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History

1904-06 Hilbert et al. (Göttingen): Integral equations, spectral
theory etc.

1925-26 Quantum Mechanics: Matrix Mechanics (Heisenberg
with Born & Jordan) vs Wave Mechanics (Schrödinger)

Equivalent for finitely many particles (Stone - von Neumann
theorem, 1931).

Not equivalent for infinitely many particles (quantum stat.
mech., quantum field theory).  Inequivalent representations
of the observables and their algebraic relations.

P.A.M. Dirac, The Principles of Quantum Mechanics (1930)
J. von Neumann, Mathematische Grundlagen der
Quantenmechanik (1932)



Matrix Mechanics Operator Algebras

Classical mechanics: Observables are functions f : they
correspond to one-dimensional arrays [f̂ (n)].

Quantum mechanics: Observables now correspond to
two-dimensional arrays [Xn,m].

Simple harmonic oscillator 

[Xn,m] =


0 1 0 0 . . .

1 0
√

2 0 . . .

0
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3 . . .
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3 0 . . .


Two crucial points
(1) Infinite matrices
(2) Unbounded matrices
(Heisenberg’s Canonical Commutation Relations (CCR) cannot
be represented by finite matrices or infinite bounded matrices.)



Operator Algebras

 Represent the observables and their algebraic relations by
Hilbert space operators.

 Operator Algebras

Time evolution gives a representation of the group R (reversible
systems) or the semigroup R+ (irreversible systems) as acting
on the algebra of observables (Heisenberg picture) or on the
states of the system (Schrödinger picture).

Symmetries of the system also form a group G acting on the
algebra or the states.



Preliminaries

H: Hilbert space
〈x ,y〉: scalar product,
H is complete in the norm ‖ξ‖ :=

√
〈ξ ,ξ 〉.

B(H) := {T : H→ H linear, continuous} with norm
‖T‖ := sup{‖T ξ‖ : ‖ξ‖= 1}
Involution T → T ∗ where 〈T ∗ξ ,η〉= 〈ξ ,T η〉, all ξ ,η ∈ H.
A set S ⊆B(H) is selfadjoint if S = S ∗

The commutant of S is

S ′ := {T ∈B(H) : TS = ST ∀S ∈S }

Always an algebra containing I := IH

The object

A von Neumann algebra M (or M y H) is a selfadjoint subset
of B(H) with M = M ′′.



Examples

• The algebra B(H) for some Hilbert space H.

• The algebra Mn of all n×n complex matrices.

• The algebra Dn of n×n diagonal matrices.

• The algebra B(H)⊕B(H) =

{[
A 0
0 B

]
: A,B ∈B(H)

}
.



The multiplication algebra

(X ,µ): a countably separated measure (probability) space.

L2(X ,µ): the space of (equiv. classes, mod. equality µ-a.e.) of
measurable functions f : X → C with ‖f‖2 :=

(∫
|f |2dµ

)1/2
< ∞.

L∞(X ,µ): the space of (equiv. classes, mod. equality µ-a.e.) of
essentially bounded measurable functions f : X → C with
‖f‖

∞
:= esssup |f |.



The multiplication algebra

For f ∈ L∞(X ,µ) put Mf : g→ fg : L2(X ,µ)→ L2(X ,µ).
Then Mf ∈B(L2(X ,µ)) (since ‖fg‖2 ≤ ‖f‖∞

‖g‖2) and in fact
‖Mf‖= ‖f‖

∞
.

Definition

Mµ = {Mf : f ∈ L∞(X ,µ)} ⊆B(L2(X ,µ))

Then
M ′

µ = Mµ .

Indeed if T ∈M ′
µ setting f := T (1), for all h ∈ L∞(X ,µ) we have

T (h) = TMh(1) = MhT (1) = hf and ‖fh‖2 ≤ ‖T‖‖h‖2 so
f ∈ L∞(X ,µ) and hence T = Mf .

Conclusion

Mµ y L2(X ,µ) is a von Neumann algebra.



The von Neumann algebra of a group

Let G be a countable (discrete) group. (Think of Z or F2.)

H = `2(G) = {f : G→ C : ∑
t∈G
|f (t)|2 < ∞} .

Then `2(G) has ON basis {δt : t ∈G}.
For s ∈G define a map

λs : δt → δst

and extend linearly. This is an `2 isometry, so extends to
λs : `2(G)→ `2(G). But it is onto because λsλt = λst so
λsλs−1 = I, hence unitary.

For f ∈ `2(G), (λsf )(t) = f (s−1t).



