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Foreword 

The Dutch not only have what must be the greatest number of linguists per 
capita in the world, they also have a very long and rich tradition of combining 
linguistics, logic, and philosophy of language. So it should not be a surprise 
that it is an interdisciplinary collaboration of Dutch scholars that has produced 
the first comprehensive introduction to logic, language, and meaning that in­
cludes on the one hand a very fine introduction to logic, starting from the be­
ginning, and on the other hand brings up at every point connections to the 
study of meaning in natural language, and thus serves as an excellent intro­
duction and logical background to many of the central concerns of semantics 
and the philosophy of language as well. 

This book is pedagogically beautifully designed, with the central develop­
ments very carefully introduced and richly augmented with examples and ex­
ercises, and with a wealth of related optional material that can be included or 
omitted for different kinds of courses (or self-teaching) for which the book 
could very well be used: I could imagine tailoring very fine but slightly differ­
ent courses from it for inclusion in a linguistics curriculum, a philosophy cur­
riculum, a cognitive science curriculum, or an AI/computationallinguistics 
program. It would be less suitable for a logic course within a mathematics 
department, since there is less emphasis on proofs and metamathematics than 
in a more mathematically oriented logic book. There is certainly no lack of 
rigor, however; I think the authors have done a superb job of combining peda­
gogical user-friendliness with the greatest attention to rigor where it matters. 

One very noticeable difference from familiar introductory logic texts is the 
inclusion of accessible introductions to many nonstandard topics in logic, 
ranging from approaches to presupposition and many-v'!lued logics to issues 
in the foundations of model theory, and a wide range of more advanced (but 
still very accessible) topics in volume 2. The book thereby gives the student 
an invaluable perspective on the field of logic as an active area of growth, 
development, and controversy, and not simply a repository of a single set of 
eternal axioms and theorems. Volume 2 provides an outstanding introduction 
to the interdisciplinary concerns of logic and semantics, including a good in­
troduction to the basics of Montague grammar and model-theoretic semantics 
more generally. 



X Foreword 

I first became acquainted with this book in its Dutch version during a sab­
batical leave in the Netherlands in 1982-83; it made me very glad to have 
learned Dutch to be able to appreciate what a wonderful book it was, but at the 
same time sorry not to be able to use it immediately back home. 1 started 
lobbying then for it to be translated into English, and I'm delighted that that 
has become a reality. I hope English-speaking teachers and students will 
appreciate the book as much as I anticipate they will. The authors are top 
scholars and leaders in their fields, and I believe they have created a text that 
will give beginning students the best possible entry into the subject matter 
treated here. 

BARBARA H. PARTEE 

Preface 

Logic, Language, and Meaning consists of two volumes which may be read 
independently of each other: volume 1: Introduction to Logic and volume 2: 
Intensional Logic and Logical Grammar. Together they provide a survey of 
modem logic from the perspective of the analysis of natural language. They 
represent the combined efforts of two logicians, two philosophers, and one 
linguist. An attempt has been made to integrate the contributions of these dif­
ferent disciplines into a single consistent whole. This enterprise was inspired 
by a conviction shared by all of the authors, namely, that logic and language 
are inseparable, particularly when it comes to the analysis of meaning. Com­
bined research into logic and language is a philosophical tradition which can 
be traced back as far as Aristotle. The advent of mathematical logic on the one 
hand and structuralist linguistics on the other were to give rise to a period of 
separate development, but as these disciplines have matured, their mutual 
relevance has again become apparent. A new interdisciplinary region has 
emerged around the borders of philosophy, logic, and linguistics, and Logic, 
Language, and Meaning is an introduction to this field. Thus volume 1 estab­
lishes a sound basis in classical propositional and predicate logic. Volume 2 
extends this basis with a survey of a number of richer logical systems, such as 
intensional logic and the theory of types, and it demonstrates the application 
of these in a logical grammar. 

Logic is introduced from a linguistic perspective in volume 1, although an 
attempt has been made to keep things interesting for readers who just want to 
learn logic (perhaps with the exception of those with a purely mathematical 
interest in the subject). Thus some subjects have been included which are not 
to be found in other introductory texts, such as many-valued logic, second­
order logic, and the relation between logic and mathematical linguistics. Also, 
a first attempt is made at a logical pragmatics. Other and more traditional sub­
jects like the theory of definite descriptions and the role of research into the 
foundations of mathematics have also been dealt with. 

Volume 2 assumes a familiarity with propositional and predicate logic, but 
not necessarily a familiarity with volume 1. The first half of it is about different 
systems of intensional logic and the theory of types. The interaction between 
the origins of these systems in logic and philosophy and the part they have to 
play in the development of intensional theories of meaning is a common the-
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matic thread running through these chapters. In the course of this exposition, 
the careful reader will gradually obtain a familiarity with logic and philosophy 
which is adequate for a proper understanding of logical grammar. Montague 
grammar, the most well known form of logical grammar, is described in detail 
and used on a fragment of the English language. Following this, attention is 
paid to some more recent developments in logical grammar, such as the theory 
of generalized quantification and discourse representation theory. 

One important objective of this book is to introduce readers to the tremen­
dous diversity to be found in the field of formal logic. They will become ac­
quainted with many different logics-that is to say, combinations of formal 
languages, semantic interpretations, and notions of logical consequence-'­
each with its own field of application. It is often the case in science that one is 
only able to see which of one's theories will explain what and how they might 
be modified or replaced when one examines the phenomena very closely. In 
this field too, it is the precise, formal analysis of patterns and theories of rea­
soning which lead to the development of alternatives. Here formal precision 
and creativity go hand in hand. 

It is the authors' hope that readers will develop an active understanding of 
the matters presented, will come to see formal methods as flexible methods 
for answering semantic questions, and will eventually be in a position to apply 
them as such. To this end many exercises have been included. They should 
help make the two volumes suitable as texts for courses, the breadth and depth 
of which could be quite diverse. Solutions to selected exercises (marked with 
an asterisk) have also been included in order to facilitate individual study. 

In order to underline their common vision, the authors of these two volumes 
have merged their identities into that of L. T. F. Gamut. Gamut works (or at 
least did work at the time of writing) at three different universities in the 
Netherlands: Johan van Benthem as a logician at the University of Groningen; 
Jeroen Groenendijk as a philosopher, Dick de Jongh as a logician, and Martin 
Stokhof as a philosopher at the University of Amsterdam; and Henk Verkuyl 
as a linguist at the University of Utrecht. 

This work did not appear out of the blue. Parts of it had been in circulation 
as lecture notes for students. The exercises, in particular, derive from a pool 
built up through the years by the authors and their colleagues. The authors 
wish to express their thanks to all who have contributed in any way to this 
book. Special thanks are due to Piet Rodenburg, who helped write it in the 
early stages, to Michael Morreau for his translation of volume 1 and parts of 
volume 2, and to Babette Greiner for her translation of most of volume 2. 

Summary of Volume 2 

Chapter 1 provides a background to the systems of intensional logic presented 
in chapters 2 and 3. The nature and limits of the semantics of predicate logic 
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are discussed, and Frege's attempts to develop an intensional theory of mean­
ing are sketched. 

Chapter 2 is concerned with the propositional part of intensional logic. 
A general characterization of possible-worlds semantics is given, and it is then 
demonstrated with reference to modal propositional logic and propositional 
tense logic. Attention is paid not only to logical and philosophical matters but 
also to potential applications in the analysis of natural language. 

The same applies to the treatment of intensional predicate logic given in 
chapter 3, which appears here almost exclusively as a modal predicate logic. 
Different alternative semantic options are compared. Matters like rigid desig­
nation are discussed, along with certain more general methodological ques­
tions which come up in connection with intensional logic. 

Chapter 4 introduces and compares the theory of types and categorial gram­
mar. One important reason for preferring type-theoretical languages is the 
syntactic and semantic diversity of natural language. Increasing the appli­
cability of logical systems in the systematic analysis of natural language is 
also the most important reason for introducing .A-abstraction. Anticipating the 
discussion of Montague grammar in chapter 6, certain methodological re­
quirements are discussed which must be met in such an application, together 
with the role which .A-abstraction can play in helping to meet these require­
ments. Chapter 4 also contains an exposition of the principles of categorial 
grammar. 

ln chapter 5, intensional logic and the theory of types are combined. The 
resulting intensional theory of types is the logical system exploited in Mon­
tague grammar in order to provide a logical semantics for (a fragment of) a 
natural language. A section on two-sorted type theory has been included in 
order to render certain formal properties of the intensional theory of types 
more comprehensible. 

Chapter 6 begins with a discussion of a number of the assumptions made 
when systematically applying logical systems in the semantic analysis of natu­
ral language. This is followed by an exposition of the best-known model 
of logical grammar, viz., Montague grammar. The form and function of 
Montague grammar are demonstrated in detail with reference to the syntax 
and semantics of a fragment of English. 

Chapter 7 is a survey of three recent developments in model-theoretic se­
mantics of natural language. The first of these is the theory of generalized 
quantifiers which has been developed in the late seventies and which builds on 
the analysis of quantified expressions that can be found in Montague gram­
mar. This development is particularly interesting because it brings logical 
grammar within the realm of empirical constraints. Next, some attention is 
paid to recent attempts to make 'classical' categorial grammar into a better 
tool for natural language description. The third subject is discourse represen­
tation theory, which was developed in the early eighties. This theory aims at 
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improving logical grammar with respect to problems of anaphoric relations 
and at extending it to the level of discourse. 

Biographical notes and references to relevant literature conclude this vol­
ume, without any pretence at being exhaustive. 

Required Background Knowledge and Notation 

The reader is assumed to be familiar with the syntax and semantics of proposi­
tional logic and predicate logic and with elementary set theory, including the 
notion of a function. (Chapters 2 to 4 of volume l provide a suitable introduc­
tion here.) In particular, the reader should have an understanding of the 
notions of a formal language and a formula. As for the notations used in 
propositional logic: here we make use of the connectives 1\ (conjunction), v 
(disjunction), -, (negation), -> ((material) implication), and <---> ((material) 
equivalence). The letters p, q, r are used to refer to propositional letters; 
where necessary they are provided with primes or subscripts, as in p', p", p0, 
p 1 , and so on. These symbols, together with the brackets '(' and ')'enable u.; 
to introduce formulas like ...,,...,(p-> q) and ((p 1\ q) v r). In general, only the 
outermost brackets are left off, as in (p 1\ q) v r. The Greek letters cp, ljl, x, 
cp', cp", etc., are used as metavariables referring to formulas in general. Con­
cepts like propositional formula and formula of predicate logic are introduced 
by means of inductive (that is to say, recursive) definitions. Such definitions 
always end with a so-called induction clause, decreeing that nothing is a for­
mula that is not required to be such by the foregoing clauses. The notion of an 
inductive proof is also introduced in volume 1, but such mathematical proof 
techniques have been avoided in the text. 

Unlike in some other texts, printed successions of symbols are here not to 
be thought of as the formulas themselves but as names which refer to these 
formulas. For example, the symbol (string of length 1) 1\ merely refers to the 
conjunction sign. It is not itself the conjunction sign. Thus sentences like 1\ is 
the conjunction sign do not constitute an abuse of notation; there are no quota­
tion marks missing. (Incidentally, in both volumes italics are preferred to 
quotation marks for mention of an expression.) On the same basis, there is no 
unique language for propositional logic: any given set of propositional letters 
generates its own language, i.e., its own set of formulas built up from those 
propositional letters. That is, here 'p', 'q', and 'r' are not themselves proposi­
tional letters; they are metavariables referring to the propositional letters in 
any of a variety of different languages. Similar remarks hold for predicate 
logic. 

With respect to predicate logic, the reader is assumed to be familiar with 
(individual) constants (notation: a, b, c, c1 , c2 , etc.), with variables (notation: 
x, y, z, z1 , z2 , etc.), with the distinction made between free and bound (occur­
rences of) variables in formulas, and with the notion of the scope of a quan­
tifier V (universal quantifier) and 3 (existential quantifier). Formulas lacking 
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free variables are referred to as sentences. For the formula resulting from the 
substitution of y for (the free occurrences of) x in a formula cp, we have the 
notation [y/x]cp. 

In the semantics of propositional logic we make use of valuations, written 
V, V' etc. The notions of a tautology, a contradiction, and the concept of 
(logical) equivalence are presupposed, as is the notion of the validity of an 
argument schema cp 1, ••• , cf>nll/1. For 'cp is a tautology' we write I= cp, and 
for 'cp 1 , ••• , cf>nN is a valid argument scheme', we write cp 1 , ••• , c!>n I= ljl. 
The negations of these two are I* cp and cp 1, ••• , c!>n li'ljl, respectively. 

