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theory 

Abstruct - The reliability of the consecutive k-out-of-r-from- 
n:F system is studied. For k = 2 an explicit solution is given for 
n components in line or in cycle in the i.i.d. case. For k 2 3 sharp 
lower and upper bounds are given for the reliability of the system 
and demonstrated for different values of n, k, r, p .  These bounds 
are exact for r = n, n - 1, n - 2, n - 3 and for these values the ex- 
act analytic solution is also given. 

1. INTRODUCTION 

The consecutive k-out-of-r-from-n:F system has n ordered 
components and fails iff at least k ,  out of r consecutive com- 
ponents, fail. This definition is extended to cover a system of 
n components in cycle, and of course 1 I k I r 5 n. When 
k = r we have the consecutive k-out-of-n:F system which was 
introduced by Chiang & Niu [4], Bollinger [ 1,2], and a closed 
form solution is known, Hwang [7], Derman, Leiberman, Ross 
[5]. When r = n we have the simple k-out-of-n:F system for 
which the solution is also known. The system studied in the pres- 
ent paper has been mentioned by Tong [ 191. This problem has 
a number of interesting applications. Saperstein [15] & Naus 
[lo, 111 studied this problem as the generalized birthday prob- 
lem and applied it to a test for non-random clustering. Later 

In this paper we examine the i.i.d. case where the prob- 
ability of failure is the same for each component and the com- 
ponents function s-independently. For k = 2 we give an ex- 
plicit solution for the linear and the circular case. For k 1 3 
an explicit solution is difficult to find and we give sharp upper 
and lower bounds for the reliability of the system. Table 1 
presents numerical results for various values of n, k, r, p. Ex- 
act solutions are given for the special cases r = n - 1, n - 2, 
n-3. 

TABLE 1 
Lower & Upper Bounds for fL(p;k,f,n) = F 

n r k p L L B F  UB U 

5 3 2 .25 
5 3 3 .25 
5 3 2 .50 
5 3 3 .50 
5 3 2 .75 
5 3 3 .75 

10 7 2 .25 
10 7 2 .50 
10 7 2 .75 
10 7 5 .50 
10 7 5 .75 
15 7 3 .50 
15 7 3 .75 
15 7 5 .75 
15 7 6 .75 
15 10 7 .50 
15 10 8 .50 
15 10 2 .75 
15 10 3 .75 
15 10 4 .75 
15 10 5 .75 
15 10 6 .75 
15 12 8 .25 
15 12 9 .25 
15 12 2 .75 
15 12 3 .75 
20 10 7 .50 
20 10 8 .50 
20 10 9 .50 
20 10 10 .50 
20 12 10 .50 

.958 

.633 
,719 
,250 
.288 
.039 
.999 
,983 
,718 
f379 
,032 
,950 
.450 
,031 
.004 
.278 
,103 
,866 
.615 
,337 
,136 
.040 
.916 
,772 
,911 
.728 
.283 
.lo3 
.023 
.002 
.038 

.958 .958 
,633 .633 
.719 .719 
.250 .250 
.288 .288 
.039 .039 
.993 .999 
.982 ,983 
,686 ,718 
,364 .379 
.030 .032 
,971 ,976 
,478 .559 
,047 .058 
,005 ,007 
,321 .333 
,119 ,131 
.882 ,898 
,641 .679 
,367 .390 
.152 ,165 
.045 .053 
.903 .916 
.745 .I72 
.904 .911 
,713 .728 
.404 ,457 
.162 .204 
.036 .049 
.005 ,007 
.055 ,067 

,958 
,633 
.719 
.250 
.288 
,039 

1.OOO 
1.OOO 
.728 
.393 
.033 

1.OOO 
,736 
.068 
.007 
.421 
,156 
.982 
,775 
,471 
,196 
.058 
.926 
,781 
.924 
.747 
.622 
.279 
.058 
.007 
.086 

,958 
.633 
,719 
,250 
,288 
.039 
.999 
.983 
.718 
.379 
.032 
,998 
.716 
.072 
,009 
.432 
.167 
,971 
,819 
.514 
,223 
,066 
.916 
.772 
,911 
.728 
.607 
.265 
.064 
.007 
.092 

Saperstein [14, 161 studied the same problem in connection with 20 12 11 .50 ,007 .009 .014 .015 ,017 
quality control and inspection procedures. Their solutions either 20 12 12 .50 .000 ,001 ,001 .001 ,001 
are not for all values of the parameters or are quite complicated. 
Another application is in the radar detection “sliding window 
detection probabilities” Nelson [ 121. 

Example 

. L, . LB, UB were found through the improved Bonfemoni inequalities. 
For n = r + 1, r + 2 all bounds are exact, for n = I + 3 the L,U are 

exact and for n > r + 3 the LB, UB are sharper than L, U. 

were found using conditional probability. 

A telecommunication system uses n-byte messages. The 
last bit of every byte is a parity bit (1 when the parity of the 
byte is correct). An error detector indicates an error when it 
finds 2 or more errors in a “window” of width 4 in the parity 
bit sequence. This is a consecutive 2-out-of-4-from-n system. 

