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(Classical) Dynamical System (X, ¢)

X: compact Hausdorff space (compact metric space)
¢ : X — X homeomorphism (more generally: continuous)

Study behaviour of " :=gpo¢o---0¢, ne N, so study action of
group Z or semigroup Z. on X.
Can also study actions of more general (semi-) groups G on X.

Consider the C*-algebra ¥ = C(X) = {f : X — C: continuous}.
Transfer action from X to ¢ by defining:

0:C—C:f—Ffod.

Advantage: a preserves algebraic as well as topological
structure: preserves sum, product, involution as well as norm.



C*-Dynamical System (¢, @)

€ : (unital) C*-algebra (possibly non-abelian)
o:% — % *-automorphism (more generally: *-endomorphism)

Aim: To construct algebra encoding the dynamical behaviour of
(¢, a): the algebra should ‘contain’ both ¢ and Z (or Z..) so
that the action is reflected in the algebraic/topological structure.



Construction

For each x € X, the forward orbit is

0 (x) = {x,0(x),6P(x),...}.

Let f € C(X) act on 0, (x) to get

(F(x), f(6(x)), (6P (x)),...) € €(Z+).

This gives repr. of € = C(X) on ¢2(Z.) by diagonal operators:
Let & = (&,&1,...) € £2(Z,). Define

mx(F)E = (F(x)&0, (Fo 9)(x)&1,(Fo 9P (x)&,...).
Let S be the forward shift

SE=1(0,80,61,82;-.-)-



The generators acting on Hy := (?(Z,)

f(x) o ... ..

0 fé(x)) O .. ..

m(f)=1 0 0 fo®(x)) ... ...
o 0o o0 ... ...
i 0 0 ... ...



The semicrossed product

The operator algebra C(X) x4 Z" is the norm closed algebra
generated by the operators
7(f):= @ nx(f), f € C(X) and

xeX

S:= P S,
xeX

acting on the space @ Hy (where each Hy := (2(Z.)).

xeX

It is the closure of the space of ‘analytic trigonometric

polynomials’
n

Y Sk#(f)

k=0
in the norm of Z( @ Hy).

xeX

The generators satisfy the covariance relation

#(f)S = S#(a(f))  (feb). (C)



Another representation

Let X be a (locally) compact Hausdorff space, ¢ a
homeomorphism of X, u a ¢-invariant Borel measure on X
(thus u(¢=1(S)) = u(S) for all S C X Borel).

Let € = Co(X) and a(f) =fo¢.

Represent ¢ on H = L2(X,u) as multiplication operators:

p(flic=15  (fe?,ScH).
Represent Z on H by composition: '
UE=Eop
The covariance relation: p(f)U = Up(a(f)).

If 1(S) > 0 for every nonempty open set S C X then the closed
algebra generated by {p(f): f€ €} and U in Z(L3(X,u) is
(completely isometrically) isomorphic to C(X) x4 Z*.

"The fact that U is unitary follows from the fact that u is ¢-invariant.



The classification problem for Co(X) x ¢ Z*

When are two semicrossed products
Co(X) x¢ Z" and Cy(Y) xy Z* isomorphic as algebras?

A sufficient condition: Assume that ¢ and y are topologically
conjugate, i.e., there exists a homeomorphism

y: X—=Y
so that
X Y Y
¢ v
X Y

Then the semicrossed products Cy(X) x4 Z* and
Co(Y) xy Z" are isomorphic as algebras.



The classification problem for Co(X) x ¢ Z*

Necessity, under the following assumptions:

m Arveson and Josephson (1969): X, Y locally compact; ¢,y
homeomorphisms; periodic points of ¢ (and y) form null
set for some invariant ergodic separable non-atomic
measure of full support.

m Peters (1985): X, Y compact, ¢,y continuous, no periodic
points.

m Hadwin and Hoover (1988): X, Y compact, the set

{xe X9 #x,6P(x) = 9(x)}

has empty interior.

m Power (1992): X, Y locally compact, ¢, v
homeomorphisms.



The classification problem for Co(X) x ¢ Z*

Davidson - Katsoulis, 2008 Let X, Y be locally compact
Hausdorff spaces and let ¢, v be proper continuous maps on X
and Y respectively. Then the dynamical systems (X, ¢) and
(Y,y) are conjugate if and only if the semicrossed products
Co(X) x¢ Z" and Cy(Y) x Z* are isomorphic as algebras.

