Dynamical systems and (semi)-crossed products Athens, July 2016

Aristides Katavolos

X:compact Hausdorff space (compact metric space) $\phi: X \rightarrow X$ homeomorphism (more generally: continuous)

Study behaviour of $\phi^n := \phi \circ \phi \circ \cdots \circ \phi$, $n \in \mathbb{N}$, so study action of group \mathbb{Z} or semigroup \mathbb{Z}_+ on X.

Can also study actions of more general (semi-) groups G on X.

Consider the C*-algebra $\mathscr{C} = C(X) = \{f : X \to \mathbb{C} : \text{continuous}\}.$ Transfer action from *X* to \mathscr{C} by defining:

$$\alpha:\mathscr{C}\to\mathscr{C}:f\to f\circ\phi.$$

Advantage: α preserves algebraic as well as topological structure: preserves sum, product, involution as well as norm.

 $\begin{aligned} & \mathscr{C}: \qquad (\text{unital}) \ \mathsf{C}^*\text{-algebra (possibly non-abelian)} \\ & \alpha: \mathscr{C} \to \mathscr{C} \quad \text{``automorphism (more generally: ``-endomorphism)} \end{aligned}$

Aim: To construct algebra encoding the dynamical behaviour of (\mathscr{C}, α) : the algebra should 'contain' both \mathscr{C} and \mathbb{Z} (or \mathbb{Z}_+) so that the action is reflected in the algebraic/topological structure.

Construction

For each $x \in X$, the forward orbit is $\mathscr{O}_+(x) := \{x, \phi(x), \phi^{(2)}(x), \dots\}.$

Let
$$f \in C(X)$$
 act on $\mathscr{O}_+(x)$ to get $(f(x), f(\phi(x)), f(\phi^{(2)}(x)), \dots) \in \ell^{\infty}(\mathbb{Z}_+).$

This gives repr. of $\mathscr{C} = C(X)$ on $\ell^2(\mathbb{Z}_+)$ by diagonal operators:

Let
$$\xi = (\xi_0, \xi_1, \dots) \in \ell^2(\mathbb{Z}_+)$$
. Define

$$\pi_{x}(f)\xi = (f(x)\xi_{0}, (f \circ \phi)(x)\xi_{1}, (f \circ \phi^{(2)})(x)\xi_{2}, \dots).$$

Let S be the forward shift

$$S\xi = (0, \xi_0, \xi_1, \xi_2, \dots).$$

The generators acting on $H_X := \ell^2(\mathbb{Z}_+)$

The semicrossed product

The operator algebra $C(X) \times_{\phi} \mathbb{Z}^+$ is the norm closed algebra generated by the operators $\tilde{\pi}(f) := \bigoplus_{x \in X} \pi_x(f), f \in C(X)$ and $\tilde{S} := \bigoplus_{x \in X} S$, acting on the space $\bigoplus_{x \in X} H_x$ (where each $H_x := \ell^2(\mathbb{Z}_+)$).

It is the closure of the space of 'analytic trigonometric polynomials'

$$\sum_{k=0}^{n} \tilde{S}^k \tilde{\pi}(f_k)$$

in the norm of $\mathscr{B}(\bigoplus_{x\in X} H_x)$.

The generators satisfy the covariance relation

$$ilde{\pi}(f) ilde{S} = ilde{S} ilde{\pi}(lpha(f)) \qquad (f\in\mathscr{C}).$$
 (C)

Another representation

Let *X* be a (locally) compact Hausdorff space, ϕ a homeomorphism of *X*, μ a ϕ -invariant Borel measure on *X* (thus $\mu(\phi^{-1}(S)) = \mu(S)$ for all $S \subseteq X$ Borel). Let $\mathscr{C} = C_0(X)$ and $\alpha(f) = f \circ \phi$. Represent \mathscr{C} on $H = L^2(X, \mu)$ as multiplication operators:

 $ho(f)\xi = f\xi$ $(f \in \mathscr{C}, \, \xi \in H).$

Represent \mathbb{Z} on *H* by composition: ¹

$$U\xi = \xi \circ \phi^{-1}$$

The covariance relation: $\rho(f)U = U\rho(\alpha(f))$.