Notation 

n 
r 

number of components in the system 
a “window” of r consecutive out of n components, 
r l n  
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S k minimum number of failed components out of r con- n (“-~‘-1))4 p n - j  (4) 

p,q 
L, C subscripts; L implies a linear system, C implies a cir- 

R, (p;k,r,n) reliability of the consecutive k-out-of-r-out-of- 

F,(p;k,r,n) 1 - R,(p;k,r,n) : failure probability of the system 

N,(j,n,r,k) number of ways the system works, conditional on 

secutive, which cause system failure, k s  r Rc(p;2,r,n) = c 
cular system s = [n/r] .  0 

n - j (  r - 1 )  probability that component is good, failed. p + q = 1 j = O  

n:F system (a= L or C) 

( a  = L o r  C) 

Lemma 1 and theorem 1 are proved in Naus [ 111. Similar com- 
binatorial problems involving combinations with restrictions ap- 
pear in [3]. 

j failed components. This is equal to the number of 
ways of placing at least r - k + 1 working components 
among k failed components, conditional on j failed 
components ( a  = L or C) 
n - r + l  
event: there are at least k failed components from i to 
including i+r-1,  for i = 1 ,  ..., N 
Pr {Ai}, 
Pr{AiAi+,}, 1 I i I N -  1 ,  1 I u I r - 1 
Pr{AiAi+,Ai+,+Z}, 1 I i s N - 2 ,  l s u s r - 1 ,  
l i z i r - 1  
implies the complement of an event 
Ei Pr{Ai}, for 1 1 i s N  
E, Pr {AiAj}, for 1 I i < j  I N 
Eijv Pr {AiAjAv}, for 1 I i < j < v I N 
lower, upper bound for FL(p;k,r,n) using improved 
Bonferroni inequalities 
event: the subsystem of units i, i + 1,. . . i + h - 1 fails; 
Pr{Ai,h) = FL(p;k,r,h) 
binomial coefficient 
integer part of X: trunc (X) 
upper, lower bound for FL(p;k,r,n) using conditional 
probability 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

2. CASE: k = 2 

Lemma 1. For k = 2, 

1. NL(j,n,r,2) = (“ - “1 ) ( r -  1 ) 

n 
n - j ( r - 1 )  

2. NCu,n,r,2) = 

Theorem 1. Fork  = 21r1n, 

3. CASE: n = r+h, X I r  

The following results are proved in the appendix. 

Theorem 2. For n = r+h, X I r :  

k 

RL(p;k,r,n) = RL(p;x,h,2h) (;I:) pr-h-k+x qk-x 

( 5 )  
x = l  

RL(p;x,h,2h) = 1 ,  if x >  h. 0 

Corollary 1. 

a. For n = r + l ,  

+ E p r - l - x  qx, 

x=o  

b. For n = r+2, 

RL(p;k,r,r+2) = (‘-2) pr -k+3  qk - l  
k -  1 

+ p2( 1 +2q) (;I;) pr-k  qk-2 

f i 2 )  p r - x - 2  qx. 

x = o  

c. For n = r+3, 
(1) 

k - 4  

RL(p;k,r,r+3) = ti3) pr-3-x qx 
x = o  

W )  

+ ( 1  -4q3+3q4) (;I;) pr -k  qk-3 

(3) + ( p 5 4 + p 4 ( l + 2 q ) + q P 2 ( p 3 + 3 q P 2 ) )  (;-I;) 
. p r - k - l  qk-2 + p 6  ( ‘ 1 3 )  p r - k - 2  qk - l .  

k 1  m = [ ( n + r - l ) / r ] ;  
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4. LOWER AND UPPER BOUNDS FOR 
FL(p;k,r,n), k r 3  

Since, for k 1 3 ,  qn explicit solution is difficult, we derive + 2 w 5 ( y - r + l )  g ( u )  
U =  1 

two types of lower and upper bounds for the reliability of the 
system using: 1)  the improved Bonfemoni inequalities in Kounias 
& Sotirakoglou [8], and 2)  the notion of conditional probability. 

4.1 Using Improved Bonferroni Inequalities u=l  z = l  

m = min(r-1,N-r-1) 

s E min(r-1,N-1-u)  

t = min(r-1,N-2)  0 

, -  
The proof is in the appendix. The bounds of Sobel & Up- 

2N+t- 1 
N -  ( t+ 1) ’ 

a ,  = 

2 ( N +  2t - 2 )  
N e t .  ( t +  1) ’ 

a2 = 

6 
a3 = 

N - t -  ( t+ 1) ’ 

puluri [ 181 are special cases of the above bounds as proved in 
PI. 