The semantics of predicate logic is given in terms of models (M, M', and 
so on), consisting of a domain D together with an interpretation function IM, 
which assigns suitable values to the constants and predicate letters. Thus, by 
means of Tarski's truth definition, any given model M has its own valuation 
function VM, which assigns to each sentence in the language in question either 
the truth value 1 (the sentence is true) or the truth value 0 (it is false), and a 
variety of valuation functions YM,g for the formulas. The latter valuations de­
pend on which assignment g is chosen, these assignments being functions 
mapping the variables of the language in question into D. A sentence cp is said 
to be 'true in the model M' just in case VM( cp) = 1. In connection with assign­
ments, the following notation is useful: g[x/d] refers to the assignment which 
assigns the valued to the variable x, and which otherwise agrees with g. 

Given this semantics, notions like the universal validity of formulas, the 
validity of argument schemata, the equivalence of sentences, and (via assign­
ments) the equivalence of formulas may be introduced. Principles like X+--+ x' 
I= cp +--+ [x' Jx]cf>, s = t I= cp <---> [t/s]cp, and Vxl, ... xn(X <---> x') I= cf> <---> 

[X' Jx]cf> are referred to as principles of extensionality. 
Some familiarity with a syntactic derivability notion cp 1 , ••• , c!>n 1- l/1 (l/1 

is derivable from cp 1 , ••• , cf>n) is useful but not essential. An axiomatic de­
rivability notion would do just as well as the system of natural deduction 
which was introduced in volume 1. An understanding of the meaning of meta­
logical theorems like the completeness theorem and its converse, the sound­
ness theorem, is similarly desirable but not essential to the reader of this 
volume. 

Among the set-theoretical notations used here, we have 0 for the empty 
set; n for intersection, and U for the union of sets; {1, 2} for the set contain­
ing just 1 and 2, by way of example; and (a1 , ••. , an) for an ordered 
n-tuple. A x B refers to the Cartesian product {(a, b) I a E A and b E B} of 
A and B; A~ B means 'A is a subset ofB' (not necessarily a proper one). The 
set {AlA ~ B} of all subsets of a set B is called the power set of B, and for 
this we have the notation POW(B). Properties of relations like (ir)reftexivity, 
symmetry, and transitivity are assumed to be familiar. 

Definite descriptions 1x cp (the x such that cp) are usually analyzed in the 
Russellian way: a formula ljJ containing a definite description 1x cp is read as 
3x(Vy([y/x] cp <---> x = y) 1\ [x/1x cp]ljl), assuming that y is free for x in cp. 
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Finally, mention should be made of the way in which translations from 
natural language into the formal languages of predicate and propositional 
logic are to be presented. An example will make this clear enough: 

All teachers love Billy, but he does not love all teachers. 

Translation into propositional logic: p 1\ •q 
Key: p: All teachers love Billy; q: Billy loves all teachers. 

Translation into predicate logic: \fx(Tx -> Lxb) 1\ •\fx(Tx -> Lbx) 
Key: b: Billy; Tx: x is a teacher; Lxy: x loves y. 

Such translations are of importance mainly in the exercises. 

1 The Origins 
of Intensional Logic 

1.1 Introduction 

In this volume we shall go into intensional logic at some length. Intensional 
logic is probably the most important extension of standard logic, by which we 
mean propositional logic and predicate logic (see volume 1). It has a multitude 
of applications, both in the analysis of philosophical problems and in research 
into the semantics of natural language. So before we embark on an exposition 
of intensional logic itself, let us first sketch the logical and philosophical 
background against which it was developed. 

Intensional logic has more than one root. One of these is an attempt to solve 
the problems that arise when one tries to extend semantic methods suited to 
the interpretation of the standard logical systems to the interpretation of lan­
guages which are 'richer' than those of propositional and predicate logic. Not 
all extensions of standard logic require new semantic methods. Some, like 
second-order logic (see vol. 1, chap. 5) require no more than an adaptation of 
the methods by means of which the semantics of propositional and predicate 
logic have been given. But for other extensions it is different. An example of 
such a system is modal propositional logic, which is the subject of chapter 2. 
There an expression 0 is added which is to be interpreted as necessarily or it 
is necessary that. An adequate semantics for this logical system requires a real 
extension of standard semantic methods. A natural language like English is of 
course a second example of such a richer language. Simply transferring the 
semantics of predicate logic to the semantics of English gives rise to all kinds 
of problems which indicate the need for richer semantic methods. In order to 
see this point clearly, it is important to understand just what kind of theory of 
meaning is inherent in the semantics of standard logic. 

1.2 The Correspondence Theory of Meaning 

There is a family of theories of meaning which all start out from the following 
principle: meaning is a relation between the symbols of a language and certain 
entities which are independent of that language. These theories may col­
lectively be designated as correspondence theories of meaning. The 'inde-
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pendence' of the entities in the above means, among other things, that the 
postulated entities are independent of whoever is using the language in ques­
tion and of the circumstances under which it is used. 

This point of departure can hardly be called universal. There are, for ex­
ample, theories which say that the meaning of a symbol resides in the use 
which is made of that symbol. The 'meaning is use' theory defended by the 
later Wittgenstein is an example of one such theory. And then there are theo­
ries which identify the meaning of a symbol with the set of all stimuli which 
elicit the use of that symbol as a response. There, meaning is defined in terms 
of the disposition of language users to display certain kinds of behavior. As 
examples we have the behavioristic theories of meaning of Bloomfield, Morris, 
and Skinner. And finally, there are theories which accept the correspondence 
theory as a partial account of meaning, in the sense that correspondence to 
entities is thought to account for just one aspect of the total meaning of sym­
bols. Grice's theory of implicatures (see vol. 1, chap. 6) is an example of such 
a theory. 

The common point of departure of correspondence theories of meaning as 
formulated above can be expanded in divergent directions. These differ on 
two main points: the nature of the relation between symbols and entities and 
the nature of the entities themselves. The second point seems to be more con­
troversial than the first, which now appears to have been settled to everybody's 
greater or lesser satisfaction. Nevertheless, we will go into the first very 
briefly. 

1.3 Naturalism versus Conventionalism 

The traditional debate on the relation between symbols and entities centers on 
whether this relation is a natural one or purely a matter of convention. It may 
not be a very lively debate these days, but the naturalism-conventionalism dis­
pute persisted from classical times up until well into the eighteenth century. 

In its most naive form, naturalism states that the meaning of a word is in­
herent in its sound. The relation between symbol and entity is in this case 
rather extremely 'natural'. It is clear that this naive form of naturalism is not 
viable. If it were true, for example, we would have no difficulty in learning a 
foreign language: presumably we would immediately understand it (at least in 
its spoken form). Another problem for naive naturalism is the existence of 
homonyms; words which sound the same may nevertheless have different 
meanings. And even the phenomenon of onomatopoeia, so dear to naturalism, 
presents its problems: must the difference between the French cocorico and 
the English cock-a-doodle-do be taken as an indication that French cocks and 
other members of their species on the other side of the channel crow differ­
ently at daybreak? 

Plato defends a less naive form of naturalism in his dialogue Cratylus. He 
supposes that there is some affinity between certain sounds and properties. For 
PY<>mnlP hP thinlc<: thM thf'rf' i<: " <:nf'<'i<>l <>ffinitv hf'twf'f'n thf' <:cmnci of the 
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letter rand the property of motion. According to Plato, words characterize the 
essence of that to which they refer by virtue of these kinds of relationships. 
Some words obtain their meanings quite directly in this manner and others via 
composition of meanings, etymological relationships, ·or metaphorical trans­
fer of meaning. But this form of naturalism, like the previous one, faces in­
superable problems. For example, none of the natural affinities between 
sounds and properties is much in evidence if different languages in different 
language families are compared. And what is the theory to make of synonyms? 

The debate between naturalism and conventionalism later developed into a 
controversy between anomalists and analogists as to whether language is 
regular or not. Irregularity was supposed to yield an argument in favor of 
naturalism. After all, if language is purely a matter of convention, then there 
would be no need for it to have any irregularities. 

Ultimately the idea that meanings are conventions was to emerge vic­
torious. The relation of meaning obtaining between a word and a thing is not 
natural but conventional. There are of course limits to conventionality, since 
one is not free to change the meanings of words at will. Such changes have to 
be in the interest of convenience, familiarity, or something of that kind. 

1.4 Variants of the Correspondence Theory of Meaning 

Within the correspondence theory, different variants have evolved with diver­
gent ideas on the nature of the entities which form the second argument of the 
relation of meaning. Here we shall briefly consider three of them. 

The first can be referred to as conceptualism. According to conceptualism, 
meaning is a relation between symbols and the contents of consciousness. 
Concepts, expressed by means of predicates, and propositions, expressed by 
means of sentences, are mental entities, with language functioning as a system 
of observable symbols which mediates between individuals, thus making 
communication possible. Locke has defended such a position: 'The use of 
words is to be sensible marks of ideas, and the ideas they stand for are their 
proper and immediate signification' (Essay Concerning Human Understand­
ing, chap. 2, book 3). Conceptualistic conceptions of meaning may still be 
found in modem linguistics: 'Roughly, linguistic communication consists in 
the production of some external, publicly observable, acoustic phenomenon 
whose phonetic and syntactic structure encodes a speaker's inner, private 
thoughts or ideas' (Katz 1966). (Note that Katz changed to the position of a 
Platonist in his 1981 book.) 

A second variant of the correspondence theory of meaning may be referred 
to as Platonism. According to Platonism, concepts and propositions are not 
mental entities but real things. Only they do not belong to the world of observ­
able phenomena but to the world of ideas. Linguistic symbols refer to things 
in the observable world only in an indirect manner, via the reflections of the 
world of ideas in the observable world. 

The third variant is what we mav call realism. According to realism. the 
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entities to which linguistic symbols bear the relation of meaning all belong to 
the concrete, observable reality around us: they are individuals, properties, 
relations, and states of affairs. A typical example of this position is the 
'picture theory of meaning', which was presented by Wittgenstein in the 
Tractatus Logico-Philosophicus. The relation between symbols and things is 
one of reference. This theory, which Wittgenstein was later to abandon, has 
the fundamental assumption that every symbol in an ideal language would re­
fer to some unique thing, and that every thing would be the reference of some 
unique symbol. 

Extracting from this theory just the idea that the meaning relation is one of 
reference, we arrive at what might be called a referential theory of meaning. 
It is readily seen to be compatible with any of the above three views on the 
nature of the entities, since it only states that the meaning of a symbol is that 
to which it refers. So that a theory of meaning is referential in itself says nothing 
about the nature of the entities to which symbols refer. 

1.5 Logical Semantics as a Referential Theory of Meaning 

The semantics of standard logic can be seen as a referential theory of meaning 
(and thus as a correspondence theory of meaning). Take, for example, the 
way in which the semantics of predicate logic is taught (see vol. 1, chap. 3). 
When defining a model for predicate logic, the first thing we do is choose 
some set of entities as our domain. The set is independent of the expressions 
which collectively form a predicate-logical language. We then specify a rela­
tion between the predicate-logical language in question and the domain. By 
means of an interpretation function, the constant symbols are assigned indi­
vidual domain elements, and the predicate symbols are assigned sets of do­
main elements (or sets of ordered sequences of n domain elements in the case 
of n-ary predicate letters) as their references. With this as a basis, we are in a 
position to define the reference relative to this model of all sentences in our 
language (that is, their truth values), in the so-called truth definition. So this 
method of semantic interpretation evidently follows a principle which we said 
to be characteristic of the correspondence theory of meaning in § 1.2: meaning 
is a relation between the symbols of a language and certain entities which are 
independent of that language. 

The semantics of predicate logic is indifferent to the kinds of things we 
choose to put in the domains of our models. Sets of people, numbers, or 
mathematical points will all do equally well as domains. In fact, any set at all 
will do. And whatever the domain may be, the theory of meaning is always a 
referential one: the meanings of the symbols are always their references. 

This identification of reference and meaning and the way in which semantic 
interpretation proceeds are sufficient to give standard logic a special property 
which we shall now go into briefly. One important characteristic of the seman­
tic interpretation process, a characteristic which also happens to be shared by 
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the nonstandard systems we shall meet up with, is that a strict parallelism is 
maintained between the syntactic constructions and their semantic interpreta­
tions. The truth definition mirrors the syntactic definition of the formulas of 
the language in question. There is a methodological consideration underlying 
this practice, one which can be traced back to Frege. This German logician 
and mathematician gave the first satisfactory analysis of sentences with rela­
tional predicates and multiple quantification in 1879, in his Begrijfsschrift. 
Now the fundamental_ insight behind his solution to these age-old problems is 
that every sentence, no matter how complex, is the result of a systematic syn­
tactic construction process which builds it up step by step, and in which every 
step can receive a semantic interpretation. This is the well-known principle of 
semantic compositionality. 