If $\mu(S) > 0$ for every nonempty open set $S \subseteq X$ then the closed algebra generated by $\{\rho(f) : f \in \mathscr{C}\}$ and U in $\mathscr{B}(L^2(X,\mu)$ is (completely isometrically) isomorphic to $C(X) \times_{\phi} \mathbb{Z}^+$.

¹The fact that *U* is unitary follows from the fact that μ is ϕ -invariant.

The classification problem for $C_0(X) \times_{\phi} \mathbb{Z}^+$

When are two semicrossed products $C_0(X) \times_{\phi} \mathbb{Z}^+$ and $C_0(Y) \times_{\psi} \mathbb{Z}^+$ isomorphic as algebras?

A sufficient condition: Assume that ϕ and ψ are topologically conjugate, i.e., there exists a homeomorphism

$$\gamma: X \to Y$$

so that

Then the semicrossed products $C_0(X) \times_{\phi} \mathbb{Z}^+$ and $C_0(Y) \times_{\psi} \mathbb{Z}^+$ are isomorphic as algebras.

The classification problem for $C_0(X) \times_{\phi} \mathbb{Z}^+$

Necessity, under the following assumptions:

- Arveson and Josephson (1969): X, Y locally compact; φ, ψ homeomorphisms; periodic points of φ (and ψ) form null set for some invariant ergodic separable non-atomic measure of full support.
- Peters (1985): X, Y compact, φ, ψ continuous, no periodic points.
- Hadwin and Hoover (1988): X, Y compact, the set

$$\{x \in X \mid \phi(x) \neq x, \phi^{(2)}(x) = \phi(x)\}$$

has empty interior.

Power (1992): X, Y locally compact, φ, ψ homeomorphisms.

The classification problem for $C_0(X) \times_{\phi} \mathbb{Z}^+$

Davidson - Katsoulis, 2008 Let *X*, *Y* be locally compact Hausdorff spaces and let ϕ, ψ be proper continuous maps on *X* and *Y* respectively. Then the dynamical systems (X, ϕ) and (Y, ψ) are conjugate if and only if the semicrossed products $C_0(X) \times_{\phi} \mathbb{Z}^+$ and $C_0(Y) \times_{\psi} \mathbb{Z}^+$ are isomorphic as algebras.

(ϕ proper: $K \subseteq X$ compact $\Rightarrow \phi^{-1}(K) \subseteq X$ compact)

A point $x \in X$ is recurrent for the dynamical system (X, ϕ) if for every neighbourhood V of x, there is $n \ge 1$ so that $\phi^n(x) \in V$. Equivalently, for X metric space, if there is a sequence $n_k \to \infty$ so that $\phi^{n_k}(x) \to x$. Let X_r denote the recurrent points of (X, ϕ) . If X is compact, recurrent points exist (~ Poincaré).

Aim To show: X_r is dense in X iff $\mathscr{A} := C_0(X) \times_{\phi} \mathbb{Z}^+$ is semisimple (i.e. Rad $\mathscr{A} = \{0\}$).

Let \mathscr{A} be a unital Banach algebra. The Jacobson Radical of \mathscr{A} is defined by

Rad
$$\mathscr{A} = \{q \in \mathscr{A} : \sigma(aq) = 0 \text{ for all } a \in \mathscr{A}\}.$$

 $\operatorname{Rad} \mathscr{A} = \{q \in \mathscr{A} : aq \text{ is quasinilpotent for all } a \in \mathscr{A}\}$

where $x \in \mathscr{A}$ is called quasinilpotent if $\lim ||x^n||^{1/n} = 0$.

Example In M_n the radical is $\{0\}$.

In T_n (= upper triangular matrices), the radical is large: all strictly upper triangular matrices (so $T_n/\text{Rad}(T_n)$ is commutative).

If \mathscr{A} is a C*-algebra, then $\operatorname{Rad} \mathscr{A} = \{0\}$.