The von Neumann algebra of a group (contd.)

Definition

The von Neumann algebra generated by the set of unitaries

{λt : t ∈G}

is called the von Neumann algebra VN(G) = L (G) of the
group.

So T ∈L (G) iff TX = XT for all X satisfying Xλt = λtX for all
t ∈G.



The bicommutant Theorem

... connects algebraic with topological property.
For x ,y ∈ H consider the lin. functional

ωxy : B(H)→ C : T → ωxy (T ) := 〈Tx ,y〉 .
The weak operator topology (WOT) on B(H): weakest making
all functionals {ωxy : x ,y ∈ H} continuous.
Note any S ′ is WOT-closed: If TiS = STi and 〈Tix ,y〉 → 〈Tx ,y〉
for all x ,y , then

〈(ST −TS)x ,y〉= 〈Tx ,S∗y〉−〈TSx ,y〉
= lim(〈Tix ,S∗y〉−〈TiSx ,y〉)
= lim〈(STi −TiS)x ,y〉= 0

Theorem

If M ⊆B(H) is a selfadjoint subalgebra with unit, TFAE
(i) M = M ′′

(ii) M is WOT closed.



The bicommutant Theorem: Proof

(i)⇒ (ii) is clear.
To show (ii)⇒ (i): take A ∈M ′′ and show it is in the WOT
closure of M . If not, there would exist a WOT-continuous
functional ω : B(H)→ C annihilating M but not A
(Hahn-Banach).

All WOT-continuous functionals are of the form ω =
n
∑

k=1
ωxk ,yk .

Identify B(Hn) with n×n matrices over B(H). Represent M as
N := π(M )⊆B(Hn), where

π(T ) =

T . . . 0
...

. . .
...

0 . . . T

 .
Verify that the commutant N ′ of N is the algebra of n×n
matrices over M ′. Thus π(A) ∈N ′′.



The bicommutant Theorem: Proof contd.

Now for all T ∈M ,

0 = ω(T ) =
n

∑
k=1
〈Txk ,yk 〉= 〈π(T )~x ,~y〉 .

Hence ~y⊥N ~x . Now N ~x is N -invariant, so the projection Px
on it is in N ′. But π(A)Px = Px π(A) since π(A) ∈N ′′. So N ~x
is π(A)-invariant and hence (since~x ∈N ~x) π(A)~x ∈N ~x .
Therefore 〈π(A)~x ,~y〉= 0, i.e. ω(A) = 0, contrary to assumption.



Tracial von Neumann algebras

A state φ on a von Neumann algebra M is a linear map
φ : M →C such that φ(A∗A)≥ 0 for all A ∈M and φ(I) = 1. It is
called faithful if φ(A∗A) > 0 when A 6= 0 and normal if it is
WOT-continuous on bounded subsets of M .
A tracial state is a state τ such that τ(AB) = τ(BA) for all
A,B ∈M .

Example

On Mµ define τ(Mf ) =
∫

X fdµ for all f ∈ L∞(X ,µ).

Example

On L (G) define τ(A) = 〈Aδe,δe〉 for all A ∈L (G).

Definition

A tracial von Neumann algebra (M ,τ) is a von Neumann
algebra equipped with a faithful normal tracial state.



The trace on L (G)

τ(A) = 〈Aδe,δe〉 for all A ∈L (G).

It is a WOT-continuous state, it is faithful because

τ(A∗A) = 0 ⇐⇒ Aδe = 0 ⇐⇒ Aδt = Aρtδe = ρtAδe = 0 ⇐⇒ A = 0

(here ρt : δs→ δst so it commutes with L (G)) and it is a trace:
Enough (bicommutant theorem) to check τ(AB) = τ(BA) when
A = λs,B = λt .
This is obvious:
〈λsλtδe,δe〉= 〈δst ,δe〉= δst ,e = δts,e = 〈λtλsδe,δe〉.



Tracial von Neumann algebras (contd.)

Example: L (Z)'Mm

Let F : L2(T)→ `2(Z) be the Fourier transform. Then
L (Z) = FMmF−1, where Mm is the multiplication algebra of
L∞(T). Thus τ(FMf F−1) =

∫
T fdm for all f ∈ L∞(T).

Indeed if {fk : k ∈ Z} is the o.n. basis of L2(T) with fk (eit ) = eikt ,
then Ffk = δk so F−1λnF = Mfn for n ∈ Z.