One consequence of all of this is that standard propositional and predicate 
logic are extensional logical systems. A logical system is said to be exten­
sional if expressions with the same reference (or extension) may be freely sub­
stituted for each other. So the following theorem, known as the principle of 
extensionality, can be proved for propositional and predicate logic (see §4.2.2 
in vol. 1 for a precise formulation of this principle and of the ones below): 

x - x' F= cf> +--+ [x' Jx] cf> 

This theorem states that if X and x' have the same truth values, then x' may be 
substituted for x in cf> without a change of truth value. We say that x and x' are 
interchangeable salva veritate ('with conservation of truth value'). Predicate 
logic also satisfies some other principles of extensionality. So it is that we 
have, for example: 

Vx(Ax <--+ Bx) l= cf> <--+ [B/ A]cf> 

This theorem says that if A and B express properties which have the same 
extension (which are had by the same entities), then they may be interchanged 
in formulas cf> salva veritate. Another example of the exten<>ionality of predi­
cate logic is what is referred to as Leibniz's law of the indiscernibility of 
identicals: 

s = t F= cf> <--+ [t/s]cf> 

in which s and t are terms, that is, if no function symbols occur in the lan­
guage, individual constants or variables. 

Its extensionality is both the strength and the weakness of standard proposi­
tional and predicate logic. It shows that in studying the validity of inferences 
in either of these systems, it suffices to consider the references of expressions 
and the principle of compositionality (which here amounts to this: the refer­
ence of a complex expression is a function of the references of its composite 
parts). On the other hand, as we shall see, there are also richer languages 
which are not extensional, for which the semantic methods for standard logi­
cal systems are not adequate. As we have already indicated, natural languages 
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arc not the only languages which arc essentially richer in this respect. Adding 
a single expression or construction to either of the standard systems can be 
enough to create a system which needs an essentially richer semantics. In the 
following chapters we will be dealing with several such systems. But before 
we turn to them, let us first briefly consider some of the difficulties which 
arise if a referential semantics is applied to natural language. For in the main, 
these problems are the ones which led to the development of intensional logic. 

1.6 Problems with the Referential Theory of Meaning 

The referential theory of meaning states roughly that the meaning of an ex­
pression is to be identified with its reference. As a theory of meaning for 
natural language, it is faced with insuperable difficulties. It forces us to con­
clude that since meaning is the same as reference, the proper name Odysseus 
has never meant anything, and that the proper name Socrates meant some­
thing once but no longer means anything. And a definite description like the 
president of the United States of America, we are forced to conclude, changes 
its meaning from time to time. 

Application of the referential theory of meaning to natural language entails 
a certain measure of realism, since natural languages are used to say things 
about reality. But going all the way for a realistic referential theory of mean­
ing would seem to forge too strong a link between meaning and reality. It 
would be preferable to have the meaning of symbols in some sense be more 
independent of reality without giving up the idea that there is a relation of 
reference which holds between symbols and entities. One famous example 
which illustrates this nicely is the morning star/ evening star paradox, which 
was formulated by Frege in "On Sense and Reference" ("Uber Sinn und 
Bedeutung" [1892]). So the man who may be considered to be the originator 
of the (extensional) standard systems of logic was well aware of the nonexten­
sional character of natural language. As Frege pointed out, the following two 
statements have different cognitive contents: 

(1) The morning star is the morning star. 

(2) The morning star is the evening star. 

Statement (1) is a tautology, an analytical a priori truth, but (2) expresses a 
significant astronomical discovery and as such is a synthetic a posteriori state­
ment. But both expressions, the morning star and the evening star, refer to 
the same thing, namely, the planet Venus. So if meaning and reference were to 
coincide, then we would have to accept that these two statements have the 
same meaning, which is obviously not the case. This is a truly paradoxical 
situation. If (2) is true (which it is), and meaning coincides with reference, 
then (2) expresses the same thing as (1). But whereas (1) must always have 
been accepted by anyone who chose to consider the matter, (2) was considered 
untrue for a long time. The conclusion which Frege draws from this is that 
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meaning and reference arc not the same hut are to some extent independent of 
each other. It is quite possible to know what an expression means without 
being familiar with its reference, and vice versa. This is not to say that there is 
no relation at all between meaning and reference. Two expressions which 
have the same meaning must also have the same reference. So in this sense, 
meaning determines reference. But, as we have already seen, the reverse need 
not be true: two expressions, in our example the morning star and the evening 
star, may have the same reference without having exactly the same meaning. 
It is the difference in meaning between the two expressions which accounts for 
the difference between the meanings of (1) and (2). It would appear, then, that 
any semantic theory which is to be suited to natural languages will have to 
distinguish between meaning and reference. 

Other problems having to do with the identification of meaning and refer­
ence arise in connection with what are called intensional (sentence) construc­
tions. If the meaning of an expression is just its reference, then we would 
expect that expression B with the same reference (and thus meaning) as ex­
pression A may always be substituted for A in any sentence, without altering 
the meaning of that sentence. There are, however, sentences whose meaning 
is affected by such substitutions. Compare the following two statements: 

(3) John is looking for the supreme commander of the U.S. armed 
forces. 

( 4) John is looking for the president of the United States of America. 

The expressions supreme commander of the U.S. armed forces and president 
of the United States of America always refer to the same person, but (3) and 
(4) still do not have the same meaning: (3) can be true while (4) is false, and 
vice versa. Here, as in the previous example, the obvious solution is to distin­
guish between meaning and reference and to stipulate that only expressions 
with the same meaning (and not just the same reference) may be freely sub­
stituted for each other. Frege himself was the first to propose a solution along 
these lines. In a series of articles, of which the above-mentioned article "On 
Sense and Reference" is the best known, he developed a theory of meaning 
which has to a large extent been incorporated into modern intensional logic. 
We will discuss a few aspects of this theory in § 1. 7. It should be noted that 
neither the solution sketched here nor the problems which it was deE"igned to 
solve are necessarily bound to realism, as is apparent from the fact that Frege 
is generally seen as a Platonist. 

1. 7 Frege's Theory of Meaning 

The fundamental distinction drawn in Frege's theory of meaning is that be­
tween sense (Sinn) and reference (Bedeutung). 

According to Frege, there is more to the full meaning of a sentence than just 
its sense; there is also force (Kraft) and tone (Fiirbung). The force of a sen-
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tence is something like what nowadays is called its 'illocutionary force'; it is 
that part of its meaning which determines what function it is to have. It indi­
cates whether we are dealing with an assertion, a question, etc. By the tone of 
an expression, Frege means the ideas (Vorstellungen) which a language user 
associates with an expression. Frege emphasizes that these mental associa­
tions are subjective, and that they can therefore not play a part in communica­
tion. In communication we can only convey objective things, things which are 
common to everyone we can communicate with. It is the objective part of 
meaning that Frege calls sense. 

So sense and reference are distinguished in Frege's theory of meaning. We 
have already seen an example by means of which this distinction can be moti­
vated, for what the morning star/evening star paradox shows is that sense and 
reference are two different things. Not that reference is of no importance in 
Frege's theory of meaning. Sense and reference are to be distinguished from 
each other, but that does not mean that they have nothing to do with each 
other. Reference, we may say, is what explains the function of sense: expres­
sions have a sense only by virtue of the fact that they also have a reference, 
and their sense is in fact nothing more than the way their reference is pre­
sented. Thus sense determines reference. Two expressions with the same 
sense have ipso facto the same reference, although this does not hold the other 
way around. Frege developed the distinction between reference and sense in a 
number of articles and attempted to say exactly what the senses and references 
of certain kinds of expressions are. In what follows, we shall briefly discuss 
his views on the senses and references of proper names and sentences. 

In Frege's work names include not only proper names like Amsterdam and 
Socrates but also definite descriptions like the morning star, the president of 
the United States of America, and the second power of 2. They are roughly 
what are called terms in logic: expressions which refer to an entity. So, for 
Frege, the reference of a name is an entity. Its sense is what Frege calls the 
mode of presentation (die Art des Gegebenseins) of that entity. It is the way 
the reference is presented. This is illustrated in figure (5): 

(5) 

a c 

In (5), three lines, a, b, and c, intersect each other at a common point P. This 
point P may be characterized in a number of different ways: as the intersection 
of a and b, as the intersection of a and c, as the intersection of band c, and 
finally as the intersection of a, b, and c. We see that a single entity, the point 
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P, is the reference of four different names. These four different descriptions 
have different senses but the same reference. Each presents the same entity in 
a different manner. It is of great importance that it is possible to be quite fa­
miliar with the sense of a name without knowing what its reference is. Anyone 
with a minimal competence in English understands the sense of the richest 
citizen of the United States, but that is not to say that he knows what individ­
ual is fortunate enough to have become the reference of the expression. Sense 
is 'the mode of presentation', but familiarity with the reference of any given 
expression is merely a possibility and may not be assumed. Sense is merely a 
criterion by means of which reference may be determined under various 
circumstances. 

How does Frege's theory of meaning solve the morning star! evening star 
paradox? The senses of the morning star and the evening star consist in the 
two different ways in which the two expressions determine their reference. 
For the morning star this could be made explicit as 'the brightest heavenly 
body in the eastern skies at dawn', and for the evening star it could be 'the 
brightest heavenly body in the western skies at sunset'. Once again, it is quite 
possible to be familiar with the senses of the two names without knowing to 
what heavenly bodies they refer. So this gives us a simple explanation of the 
cognitive difference between (1) (The morning star is the morning star) and 
(2) (The morning star is the evening star). Sentence (1) is true just in case the 
reference of the morning star is the same as the reference of the morning star. 
And that this is so is quite clear independently of what the reference in fact is. 
(Strictly speaking, it is not even necessary to be familiar with the sense of the 
morning star, as long as one knows what is means). So to know that (1) is true 
is an a priori matter. Sentence (2) is true just in case the reference of the morn­
ing star is the same as the reference of the evening star. And whether this is 
the case cannot be determined solely on the basis of the meanings of the two 
names. It is necessary to know exactly what the references of the two expres­
sions happen to be, so the truth of (2) was only apparent once astronomers 
discovered that they do both refer to the same celestial object, namely, the 
planet Venus. 

It is Frege's view that names can have a sense without automatically having 
a reference. One example of this is the description the first man on Mars. At 
the time this book went to press, this expression did not have a reference, but 
it does have a sense. We all know what properties a thing would have to have 
in order to answer to this description. This is a special case of a more general 
phenomenon, namely, that the reference of a name can vary from situation to 
situation. One example of this is the expression the queen of the Netherlands, 
which changed reference as recently as 1980. But temporally different situa­
tions are not the only ones we have in mind. We can, for example, imagine 
situations. in which the morning star has a different reference. There are 
imaginary situations in which not Venus but Mars is the brightest heavenly 
body at sumise (Venus still being the brightest at sunset). In any such possible 
but not actual situation, the name the morning star would have a reference 
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differing from the reference of the name the evening star in that situation, and 
as a result, (2) would be false. That there are situations in which (2) can 
be false is the reason why (2) expresses not a necessary but a contingent 
proposition. 

This last aspect of Frege's theory of the sense and reference of names has 
encountered a good deal of criticism in recent years, at least as far as real 
proper names like Dukakis and Socrates are concerned. Nowadays the preva­
lent view seems to be that proper names differ from definite descriptions in 
always referring to the same individual, under any circumstances whatever. 
Their reference is supposed to be absolute and unchangeable. The difference 
may be illustrated by means of 'counterfactual' statements like (6): 

(6) If Dukakis had won the presidential elections in 1988, then the 
president of the United States would have been a Democrat. 

This statement introduces a situation other than the factual one, a situation 
which is at least partly determined by the condition 'Dukakis wins the 1988 
elections'. The difference between the proper name Dukakis and the definite 
description the president of the United States is that the reference of the latter 
in the other situation is not the same as its reference in the actual situation; it 
is then Dukakis and not Bush, whereas the reference of the proper name 
Dukakis is in both situations the same: the man Dukakis. This thesis about the 
semantic behavior of proper names is known as rigid designation. We shall 
return to it at some length in §3.2. With this we conclude our discussion of 
Frege's theory of names and turn to his views on sentences. 

According to Frege, a sentence has both a sense and a reference, just as 
names do. His analysis is restricted to sentences which express assertions, al­
though, as we have seen, he was aware of other functions which language 
can fulfill. Every sentence, says Frege, corresponds to a certain thought 
(Gedanke). It expresses a thought or a proposition. Although it seems to us 
that the term thought carries a subjective 'tone', it follows from Frege's ideas 
on the nature of meaning that the thought expressed by a sentence is to be 
thought of as something objective. One and the same proposition is conveyed 
to all language users who understand a sentence. 

