Preliminary remarks on the Late Miocene herbivores of Kerassiá (Northern Euboea, Greece)

Recent systematic excavations are in progress near the village Kerassiá in Northern Euboea. Since 1992, when the first excavations were carried out by the University of Athens (Department of Historical Geology and Palaeontology), a number of fossiliferous sites have been discovered in the area of Kerassiá. In the present report we discuss the available results, mainly concerning the three richest sites until now, Kerassiá 1 (K1), Kerassiá 3 (K3) and Kerassiá 4 (K4). The fauna is characterised by the relative scarcity of the hipparions and especially of bovids. Though the presence of these taxa is significant, there are fewer specimens than usually in the Greek Late Miocene localities. The bovids are represented mainly by dental material making their identification doubtful. Most of the Giraffidae are referred to *Helladotherium*. The rhinocerotid findings include some very rare and impressive specimens (complete skulls and mandibles), but the postcranial material is scanty. A complete skull with articulated mandible from the K4 site is attributable to a new aetheriini species. Another complete, but juvenile, skull from K3 has all the morphological characters of *Ceratotherium neumayri*, while a complete mandible from K4 is referred to ‘*Dicerorhinus*’ cf. *pikermiensis*. The available carnivore material is discussed separately in this volume. The fauna suggests a fairly open environment, as the forest elements (suids, cervids, etc.) are rare or absent. The geological correlation, the sedimentological and taphonomic studies of the Kerassiá sites are still in progress. However, according to the available data the K3 and K4 are plausibly isochronous, as they seem to belong to the same stratigraphic level; the K1 is stratigraphically younger. The locality is of great taphonomic interest, as the material has signs of sorting.

Correspondence: all authors: University of Athens, Subfaculty of Geology, Department of Historical Geology and Palaeontology, Panepistimiopolis, 15784 Athens, Greece; e-mail: gtheodor@geol.uoa.gr; aathan@cc.uoa.gr; sroussiak@geol.uoa.gr; gi6@leicester.ac.uk

Keywords: Greece, Euboea Island, Late Miocene, Turolian, Mammalia
the village. The first excavation in the area was carried out in 1982 by Hans de Bruijn, Albert van der Meulen (University of Utrecht) and Constantine Doukas (University of Athens). This was not followed by other fieldwork until 1992, when the University of Athens began new field studies in the locality. Until now, seven fossil mammal sites have been found and have been partly excavated. Three of them are very important, as they are very rich in fossils. Unfortunately, the preservation of the fossils is usually very bad, making their excavation and preparation very difficult and time consuming. The material from Kerassia, including the 1982 excavation, is temporarily stored in the Museum of Palaeontology and Geology of the National and Kapodistrian University of Athens. In the future it will be exhibited in a new local museum that is planned by the local prefecture.

Fossil findings from Kerassia are until now known from the unpublished dissertation of Köhler (1983), from a brief description of suids in Van der Made & Moyà-Solá (1989), as well as from three preliminary congress presentations (Theodorou et al. 1995, 1998, 2001). Köhler (1983) reports the presence of Microstonyx sp., Bovidae, Giraffidae, two species of Hipparion, two species of Proboscidea and a large carnivore. Van der Made & Moyà-Solá (1989) attribute the described material to *Microstonyx major erymanthius* and they also mention the presence of *Deinotherium* and *Dorcatherium* in the locality. They give a middle Turolian age for Kerassia. Though they do not give any data about the provenance of the material, it is very probable that it comes from the 1982 excavation. In the present paper we report the preliminary results on the faunal composition and the stratigraphy of the locality. The material from the 1982 excavation is not included, as the exact collection site is not known.