Standard form

Let (M ,τ) be a tracial von Neumann algebra. On M , define

〈a,b〉
τ

:= τ(b∗a) and ‖a‖2 := (τ(a∗a))1/2.

The completion of (M ,‖·‖2) is called L2(M ,τ) or Hτ .
Thus M embeds densely in L2(M ,τ); write â when a ∈M is
viewed as a vector in L2(M ,τ).
[When M is abelian, it is isomorphic to some L∞(X ,µ) and
L2(M ,τ) is naturally isomorphic to L2(X ,µ).]

Represent M on Hτ : For a ∈M , the map b̂→ âb is
‖·‖2-bounded on M̂ , so extends to π(a) ∈B(Hτ ).
Proof Since b∗(a∗a)b ≤ ‖a∗a‖b∗b as operators,we have
τ(b∗(a∗a)b)≤ ‖a∗a‖τ(b∗b) so∥∥∥âb

∥∥∥2

2
= τ(b∗(a∗a)b)≤ ‖a∗a‖τ(b∗b) = ‖a‖2

∥∥∥b̂
∥∥∥2

2
.



Standard form (contd.)

We have a faithful (i.e. 1-1) representation π of M on Hτ .
It is a fact that π(M ) is WOT-closed, hence a von Neumann
algebra.
We say M is in standard form on Hτ .
For example, Mµ is in standard form on L2(X ,µ) and L (G) is
in standard form on `2(G). But Mn is not in standard form on
Cn; it is in standard form on Hτ = Mn equipped with the
(normalised) Hilbert-Schmidt norm.
With ξ := 1̂ we have τ(a) = 〈π(a)ξ ,ξ 〉

τ
. Thus (π,Hτ ,ξ ) is the

GNS triple for (M ,τ).



Standard form (contd.)

The densely defined map J0 : M̂ → M̂ : â→ â∗ is antilinear and
has the magical property:〈

J0(â),J0(b̂)
〉

τ

=
〈

b̂, â
〉

τ

for all a,b ∈M . Indeed, since τ is a trace (!),〈
J0(â),J0(b̂)

〉
τ

=
〈

â∗, b̂∗
〉

τ

= τ(ba∗) !
= τ(a∗b) =

〈
b̂, â
〉

τ

.

Therefore J0 is ‖·‖2-isometric; also obviously J2
0 â = â for all

a ∈M , so J0 has dense range. Hence J0 extends to an
antilinear bijection J on Hτ which satisfies

〈Jη ,Jζ 〉= 〈ζ ,η〉 for all η ,ζ ∈ Hτ . (*)



Standard form (contd.)

In the representation π, the algebra π(M ) has ‘the same size’
as its commutant π(M )′:

Theorem

Jπ(M )J = π(M )′.

Proof The trivial direction: For a ∈M , need to show
Jπ(a)J ∈ π(M )′ i.e. that Jπ(a)Jπ(b) = π(b)Jπ(a)J for all
b ∈M . It suffices to verify this on the dense set {x̂ : x ∈M }.
Indeed:

Jπ(a)Jπ(b)x̂ = π(b)Jπ(a)Jx̂

⇐⇒ Jπ(a)Jb̂x = π(b)Jπ(a)x̂∗

⇐⇒ Jπ(a)(̂bx)∗ = π(b)Jâx∗

⇐⇒ Jπ(a)x̂∗b∗ = π(b)x̂a∗

⇐⇒ Jâx∗b∗ = b̂xa∗



Standard form (contd.)

We have shown that Jπ(M )J ⊆ π(M )′. 1

For the reverse inclusion, first notice that

JT 1̂ = T ∗1̂ for each T ∈ π(M )′.

Indeed, for all a ∈M ,〈
JT 1̂, â

〉
=
〈

Jâ,T 1̂
〉

=
〈

â∗,T 1̂
〉

=
〈

π(a∗)1̂,T 1̂
〉

=
〈

1̂,π(a)T 1̂
〉

=
〈

1̂,T π(a)1̂
〉

=
〈

T ∗1̂,π(a)1̂
〉

=
〈

T ∗1̂, â
〉

and so JT 1̂−T ∗1̂ is orthogonal to a dense set.

1In particular it follows that π(M )′1̂ is dense in Hτ ; for if some η ∈ Hτ is
orthogonal to π(M )′1̂, then for all a ∈M we will have
〈Jη , â〉=

〈
Jη ,π(a)1̂

〉
=
〈

Jη ,π(a)J1̂
〉
=
〈

Jπ(a)J1̂,η
〉
= 0 since

Jπ(a)J ∈ π(M )′; thus Jη = 0 hence η = 0.



