Operator Algebras and Ergodic Theory Fourth Summer School, Athens, July 2015

Aristides Katavolos

1904-06 Hilbert et al. (Göttingen): Integral equations, spectral theory etc.

1925-26 Quantum Mechanics: *Matrix Mechanics* (Heisenberg with Born & Jordan) vs *Wave Mechanics* (Schrödinger)

Equivalent for finitely many particles (Stone - von Neumann theorem, 1931).

Not equivalent for infinitely many particles (quantum stat. mech., quantum field theory). \rightsquigarrow Inequivalent representations of the observables and their algebraic relations.

P.A.M. Dirac, *The Principles of Quantum Mechanics* (1930) J. von Neumann, *Mathematische Grundlagen der Quantenmechanik* (1932)

Matrix Mechanics ~>> Operator Algebras

Classical mechanics: Observables are functions f: they correspond to one-dimensional arrays $[\hat{f}(n)]$.

Quantum mechanics: Observables now correspond to two-dimensional arrays $[X_{n,m}]$.

Simple harmonic oscillator \leadsto

$$[X_{n,m}] = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots \\ 1 & 0 & \sqrt{2} & 0 & \dots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & \dots \\ 0 & 0 & \sqrt{3} & 0 & \dots \end{bmatrix}$$

Two crucial points (1) Infinite matrices

(2) Unbounded matrices

(Heisenberg's Canonical Commutation Relations (CCR) cannot be represented by finite matrices or infinite bounded matrices.)

→ Represent the observables and their algebraic relations by Hilbert space operators.

→ Operator Algebras

Time evolution gives a representation of the group \mathbb{R} (reversible systems) or the semigroup \mathbb{R}_+ (irreversible systems) as acting on the algebra of observables (Heisenberg picture) or on the states of the system (Schrödinger picture).

Symmetries of the system also form a group *G* acting on the algebra or the states.

H: Hilbert space $\langle x, y \rangle$: scalar product, *H* is complete in the norm $\|\xi\| := \sqrt{\langle \xi, \xi \rangle}$. $\mathscr{B}(H) := \{T : H \to H \text{ linear, continuous}\}$ with norm $\|T\| := \sup\{\|T\xi\| : \|\xi\| = 1\}$ Involution $T \to T^*$ where $\langle T^*\xi, \eta \rangle = \langle \xi, T\eta \rangle$, all $\xi, \eta \in H$. A set $\mathscr{S} \subseteq \mathscr{B}(H)$ is selfadjoint if $\mathscr{S} = \mathscr{S}^*$ The commutant of \mathscr{S} is

$$\mathscr{S}' := \{ T \in \mathscr{B}(H) : TS = ST \ \forall S \in \mathscr{S} \}$$

Always an algebra containing $I := I_H$

The object

A von Neumann algebra \mathscr{M} (or $\mathscr{M} \curvearrowright H$) is a selfadjoint subset of $\mathscr{B}(H)$ with $\mathscr{M} = \mathscr{M}''$.

- The algebra $\mathscr{B}(H)$ for some Hilbert space H.
- The algebra M_n of all $n \times n$ complex matrices.
- The algebra D_n of $n \times n$ diagonal matrices.

• The algebra
$$\mathscr{B}(H) \oplus \mathscr{B}(H) = \left\{ \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} : A, B \in \mathscr{B}(H) \right\}.$$

 (X, μ) : a *countably separated* measure (probability) space.

 $L^{2}(X,\mu)$: the space of (equiv. classes, mod. equality μ -a.e.) of measurable functions $f: X \to \mathbb{C}$ with $||f||_{2} := (\int |f|^{2} d\mu)^{1/2} < \infty$.

 $L^{\infty}(X,\mu)$: the space of (equiv. classes, mod. equality μ -a.e.) of essentially bounded measurable functions $f: X \to \mathbb{C}$ with $\|f\|_{\infty} := \text{esssup} |f|$.

The multiplication algebra

For
$$f \in L^{\infty}(X,\mu)$$
 put $M_f : g \to fg : L^2(X,\mu) \to L^2(X,\mu)$.
Then $M_f \in \mathscr{B}(L^2(X,\mu))$ (since $||fg||_2 \le ||f||_{\infty} ||g||_2$) and in fact $||M_f|| = ||f||_{\infty}$.