GEOLOGICAL SETTING

Euboea is a large island of central Greece (Fig. 1), which is separated from the mainland through a narrow sea channel. The island is covered by extensive Neogene, mainly continental, deposits that overlay...
Mesozoic sedimentary and igneous rocks of the Pelagonian geotectonic zone. Katsikatsos et al. (1981) group the Neogene deposits in three major sedimentary basins (Fig. 1): the Alivéri-Kymi basin, the Palioúras-Gides basin and the Limni-Istiéa basin. All three are in general very similar lithologically, showing a lower low-energy sequence of fine-grained lacustrine sediments (silts, clays), often with lignite intercalations, and an upper high-energy sequence of generally coarse-grained fluvial sediments (sands, conglomerates, marls, travertines, marlstones).

The Limni-Istiéa basin is the most extensive of the three mentioned above; it occupies the northernmost part of the island. Its geology and stratigraphy have been described by Mettos et al. (1991). According to these authors the basin is mostly filled with Late Miocene – Late Pliocene sediments, which have been unconformably deposited on the Early Miocene sediments. The locality Kerassiá is situated in the middle of the basin (Fig. 1). The area is covered by reddish-brown deposits, that are placed in the lower part of upper (fluvial) sequence (Mettos et al. 1991, Fig. 2). In this part of the basin the basement consists of Early Cretaceous ophiolites.

STRATIGRAPHY OF THE LOCALITY
The geological prospecting in the area of Kerassiá has proved the presence of numerous fossiliferous sites. Those excavated up to now, K1 to K7 (Fig. 2), are situated north of the village. They belong to the so-called “reddish-brown fluvial deposits” (Mettos et al. 1991) in the lower layers of the upper sequence of the Limni–Istiéa Basin. The lower sequence, as well as the ophiolitic basement, are exposed NE of the village Kerassiá. The superposed reddish-brown fluvial deposits include clays, conglomerates, sands, and siltstones in succession. Their total thickness is about 250–300 m. The relative stratigraphic position of these seven sites, which is crucial for the comparison of their fossil content, is still under investigation. We tried to trace distinctive layers in the sections for this purpose. The sedimentological samples under study (Iliopoulos, in prep.) give additional data to identify the several horizons and make correlation easier.

The site K1 was excavated in summer 2000 and quite probably represents the site of the first fossil collection in 1982, which is mentioned here as KER. The material of the old excavation is still unpublished, but information by Doukas (pers. comm. 2000), villagers, a map in Köhler (1983), as well as the state of preservation and fossilisation of the old and the new material, support this hypothesis. The other six sites were located and excavated in part during the fieldwork in the area since 1992. K2 is situated in the same section as K1, but in a lower level (about 6.5 m lower), showing that there are at least two fossiliferous horizons in the locality. K2 and K3 are close together and they belong to the same stratigraphic level, as they are found in the same undisturbed section. These two sites can be correlated to K4, as all three share the same sedimentological characters (brown silty mud with few scattered rounded to sub-rounded, polymict grains in a homogeneous matrix), the presence of a red-brown layer above the bone bed, and also the presence of the same trace fossils (roots, insect burrows etc.). K6 is isolated and poor in material, but it possibly correlates with K1, because of the presence of a thin grey-white marly layer above the fossiliferous layer. The sites K5 and K7 (K7 was excavated for the first time in summer 2000 and its study is only in the beginning) cannot be correlated at the moment to either the upper or the lower fossiliferous level.

Summarising, the currently available data permit us to group the sites into two fossiliferous levels, an upper and a lower one. The upper fossiliferous level comprises the sites K1 and K6 and the lower one the sites K2, K3 and K4 (Fig. 3). The relative position of K5 and of the newly discovered K7 is currently under study.
Figure 2. Topographical map of the Kerassiá area, indicating the position of the sites K1–K7. The position of K2 coincides with this of K1.
SYSTEMATICS

The herbivores in the fauna of Kerassiá are mainly Equidae, Rhinocerotidae, Bovidae and Giraffidae. *Hipparion* is the most frequent genus, though it is not abundant as in other Greek Late Miocene faunas. The carnivore material is not considered here, as it is studied by Roussiakis & Theodorou (2003).