Can we now state that the reference of a sentence is the proposition which it 
expresses? Frege does not think so, and his reasoning can be paraphrased as 
follows. Compare the following two sentences: 

(7) The supreme commander of the U.S. armed forces is a man. 

(8) The president of the United States of America is a man. 

Clearly these sentences express different propositions. But then, assuming the 
principle according to which the reference of a complex expression is a func­
tion of the references of its composite parts, the reference of a sentence cannot 
be the proposition which it expresses. For according to this principle, (7) and 
(8) have the same reference, whereas we agreed that they express different 
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propositions. Frege concludes that if the proposition expressed by a sentence 
is not its reference, then it must be its sense. 

He then considers whether sentences must have references in addition 
to their senses. His reasoning that they do runs as f<?llows. Consider the 
sentence: 

(9) Odysseus landed at Ithaca. 

We know that the name Odysseus does not have a reference. Then in view of 
the principle of the compositionality of reference (see above), the whole sen­
tence (9) can't have a reference either. Now Frege makes two points. First, 
the proposition expressed by (9) is independent of whether or not the name 
Odysseus has a reference. Second, if anyone wants to assert that (9) is a true 
sentence or a false one, then he will have to assume that there is something 
which is the reference of Odysseus. So the reference of Odysseus matters, 
even though it does not affect the sense of sentence (9). Apparently, concludes 
Frege, it is of importance in determining the reference of this sentence. And 
this must then be its truth value, since it is the truth or falsity of a sentence 
which is determined by the references of the expressions appearing in it. 

The sense of a sentence is then the proposition which it expresses, and its 
reference is its truth value. As with names, a sentence may well have a sense 
without having a reference. Sentence (9), for example, expresses a proposi­
tion, but it does not have a truth value. And as with names, the sense of a 
sentence is a criterion for determining its reference. For a sentence is true just 
in case the proposition which it expresses holds. In other words, the sense of a 
sentence determines what must hold if the sentence is true. This is in agree­
ment with the statement made by Wittgenstein in Tractatus 4.024: "To under­
stand a proposition means to know what is the case if it is true" (trans!. Pears 
and McGuinness). 

Frege also had a theory about the sense and reference of predicate expres­
sions. We shall not describe it here, since it is rather complicated and has not 
had the same influence on the semantics of intensional logic as the above. 

We now conclude our discussion of Frege's theory of meaning with two 
principles which Frege uses in his reasoning and which are collectively re­
ferred to as Frege's principle. They may be formulated as follows: 

(I 0) The reference of a composite expression is a function of the ref­
erences of its component parts. 

(11) The sense of a composite expression is a function of the senses 
of its component parts. 

These two principles can also be presented as replacement principles: 

( 12) If two expressions have the same reference, then substitution of 
one for the other in a third expression does not change its 
reference. 
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(13) If two expressions have the same sense, then substitution of one 
for the other in a third expression does not change its sense. 

We have already encountered the first of these principles a number of times in 
Frege's argumentation. There is some difference of opinion as to whether th.: 
second may be ascribed to Frege himself, but the general opinion is that it is at 
least Fregean, even if it is not Frege's. The two principles are also known as 
principles of compositionality, of reference and sense, respectively. The first, 
(12), is just the principle of extensionality that holds for standard logic. 

As we saw in§ 1.6, the first principle does not hold for intensional construc­
tions, as is apparent from the following sentence: 

(14) John said that Peter's barber is Mary's husband. 

If John is not mistaken in his beliefs, and if Peter's barber and Mary's husband 
are in fact one and the same person, then Peter's barber and Mary's husband 
have the same reference. But (14) surely does not have the same reference 
(truth value) as (15): 

(15) John said that Mary's husband is Mary's husband. 

This is not in accordance with principle (12). 
This problem with intensional constructions could be tackled in various 

ways. One could, for example, try to restrict (12) to the extensional construc­
tions in which substitution may take place freely. But Frege wished to main­
tain (10) and (12) unconditionally and therefore chose another solution. He 
proposed that expressions do not have their normal references in intensional 
constructions but refer instead to their senses. He says that in such cases ex­
pressions have an indirect reference (ungerade Bedeutung), which is then the 
same as what is normally their sense. A pair of sentences like (14) and (15) is 
then no longer a counterexample to (9) and (12). The expression Peter's bar­
ber can only be replaced by an expression with the same reference, and in the 
context of say that, this means having the same sense. Sentence (14) does 
have the same truth value as sentence (16): 

(16) John said that Peter's hairdresser is Mary's husband. 

Modern intensional analysis is such that the two methods for dealing with the 
difficulties with the principle of the compositionality of reference can no 
longer be sharply distinguished. Facets of both approaches have found their 
way into modern analysis. 

The reader should note that principles ( 1 0) and ( 11) implicitly presuppose a 
syntactic analysis. Whether an expression like old men and women refers to 
aged persons of either sex or to women and old men cannot be determined 
solely on the basis of the meanings of the lexical elements old, men, and, and 
women. And here we come up against one of the most important questions 
that must be answered if we wish to apply logical semantics to natural Ian-
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guage: what level of syntactic analysis do principles ( 10) and (11) presup­
pose? We shall return to this in chapter 6. 

1.8 Context Dependence 

As we have seen, one of the problems which led to the development of inten­
sional logic was the unsuitability of the extensional semantics of standard 
logic for intensional constructions. Another problem was the fact that stan­
dard logic is restricted to propositions which are not context dependent, and 
this problem provides a nice illustration of the importance of the notion of 
context in intensional logic. This notion is of importance not only in the analy­
sis of context-dependent propositions, for as we shall see, it also makes pos­
sible a formal account of the difference between sense and reference. 

In logic, propositions are traditionally supposed to be independent of time 
and place, so that they may be said unconditionally to be either true or false. 
And philosophical propositions like Knowledge implies belief, mathematical 
ones like 5 + 7 = 12, and theological propositions like Belief implies knowl­
edge are clear examples of statements whose truth or falsity does not depend 
on the situation in which they are evaluated. But in this they are exceptional. 
Most propositions, like (17), for example, do not have this property: 

(17) The queen is delivering an address. 

Attempts have been made to adapt propositions like ( 17) in such a manner that 
their truth or falsity no longer changes from situation to situation. This has 
been done by building a specification of the situations in which sentences can 
be uttered into the sentences themselves. Sentence (17) might, for example, 
be expanded into something like (18): 

(18) On June 9 at 8 P.M., the queen of the Netherlands is delivering 
an address. 

It could still be argued that (18) is situational, since a time is mentioned but 
not a place. An elaboration like 'in Noordeinde Palace' would be needed in 
order to remedy this. But even that would presumaby not be sufficient, for in 
which of the palace's many halls, chambers, or dungeons was the address ac­
tually given? And between which two exact points in time? Obviously we 
could go on elaborating this sentence beyond all recognition. Instead of doing 
so, it would seem much more natural to interpret it against the background of 
the context in which it is used. This context provides the here and now on 
which the truth of a situational sentence depends. So a sentence like It is rain­
ing will be true in a given situational context if it happens to be raining in that 
context. A sentence in a past tense, like It rained, refers to a moment in time 
before the now provided by the context in which it is uttered and is therefore a 
little more complicated. It requires not one but two contexts. And a sentence 



14 Chapter One 

like Perhaps it is raining introduces a conceivable state of affairs which 
certainly need not be present in the given context. So in interpreting a sen­
tence in any given context, it is often necessary to take other contexts into 
consideration. 

The name intensional semantics, which is given to a logical semantics in 
which the interpretation process is as sketched above, is derived from the dis­
tinction between intension and extension. The intension of an expression is 
something like its conceptual content, while its extension comprises all that 
exemplifies that conceptual content. Take the expression digit, for instance. 
The intension of the word (at least in the sense which it has in arithmetic) is 
the concept 'single symbol referring to a whole number', and its extension 
is the set of symbols {0, I, 2, 3, 4, 5, 6, 7, 8, 9}. Extension is then what we 
have called reference until now. 

The idea we have been introducing here is that expressions may have differ­
ent references (extensions) in different contexts. The expression the president 
of the United States, for example, had Carter as its reference in 1979, Reagan 
in 1980, and Bush in 1989. Another example is the morning star, which under 
other conceivable astronomical circumstances might have referred to any of a 
number of heavenly bodies and not to Venus. Intensional logic has as its for­
mal version of the traditional logical notion of intension the phenomenon of 
multiple reference. It is a function which gives the reference of an expression 
in each of the contexts under consideration. This formal notion of intension 
would appear to capture the essence of Frege's notion of sense as a criterion 
for determining the reference of expressions. The intension of the expression 
the president of the United States is, for example, the function which assigns 
to each context (moment in time) the person holding the office of president at 
that time. Such a function from contexts to individuals is also called an indi­
vidual concept. 

Predicates can also change their reference from context to context. For ex­
ample, nowadays the reference of the predicate American male no longer in­
cludes the individual Elvis Presley, although it still did in the year 1976. The 
intension of a predicate is then a function which assigns to any given context 
the set of individuals forming the reference of that predicate in that particular 
context. 

As was argued at length above, the reference of a sentence, like It is rain­
ing, can also change from context (time and place) to context. The intension 
of a sentence is then a function which assigns to any given context the truth 
value of that sentence in that particular context. The intension of a sentence is 
also called a proposition. 

These are the two simple notions which form the foundations of modem 
intensional logic: context and multiple reference. We shall now demonstrate 
the technical apparatus of intensional logic in its simplest form: propositional 
logic with added intensional operators. Only after completing this in chapter 2 
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will we turn to the relatively complicated case of intensional predicate logic in 
chapter 3. There various problems will be seen to arise from interactions be­
tween quantifiers and intensional operators. After an introduction to the the­
ory of types in chapter 4, we will move on to the intensional theory of types in 
chapter 5. This theory plays an important part in logical grammar, which is 
introduced in chapter 6. 



2 

2.1 Introduction 

Intensional 
Propositional Logic 

As we saw in chapter 1 , there are many different kinds of intensional con­
structions. Of these, modal and temporal constructions have received the most 
attention in philosophical logic. It is for this reason that we have chosen to 
handle modal propositional logic and propositional tense logic here, and also 
the combination of the two. Other examples of intensional contexts which 
have been studied formally include knowledge and belief (epistemic logic) 
and permission and obligation (deontic logic). We begin with a section on the 
semantic approach which is common to all of these systems. It emerged in the 
fifties in the work of authors like Carnap, Kanger, Hintikka, and Kripke. 

2.2 Possible Worlds Semantics 

For the sake of convenience we begin with the following extremely simple 
language. An expression 0 is added to the vocabulary of propositional logic 
which when placed in front of a formula¢ results in a new formula 0¢. Ex­
pressions like 0 are called operators. We thus obtain formulas like Op, 
Op-> p, Op-> OOp, Op-> q, q-> Op, O(Oq-> Op), etc. The intuitive idea 
is that 0 stands for an intensional construction like it ought to be the case 
that, I know that, it will always be the case that, it was once the case that, it is 
necessary that, or it is possible that. Under the second interpretation, for ex­
ample, the first three formulas say: I know that p, if I know that p then p is the 
case, and if I know that p, then I know that I know this. It should be clear that 
the extensionality of standard propositional logic is lost if such constructions 
are introduced. It clearly can be true that two propositions p and q have the 
same truth value, so that p ~ q is true, without it following from I know that p 
that I know that q, that is, without Op ~ Oq being true. 

What aspects of the context must be taken into account will depend on the 
intended interpretation of the operator 0. If we are only interested in temporal 
constructions like it will always be the case that and it was once the case that, 
then contexts reduce to moments in time. If we are only interested in modal 
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constructions like it is necessary that and it is possible that, then we can iden­
tify the contexts which must be taken into consideration with all possible 
situations. And if we are dealing with both temporal and modal constructions 
at the same time, then the contexts will be situations possible at moments in 
time. The point is that the set K of contexts which we will choose to work with 
depends very much on what the operator 0 is supposed to mean. 

ln view of the above, it would seem that we need a context-dependent no­
tion of meaning, that is to say, one in which the truth values of propositions 
are not absolute but are relative to the contexts in which their truth is evalu­
ated. In formal terms, this will mean replacing the simple semantics of propo­
sitional logic, in which formulas receive absolute truth values, with a system 
in which evaluation functions assign truth values only relative to some context 
k (taken from the set K of such contexts). The clauses for the connectives of 
standard propositional logic then remain essentially the same. A formula •¢, 
for example, will receive the truth value 1 in a given context just in case the 
formula ¢ receives the truth value 0 in that context. In fact, the set K of all 
contexts only comes into play when we start evaluating sentences of the form 
0¢ in a given context k. For the truth of any such formula in a context k is 
made to depend on the truth of¢, not only in that same context k but also in 
other contexts k' inK. This is what makes the system intensional. The truth of 
the construction it was once the case that p is, for example, dependent on 
there being some context (point in time) k' earlier than the present context 
(point in time) k at which p was true. And for I know that p to be true in a 
context k, it is necessary not only that p be true in k but also that it be true in 
all contexts k' which are compatible with the knowledge I have in k: with all 
of the so-called epistemic alternatives I have in context k. 