Definition

$$\mathscr{M}_{\mu} = \{M_f : f \in L^{\infty}(X,\mu)\} \subseteq \mathscr{B}(L^2(X,\mu))$$

Then

$$\mathscr{M}'_{\mu} = \mathscr{M}_{\mu}.$$

Indeed if $T \in \mathscr{M}'_{\mu}$ setting f := T(1), for all $h \in L^{\infty}(X, \mu)$ we have $T(h) = TM_h(1) = M_hT(1) = hf$ and $||fh||_2 \le ||T|| ||h||_2$ so $f \in L^{\infty}(X, \mu)$ and hence $T = M_f$.

Conclusion

 $\mathscr{M}_{\mu} \curvearrowright L^{2}(X,\mu)$ is a von Neumann algebra.

The von Neumann algebra of a group

Let G be a countable (discrete) group. (Think of \mathbb{Z} or \mathbb{F}_2 .)

$$H = \ell^2(G) = \{f: G \to \mathbb{C}: \sum_{t \in G} |f(t)|^2 < \infty\}.$$

Then $\ell^2(G)$ has ON basis $\{\delta_t : t \in G\}$. For $s \in G$ define a map

$$\lambda_s: \delta_t \to \delta_{st}$$

and extend linearly. This is an ℓ^2 isometry, so extends to $\lambda_s : \ell^2(G) \to \ell^2(G)$. But it is onto because $\lambda_s \lambda_t = \lambda_{st}$ so $\lambda_s \lambda_{s^{-1}} = I$, hence unitary.

For
$$f \in \ell^2(G)$$
, $(\lambda_s f)(t) = f(s^{-1}t)$.

Definition

The von Neumann algebra generated by the set of unitaries

 $\{\lambda_t: t \in G\}$

is called the von Neumann algebra $VN(G) = \mathcal{L}(G)$ of the group.

So $T \in \mathscr{L}(G)$ iff TX = XT for all X satisfying $X\lambda_t = \lambda_t X$ for all $t \in G$.

... connects algebraic with topological property.

For $x, y \in H$ consider the lin. functional

$$\omega_{xy}:\mathscr{B}(H)\to\mathbb{C}:T\to\omega_{xy}(T):=\langle Tx,y\rangle.$$

The weak operator topology (WOT) on $\mathscr{B}(H)$: weakest making all functionals { $\omega_{xy} : x, y \in H$ } continuous.

Note any \mathscr{S}' is WOT-closed: If $T_i S = ST_i$ and $\langle T_i x, y \rangle \rightarrow \langle Tx, y \rangle$ for all x, y, then

$$\langle (ST - TS)x, y \rangle = \langle Tx, S^*y \rangle - \langle TSx, y \rangle$$
$$= \lim(\langle T_i x, S^*y \rangle - \langle T_i Sx, y \rangle)$$
$$= \lim \langle (ST_i - T_i S)x, y \rangle = 0$$

Theorem

If $\mathcal{M} \subseteq \mathcal{B}(H)$ is a selfadjoint subalgebra with unit, TFAE (i) $\mathcal{M} = \mathcal{M}''$ (ii) \mathcal{M} is WOT closed. (i) \Rightarrow (ii) is clear.

To show (ii) \Rightarrow (i): take $A \in \mathscr{M}''$ and show it is in the WOT closure of \mathscr{M} . If not, there would exist a WOT-continuous functional $\omega : \mathscr{B}(H) \rightarrow \mathbb{C}$ annihilating \mathscr{M} but not A (Hahn-Banach).

All WOT-continuous functionals are of the form $\omega = \sum_{k=1}^{n} \omega_{x_k,y_k}$. Identify $\mathscr{B}(H^n)$ with $n \times n$ matrices over $\mathscr{B}(H)$. Represent \mathscr{M} as $\mathscr{N} := \pi(\mathscr{M}) \subseteq \mathscr{B}(H^n)$, where

$$\pi(T) = \begin{bmatrix} T & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & T \end{bmatrix}$$

Verify that the commutant \mathcal{N}' of \mathcal{N} is the algebra of $n \times n$ matrices over \mathcal{M}' . Thus $\pi(A) \in \mathcal{N}''$.