Proboscidea Illiger, 1811

Proboscidean remains are already mentioned in the locality by Köhler (1983), who reports the presence of two species, and by Van der Made & Moyà-Solà (1989) who mention the presence of *Deinotherium*. The new finds are rather scarce. A mastodont tusk (Fig. 4f) of large size (length following the tooth bend: >189 cm; maximal perimeter: 52 cm) is the only finding at K6. The specimen has circular cross section, moderate bend, and shows no torsion and no trace of enamel band.

Theodorou *et al.* (2001) refer it to *Choerolophodon* sp., as the other genera that lack the enamel band (*Mammut*, *Tetralophodon*) have generally more straight tusks. Another tusk of small dimensions (length following the tooth bend: >132 cm; maximal perimeter: 28 cm) from site K1 is preserved in bad condition. Because of its moderate bend, it could be attributed with reservation to *?Choerolophodon* sp.

The site K4 has yielded a lower molar (plausibly the d4) and a partly preserved scapula of very large dimensions. The molar is bunodont, with four lophids and a fairly small talonid, thick enamel with smooth surface, without cement in the tooth valleys. The interlophid valleys are blocked by conules that are mainly situated in the median part of the occlusal surface, between each pretrite pair. The maximal tooth dimensions are 87 mm (DAP) and 49 mm (DT). The specimen is referred by Theodorou *et al.* (2001) to *Tetralophodon cf. longirostris*, because of the presence of four lophids and the absence of cementodony, choerodony (conid multiplication), pschydony (furrowing of the enamel surface) and anancoidy (alternation of the mammilae). The scapula, which is characterised by very robust spine and acromion, shows some resemblance to *Deinotherium*. However, its bad preservation does not allow any certain generic attribution. Some proboscidean findings kept by villagers have not been prepared or studied.

Artiodactyla Owen, 1848

Suidae Gray, 1821

Köhler (1983) reports *Microstonyx* sp. Van der Made & Moyà-Solà (1989) describe dental material of a small sized *Microstonyx major erymanthus* that possibly comes from the upper fossiliferous level. No suids have been found yet in the lower level (sites K2, K3, K4). Kostopoulos *et al.* (2001), comparing the suid material from the 1982 excavation, propose that this probably consists a new subspecies. They suggest that it belongs to a small sized form, probably related with the Maragha suid and different from the typical and larger *M. major erymanthus*. Our recent excavations at K1 yielded inadequate dental material.

Giraffidae Gray, 1821

Findings attributed to the family Giraffidae are common in Kerassiá, in both fossiliferous levels and in most sites. The family is mainly represented by remains of *Helladotherium*, upper and lower tooth rows, as well as postcranial material, but *Palaeotragus* sp. is also found. A third species, probably *Bohlinia* sp., which comes from the old collection, is being studied by Iliopoulos (in prep.). The material of *Helladotherium* comprises cranial and postcranial specimens. They are generally indistinguishable (either morphologically or metrically) from *Helladotherium duvernoyi* (Gaudry & Lartet, 1856) from Pikérmi. The material consists of an almost complete right hemi-mandible with p2–m3, a part of a left mandibular ramus with m2–m3, a distal tibial part, two complete Mt III-IV (Fig. 4d) and a proximal part of the same bone, an almost complete left humerus, three complete radii,
Figure 3 Stratigraphic columns of the sites K1–K2, K3, K4 and K6.
three proximal and one distal radial parts, one complete and one broken astragalus, two complete Mc III-IV and three distal parts of the same bone.

The two mandibular specimens plausibly belong to the same individual, as they were found next to each other. The p2–m3-length is 245.0 mm, of which 97.4 is the premolar length and 148.4 is the molar length. The premolar length in relation to the molar and the tooththrow lengths is 65.6% and 39.8% respectively. The p3 and p4 are molarised. The p2 shows the typical artiodactyl morphology. The molars have generally weak lingual stylids. The third lobe of m3 is round. The postcranial material is represented by significant number of specimens. The limb bones indicate large and very robust animals.