Are the truth values of cp in all contexts k' within K relevant to the truth of 
0¢ in any one of these contexts? This all depends on which intensional con­
cept 0 is supposed to be modeling. If 0 is to be interpreted as it is logically 
necessary that, then it is plausible to stipulate that 0¢ is true in any context k 
just in case¢ is true in every possible context k'. But if 0 is, for example, to 
be interpreted as it is a physical necessity that, then it would seem more rea­
sonable to have 0¢ true in any given context k just in case ¢ is true in those 
contexts k' where the same physical laws hold as in k itself. And if 0 stands 
for the temporal construction it was once the case that, then only the contexts 
(points in time) prior to k will matter. To put it generally then, what contexts 
need to be taken into account when evaluating a formula 0¢ in some con­
text k will depend on the interpretation given to ~0. Depending on this inter­
pretation, they may also depend on certain characteristics of the context k 
itself. The set of points in time prior to k will obviously be different for differ­
ent points of time k. And much the same thing can be seen with epistemic 
constructions. What episternic alternatives one has to consider in evaluating a 
sentence depends on one's context, as is apparent from the following concrete 



18 Chapter Two 

example. Consider a chess player halfway through a game. He knows where 
all of the pieces stand on the board, and he is familiar with the rules of the 
game, so in principle at least, he is in a position to calculate all of his epis­
temic alternatives: those positions which can be reached by continuing the 
game. But the epistemic alternatives will vary with the stage the game has 
reached. In fact, the set of epistemic alternatives that this player has shrinks as 
the game progresses, for each move excludes whole branching trees of previ­
ously possible developments. Thus the statement I know that black will not 
win may be false in a given context, that is to say, at a given stage in the game, 
there being possible continuations of the game in which black checkmates 
white, while this statement at a later stage in the game becomes true, black 
having lost all of his pieces but the king. 

So what contexts must be taken into account in evaluating a formula O<f> 
may depend not only on the intended interpretation of 0 but also on the par­
ticular context in which the evaluation is to take place. Those contexts k' 
which are relevant when evaluating within a context k are said to be accessible 
from k. So the truth value of O<f> in k depends on the truth values taken on by 
<f> in the contexts k' which are accessible from k. And the way it depends on 
these truth values depends in its turn on the intended interpretation of 0. IfO 
is supposed to mean it is necessary that, for example, then <!> must be true in 
all contexts accessible from k if <f> is to be true in k. But if 0 is supposed to 
mean it is possible that, then it is sufficient that <!> be true in any one of these 
contexts. Each interpretation of 0 gives rise to some condition on the truth 
values of <f> in accessible contexts which must be satisfied if O<f> is to be true. 

The informal discussion above leads to the following formal definition: 

Definition 1 

A model M consists of: 

(i) a nonempty set K of contexts 
(ii) a binary relation R on K, the accessibility relation 
(iii) a valuation function V which assigns a truth value Vk(p) to ever; 

proposition letter p in each context k E K 

(Models like these are often called 'Kripke models'.) Starting with this defini­
tion, a truth definition can be given which gives the truth value V M,k ( </>) of a 
formula <f> in context k of a model M. In this definition, the clauses for the 
standard connectives retain their usual form, while the clause for the inten­
sional operator 0 depends on its intended interpretation. We shall see precise 
formulations of the intensional clause for two different interpretations of 0 in 
§§2.3 and 2.4. 

In some cases it is convenient to give a diagram of the contexts and their 
accessibility relation. The contexts are then represented by means of points, 
with arrows indicating which contexts are accessible from which others. An 
example of one such diagram is given as figure (I): 

Intensional Propositional Logic 19 

(I) 

• 1 

Only context 2 is accessible from 1; from 2, 2 itself, 3, 4, and 7 are acces­
sible; no context at all is accessible from 7, and so on. 

It will be clear why extensionality fails in any such system, even without 
the concrete examples in what is to come. For that p <---> q is true ink is in itself 
no guarantee that Op <---> Oq will also be true in k, for the truth of this latter 
formula depends on the pattern of truth and falsity exhibited by p and q in 
contexts other than k itself. And the truth of p <---> q in the one context k does 
not tell us anything about this pattern. 

2.3 Modal Propositional Logic 

2.3.1 Historical Background 

The modal concepts which are considered in modal propositional logic derive 
not so much from natural language as from philosophy. The modal construc­
tions of natural language include all forms which contain elements such as 
can, perhaps, must, certain. But philosophy has its own traditional modali­
ties: it is necessary that, it is possible that, and it is contingent that. We shall 
briefly return in §2.3 .4 to the matter of whether modal constructions in natural 
language always express one of these philosophical modalities. 

The philosophical modalities form one of the subject areas addressed in tra­
ditional logic. Aristotle considered modal syllogisms, and the Scholastics were 
concerned with the semantics of modal notions. And in a well-known table in 
his Critique of Pure Reason, Kant refers to the modalities as the fourth main 
category of propositions. But at least initially, there was no place for the 
modalities in modern logic. Frege discussed Kant's table in his Begriffsschrift 
and removed modalities from the logical agenda in a single sentence: "In say­
ing that a proposition is necessary, I merely give an impression of the reasons 
for my judgment." The content of that judgment, Frege argues, is indepen­
dent of those reasons, and it is only the content which matters to logic. But the 
modalities were able to penetrate into modern logic in disguise. 

Around the turn of the century, certain overzealous supporters of modern 
logic pronounced material implication the only kind of implication. The rest 
of us would just have to learn to swallow the counterintuitive consequences of 
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this, including the fact that one of any two given propositions must always 
imply the other: for (4> --+ l/J) v (l/1--+ 1J) is a tautology. This and other para­
doxes of material implication, like 4> --+ (l/1 --+ 1J) and •4> --+ (1J --+ l/J), con­
tinued, however, to trouble some writers, notably C. I. Lewis. (The fact that 
the metanotion of derivability (f-) made every bit as good a claim as material 
implication to be an explication of implication seems to have been overlooked 
by believers and unbelievers alike. At least it is not true that for every two 
formulas 1> and l/J, either 4> f- lfJ or l/J f- 1J.) Lewis introduced a strict implica­
tion -$ as a complement to the material implication --+, which was supposed 
to formalize more (different) aspects of implication, and he attempted to cap­
ture the properties of strict implication in axiomatic systems. But it turns out 
to be rather difficult to judge the validity of his axioms. It is much simpler (if 
perhaps not in all respects entirely correct) to understand why strict implica­
tion is stricter than material implication as follows. A material implication 
1>--+ l/1 is equivalent to •(4> 1\ •l/J). It thus states that it is not the case that both 
4> and •l/J. But strict implication says much more than this-not only is this 
not the case, but it couldn't be the case: 1> -$ l/J is equivalent to •<>(4> 1\ •l/1) 
(it is not possible that both 1> and •l/J). And thus the modality<> (it is possible 
that) once again turned up in logic. Its conceptual counterpart 0 (it is nec­
essarily so that) then can not be far away, and via the equivalence of in tum 
•<>(4> 1\ •l/1), 0•(4> 1\ •l/J), and 0(4>--+ l/J),-$ may be seen as necessary 
material implication. As weak as the grounds for introducing the new operator 
-$ may seem to have been, its translation into modal terms returned modal 
notions to logic, and in the meantime, they have even managed to draw most 
of the attention (although the notion of strict implication has been revived a 
number of times in recent years, notably in 'relevance logic'). 

Right from the beginning, modal logic showed an uncertainty about the va­
lidity of its logical principles which is completely foreign to classical Fregean 
logic. Principles like (2) may have been clear enough, and with it (3): 

(2) •<>1> -0•4> (The impossible is what is necessarily not 
the case.) 

(3) •Oo4> - 04> (What cannot possibly not be the case is 
what is necessary.) 

But (2) and (3) seem to be more definitions than principles. Formulas (4) and 
(5) also seem relatively unproblematic: 

(4) 

(5) 0(4>--+ l/1)--+ (04>--+ Ol/J) 

(What is necessarily true is 
true.) 

(Strict consequences of 
necessary truths are them­
selves necessary truths.) 
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~nciple (5), which is equivalent to (0(4>--+ l/J) 1\ 01J) --+ Olfl, may be con­
Sidered a modal form of modus ponens. But the validity of principles becomes 
m~ch harder to judge as soon as stacked modal operators start complicating 
thmgs. Two such principles of disputable validity are (6) and (7): 

(6) 04>--+ 004> 

(7) 004> --+ 1> 

(If something is necessary, then it is nec­
essarily so.) 

(What is possibly necessary is true.) 

Many different syntactic, axiomatic theories grew from different preferences 
for these and similar principles, and by the sixties they had turned into a 
tangled and increasingly impenetrable jungle. This uncertainty about the va­
lidity of certain principles may be considered as a sign that various (stronger 
and weaker) modal notions were interfering with each other in our intuitive 
judgments, and a semantics which would throw new light on all of the various 
syntactic theories was badly needed. That is why the idea of a possible worlds 
semantics was to make such an impact around 1960. 

2.3.2 Syntax and Semantics 

"W_e discussed the basic idea behind possible worlds semantics in §2.2. As ap­
plied to modal propositional logic it amounts to the following. The operators 
0 and <> are added to propositional logic by means of the following addition 
to the definition of a propositional language L: 

(8) If 1> is a formula in L, then 04> and <>1> are too. 

According to (8), we now have Op, Op v Oq, •O(p 1\ q), p --+ OOp, and 
Op --+ OOp as examples of formulas. Stacks of operators like those in ex­
amples (6) and (7) are also referred to as iterations. 

Exercise 1* 

Translate the following sentences into formulas of modal propositional logic. 
Represent the logical structure as well as you can and state the translation key 
you use. 
(a) It is possible that you do not understand me, but it isn't necessary. 
(b) If it may be raining, then it must be possible that it is raining. 
(c) It is possible that if it may be raining, it is raining. 
(d) If it may be necessary that it is raining, then it must be raining. 
(e) Maybe it is raining, and perhaps this is necessary (try to find two 

translations). 

The semantics of modal propositional logic is, as we have said, a concrete 
example of an intensional propositional logic as discussed in §2.2. The con­
texts we referred to there are now called possible worlds, a notion which goes 

I 
I 

i 
I 
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back to Leibniz. (Leibniz's idea that this world in which we happen to live is 
the best of all possible worlds was the target of Voltaire's sarcasm in Can­
dide.) Leibniz distinguished between factual truths, which hold (only) for the 
world in which we happen to live, and rational truths, which hold in all worlds 
which God might have created. The latter clearly lie close to the idea of neces­
sary truth as truth in all possible worlds. 

The idea behind possible worlds semantics is that the truth of D<f> and <><t> 
in any given possible world depends on the truth of <f> in other possible worlds. 
It may not be necessary to take all possible worlds into account; formally this 
is captured in an accessibility relation which says what worlds matter. We can 
now give: 

Definition 2 

A model M for modal propositional logic consists of: 

(i) a nonempty set W of possible worlds 
(ii) a binary relation R on W, the accessibility relation 
(iii) a valuation function V which assigns a truth value Vw(P) to every 

proposition letter p in each world w E W. 

Sometimes a special element w0 of W is singled out as the actual world, but 
this is not really necessary. A set of possible worlds W together with a suitable 
accessibility relation R is referred to as a frame, or structure. So a model M 
consists of a frame F together with a valuation function Y. Any given frame F 
can be turned into a variety of different models, depending on the valuation 
function which is added. For a frame only fixes what possible worlds we are 
dealing with and which of these are accessible from which others. A valuation 
is needed to decide what facts obtain in each of the possible worlds, and in 
general there will be many different ways of doing this. Each corresponds to a 
different model M. A model is an exact specification of a particular state of 
actual and possible reality. A frame provides, as it were, a structure, a frame­
work that can form the basis of any one of a variety of such states. 