'Fourier' coefficients

Let $\mathscr{A} = \mathscr{C} \times_{\alpha} \mathbb{Z}^+$ and $\mathscr{A}_0 = \{\sum_{k=0}^n \tilde{S}^k \tilde{\pi}(f_k) : f_k \in \mathscr{C}, n \in \mathbb{Z}_+\}$: analytic trig. polys. (Write (π, S) for $(\tilde{\pi}, \tilde{S})$.) Every $a \in \mathscr{A}$ has a 'formal Fourier series'

$$a \sim \sum S^n E_n(a)$$

where each $E_n(a)$ is in $\pi(\mathscr{C})$, found as follows:

On \mathscr{A}_0 , define, for $t \in \mathbb{R}$, $\theta_t(\sum S^n \pi(f_n)) = \sum (e^{it}S)^n \pi(f_n)$. Observe that $\frac{1}{2\pi} \int_{-\pi}^{\pi} \theta_t(\sum S^n \pi(f_n)) e^{-ikt} dt = S^k \pi(f_k)$ and θ_t extends (!) to \mathscr{A} , so for each $a \in \mathscr{A}$ may recover $S^k E_k(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \theta_t(a) e^{-ikt} dt$. Moreover, 'Féjer's Theorem' holds: if $\sigma_n(a)$ is the average of the first n terms of the 'Fourier' series, then $\|\sigma_n(a) - a\| \to 0$. (Proof: as in classical case!)

Proposition Let $\mathscr{A} = \mathscr{C} \times_{\alpha} \mathbb{Z}^+$. An element $a \in \mathscr{A}$ is in the radical of \mathscr{A} iff $\tilde{S}^n E_n(a) \in \operatorname{Rad} \mathscr{A}$ for all $n \ge 0$. In particular all elements of the radical satisfy $E_0(a) = 0$.

Strategy for locating Rad *A*:

- (a) Recurrent points give monomials outside the radical.
- (b) Wandering points give monomials in the radical.

An open set $V \subseteq X$ is ϕ -wandering if $V, \phi^{-1}(V), \phi^{-2}(V), \ldots$ are pairwise disjoint.

Suppose *f* lives in a wandering *V*. Then $S^n \pi(f) \in \text{Rad} \mathscr{A}$ if $n \neq 0$. Indeed, $\forall S^k \pi(g)$,

$$(S^{n}\pi(f))(S^{k}\pi(g))(S^{n}\pi(f)) = S^{2n+k}\pi((f \circ \phi^{k+n})(g \circ \phi^{n})f) = 0$$

hence $(S^n \pi(f)a)^2 = 0$ for all $a \in \mathscr{A}$, hence $S^n \pi(f) \in \operatorname{Rad}\mathscr{A}$. (P. Muhly, proof: M. Anoussis)

(a) Recurrent points give elements outside the radical

Claim: If $S^n \pi(f) \in \operatorname{Rad} \mathscr{A}$ then f(x) = 0 for every recurrent $x \in X$.

Idea: If $f(x) \neq 0$, multiply $S^n \pi(f)$ by suitable (convergent) series $\sum_k S^{m_k} \frac{\pi(g)}{2^k}$ to obtain an element

$$a = \sum_k S^{n_k} \frac{\pi(hf)}{2^k}$$

with nonzero spectral radius. To choose the n_k appropriately: Estimate $||a^m||$ from below by norms of products of the form

$$p_1 = S^{n_1} \pi(hf), \ p_2 = p_1 \left(S^{n_2} \frac{\pi(hf)}{2}\right) p_1, \dots$$

The exponents that appear in simplifying this have the structure $n_1, n_1 + n_2, 2n_1 + n_2, ...$ and one needs a combinatorial / topological lemma showing that $(hf) \circ \phi^s$ is large enough for all such exponents *s*.

Theorem (Donsig, K., Manoussos)

Assume that X is a metric space. Then $\mathscr{A} := C_0(X) \times_{\alpha} \mathbb{Z}^+$ is semisimple iff the ϕ -recurrent points are dense in X.

Proof. If $\overline{X_r} = X$ then by (a) there are no monomials in Rad \mathscr{A} (their coefficients would vanish on X_r); hence (Féjer) Rad $\mathscr{A} = \{0\}$.

If $\operatorname{Rad} \mathscr{A} = \{0\}$, there can be no wandering open sets by (b); but in l.c. metric spaces, this implies that the recurrent points must be dense. \Box

Theorem (Donsig, K., Manoussos)

Rad \mathscr{A} is the ideal generated by all monomials $S^n \pi(f)$ where n > 0 and f vanishes on the recurrent points of X.

So $a \sim \sum S^n E_n(a)$ is in Rad \mathscr{A} iff $E_0(a) = 0$ and $E_n(a) = \pi(f_n)$ where $f_n(x) = 0$ for all recurrent $x \in X$.