Now for all $T \in \mathcal{M}$,

$$0 = \omega(T) = \sum_{k=1}^n \langle Tx_k, y_k \rangle = \langle \pi(T) \vec{x}, \vec{y} \rangle.$$

Hence $\vec{y} \perp \mathcal{N} \vec{x}$. Now $\mathcal{N} \vec{x}$ is \mathcal{N} -invariant, so the projection $\underline{P_x}$ on it is in \mathcal{N}' . But $\pi(A)P_x = P_x\pi(A)$ since $\pi(A) \in \mathcal{N}''$. So $\overline{\mathcal{N} \vec{x}}$ is $\pi(A)$ -invariant and hence (since $\vec{x} \in \mathcal{N} \vec{x}$) $\pi(A)\vec{x} \in \overline{\mathcal{N} \vec{x}}$. Therefore $\langle \pi(A)\vec{x}, \vec{y} \rangle = 0$, i.e. $\omega(A) = 0$, contrary to assumption.

Tracial von Neumann algebras

A state ϕ on a von Neumann algebra \mathscr{M} is a linear map $\phi : \mathscr{M} \to \mathbb{C}$ such that $\phi(A^*A) \ge 0$ for all $A \in \mathscr{M}$ and $\phi(I) = 1$. It is called faithful if $\phi(A^*A) > 0$ when $A \ne 0$ and normal if it is WOT-continuous on bounded subsets of \mathscr{M} . A tracial state is a state τ such that $\tau(AB) = \tau(BA)$ for all $A, B \in \mathscr{M}$.

Example

On
$$\mathcal{M}_{\mu}$$
 define $\tau(M_f) = \int_X f d\mu$ for all $f \in L^{\infty}(X, \mu)$.

Example

On
$$\mathscr{L}(G)$$
 define $\tau(A) = \langle A\delta_e, \delta_e \rangle$ for all $A \in \mathscr{L}(G)$.

Definition

A tracial von Neumann algebra (\mathcal{M}, τ) is a von Neumann algebra equipped with a faithful normal tracial state.

$$au(A) = \langle A \delta_e, \delta_e \rangle \quad ext{ for all } A \in \mathscr{L}(G).$$

It is a WOT-continuous state, it is faithful because

$$\tau(A^*A) = 0 \iff A\delta_e = 0 \iff A\delta_t = A\rho_t\delta_e = \rho_tA\delta_e = 0 \iff A = 0$$

(here $\rho_t : \delta_s \to \delta_{st}$ so it commutes with $\mathscr{L}(G)$) and it is a trace: Enough (bicommutant theorem) to check $\tau(AB) = \tau(BA)$ when $A = \lambda_s, B = \lambda_t$. This is obvious: $\langle \lambda_s \lambda_t \delta_e, \delta_e \rangle = \langle \delta_{st}, \delta_e \rangle = \delta_{st,e} = \delta_{ts,e} = \langle \lambda_t \lambda_s \delta_e, \delta_e \rangle$.

Example: $\mathscr{L}(\mathbb{Z}) \simeq \mathscr{M}_{m_1}$

Let $F : L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ be the Fourier transform. Then $\mathscr{L}(\mathbb{Z}) = F\mathscr{M}_m F^{-1}$, where \mathscr{M}_m is the multiplication algebra of $L^{\infty}(\mathbb{T})$. Thus $\tau(FM_fF^{-1}) = \int_{\mathbb{T}} fdm$ for all $f \in L^{\infty}(\mathbb{T})$.

Indeed if $\{f_k : k \in \mathbb{Z}\}$ is the o.n. basis of $L^2(\mathbb{T})$ with $f_k(e^{it}) = e^{ikt}$, then $Ff_k = \delta_k$ so $F^{-1}\lambda_n F = M_{f_n}$ for $n \in \mathbb{Z}$.

Standard form

Let (\mathscr{M}, τ) be a tracial von Neumann algebra. On \mathscr{M} , define

$$\langle a,b
angle_{ au}:= au(b^*a)$$
 and $\|a\|_2:=(au(a^*a))^{1/2}$

The completion of $(\mathcal{M}, \|\cdot\|_2)$ is called $L^2(\mathcal{M}, \tau)$ or H_{τ} . Thus \mathcal{M} embeds densely in $L^2(\mathcal{M}, \tau)$; write \hat{a} when $a \in \mathcal{M}$ is viewed as a vector in $L^2(\mathcal{M}, \tau)$.

[When \mathcal{M} is abelian, it is isomorphic to some $L^{\infty}(X,\mu)$ and $L^{2}(\mathcal{M},\tau)$ is naturally isomorphic to $L^{2}(X,\mu)$.]