In comparison to other known Helladotherium specimens, and especially H. dauer-noyi from Pikérmi, the studied specimens are very similar. A marked difference is the molarisation of p3, which is not observed in the known specimens of the genus (Pikérmi, Maragha, etc.). The not molarised p3 is considered as a diagnostic character for the genus and of the Sivatheriini in general (Bohlin 1926, Geraads 1986). However, the known Helladotherium specimens that retain the p3 are very few, so the variation of the genus regarding the morphology of this premolar is probably not well known.

The genus Palaeotragus GAUDRY, 1861 is very common in Eurasian and Greek faunas of Late Miocene age. In Kerassiá it is present in all three major sites (K1, K3, K4). The available material consists of six mandibular parts, a distal humerus part, a proximal Mt III-IV part, one complete Mc III-IV (Fig. 4c) and four proximal parts of the same bone, one complete and four partly preserved astragali and one scaphocuboideum. The total lower tooth row length is 158.8 mm, of which 66.5 mm is the premolar and 92.4 mm the molar length. The indices Lp2–p4/Lm1–m3 and Lp2–p4/Lp2–m3 are 72% and 42% respectively. The p4 is molarised, while the p3 shows only a feeble molarisation. The molars have triangular labial cuspsids, especially the hypoconid. The third lobe of m3 is rounded. The long bones are slender. The robustness index of the complete metacarpal is 8.4.

Bovidae GRAY, 1821

The bovid material curiously comprises mainly dental remains; postcranials are relatively rare, while the horn cores are practically absent. An almost complete skull that comes from the excavations of 1982 is referred to Gazella sp. (Iliopoulos in prep.). Other specimens attributable to the same species are several toothrows and some cranial fragments, while the horn core and postcranial material is relatively scarce. In general the bovid material can be divided to four size groups, based on the dental samples. A partial skull from K1, with both horn cores but without teeth, is referred to Tragoparotax cf. amalthea (Fig. 4b). It possesses slightly twisted and laterally compressed horn cores with an anterior keel, almost flat lateral surface and convex medial one. All these characters can be found in Tragoparotax amalthea (ROTH & WAGNER, 1854) and T. rugosifrons (SCHLOSSER, 1904). The presence of postcornual fossae, however, makes the present skull more similar to T. amalthea, since T. rugosifrons lacks them (Bouvrain 1994).

Apart from the mentioned artiodactyls, Van der Made & Moyà-Solà (1989) also mention the presence of Dorcatherium in the locality.

Perissodactyla OWEN, 1848

Equidae GRAY, 1821

The family is represented by Hipparion (Fig. 4e), which is the most common genus in Kerassiá. The findings include dental and postcranial material, which have not been studied yet. The metapodial sample seem to represent two groups, a slender and a relatively robust one. However, this observation has to be statistically proved. The study of hipparions is very critical for the biostratigraphic correlations and biochronology of the Late Miocene localities. Kerassiá postcranial
Figure 4
a- partly prepared bone-bearing block, showing the distribution of bones in the sediment; b- Tragoportax cf. amalthea, cranium part with both horn cores, K1/12, lateral view; c- Palaeotragus sp., right metacarpal III-IV, K4/331.5; d- Heliodotherium cf. duvernoyi, right metatarsal III-IV, K1/83; e- Hipparion sp., right metacarpals II-IV and phalanges, K4/67.1; f- Choerolophodon sp, tusk, K6/1. Tusk scale: 30 cm, all other scales: 10 cm.
Hipparion material is still insufficient for biometrical purposes.