Standard form (contd.)

Now let T ∈ π(M )′. To show that JTJ ∈ π(M ), it suffices, since
π(M ) is a von Neumann algebra, to verify that JTJ commutes
with π(M )′, i.e. that JTJS = SJTJ for all S ∈ π(M )′. For this, it
suffices (since π(M )′1̂ is dense in Hτ ), to prove the equality

JTJSR1̂ = SJTJR1̂ for all R ∈ π(M )′

We have, using the last remark repeatedly,

JTJSR1̂ = JTJ(SR)1̂ = JT (SR)∗1̂ = (T (SR)∗)∗1̂ = SRT ∗1̂.

On the other hand,

SJTJR1̂ = SJTR∗1̂ = SJ(TR∗)1̂ = SRT ∗1̂

which proves the equality.



Standard form (contd.)

Remark

When M y H has a cyclic vector ξ0 ∈ H such that
〈aξ0,ξ0〉= τ(a) for all a ∈M , then the identity representation is
unitarily equivalent to the representation (π,Hτ ) via the map

U : aξ0→ π(a)1̂ = â (a ∈M ).



The group - measure space construction

Recall two constructions:
• From a probability space (X ,µ) we constructed the
multiplication algebra Mµ = {Mf : f ∈ L∞(X ,µ)}.
• From a group G we constructed the group von Neumann
algebra L (G), which is the WOT-closure of polynomials ∑

t∈G
ctλt

in the group elements (represented as operators λt ) with scalar
coefficients ct .
We now combine the two constructions:
If a group G acts on some space (X ,µ), we will construct a von
Neumann algebra whose elements are limits of polynomials in
the group elements, but with coefficients from the multiplication
algebra Mµ . The multiplication of such polynomials is ‘twisted’
to take into account the action G y (X ,µ).



Measure-preserving actions

A measure preserving automorphism of a probability space
(X ,µ) is a measurable bijection θ : X → X with measurable
inverse which preserves the measure, i.e. µ(θ−1(E)) = µ(E)
for every Borel set E ⊆ X . Let Aut(X ,µ) be the group of all such
automorphisms (modulo µ-null sets).
The map θ induces an automorphism of L∞(X ,µ),by f → f ◦θ ,
preserving the integral, hence a WOT-continuous
*-automorphism α : Mµ →Mµ by α(Mf ) = Mf◦θ which
preserves the trace:
τ(α(Mf )) =

∫
f ◦θdµ =

∫
fdµ = τ(Mf ) for all Mf ∈Mµ .

Definition

A measure preserving action G y (X ,µ) of a (countable,
discrete) group G is a group homomorphism G→ Aut(X ,µ).



Measure-preserving actions

Example (Bernoulli shift)

Consider the discrete set {0,1} with measure
ν({0}) = p,ν({1}) = 1−p and let
X = {0,1}G = {x : G→{0,1}} with product measure µ. Define
G y (X ,µ) by (θsx)(t) = x(s−1t).



Construction of the crossed product

Start with a measure preserving action G y (X ,µ). This
induces a unitary group {Us : s ∈G} on L2(X ,µ) given by

(Usf )(x) = f (s−1x).

The restriction of Us to L∞(X ,µ) induces a *-automorphism αs
of M := Mµ given by αs(Mf ) = Mf◦s−1 (identify G with its image
in Aut(X ,µ)).
The pair satisfies the covariance relation

UsMf U−1
s = αs(Mf ) or UsMf = αs(Mf )Us.



Construction of the crossed product (contd.)

Represent both L∞(X ,µ) and G on
H := `2(G,L2(X ,µ)) = L2(X ,µ)⊗ `2(G). This consists of all
functions f : s→ fs : G→ L2(X ,µ) such that

‖f‖2 := ∑
s∈G
‖fs‖22 = ∑

s∈G

∫
|fs(x)|2dµ(x) < ∞.

Representation:

π(f ) = Mf ⊗ I, f ∈ L∞ and Wt = Ut ⊗λt , t ∈G

Define the crossed product A = L∞(µ)oG by

A = {π(f ),Wt : f ∈L∞(µ), t ∈G}′′= {∑
k

π(fk )Wtk : fk ∈ L∞, tk ∈G}
wot

Note: A contains an isomorphic copy of M , since π(M )⊆A
and also an isomorphic copy of the group:
{Wt = Ut ⊗λt : t ∈G} ⊆A .



Construction of the crossed product (contd.)