Represent \mathscr{M} on H_{τ} : For $a \in \mathscr{M}$, the map $\hat{b} \to \widehat{ab}$ is $\|\cdot\|_2$ -bounded on $\widehat{\mathscr{M}}$, so extends to $\pi(a) \in \mathscr{B}(H_{\tau})$.

Proof Since $b^*(a^*a)b \le ||a^*a||b^*b$ as operators,we have $\tau(b^*(a^*a)b) \le ||a^*a||\tau(b^*b)$ so

$$\left\|\widehat{ab}\right\|_2^2 = \tau(b^*(a^*a)b) \le \|a^*a\|\tau(b^*b) = \|a\|^2 \left\|\hat{b}\right\|_2^2.$$

We have a faithful (i.e. 1-1) representation π of \mathcal{M} on H_{τ} . It is a fact that $\pi(\mathcal{M})$ is WOT-closed, hence a von Neumann algebra.

We say \mathcal{M} is in standard form on H_{τ} .

For example, \mathcal{M}_{μ} is in standard form on $L^{2}(X, \mu)$ and $\mathcal{L}(G)$ is in standard form on $\ell^{2}(G)$. But M_{n} is not in standard form on \mathbb{C}^{n} ; it is in standard form on $H_{\tau} = M_{n}$ equipped with the (normalised) Hilbert-Schmidt norm.

With $\xi := \hat{\mathbf{1}}$ we have $\tau(a) = \langle \pi(a)\xi, \xi \rangle_{\tau}$. Thus (π, H_{τ}, ξ) is the GNS triple for (\mathcal{M}, τ) .

The densely defined map $J_0 : \widehat{\mathcal{M}} \to \widehat{\mathcal{M}} : \hat{a} \to \hat{a^*}$ is antilinear and has the magical property:

$$\left\langle J_0(\hat{a}), J_0(\hat{b}) \right\rangle_{\tau} = \left\langle \hat{b}, \hat{a} \right\rangle_{\tau}$$

for all $a, b \in \mathcal{M}$. Indeed, since τ is a trace (!),

$$\left\langle J_0(\hat{a}), J_0(\hat{b}) \right\rangle_{\tau} = \left\langle \widehat{a^*}, \widehat{b^*} \right\rangle_{\tau} = \tau(ba^*) \stackrel{!}{=} \tau(a^*b) = \left\langle \hat{b}, \hat{a} \right\rangle_{\tau}.$$

Therefore J_0 is $\|\cdot\|_2$ -isometric; also obviously $J_0^2 \hat{a} = \hat{a}$ for all $a \in \mathcal{M}$, so J_0 has dense range. Hence J_0 extends to an antilinear bijection J on H_τ which satisfies

$$\langle J\eta, J\zeta \rangle = \langle \zeta, \eta \rangle$$
 for all $\eta, \zeta \in H_{\tau}$. (*)

Standard form (contd.)

In the representation π , the algebra $\pi(\mathscr{M})$ has 'the same size' as its commutant $\pi(\mathscr{M})'$:

Theorem

 $J\pi(\mathcal{M})J = \pi(\mathcal{M})'.$

Proof The trivial direction: For $a \in \mathcal{M}$, need to show $J\pi(a)J \in \pi(\mathcal{M})'$ i.e. that $J\pi(a)J\pi(b) = \pi(b)J\pi(a)J$ for all $b \in \mathcal{M}$. It suffices to verify this on the dense set $\{\hat{x} : x \in \mathcal{M}\}$. Indeed:

$$J\pi(a)J\pi(b)\hat{x} = \pi(b)J\pi(a)J\hat{x}$$

$$\iff J\pi(a)J\widehat{bx} = \pi(b)J\pi(a)\widehat{x^*}$$

$$\iff J\pi(a)\widehat{(bx)^*} = \pi(b)J\widehat{ax^*}$$

$$\iff J\pi(a)\widehat{x^*b^*} = \pi(b)\widehat{xa^*}$$

$$\iff J\widehat{ax^*b^*} = \widehat{bxa^*}$$

We have shown that $J\pi(\mathcal{M})J \subseteq \pi(\mathcal{M})'$. ¹ For the reverse inclusion, first notice that

$$JT\hat{\mathbf{1}} = T^*\hat{\mathbf{1}}$$
 for each $T \in \pi(\mathscr{M})'$.