Rhinocerotidae Owen, 1845
Some of the most impressive findings at Kerassiá belong to this family. Two complete skulls and two complete mandibles have been found, as well as some postcrania. The first skull comes from K3 and it belongs to a juvenile individual. It has both toothrows with D1–D4 and the erupting M1. The skull is characterised by the low position of the orbit, the absence of any contact between the lachrymal and the nasal bone and the position of the post-tympanic processes, which do not project laterally more than the post-glenoids ones. The occipital is not yet fused to the other cranial bones (it was found separately) and it has a rectangular aspect in posterior view. The deciduous teeth are characterised by the presence of crista and crochet and the absence of antecrochet. The metaloph is generally not parallel to the protocone. Both M1 are completely unworn; they have a crochet but no crista. The specimen has many common characters with *Ceratotherium neu-mayri* (Osborn, 1900) and it is attributed to this species.

The second skull belongs to an adult aeceratherine. It was found in K4. The skull is low and elongated. It is characterised by very thin nasals, high position of the orbit and deep jugular. The mandible is slender, with very short diastema and symphysis, and it is associated to the skull. The specimen has complete tooth rows. The tooth morphology is, however, not well observable, as the mandible is in life position. The lower incisors are relatively large in size, though much smaller than in other hornless rhinoceroses, like *Chilotherium*. The general aspect of the skull, which does not show sufficient similarities with the other known hornless rhinoceroses, suggest that it very possibly represents a new species.

Two mandibles, coming from K4 and K5, retain both rami and most of the teeth. The specimens are fairly strong and characterised by long symphysis and straight lower border. Both belong to aged individuals and their teeth are very worn and not well preserved. Their morphology is similar to that of *Dicerorhinus pikermiensis*.

Chalicotheriidae Gill, 1872
A distally broken third metacarpal from K1 and a complete second metatarsal from K4 can be referred to *Ancylotherium* sp. The metacarpal is broken at the level of the distal condyles, but its total length can be estimated to 140–150 mm, smaller than the length of the corresponding bone of *Ancylotherium pentelicum* (Gaudry & Lartet, 1856) from Pikéri or Sámos. On the contrary, the second metatarsal from K4 is slightly large (about 150 mm) compared to *A. pentelicum*. However, the size range of the second metatarsal of this species is known from very few specimens (Roussiakis & Theodorou 2001). Both specimens are proximally not very well preserved, and their morphological characters cannot be clearly observed.

Tubulidentata Huxley, 1872
Orycteropodidae Bonaparte, 1852
A nearly complete mandibular ramus with broken teeth, which comes from K1, is referred to *Orycteropus* sp.

BIOCHRONOLOGY - PALEOECOLOGY
The currently available data on the fauna of Kerassiá (Table 1) can give some clues about the age of the locality. Van der Made & Moyà-Solà (1989) already gave a possible dating of late MN12 for the first findings of the locality, considering the relatively small size of the studied *Microstonyx* specimens, together with the presence of *Deinotherium* and *Dorcathe-rium*. Kostopoulos et al. (2001), comparing the *Microstonyx* material coming from the excavation of 1982, also date Kerassiá to MN12. However, the generally bad conservation of fossils that makes their specific determinations very doubtful, does not allow any precise age estimate. The carni-
DISTRIBUTION AND MIGRATION OF TERTIARY MAMMALS IN EURASIA
DEINSEA 10, 2003

Voress show a Turolian age (Roussiakis & Theodorou 2003). The proboscidean remains are rather scanty to give any precise biochronological data. *Tetralophodon longirostris* is considered of MN8–MN11 age (Göhlich 1999), though Mein (1990) accepts the species presence in MN12 too. *Choerolophodon* has a wide biochronological range that covers the entire Miocene (Shoshani & Tassy 1996: 338). The artiodactyls are also not very useful, as they mainly consist of dental remains, which cannot be specifically determined. The very large *Helladotherium* mandible, which is very similar but not morphologically identical to *H. duvernoyi*, indicates an MN11–MN13 age (Gentry & Heizmann 1996). Similar is the stratigraphical range for *Palaeotragus* (MN9–MN12) and *Bohlinia* (MN10–MN13)

Table 1 Faunal content of the excavated sites at Kerassiá. KER represents the old collection of 1982 and K1 to K6 the sites excavated from 1992 onwards. K2, K3 and K4 belong to the lower fossiliferous level. The stratigraphic position of K5 is yet unknown.