(¢ proper: K C X compact = ¢~"(K) C X compact)



Semisimplicity and recurrence

A point x € X is recurrent for the dynamical system (X, ¢) if for
every neighbourhood V of x, there is n> 1 so that ¢"(x) € V.
Equivalently, for X metric space, if there is a sequence ny — oo
so that ¢"«(x) — x. Let X; denote the recurrent points of (X, ¢).

If X is compact, recurrent points exist (~ Poincaré).

Aim To show: X; is dense in X iff & := Co(X) x4 Z7T is
semisimple (i.e. Rad.«# = {0}).



The radical

Let & be a unital Banach algebra. The Jacobson Radical of .o/
is defined by

Rado/ ={qe «/ :o(aq)=0forallac &}.

Rad.«Z = {q € &/ : aq is quasinilpotent for all a € </}
where x € 7 is called quasinilpotent if lim ||x"||'/" = 0.

Example In M, the radical is {0}.

In T, (= upper triangular matrices), the radical is large: all
strictly upper triangular matrices (so T,/Rad(T,) is
commutative).

If o is a C*-algebra, then Rad .« = {0}.



‘Fourier’ coefficients

Let o =% xqZ" and ot = { Y. 85i(f) : f € €,n€ T }:
k=0
analytic trig. polys. (Write (x,S) for (#,5).)
Every a € o/ has a ‘formal Fourier series’
a~) S"Ep(a)
where each Ej(a) is in n(%), found as follows:
On o7, define, for t € R, 6,()_ S"n(f,)) = Y (€"S)"x(fy).

T ,
Observe that 1/ 0/} S"n(fn))e M at = S*n(f,) and 6;
extends ( ) to <, so for each a € o may recover
K — ikt
S*Ex(a =3 / at.



‘Fourier’ coefficients and the radical

Moreover, ‘Féjer’'s Theorem’ holds: if o,(a) is the average of the
first n terms of the ‘Fourier’ series, then ||on(a) — al| — 0.
(Proof: as in classical case!)

Proposition Let o7 =€ xZ*. An element ac </ is in the
radical of < iff S"En(a) € Rad </ for all n> 0. In particular all
elements of the radical satisfy Eq(a) = 0.

Strategy for locating Rad .«
(a) Recurrent points give monomials outside the radical.
(b) Wandering points give monomials in the radical.



(b) Wandering sets give elements of the radical

An open set V C X is ¢-wandering if V,¢~1(V),972(V),... are
pairwise disjoint.

Suppose f lives in a wandering V. Then S"n(f) € Rad«/ if
n#0. Indeed, V Skx(g),

(8"x(f)(S*n(9))(S"n(f)) = S*"m((fo " ")(go9™)f) =0

hence (S"x(f)a)? = 0 for all a € <7, hence S"x(f) € Rad.e .
(P. Muhly, proof: M. Anoussis)



(a) Recurrent points give elements outside the radical

Claim: If S"z(f) € Rad.« then f(x) = 0 for every recurrent
x e X.

Idea: If f(x) # 0, multiply S"z(f) by suitable (convergent) series
Yk Smk% to obtain an element

a= ; S 7r(2/7(f)

with nonzero spectral radius. To choose the ny appropriately:
Estimate ||a™|| from below by norms of products of the form

p1 = S™ n(hf), p2 = p1 <S,,27r(hf)> [T

2
The exponents that appear in simplifying this have the structure
ny,ni+no,2n + no,... and one needs a combinatorial /
topological lemma showing that (hf) o ¢° is large enough for all
such exponents s.



Recurrence and semisimplicity

Theorem (Donsig, K., Manoussos)
Assume that X is a metric space. Then o .= Co(X) xq Z" is
semisimple iff the ¢ -recurrent points are dense in X.

Proof. If X, = X then by (a) there are no monomials in Rad </
(their coefficients would vanish on X;) ; hence (Féjer)
Rad .« = {0}.

If Rad o = {0}, there can be no wandering open sets by (b); but
in l.c. metric spaces, this implies that the recurrent points must
be dense. O



The radical

Theorem (Donsig, K., Manoussos)
Rad </ is the ideal generated by all monomials S"x(f) where
n > 0 and f vanishes on the recurrent points of X.

So a~ ) S"Ej(a)is in Rad </ iff

Eo(a) =0 and Ep(a) = n(f,) where f,(x) = 0 for all recurrent
x e X.



