson (1969): X ,Y locally compact; φ ,ψ
homeomorphisms; periodic points of φ (and ψ) form null
set for some invariant ergodic separable non-atomic
measure of full support.
Peters (1985): X ,Y compact, φ ,ψ continuous, no periodic
points.
Hadwin and Hoover (1988): X ,Y compact, the set

{x ∈ X | φ(x) 6= x ,φ (2)(x) = φ(x)}

has empty interior.
Power (1992): X ,Y locally compact, φ ,ψ
homeomorphisms.



The classification problem for C0(X )×φ Z+

Davidson - Katsoulis, 2008 Let X ,Y be locally compact
Hausdorff spaces and let φ ,ψ be proper continuous maps on X
and Y respectively. Then the dynamical systems (X ,φ) and
(Y ,ψ) are conjugate if and only if the semicrossed products
C0(X )×φ Z+ and C0(Y )×ψ Z+ are isomorphic as algebras.

(φ proper: K ⊆ X compact⇒φ−1(K )⊆ X compact)



Semisimplicity and recurrence

A point x ∈ X is recurrent for the dynamical system (X ,φ) if for
every neighbourhood V of x , there is n ≥ 1 so that φn(x) ∈ V .
Equivalently, for X metric space, if there is a sequence nk → ∞

so that φnk (x)→ x . Let Xr denote the recurrent points of (X ,φ).
If X is compact, recurrent points exist (∼ Poincaré).

Aim To show: Xr is dense in X iff A := C0(X )×φ Z+ is
semisimple (i.e. RadA = {0}).



The radical

Let A be a unital Banach algebra. The Jacobson Radical of A
is defined by

RadA = {q ∈A : σ(aq) = 0 for all a ∈A }.

RadA = {q ∈A : aq is quasinilpotent for all a ∈A }

where x ∈A is called quasinilpotent if lim‖xn‖1/n = 0.

Example In Mn the radical is {0}.
In Tn (= upper triangular matrices), the radical is large: all
strictly upper triangular matrices (so Tn/Rad(Tn) is
commutative).
If A is a C*-algebra, then RadA = {0}.



‘Fourier’ coefficients

Let A = C ×α Z+ and A0 = {
n
∑

k=0
S̃k π̃(fk ) : fk ∈ C ,n ∈ Z+}:

analytic trig. polys. (Write (π,S) for (π̃, S̃).)

Every a ∈A has a ‘formal Fourier series’

a∼∑SnEn(a)

where each En(a) is in π(C ), found as follows:

On A0, define, for t ∈ R, θt(∑Sn
π(fn)) = ∑(eitS)n

π(fn) .

Observe that
1

2π

∫
π

−π

θt(∑Sn
π(fn))e−iktdt = Sk

π(fk ) and θt

extends (!) to A , so for each a ∈A may recover

SkEk (a) =
1

2π

∫
π

−π

θt(a)e−iktdt .



‘Fourier’ coefficients and the radical

Moreover, ‘Féjer’s Theorem’ holds: if σn(a) is the average of the
first n terms of the ‘Fourier’ series, then ‖σn(a)−a‖→ 0.
(Proof: as in classical case!)

Proposition Let A = C ×α Z+. An element a ∈A is in the
radical of A iff S̃nEn(a) ∈ RadA for all n ≥ 0. In particular all
elements of the radical satisfy E0(a) = 0.

Strategy for locating RadA :
(a) Recurrent points give monomials outside the radical.
(b) Wandering points give monomials in the radical.



(b) Wandering sets give elements of the radical

An open set V ⊆ X is φ -wandering if V ,φ−1(V ),φ−2(V ), . . . are
pairwise disjoint.
Suppose f lives in a wandering V . Then Snπ(f ) ∈ RadA if
n 6= 0. Indeed, ∀ Sk π(g),

(Sn
π(f ))(Sk

π(g))(Sn
π(f )) = S2n+k

π((f ◦φ
k+n)(g ◦φ

n)f ) = 0

hence (Snπ(f )a)2 = 0 for all a ∈A , hence Snπ(f ) ∈ RadA .
(P. Muhly, proof: M. Anoussis)



(a) Recurrent points give elements outside the radical

Claim: If Snπ(f ) ∈ RadA then f (x) = 0 for every recurrent
x ∈ X .

Idea: If f (x) 6= 0, multiply Snπ(f ) by suitable (convergent) series
∑k Smk π(g)

2k to obtain an element

a = ∑
k

Snk
π(hf )

2k

with nonzero spectral radius. To choose the nk appropriately:
Estimate ‖am‖ from below by norms of products of the form

p1 = Sn1π(hf ), p2 = p1

(
Sn2

π(hf )
2

)
p1, . . . .

The exponents that appear in simplifying this have the structure
n1,n1 +n2,2n1 +n2, . . . and one needs a combinatorial /
topological lemma showing that (hf )◦φ s is large enough for all
such exponents s.



Recurrence and semisimplicity

Theorem (Donsig, K., Manoussos)
Assume that X is a metric space. Then A := C0(X )×α Z+ is
semisimple iff the φ -recurrent points are dense in X.

Proof. If Xr = X then by (a) there are no monomials in RadA
(their coefficients would vanish on Xr ) ; hence (Féjer)
RadA = {0}.

If RadA = {0}, there can be no wandering open sets by (b); but
in l.c. metric spaces, this implies that the recurrent points must
be dense. �



The radical

Theorem (Donsig, K., Manoussos)
RadA is the ideal generated by all monomials Snπ(f ) where
n > 0 and f vanishes on the recurrent points of X .

So a∼∑SnEn(a) is in RadA iff
E0(a) = 0 and En(a) = π(fn) where fn(x) = 0 for all recurrent
x ∈ X .