The truth definition now tells us what formulas <f> are true in what possible 
worlds w of any given model M. The truth values of all of the proposition 
letters are fixed, for each possible world in M, by M's valuation function V. 
What the truth definition does is determine what truth values must then be 
attributed to composite formulas in each of the possible worlds. In other 
words, the truth definition states, for given M, how the valuation function 
available for the proposition letters can be extended to a valuation function VM 
which applies to all formulas in the language in question. As usual, this is 
done by stating how the truth values of component formulas must depend on 
those of their component parts. The innovation of intensional propositional 
logic is that truth values are relative to the possible worlds in which evaluation 
takes place and may depend in part on truth values in other such possible 
worlds. The truth definition for modal propositional logic is now: 
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Definition 3 

If M is a model with W as its set of possible worlds, R as its accessibility 
relation, and Vas its valuation, then VM,w(<f>), the truth value of <f> in w given 
M, is defined by the following clauses: 

(i) VM,w(P) = Vw(p), for all proposition letters p 
(ii) vM,wC•<f>) = 1 iff VM,w(<f>) = 0 
(iii) VM,w(<f>-+ 1/J) = 1 iff VM,w(<f>) = 0 or VM,w(l/1) = 1 
(iv) VM,w(D<f>) = 1 iff for all w' E W such that wRw': VM,w·C<f>) = 1 
(v) vM,wC<><t>) =I iff for at least one w' E w such thatwRw': VM,w'(<f>) = 1 

Clearly the connectives -, and -+ have the same meaning here as in the truth 
tables of standard propositional logic. The same applies to 1\, v, and ...._., 
whose clauses have been skipped. It is only with the clauses for D and <> that 
the whole apparatus of possible worlds gets into gear. According to (iv), nec­
essary means true in all accessible worlds, while according to (v), possible 
means true in at least one accessible world. This clearly exposes the analogy 
between D and V as opposed to <> and 3 which had already been noticed by 
so many authors. And it also makes clear why, as with the quantifiers, just one 
of the pair needs to be taken as a primitive, in terms of which the other can 
then be defined. The operator <> may be defined as -, D•, for example, just as 
3 may be defined as -,y-,_ The reader can easily check that this immediately 
seals the validity of principles (2) and (3). 

In order to demonstrate how clauses (iv) and (v) work, we shall now turn to 
the two simple models given in (9) and (10): 

The model M depicted in (9) may be read off as follows. There are just three 
possible worlds, w1, w2 , and w3 , so that W = {w 1, w2 , w3}. The arrows repre­
sent the accessibility relation between the worlds: w2 is accessible from w1, w2 

itself and w3 -afe accessible from w2 , and no possible world at all is accessible 
from w3 • Writing Rasa set of ordered pairs, we obtain from (9): R = {(w1 , 

w2), (w2 , w2), (w2 , w3)}. So now we have determined the frame forM. As­
suming we are dealing with a language with just a single proposition letter p, 
(9) also fixes the valuation function V (and thus, following the truth defini­
tion, the truth values of all of the formulas in all of these possible worlds): 
Yw,(P) = Yw

2
(p) = I, and Vw,(P) = 0. We have now fully specified M. And 
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what about the truth values of Dp and Op in the different possible worlds? 
Since w!Rwz and VM,w2(p) (= vw2(p)) = I, VM,w,(<>p) = 1. And since Wz is 
the only world accessible from w1 , we also have VM,w,(Dp) = I. In w2 , Op is 
true, since p is true in w2 itself, and w2Rw2 • But Dp is false in w2, since 
w2Rw3 , while pis false in w3 • And finally, VM,w,(<>p) = 0 and VM,w,(Dp) = I, 
since there are no worlds at all which are accessible from w3 (so that p is true 
in all of the [nonexistent] worlds which are accessible). Formula <>•p is false 
in w1 but true in w2 , while both Op and <>•p are false in w3 , and Dp and 
D• p are both true in w 3 • 

Our second example of a model is represented as (10). Reading off its 
characteristic W, R, and V from that diagram, we have: W = {w1 , w2}; 

R = {(wl, wl), (wl, Wz), (wz, wl)} and vw,(P) = 0, vw2(p) = I. The truth 
values of various formulas may now be calculated just as in the first example. 
By way of illustration, we shall determine the truth values of two formulas 
with stacked modal operators, i.e., D<>p and <>D•p. 

Is DOp true in w1? That would be so just in case for all w' such that w1Rw' 
we have VM,w'(Op) = I. We know that w1Rw 1 and w1Rw2 , so Op would have 
to be true in both w1 and w2 • Now Op is true in w1 , since w1Rw2 and pis true 
in w2 • But Op is not true in w2 , since only w 1 is accessible from w2 , and there 
p is false. So the answer is no: D<>p is false in w 1• Is D<>p perhaps true in 
w2? For this Op would have to be true in all worlds accessible from w2 • There 
is just one of these, w1 , and Op is indeed true there, since w1Rw2 and pis true 
in w2 • So the answer is yes: D<>p is true in w2 • 

The second formula which we were going to consider is <>D•p. Is this for­
mula true in w1? It would be just in case there is some w' with w1Rw' in 
which Oop is true. Since both w1Rw1 and w1Rw2 , both w1 and w2 are candi­
dates. But D•p happens to be false in w1 , since w1Rw2 and •p is false in w2 • 

So w1 is not thew' we were looking for. But Oop is true in w2 , since only 
w2Rw1 and •p is true in w1 • Thus w2 is thew' we were looking for, and 
<>D•p is true in w1 • That this formula is false in w2 can be verified very 
quickly. For since only w2Rw1, D•p would have to be true in w1• And that is 
not the case, since w1Rw2 and pis true in w2 • Thus <>D•p is false in w2 • (We 
might have anticipated this result, since in view of the equivalences given 
above, <>D•p is just the negation of DOp.) 

For any given model M, there are always some formulas which are true in 
each ofM's possible worlds. By way of example, Op 1\ <>•p and Dp--> pare 
both true in every possible world of the model given in (11): 

(11) () () 
p • =====:::; • ..,p 

WI Wz 

We say that the formulas that are true in each of a model's worlds are valid in 
that model, writing this as VM(cf>) = 1. Among the formulas valid in M we 
may distinguish those whose validity is dependent on the particular valuation 
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V which M has from those whose validity is independent of this V. The for­
mer are valid in M by virtue of the facts which happen to hold there, but the 
latter would seem to be indifferent to these. Apparently they are valid purely 
in virtue of the basic structure of the model, i.e., its frame. The formula 
Op 1\ Oop is an example of the former kind. If we were to change the model 
in (ll) by having vw2(p) = 1 instead of 0, then this formula would no longer 
be valid. But Dp --> p would still be valid. In fact, no matter which V we 
choose in (11), Dp --> p is always true in all possible worlds. Clearly this is 
an example of the latter kind of formula. Its validity can be lost only if the 
underlying structure of the model is changed, as can be seen from the model 
given in (12), where Dp--> pis no longer valid. 

For while Dp is true in w2 , p is false in that world, so that Dp --> p is false 
there too. We say that the model in (12) is a counterexample to (the validity 
of) Dp --> p. What all of this means is that there is some relation between 
frames and the formulas valid on the models constructed on the basis of the 
frames. If a formula cf> is valid in every model constructed on the basis of 
a frame F, then we say that cf> is valid on F. There is a sense in which any such 
formula expresses a property of F; often it turns out to be a property of a 
whole class of frames. Compare, for example, the frame of the model in (11) 
with the three frames in (13). 

F2: F,: 

The formula Dp --> p is valid on all of these frames (and many more besides 
them). For they have a property in common which is responsible for its valid­
ity, namely, the reflexivity of their accessibility relations. Indeed, this is the 
property that is expressed by Dp--> p, for it can be shown that Dp-. p, char­
acterizes the class of reflexive frames: Dp --> p is valid on any frame with a 
reflexive accessibility relation, and conversely, if Dp --> p is valid on a frame, 
then the frame must have a reflexive accessibility relation. This can easily be 
seen as follows. First we must show that Dp --> p is valid on any frame with a 
reflexive accessibility relation. So suppose M has a frame F with a reflexive 
accessibility relation R, and that in some w we have VM,w(Dcf>) = 1. Then in 
all w' such that wRw', VM,w·(cf>) = 1. Now since R is reflexive, we have 'NRw, 
so in particular we have VM,w(cf>) = L This means that VM,w'(Dcf>--> cf>) = 1, 
and since w was arbitrary, De{> --> cf> is true in every w in M, so De{> --> cf> is 
valid in M. And since M was an arbitrary model with a reflexive frame, 
De{> --> cf> is valid in any model M with an F with reflexive R. Now it only 

I 
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remains to show that if ~0---. 0 is valid on a frame, then this frame must have 
a reflexive accessibility relation or. equivalently. that a counterexample to 
D<t> --+ <t> can be constructed on any frame of which this relation is not reflex­
ive. So Jet F be a frame whose accessibility relation is not reflexive. This 
means that there is some w in F such that we do not have wR w. We now obtain 
our counterexample by constructing a model M with F as its frame, and with a 
valuation V such that Vw(P) = 0, while Yw·(P) = 1 for all other worlds w' in 
this frame. Then we have Vw(Dp) = 1 and Vw(P) = 0, so that Vw(Dp--+ p) = 0. 
Thus D<t>--+ <t> is not valid in M. Figure (12) is an example. 

This brings us to one of the main occupations of modal logicians, which is 
laying bare the relations between the validity of formulas and the properties of 
frames. Particular attention has been paid to modal principles like (4)-(7). It 
turns out that principle (5), D(<t>--+ l/J)--+ (D<f>--+ Oljl), is valid on every frame, 
no matter what accessibility relation it has. But many other modal principles 
tum out to correspond to particular characteristics of the accessibility relation. 
We have just seen that principle (4), D<t> --+ <f>, corresponds to the reflexivity 
ofR. Principle (6), O<f>--+ OO<f>, corresponds to the transitivity ofR. We will 
not give a full proof here but will make do with a demonstration of the fact 
that a counterexample to D<t> --+ DD<t> can always be constructed on a non­
transitive frame. On any such frame there will always be three (not necessarily 
distinct) worlds w1, w2, and w3 such that w1Rw2, w2Rw3 , but not w1Rw3 • 

This situation may be represented as in (14). 

(14) 

• 

w2 
• 

• 
w, 

If we now choose V such that V w, (p) = 0 and V wCP) = 1 for all other w, then 
we have Vw,(Dp) = 1 and Vw,(DDp) = 0, since Vw,{Dp) = 0. 

Principle (7), <>D<t> --+ <f>, expresses the symmetry of R. The proof of this 
fact is left to the reader (see exercise 3a). This is not the place to delve any 
deeper into these correspondences and the relations they bear to the numerous 
divergent axiomatizations which have been developed for modal propositional 
logic. We have illustrated these matters here in order to emphasize the flexi­
bility of possible worlds semantics, which is certainly of some importance for 
applications in natural language research. It is this flexibility which enables us 
to represent different interpretations of the modal notions, by imposing differ­
ent requirements on the accessibility relation R. Not that this flexibility is un­
limited. It turns out that there are quite simple properties of frames which 
cannot be characterized by means of a formula. There is, for example, no 
formula which characterizes the irreflexivity of frames, which is a clear re­
striction on the expressive power of modal propositional logic. 
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Exercise 2* 

(a) Consider this model: 

Decide for each of the following four formulas whether it holds in w 1; in 
w2; in the whole model. 
(i) Dp--+ OOp 
(ii) •Dp 
(iii) p --+ D<>p 

(b) Consider the following model: W = {w1 , w2, w3 , w4}; R = {(w1 , w2), 
(w2, w3), (w3 , w1), (w3 , w4), (w4, w2)}; Vw.(P) = Vw,(P) = Vw,(q) 
Vw,(q) = 1, Yw/P) = Yw/P) = Vw,(q) = Vw.(q) = 0. 
(i) Draw a picture of the model. 
(ii) Determine: 

1. Yw,(Dq) 
2. vw2(0•(p--+ q)) 
3. Vw,(D((p A q) v (•p A-, q))) 
4. Vw,(<>Dp) 
5. vw,(<>p 1\ <>q) 

(iii) Decide whether the following formulas are valid in the model: 
l. <>Dp v <><>Dp 
2. Dp--+ •p 
3. (p--+ <>p) 1\ (q--+ <>q) 
4. <>(p v •p) --+ D(p v •q) 

(iv) Decide whether the following formulas are valid on the frame of the 
model: 
1. Op--+ <>p 
2. <><>Dp --+ p 

Exercise 3* 

(a) Show that on every frame with symmetric R, <>D<t> --+ <f> is valid and con­
struct a counterexample for this formula on a nonsymmetric frame. 

(b) Which class of frames is characterized by <><><t> --+ <t>? And which class by 
<><><><t>--+ <f>? And in general, for <> 1 ••• <>n<f> -> <t>? 

Exercise 4 

(a) Interpret 0 as I believe that. What does <> mean, given that we maintain 
principles (2) and (3) of §2.3.1? And which of the principles (4)-(7) 
stated there are plausible on this interpretation of 0? 

(b) Now answer the same question with it is obligatory that as the interpreta­
tion of D. 
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(c) What constraint on the accessibility relation will make If I don't believe 
that <f>, then I believe that I don't believe that <f> valid? 

(d) What property of frames is characterized by O<f>---* O<f>? Is this a reason-
able property if we read 0 as It is obligatory that? 