Indeed, for all $a \in \mathcal{M}$,

and so $JT\hat{\mathbf{1}} - T^*\hat{\mathbf{1}}$ is orthogonal to a dense set.

¹ In particular it follows that $\pi(\mathscr{M})'\hat{\mathbf{1}}$ is dense in H_{τ} ; for if some $\eta \in H_{\tau}$ is orthogonal to $\pi(\mathscr{M})'\hat{\mathbf{1}}$, then for all $a \in \mathscr{M}$ we will have $\langle J\eta, \hat{a} \rangle = \langle J\eta, \pi(a)\hat{\mathbf{1}} \rangle = \langle J\eta, \pi(a)J\hat{\mathbf{1}} \rangle = \langle J\pi(a)J\hat{\mathbf{1}}, \eta \rangle = 0$ since $J\pi(a)J \in \pi(\mathscr{M})'$; thus $J\eta = 0$ hence $\eta = 0$.

Now let $T \in \pi(\mathscr{M})'$. To show that $JTJ \in \pi(\mathscr{M})$, it suffices, since $\pi(\mathscr{M})$ is a von Neumann algebra, to verify that JTJ commutes with $\pi(\mathscr{M})'$, i.e. that JTJS = SJTJ for all $S \in \pi(\mathscr{M})'$. For this, it suffices (since $\pi(\mathscr{M})'\hat{\mathbf{1}}$ is dense in H_{τ}), to prove the equality

$$JTJSR\hat{1} = SJTJR\hat{1}$$
 for all $R \in \pi(\mathscr{M})'$

We have, using the last remark repeatedly,

$$JTJSR\hat{\mathbf{1}} = JTJ(SR)\hat{\mathbf{1}} = JT(SR)^*\hat{\mathbf{1}} = (T(SR)^*)^*\hat{\mathbf{1}} = SRT^*\hat{\mathbf{1}}.$$

On the other hand,

$$SJTJR\hat{1} = SJTR^{*}\hat{1} = SJ(TR^{*})\hat{1} = SRT^{*}\hat{1}$$

which proves the equality.

Remark

When $\mathscr{M} \curvearrowright H$ has a cyclic vector $\xi_0 \in H$ such that $\langle a\xi_0, \xi_0 \rangle = \tau(a)$ for all $a \in \mathscr{M}$, then the identity representation is unitarily equivalent to the representation (π, H_{τ}) via the map

$$U: a\xi_0 \to \pi(a)\hat{\mathbf{1}} = \hat{a} \quad (a \in \mathscr{M}).$$

Recall two constructions:

• From a probability space (X, μ) we constructed the multiplication algebra $\mathcal{M}_{\mu} = \{M_f : f \in L^{\infty}(X, \mu)\}.$

• From a group *G* we constructed the group von Neumann algebra $\mathscr{L}(G)$, which is the WOT-closure of polynomials $\sum_{t \in G} c_t \lambda_t$

in the group elements (represented as operators λ_t) with scalar coefficients c_t .

We now combine the two constructions:

If a group *G* acts on some space (X, μ) , we will construct a von Neumann algebra whose elements are limits of polynomials in the group elements, but with coefficients from the multiplication algebra \mathcal{M}_{μ} . The multiplication of such polynomials is 'twisted' to take into account the action $G \curvearrowright (X, \mu)$. A measure preserving automorphism of a probability space (X,μ) is a measurable bijection $\theta: X \to X$ with measurable inverse which preserves the measure, i.e. $\mu(\theta^{-1}(E)) = \mu(E)$ for every Borel set $E \subseteq X$. Let $\operatorname{Aut}(X,\mu)$ be the group of all such automorphisms (modulo μ -null sets).

The map θ induces an automorphism of $L^{\infty}(X,\mu)$, by $f \to f \circ \theta$, preserving the integral, hence a WOT-continuous

*-automorphism $\alpha : \mathscr{M}_{\mu} \to \mathscr{M}_{\mu}$ by $\alpha(M_f) = M_{f \circ \theta}$ which preserves the trace:

 $\tau(\alpha(M_f)) = \int f \circ \theta \, d\mu = \int f d\mu = \tau(M_f)$ for all $M_f \in \mathscr{M}_{\mu}$.