4.2 Using Conditional Probability 

A very simple expression for the upper bound comes from 
partitioning the system (linear or circular) into s = 
[n/ ( r + 3 ) ]  + 1 independent linear subsystems with r + 3 com- 
ponents each, but one with U = n mod ( r + 3 )  components. 
If the system works then all these independent subsystems work 
but not vice-versa, hence: 

for i = 0, r+3, 2r+6 .... ( ~ - 2 ) ( r + 3 )  

v = n-n mod ( r+3)+1.  
UB = min(1,S,-b2S2+b3S3) 

2 ( 2 t - 1 )  
t .  ( t +  1 )  ’ 

b2 
Since the units are i.i.d., (13) becomes: 

1 -L = RL(p;k,r,u) - (RL(p;k,r,r+3)S-’ 

A lower bound may be determined as follows: 

From [5 ] :  

Pr{&r+,-l} Pr{Zm,n-m} I Pr{X,,J for every m = 
1 9 * . - ~ - ~ .  

Applying this result we have: 

6 
t .  ( t +  1 )  

b3 = ~ 

t = [3S3/&] +2 

The formulas for R{AJ, Pr{AiAj), Pr{AiAjAv} are in the 
appendix. S1, S2, S3 are: 

l’heorem 3. 

i. SI = N .  W 
Pr{x4s,l1 

w = n-1  fo ra  = C, w = n - r f o r a  = L 
i i . s 2 = (  N - r + l  ) - v +  5 

u = l  

( 1 1 )  t = ( w + l )  mod4, s = [(w+1)/4].  m = min(r-1,N-1)  
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qk- 
The product in (15) includes s terms, each of them a consecutive k 

k-out-of-r-out-of-r+ 3:F system given in (8) and one term hav- 
ing t units, when t > 0. 

= RL(p;x,2,4) 
x =  1 

For i.i.d. units we have: 

For t = 0, the first term on the r.h.s. of (16) is omitted. The 
bounds calculated above give exact values of reliability, L = 

pr-k- l  qk-' + RL(p;2,2,4) (;I;) p'-k qk-2. (17) 

U for n = r, r + l ,  r+2, r+3. 
Since RL(p;1,2,4) = p 4  using corollary l a  we get, Table 1 presents numerical values for the bounds of 

FL(p;k,r,n). The value of FL(p;k,r,n), also in table 1 ,  has 
been calculated using computer simulation and complete R~(p;2 ,2 ,4)  = P R L ( P ; ~ , ~ , ~ )  + pqR,(p;22,2)  
enumeration. The lower and upper bounds LB, L, UB, -U in 
table 1 werecalculated, using theorem 3 and (6)-(8), (14), (16), = Pq(' -q2 )  p(p2q+p)  = P 2 ( l  +2q)* (18) 
for various values of n,r,k,p. 

From (12), (13) we obtain (7). 

ACKNOWLEDGMENT 
c. A result from [7] states that: 

RL (p;k,k,n 1 
We thank the editor and the referees for comments that 

lead to the improvement of the manuscript. 

APPENDIX Hence R ~ ( p ; 3 , 3 , 6 )  = 1-4q3+3q4. 

Using theorem 1 we get 

R ~ ( p ; 2 , 3 , 6 )  = pR~(p;2 ,3 ,5)  + w 2 R ~ ( p ; 2 , 3 , 3 )  

= p{w4 + p 3 ( 1 + 2 q ) )  + 9p2(P3 + 3 w 2 )  

A. 1 Proof of Theorem 2. 

Giventhat intherangeX, ..., r-1 (r-hunits)exactlyk-x 
units fail, at most x -  1 units may fail in a 'window' of length 
Xinthelineo, ..., X-l,r, ... n (2~units)forthesystemtofunc- 
tion. Applying the theorem of total probability we obtain (5).  

Q.E.D. Since RL(p;1,3,6) = p6 using theorem 2 we obtain relation 
(8). Q. E. D. 

A.3 Pr{Ai}, Pr{AiAj}, Pr{AiAjA,}. 
A.2 Proof of Corollary 1. 

a. Using theorem 2 for A = 1 we get from (3, For l s i < j < v s N  we have: 

RL(p;u,1,2) equals 1 f o r x > l  andp2forx=1. Thus, wehave: Pr{AiAj} = 2 5 5 f+jl-') (jqi) tii)@ 
x ,= t ,  x*=t2 x3=t3 

+ p 2  f - ' )  p r - k  q k - l .  
k -1  

n = xl+x2+x3, i < j s r - l ,  k s x 1 + x 2 s r ,  k s x l + x 3 s r  

tl = max(0,k-j+i), ml = r+i-j 

t2 = max(0,k-xl), m2 = j-i 

t 3  = max(O,k-xl), m3 = j - i  

b. Using theorem 2 for X = 2 we get, 

RL,(p;k,r,r + 2 )  
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Pr{AiAjA,} = 

i. Pr{A,} .Pr{Aj} .Pr{A,} = w3, 
cases with l s i < i + u + r - l < v ,  v + r l n  

if i + r - l < j , j + r - l < v  (22) 

ii. Pr{AiAj} .Pr{A,} = Pr{AiAj}. W, 

i f j s i + r -  1,  v > j + r -  1 (23) 

iii. Pr{Ai} .Pr{AjA,} = W-Pr{AjA,}, 

N - u - z  cases with l s i < i + u + r I N .  
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