ExerciseS 

We call a relation R connected if for all w, w': if w =I= w', then wRw' or 
w'Rw, and universal if for all w, w': wRw'. Show that for every frame F 
whose relation R is reflexive and symmetric it holds that R is universal iff R is 
connected. 

2.3.3 The Syntactic Approach to the Notion of Validity 

Our approach to intensional logic here is wholly semantic. But it may be in­
structive to mention the syntactic side briefly. For this reason, we now give a 
short discussion of the way that the system of natural deduction, which was 
introduced in volume 1 as a syntactic explication of validity in propositional 
and predicate logic, may be extended to modal propositional logic. In the rest 
of our discussion of intensional logic and the theory of types we will not go 
into syntactic approaches to validity at all, so readers not familiar with natural 
deduction may skip this section without getting stuck later on. 

The following introduction rule for 0 is quite acceptable: if <f> can be de­
rived without making any assumptions at all, then apparently <f> is necessary, 
so we may draw the conclusion O<f>. This rule, cast in the form given below as 
10, m, may now be added to our system of natural deduction for propositional 
logic: 

1. 

m. <!> 

n. O<f> 10, m 

The restriction on this rule is that at step m there may be no standing assump­
tions. That this restriction is needed is immediately obvious from the fact that 
we could otherwise always derive p ---* Op. 

On the other hand, it is not possible to give a simple and intuitively appeal­
ing elimination rule for D. Instead, we can give axioms, which may be seen 
as background assumptions or as meaning postulates. Axioms may be intro­
duced into natural deduction as formulas which may always be written down 
at any stage of a derivation without being defended in any way. If we take all 
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formulas with the general form of (5) (repeated here) as our axioms, we obtain 
the minimal modal propositional logic (sometimes referred to as K): 

(5) 0(</>---* l/J) ---* (D<f>---* Olfi) 

Every substitution of formulas for the <f>'s and l/J's in (5) results in an axiom. 
We say that (5) is an axiom schema. As an example, we give the following 
derivation of O(p 1\ q) ---* Dp in the minimal modal propositional logic K: 

~1. pAq 

L2. p 
3. (pA q) -7 p 

4. 0((p A q) -7 p) 

assumption 

E A, 1 

l-7 

IO, 3 

5. D ((p 1\ q) -7 p) -7 (0 ( p A q) -70 p) axiom 

E -7, 5, 4 

Soundness and completeness proofs can also be given for this minimal logic 
K. There is a soundness proof, which states that iff- <f> inK, then <f> is valid in 
all models M, and a completeness proof, which states that formulas which are 
valid in all models are derivable in K. (The proof of the soundness theorem 
actually amounts to little more than a comment already made, to the effect that 
(5) is valid independently of a model's accessibility relation) 

As we have already mentioned, there are interpretations for 0 for which not 
all models are suited, but only those with accessibility relations satisfying cer­
tain requirements. It might, for example, be required that this relation be re­
flexive, transitive, and symmetrical. These requirements have already been 
linked to formulas (4), (6), and (7), which are repeated here: 

(4) O<f> ---* <!> 

(6) O<f> ---* DO</> 

(7) OO<f> ---* <!> 

The system obtained by adding (4), (6), and (7) as axiom schemata to minimal 
modal propositional logic is known as S5. For this system too, soundness and 
correctness theorems can be proved. If there is a derivation of a formula <f> in 
S5, then </> is valid in every model in which R is reflexive, transitive, and 
symmetrical, i.e., an equivalence relation (soundness), and if <f> is valid in all 
such models, then it also has a derivation in S5 (completeness). Proving the 
completeness of all kinds of different axiom systems is something which 
modal logicians like even more than showing that given formulas characterize 
particular classes of frames, a matter briefly considered above. It is also a 
good deal more difficult. That things are not as simple as they perhaps seem is 
apparent from the following. It could be argued that if 0 is to be interpreted as 
logically necessary, then only those models must be taken into account in 
which every world is accessible to every other world (including itself), i.e., in 
which the accessibility relation R is universal. Logically necessary would then 
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mean true in every possible world. But it turns out that the system correspond­
ing to this restriction on the models coincides with S5. 

This should have illustrated the principles of the syntactic approach to in­
tensional logic sufficiently. As we have mentioned, we will not return to it in 
what is to follow. 

Exercise 6 

Above it was claimed that 1> is derivable in S5 iff 1> is valid in all models in 
which R is an equivalence relation. Also, it was said that the system S5 is 
complete with respect to the class of all models in which R is universal. What 
can be deduced from these two facts concerning the modal characterizability 
of the property of connectedness? 

2.3.4 Alethic and Epistemic Modalities 

In this section we will briefly consider whether the modal expressions in natu­
ral language always correspond to the philosophical modalities of modal 
logic. These philosophical modalities are also referred to as alethic modalities 
(after the Greek word aletheia 'truth'). They are concerned with the truth of 
sentences. And of course there are constructions in natural language in which 
modal expressions are alethically significant. Examples of these may be found 
in exercise 1 in §2.3.2. But there are also modal expressions like (15) and (16) 
which do not seem to be alethic: 

(15) Perhaps it is raining in Southern California. 

(16) John must be in his room. 

These statements do not seem to concern the truth of It is raining in Southern 
California and John is in his room so much as the information that is available 
to whoever utters them. If the perhaps in (15) were an alethic modality, then 
(17) would make sense: 

(17) Perhaps it is raining in Southern California, but it isn't raining 
in Southern California. 

Then we could represent (15) as <>p, and (17) itself would correspond to the 
formula <>p 1\ •p. But while this last formula makes sense, the same cannot 
be said of (17). Apparently (15) expresses not an alethic modality but what 
may be called an epistemic modality: what (15) expresses is the fact that the 
information that is available to the speaker does not enable him to decide 
whether it is raining in Southern California or not. The second part of (17) 
denies just this, which makes it impossible to interpret the sentence. The 
modality in sentence (16) would also seem to be epistemic: (16) does not 
mean that it is a necessary fact that John is to be found in his room but only 
that the information available to whoever is uttering the sentence would 
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suggest that he is there. A typical continuation of (16) would be something 
like (18): 

(18) John must be in his room; he is always there around this time 
of day. 

If (16) were interpreted as an alethic modality and under the very reasonable 
assumption that the accessibility relation is reflexive, so that 04> -> 1> is valid, 
then it would follow from (16) that (19): 

(19) John is in his room. 

But this is not in agreement with the meaning of (16). The epistemic modal­
ity expressed in (16) is essentially weaker than the alethic modality repre­
sented by D. 

2.3.5 An Application 

The true power of modal operators in arguments becomes apparent only when 
the operators are combined with predicate logic. But there are still some prob­
lems that can be clarified here at the elementary level of modal propositional 
logic. One example of this is Thomas Aquinas's discussion of the argument 
that God's Providence implies fatalism. According to this argument, that I am 
standing here right now is necessary (in other words, my free will doesn't have 
any say in the matter). It runs as follows. During the Creation, God saw every­
thing, including me standing here. And if God saw me standing here during 
the Creation, then it is necessarily true that I am standing here. This argu­
ment, formalized into modal propositional logic, has the form of the follow­
ing valid argument schema: 

(20) p, p .... q, q -> Dp/Dp 

Key: p: I am standing here; q: God saw me standing here during 
the Creation. 

Thomas notes that the last premise is the crucial one: to what does the qualifi­
cation necessarily actually apply? In the formalization in (20), it only applies 
to the consequent of the implication in the last premise. But this premise 
would seem to be plausible only if the qualification were to apply to the im­
plication as a whole. This would mean that it should read D(q-> p) instead of 
q -> Dp, in which case the argument has the form of the invalid argument 
schema (21): 

(21) p, p-> q, D(q-> p)/Dp 

So the argument collapses because of a logical subtlety concerning the repre­
sentation of the scope of the modal expression necessarily. And there are sev­
eral other well-known philosophical arguments which are subject to such an 
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analysis. Another example is Aristotle's sea battle argument, which attempts 
to demonstrate that Ocf> v O•cf>, that is: everything is necessary in the sense 
that everything is either necessarily the case or necessarily not the case, from 
the law of the excluded middle, cf> v •cf>. It was this argument that first gave 
rise to many-valued logic, where truth values other than just 0 and 1 are intro­
duced. (The reader is referred to chapter 5 of volume 1 for a discussion.) This 
approach enables one to escape fatalistic conclusions by pronouncing cf> v •cf> 
invalid. These multiple truth values and extended truth tables were very popu­
lar in the twenties and thirties, and in them a semantics for intensional propo­
sitional logic was sought which would be analogous to the truth tables of 
propositional logic. It was never found. And it is not needed either, for the 
considerations based on the modal logic presented here are nearly always 
sufficient to defuse arguments like that in Aristotle's sea battle. Whatever 
virtues many-valued logic may have, its original motivation is not at all 
convincing. 

2.4 Propositional Tense Logic 

2.4.1 Syntax and Semantics 

Technically speaking, tense logic is very closely related to modal logic. In 
tense logic contexts become moments in time, with earlier than as their ac­
cessibility relation. (This is the traditional way of doing things, but it is by no 
means the only one. These days many semanticists prefer to set things up with 
intervals of time as the contexts instead of moments.) 

Tense logic originated with the observation that verb tenses display quite 
regular behavior, which seemed to lend itself to formalization. Two operators 
were introduced, G and H, as analogues of the 0 operator from modal logic. 
The G operator is interpreted as it is always going to be the case that, and the 
H operator as it always has been the case that. Now as such, G and H are 
hardly to be described as common tenses, but just as 0 is complemented by 
<>, G and H have their own complements, F and P, which are to be read as it 
will at some stage in the future be the case that and it was at some stage in the 
past the case that, respectively. So the operator F serves as an acceptable for­
mal pendant of at least some forms of the future tense, while P does the same 
for the past tense. The four usual tense operators have been summed up 
as (22): 

(22) Gcf>: 
Hcf>: 
Fcp: 
Pep: 

it is always going to be the case that cf> 
it always has been the case that cf> 
it will at some stage in the future be the case that cf> 
it was at some stage in the past the case that cf> 

Adding these four operators G, F, H, and P to propositional logic, we obtain 
propositional tense logic. If pis now interpreted as Mary is singing, for ex-
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ample, then (23) shows how a number of verb tenses may be represented in 
propositional tense logic. 

(23) p 
- Fp 

Pp 
PPp 
FPp 
PFp 

Mary is singing. 
Mary will sing. 
Mary sang. 
Mary had sung. 
Mary will have.sung. 
Mary would sing. 

It is clear that not every combination of F and P corresponds to a tense actu­
ally occurring in natural language. Nor is it possible to express all tenses by 
means of these operators. For example, the difference between the simple past 
and the present perfect cannot be accommodated. But it will do as a first start. 

Exercise 7* 

Translate the following sentences into formulas of propositional tense logic. 
Represent the logical structure as well as possible and state the translation key 
you use. 
(a) Now you are still young, but one day you will no longer be. 
(b) I am faithful to you, and I always will be. 
(c) John has read War and Peace, and Charles has too. 
(d) When Mary entered, John had put the whiskey bottle in the refrigerator. 
(e) When Mary entered, John was about to put the whiskey bottle in the 

refrigerator. 
(f) A sea battle will be fought or not. And if a sea battle will be fought, this 

has always been the case. 
(g) Only if you will always stay with me will I really be happy. 

A model M for propositional tense logic consists of a nonempty set T of mo­
ments in time, an earlier than relation R, and a valuation V, which for each 
proposition letter p and each moment in timet E T assigns a truth value V,(p) 
top at timet. Just as in modal logic, T and R together form a frame, which in 
tense logic is sometimes referred to as a time axis. Here is that part of the truth 
definition which is concerned with the intensional operators: 

Definition 4 

Let M be a model which has T as its set of moments in time and R as its 
earlier than relation; then VM,,(cf>) is defined as follows: 

(i) VM,1(Gcf>) = 1 iff for all t' E T such that tRt': VM,,,(cp) = 1. 
(ii) VM,,(Fcf>) = 1 iff for at least one t' E T such that tRt': VM,t'(cf>) = 1. 
(iii) VM,,(Hcf>) = 1 Iff for all t' E T such that t'Rt: VM,t'(cf>) = 1. 
(iv) VM,,(Pcf>) = 1 iff for at least one t' E T such that t'Rt: VM,,,(cf>) = 1. 
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Up until now we have not placed any special requirements on the time axis. 
Nor have we said anything about which properties R must have if it is to pass 
as an interpretation of the earlier than relation. One line of investigation in 
tense logic has been to think up plausible tense-logical principles and then to 
try and discover which requirements must be placed on the time axis in order 
to safeguard their validity. Another and complementary approach has been to 
sort out which principles become valid given particular restrictions on the 
time axis. As with modal logic, the notion of validity on a frame has played an 
important part in this. 