Definition

A measure preserving action $G \curvearrowright (X,\mu)$ of a (countable, discrete) group G is a group homomorphism $G \rightarrow Aut(X,\mu)$.

Example (Bernoulli shift)

Consider the discrete set $\{0,1\}$ with measure $v(\{0\}) = p, v(\{1\}) = 1 - p$ and let $X = \{0,1\}^G = \{x : G \to \{0,1\}\}$ with product measure μ . Define $G \curvearrowright (X,\mu)$ by $(\theta_s x)(t) = x(s^{-1}t)$.

Start with a measure preserving action $G \curvearrowright (X, \mu)$. This induces a unitary group $\{U_s : s \in G\}$ on $L^2(X, \mu)$ given by

$$(U_{\mathcal{S}}f)(x)=f(\mathcal{S}^{-1}x).$$

The restriction of U_s to $L^{\infty}(X,\mu)$ induces a *-automorphism α_s of $\mathscr{M} := \mathscr{M}_{\mu}$ given by $\alpha_s(M_f) = M_{f \circ s^{-1}}$ (identify *G* with its image in $Aut(X,\mu)$). The pair satisfies the covariance relation

$$U_s M_f U_s^{-1} = \alpha_s(M_f)$$
 or $U_s M_f = \alpha_s(M_f) U_s$.

Construction of the crossed product (contd.)

Represent both $L^{\infty}(X,\mu)$ and G on $H := \ell^2(G, L^2(X,\mu)) = L^2(X,\mu) \otimes \ell^2(G)$. This consists of all functions $f : s \to f_s : G \to L^2(X,\mu)$ such that

$$\|f\|^2 := \sum_{s \in G} \|f_s\|_2^2 = \sum_{s \in G} \int |f_s(x)|^2 d\mu(x) < \infty.$$

Representation:

$$\pi(f) = M_f \otimes I, \ f \in L^{\infty}$$
 and $W_t = U_t \otimes \lambda_t, \ t \in G$

Define the crossed product $\mathscr{A} = L^{\infty}(\mu) \rtimes G$ by

$$\mathscr{A} = \{\pi(f), W_t : f \in L^{\infty}(\mu), t \in G\}'' = \overline{\{\sum_k \pi(f_k) W_{t_k} : f_k \in L^{\infty}, t_k \in G\}}^{wot}$$

Note: \mathscr{A} contains an isomorphic copy of \mathscr{M} , since $\pi(\mathscr{M}) \subseteq \mathscr{A}$ and also an isomorphic copy of the group: $\{W_t = U_t \otimes \lambda_t : t \in G\} \subseteq \mathscr{A}.$

Construction of the crossed product (contd.)

Write any $g \in H$ as a sum $g = \sum_{s \in G} g_s u_s$ (convergent in H) where $u_s = \mathbf{1} \otimes \delta_s$ is the function taking the values $u_s(t) = 0$ when $t \neq s$ and $u_s(s) = \mathbf{1} \in L^2(X, \mu)$. Note that

$$(\pi(f)W_s)(\mathbf{1}\otimes\delta_e)=(M_f\otimes I)(U_s\otimes\lambda_s)(\mathbf{1}\otimes\delta_e)=(M_f\otimes I)(\mathbf{1}\otimes\delta_s)=f\otimes\delta_s$$

and so a finite sum $\sum_{k} \pi(f_k) W_{t_k}$ may be identified with the function $\sum_{k} f_k \otimes \delta_{t_k} = \sum_{k} f_k u_{t_k}$ in H(actually in $c_{00}(G, L^{\infty}(X, \mu)) := \mathscr{M}[G]$). It can be shown that u_e is a separating vector for the whole crossed product \mathscr{A} , i.e. that the map $a \to au_e : \mathscr{A} \to H$ is injective. This means that every $a \in \mathscr{A}$ can be identified with the element $\hat{a} := au_e \in H$ which has a 'Fourier series'

$$\hat{a} = \sum_{s \in G} a_s u_s \quad (a_s \in L^{\infty}(X, \mu))$$

which converges in the norm of H.