<table>
<thead>
<tr>
<th></th>
<th>KER</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnivora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machairodus giganteus</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalurus cf. parvulus</td>
<td>?</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adcrocuta eximia</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Ictitherium pannonicum</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plioviverops sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proboscidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deinotherium sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetralophodon cf. longirostris</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choerolophodon sp.</td>
<td>?</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artiodactyla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microstonyx major erymanthius</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palaeotragus sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helladotherium cf. duvernoyi</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bohlinia sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samotherium sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tragopurtax cf. amalthea</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gazella sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorcatherium sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perissodactyla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hipparion sp.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ceratotherium neumayri</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Dicerorhinus” cf. pikermiensis</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinocerotidae sp. nov.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancylotherium sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubulidentata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orycteropus sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genus and sp. indet.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THEODOROU et al.: Late Miocene herbivores of Kerassia

(529)

The rhinocerotids found in Kerassia have a range throughout the Turolian; ‘Dicerorhinus’ pikermiensis is present in MN12 and MN13, but it possibly invaded the Eastern Mediterranean area in MN11; Ceratotherium neumayri has a wider range of MN9–MN13 (Heissig 1999). Combining the above given data, an MN12 age is plausible for the fauna of Kerassia, although MN11 cannot be rejected. A biochronological distinction of the two fossiliferous levels found in Kerassia is not possible for the moment. Some faunal differences do exist between the two levels, as Microstonyx, Orycteropus and Bohlinia are until now absent from the lower level. However, Bohlinia and, especially, Orycteropus are rare elements in the Late Miocene faunas. The forthcoming study of hipparions will probably solve the problems concerning the biostratigraphy of the locality and the relationships among the several sites.

The numerical dominance of bovids and hipparions in the fauna of Kerassia indicates an open and rather dry environment. Forest elements as cervids and suids are rare or absent. The giraffids, as well as Tragoparax, may have lived in open woodland environments (Gentry et al. 1999). A paleoecological shift between the lower and the upper fossiliferous level is possible due to the small differences in the faunal content, but such an assumption requires more material from both levels.

ACKNOWLEDGEMENTS

Since 1992, the excavations are financed by the University of Athens, the Municipality of Niléeas and the General Secretary of Research and Technology (Project 95YN107). In addition to the authors, in the scientific team also participate the geologists E. Stathopoulou, I. Giaourtsakis, E. Ypsilanti and the students G. Lambropoulou, K. Papaspyropoulos and K. Agiadi. The conservation of the material was partly undertaken by Dr. D. Charalambous, Dr. G. Panagiaris, I. Nobilakis (Subfaculty of Conservation - Technical Institute of Athens) and the students of the Technical Institute of Athens X. Ventikou, V. Papageorgiou, N. Katsikosta, M. Gioni, D. Mpila, P. Tsikna, M. Doukakis and M. Giannopoulou.

REFERENCES

Cordella, A., 1878 – La Grèce sous le rapport géologique et minéralogique – Parent, Paris
Jacobi, B., 1982 – Zur Stratigraphie und Sedimentpetrographie der Neogenen Süßwasserablagerungen im Bereich von Agia Anna im Nordosten der Insel Euböa (Ägäis) – Diplomarbeit, Christian-Albrechts-Universität, Kiel
Kostopoulos, D.S., Spassov, N. & Kovachev, D., 2001 –
Contribution to the study of Microstonyx: evidence from Bulgaria and the SE European populations – Geodiversitas 23 (3): 411-437

Received 19 May 2001
Accepted 16 September 2002