Write any g ∈ H as a sum g = ∑
s∈G

gsus (convergent in H) where

us = 1⊗δs is the function taking the values us(t) = 0 when t 6= s
and us(s) = 1 ∈ L2(X ,µ).
Note that

(π(f )Ws)(1⊗δe) = (Mf⊗I)(Us⊗λs)(1⊗δe) = (Mf⊗I)(1⊗δs) = f⊗δs

and so a finite sum ∑k π(fk )Wtk may be identified with the
function ∑k fk ⊗δtk = ∑k fkutk in H
(actually in c00(G,L∞(X ,µ)) := M [G]).
It can be shown that ue is a separating vector for the whole
crossed product A , i.e. that the map a→ aue : A → H is
injective. This means that every a ∈A can be identified with
the element â := aue ∈ H which has a ‘Fourier series’

â = ∑
s∈G

asus (as ∈ L∞(X ,µ))

which converges in the norm of H.



Construction of the crossed product (contd.)

Define a *-algebra structure on M [G] by

(fus)(gut ) = fUs(g)ust and (fus)∗ = Us−1(f̄ )us−1

and a tracial functional τ by

τ(f ) = 〈fue,ue〉=
∫

X
fedµ for f = ∑

t∈G
ftut .

The formula for τ(f ) makes sense for all f ∈A . The fact that τ is
a trace follows from the fact that µ is measure preserving. Also

τ(f ∗f ) = ∑
t∈G

∫
X
|ft |2dµ

so that τ is faithful. It follows that the WOT closure of M [G],
namely A = L∞(µ)oG, is in standard form on H.



Measure-preserving actions: free actions, ergodic
actions

Definition

A measure-preserving action G y (X ,µ) is said to be
(essentially) free if for all s ∈G with s 6= e the set of fixed points
Xs := {x ∈ X : θs(x) = x} is µ-null.
The action G y (X ,µ) is said to be ergodic if the action has no
non-trivial (essentially) invariant sets, equivalently if the only
f ∈ L∞(X ,µ) with αs(Mf ) = Mf for all s ∈G are the (µ-a.e.)
constant functions.

(For abelian groups, ergodic⇒ free.)

Proposition

(i) The action is free iff π(M ) is maximal abelian in A , i.e. iff
π(M )′∩A = π(M ).
(ii) Assume G acts freely. The action is ergodic iff A is a factor,
i.e. iff the centre A ′∩A = A is trivial (= CI).



Some proofs

To prove the last Proposition we will use:

Lemma

θ ∈ Aut(X ,µ) acts freely.
⇐⇒
Every non-null Y ⊆ X has Z ⊆ Y with µ(Z ) > 0 such that
θ(Z )∩Z = /0.
⇐⇒
If a ∈ L∞(X ,µ) satisfies aUθ (x) = xa for all x ∈ L∞(X ,µ), then
a = 0.

(The latter condition can be taken as a definition for a free
action when L∞(X ,µ) is replaced by a non-abelian von
Neumann algebra.)



Examples

Let X be a compact group with Haar measure µ. Let G ⊆ X be
a countable dense subgroup. Now G y (X ,µ) by left
multiplication. This is measure preserving (Haar measure). The
action is obviously free. It is ergodic since every f ∈ L2(X ,µ)
which is invariant under translation by all elements of G is also
invariant under all elements of X , hence must be constant.
For example we may take X = T and G = {e2π inθ : n ∈ Z} where
θ is irrational.

Also, the Bernoulli shift is free and ergodic.



Example: the irrational rotation

Consider (X ,µ) = (T,m) and θ(z) = ωz where ω = e2π iφ , φ

irrational. This gives an ergodic action of Z, hence free (abelian
group).
The multiplication algebra Mm is generated by the unitary
V = Mv where v(z) = z. The action is given by {Un : n ∈ Z}
where (Uf )(z) = f (ωz), f ∈ L2(T).
So the crossed product acting on L2(T)⊗ `2(Z) is generated (as
a WOT closed algebra) by

(V ⊗ I) and (U⊗λ1).

But the covariance relations are also satisfied by U and V ;
indeed, UV = ωVU. However, {U,V}′′ is not even algebraically
isomorphic to the crossed product: it is B(L2(T)). For example,
it has no finite trace and it contains the unilateral shift, whereas
the crossed product cannot contain a non-unitary isometry.
By contrast, the norm - closed *-algebra Aφ generated by two
unitaries satisfying UV = ωVU is unique, whether represented
on L2(T)⊗ `2(Z) or on L2(T). It is the irrational rotation algebra.
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