Define a *-algebra structure on $\mathcal{M}[G]$ by

$$(fu_s)(gu_t) = fU_s(g)u_{st}$$
 and $(fu_s)^* = U_{s^{-1}}(\bar{f})u_{s^{-1}}$

and a tracial functional τ by

$$au(f) = \langle f u_e, u_e \rangle = \int_X f_e d\mu \quad \text{for } f = \sum_{t \in G} f_t u_t.$$

The formula for $\tau(f)$ makes sense for all $f \in \mathscr{A}$. The fact that τ is a trace follows from the fact that μ is measure preserving. Also

$$\tau(f^*f) = \sum_{t \in G} \int_X |f_t|^2 d\mu$$

so that τ is faithful. It follows that the WOT closure of $\mathscr{M}[G]$, namely $\mathscr{A} = L^{\infty}(\mu) \rtimes G$, is in standard form on H.

Measure-preserving actions: free actions, ergodic actions

Definition

A measure-preserving action $G \curvearrowright (X, \mu)$ is said to be (essentially) free if for all $s \in G$ with $s \neq e$ the set of fixed points $X_s := \{x \in X : \theta_s(x) = x\}$ is μ -null. The action $G \curvearrowright (X, \mu)$ is said to be ergodic if the action has no non-trivial (essentially) invariant sets, equivalently if the only $f \in L^{\infty}(X, \mu)$ with $\alpha_s(M_f) = M_f$ for all $s \in G$ are the (μ -a.e.) constant functions.

(For abelian groups, ergodic \Rightarrow free.)

Proposition

(i) The action is free iff $\pi(\mathscr{M})$ is maximal abelian in \mathscr{A} , i.e. iff $\pi(\mathscr{M})' \cap \mathscr{A} = \pi(\mathscr{M})$. (ii) Assume G acts freely. The action is ergodic iff \mathscr{A} is a factor, i.e. iff the centre $\mathscr{A}' \cap \mathscr{A} = \mathscr{A}$ is trivial (= $\mathbb{C}I$). To prove the last Proposition we will use:

Lemma $\theta \in Aut(X,\mu) \text{ acts freely.}$ \iff Every non-null $Y \subseteq X$ has $Z \subseteq Y$ with $\mu(Z) > 0$ such that $\theta(Z) \cap Z = \emptyset.$ \iff If $a \in L^{\infty}(X,\mu)$ satisfies $aU_{\theta}(x) = xa$ for all $x \in L^{\infty}(X,\mu)$, then a = 0.

(The latter condition can be taken as a definition for a free action when $L^{\infty}(X,\mu)$ is replaced by a non-abelian von Neumann algebra.)

Let *X* be a compact group with Haar measure μ . Let $G \subseteq X$ be a countable dense subgroup. Now $G \curvearrowright (X, \mu)$ by left multiplication. This is measure preserving (Haar measure). The action is obviously free. It is ergodic since every $f \in L^2(X, \mu)$ which is invariant under translation by all elements of *G* is also invariant under all elements of *X*, hence must be constant. For example we may take $X = \mathbb{T}$ and $G = \{e^{2\pi i n\theta} : n \in \mathbb{Z}\}$ where θ is irrational.

Also, the Bernoulli shift is free and ergodic.

Example: the irrational rotation

Consider $(X, \mu) = (\mathbb{T}, m)$ and $\theta(z) = \omega z$ where $\omega = e^{2\pi i \phi}$, ϕ irrational. This gives an ergodic action of \mathbb{Z} , hence free (abelian group).

The multiplication algebra \mathcal{M}_m is generated by the unitary

 $V = M_v$ where v(z) = z. The action is given by $\{U^n : n \in \mathbb{Z}\}$ where $(Uf)(z) = f(\omega z), f \in L^2(\mathbb{T})$.

So the crossed product acting on $L^2(\mathbb{T}) \otimes \ell^2(\mathbb{Z})$ is generated (as a WOT closed algebra) by

 $(V \otimes I)$ and $(U \otimes \lambda_1)$.

But the covariance relations are also satisfied by U and V; indeed, $UV = \omega VU$. However, $\{U, V\}''$ is not even algebraically isomorphic to the crossed product: it is $\mathscr{B}(L^2(\mathbb{T}))$. For example, it has no finite trace and it contains the unilateral shift, whereas the crossed product cannot contain a non-unitary isometry. By contrast, the norm - closed *-algebra \mathscr{A}_{ϕ} generated by two unitaries satisfying $UV = \omega VU$ is unique, whether represented on $L^2(\mathbb{T}) \otimes \ell^2(\mathbb{Z})$ or on $L^2(\mathbb{T})$. It is the irrational rotation algebra.