We shall now discuss a few intuitively plausible tense-logical principles and 
see which properties of the time axis they express, if any. Clearly (24) and (25) 

(24) G( 4> -> o/) -> (G4> -> G o/) 

(25) H(4>-> o/) _. (H4> _. H o/) 

will be valid on any time axis, for G and H are both versions of the modal 
operator 0, and the corresponding modal principle is valid independently of 
accessibility relations. It should be noted, however, that tense-logical prin­
ciples (26) and (27) corresponding to modal principle (4) have none of the 
latter's intuitive plausibility: 

(26) G4> _. 1> 

(27) H4> -> 1> 

These two principles are equivalent to 4>-> F4> (if 4> is the case, then 4> will be 
the case) and 4> -> P4> (if 4> is the case, then 4> was the case), respectively. 
Now if R is required to be irreflexive, which is a very reasonable restriction, 
since it means that no moment in time may be earlier than itself, (26) and (27) 
become invalid. But just as in modal logic, this requirement of irreftexivity 
cannot be expressed by means of a formula. Besides (24) and (25), there are 
the following intuitively sound principles: 

(28) 4> -> HF 4> 

(29) 4> -> GP4> 

(30) P4>-> H(F4> v 4> v P4>) 

(31) F4>-> G(P4> v 4> v F4>) 

(32) P4> -> GP4> 

(33) F4> -> HF4> 

Principle (28) says that what is now the case has in the past always been some­
thing that would come to pass. And (29) says that what is now the case will 
always be something that has happened. Principle (30) states that if 4> was 
once the case, then it has always been the case either that 4> was yet to happen 
or that 4> was happening or that 4> had already happened. Formula (31) says 
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something analogous about the future. Principle (32) states that anything 
which has happened will always be something which has happened, and (33) 
makes the analogous statement about the future. 

lt is quite easy to check that principles (28) and (29) are true on every 
frame. They thus place no requirements at all on the time axis. Principles (30) 
and (31) are valid on all frames with a connected relation R (frames in which 
of any two different moments in time one is earlier than the other). If R is not 
connected, then a configuration like the one in (34) becomes possible. 

(34) 

• p 
I, 

Letting V1,(p) = 1 and V1 (p) = 0 for all other t, we have a counterexample to 
(31 ). For Fp is true at t 1, because pis true at t 3 • But G(P<f:> v c{Y v F4>) is false 
at t 1 because P<f> v if> v Fif> is false at t2 • This last is the ca.Se since neither 
t2Rt3 nor t3Rt2 nor t2' = t3 , while t3 is the only moment in time when pis true. 
As a result, neither Fp nor Pp nor pis true at t2 • So the intuitively acceptable 
principles (30) and (31) rule out a forked or branched time axis, which would 
seem quite a reasonable thing to do (a possible application of a forked time 
axis is, however, given in §2.5). 

Principles (32) and (33) are valid just in case R is transitive. If R is not 
transitive, then a configuration like the one in (35) becomes possible. 

(35) -.p p 
• -----'>. ---....:,. 
lt t, t3 

Here we do not have t 1 Rt3 • Letting V1, (p) = 1 and V1 (p) = 0 for all other t, we 
obtain a counterexample to principle (33): Fp is true at t 2 , because pis true at 
t3 and t 2Rt3 • But HFp is not true at t2 , since Fp is false at t 1 because it is not 
true that t1 Rt3 , and t3 is the only moment at which p is true. 

These and similar relations between principles like (24)-(33) and proper­
ties of the earlier than relation (and thus of different temporal structures) have 
been studied at length in tense logic. We have seen that a similar line of re­
search has been followed in modal logic. One big difference between modal 
and tense logic is that with tense logic it seems more reasonable to begin by 
choosing a semantics. Unlike our intuitions about modalities, which concern 
the validity of various logical principles more than the relations between pos­
sible worlds, our temporal intuitions do seem to bear on the structure of time. 
So with tense logic it would seem reasonable to approach things back to front 
by first trying to formulate these intuitions and then trying to find the syntactic 
principles which they give rise to. 

Actually there are different concrete conceptualizations of time which are 
considered in tense logic. They all, however, have one thing in common, 
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namely, the assumption that time is a linear order, that is, that the earlier than 
relation has the properties of a linear order: transitivity, asymmetry (and thus 
irreflexivity), and connectedness. Because of these properties, a linear earlier 
than relation is often represented as<. ln all that is discussed below, the set of 
moments in time is ordered by <, and principles (24)-(33) are all valid. It 
is useful to represent the different conceptualizations of time with their diver­
gent structures of the time axis as number lines. One intuitively appealing 
conceptualization is to take the whole numbers as our model of the time 
axis: ... , -n, ... , -2, -1,0, 1,2, ... , n, ... Thentimehasnobe­
ginning and no end and runs in discrete steps. This is quite plausible if, for 
example, the days on the calendar are taken as the units of time. We can also 
conceive of time not as divided up into discrete steps, however small these 
might be (hours, minutes, seconds, nanoseconds), but as having a much finer 
structure, there always being a moment between any two other moments. This 
general property of relations, which is expressed by the formula VxVy((x * y 
1\ Rxy),...... 3z(z * x 1\ z * y 1\ Rxz 1\ Rzy)), is called density. The idea that 
time is a dense order can be modeled by representing the moments in time as 
the rational numbers, which include the whole numbers. Then time has nei­
ther beginning nor end, and between any two moments in time there is always 
another to be found. 

Determining the tense-logical principles which follow from a given choice 
of time axis is a rather complicated technical matter which is beyond the scope 
of this introduction. Taking the rational numbers as our model of the time 
axis, for example, we obtain the following three principles in addition to 
(24)-(33): 

(36) F1>,...... FF1J 

(37) •G(4> 1\ •1>) 

(38) ..., H( 1> 1\ •1>) 

Principle (36) says that if 1> will happen, then it will be the case that 1> will 
happen. That this principle is not valid on a discrete time axis like the whole 
numbers is apparent from the following example. Taking A successor to the 
throne is born as p and days as our units of time, Fp, A successor to the 
throne will be born, is true on Monday, given that a successor is brought into 
the world on Tuesday. But the truth of Fp on Monday does not guarantee the 
truth of FFp on that same day. If there is a revolution on Wednesday, for ex:.. 
ample, or if the royal family dies out for any other reason, then Fp need not be 
true on any day after Monday. It turns out that principle (36) corresponds to 
the density of the earlier than relation. Principle (37) says that time never 
stops, since G( 1> 1\ •1>) would only ever be true at a very last moment t. For 
G( 4> 1\ •1>) is true at t just in case 1> 1\ •1> is true at all instants t' which come 
after t, and these moments t' do not exist if tis the last moment. Principle (38) 
expresses the fact that time does not have a beginning in the same way. 
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A third conceptualization of time is found in physics, where the real num­
bers are taken as a model of the time axis. This conceptualization is needed in 
order to describe situations like that in (39). 

(39) B 

c a= lkm 

A b= 1 km c 

A&suming you walk 1 kilometer per hour, it would take you \12 hours to walk 
from A to B. This follows from the Pythagorean theorem, which says that 
c2 = a2 + b2

• But it has been known since the ancient Greeks that v'2 is not a 
rational number, which means that it cannot be expressed as a fraction. So we 
couldn't even be sure that there would be a moment for us to arrive at if the 
time axis were to consist only of rational numbers. The tense-logical prin­
ciples corresponding to this third kind of temporal structure are rather more 
complicated than the other principles we have seen. 

Exercise 8* 

(a) Consider the following model: T = {t 1, t2 , t 3 , t4, t5 , t6}; R = {(t
1

, t
2
), 

(tz, t3), (t3 , t6), (t1, t4), (t4, t5), (t5 , t 6)}; V,Jp) = V,
2
(p) = V,,(p) = V,

6
(p) 

= 1; ~.(p) = ~,(p) = 0 
(i) Draw a picture of the model; 
(ii) Decide whether the following formulas are valid in the model: 

1. •p,...... FGp 
2. F•p ,...... FF•p 
3. G(P•p,...... •p) 
4. (p 1\ Gp),...... Hp 

(b) Decide which property of the time axis is characterized by each of the 
following principles: 
(i) FG4> ,...... GF 4> 
(ii) G( 4> 1\ •1>) v FG( 4> 1\ •1>) 
(iii) PP4> ,...... P4> 

Exercise 9 

Give a frame that consists of three points on which Fp ,...... G(p v Pp v Fp) is 
valid, and one with the same number of points on which it is not. 

2.4.2 'Now': An Extension 

Much linguistically oriented research into tense logic is concerned with adapt­
ing and extending tense-logical languages and their semantics so as to bring 

I 
I 
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more of the behavior of verbs and other temporal expressions such as adverbs 
into the picture. By way of illustration, we will briefly describe one such ex­
tension of tense logic, theN-operator (N for now) originated by Kamp. On 
the face of it, it might seem that now is a redundant term. After all, ( 40) surely 

means the same thing as (41): 

(40) Now John is asleep. 

(41) John is asleep. 

This would suggest the following definition as the interpretation of the 

N-operator: 

(42) VM,,(Ncp) = 1 iff VM,,(cf>) = 1 

If we let p stand for John is asleep, then (42) would ensure that Np is_equiva­
lent to p, which is just what (40) and (41) seem to suggest. But thmgs are 
nowhere near as simple as this, as is apparent from (43): 

(43) Someday you will be grateful for what I am doing now. 

The now in (43) refers to the time when the sentence is uttered. The sentence 
is in the future tense, which means that its formal translation will be of the 
form F(you are grateful for what I am doing now). If we evaluate such a for­
mula at a moment t, it will be true just in case there is some moment t' later 
than t at which you are grateful for what I am doing now is true. But then 
according to the definition of now given in (42), (43) will be true at a moment 
t just in case there is a moment t' later than t when it is true that you are grate­
ful for what I am then, at t', doing. But this is not what (43) means. So the 
interpretation given to now in (42) will not do. App~ently_we need~ way to 
refer back to the original moment of utterance, even If the mterpretat1on pro­
cess carries us to other moments. This can be done by adding a fixed moment 
t

0 
to the structures: the moment now. The N-operator can then be interpreted 

as follows: 

(44) VM,t(Ncp) = l iffVM,to(cp) = l 

Given this interpretation, the now in ( 43) will indeed refer back to the moment 
of utterance t

0
, even though it occurs within the scope of the future tense. 

Now we can also account for the difference between two well-known ex-

amples of Kamp: 

(45) A child was born which would rule the world. 

(46) A child was born which will rule the world. 

Sentence (45) can be represented as (47), 

(47) P(3x(Cx 1\ Bx 1\ FRx)) 

in which Cx stands for x is a child, Bx for x is born, and Rx for x rules the 
1 ' "-T -•- •1..-• •!..~ -~~o~+ nih<>n V rnlP<: thf> W0Tl0 Cafl be either before or 
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after the moment of utterance, since the tense operator F occurs within the 
scope of the operator P. This accords nicely with the would in ( 45). The will 
in (46), on the other hand, states that the moment at which x will rule the 
world comes after the moment of utterance. Thus (46) can be analyzed with 
the aid of theN-operator and can be represented as (48): 

(48) .P(3x(Cx 1\ Bx 1\ NFRx)) 

Given the interpretation of N in (44), the F operator in (48) determines some 
moment in the future which we now have, even though it occurs within the 
scope of P. 

Another application of Kamp's technique for dealing with the semantic be­
havior of now is given in §3.4. 

2.4.3 Other Approaches 

The above treatment of temporal expressions by means of tense operators is 
due to Prior. His is certainly the best-known approach, but it isn't the only 
one, and it may not even be the best. Therefore we will briefly mention two 
other approaches. 

The first was developed by Reichenbach. He associates three contextual 
time points with each temporal expression: a point of speech S (which is com­
parable with Kamp's t0), a point of event E (the time at which the event de­
scribed in the expression takes place; in the above it is incorporated into the 
truth definition), and a point of reference R, which represents, as it were, the 
temporal vantage point adopted by the speaker. Then verb tenses may be rep­
resented by means of simple diagrams. By way of comparison, see (49): 

(49) E, R, S 
S-E,R 
E,R--S 
E--R--S 
S-E-R 
R-E-S 

Mary sings. 
Mary will sing. 
Mary sang. 
Mary had sung. 
Mary will have sung. 
Mary would sing. 

This gives the representations of the same verb tenses as were treated by 
means of tense operators in (23). One interesting aspect of this approach is 
that it enables us to account for the difference between the simple past tense 
Mary sang and the present perfect Mary has sung, namely, as a difference in 
the temporal vantage point adopted by the speaker, which can be represented 
by the position of R: 

(50) E-S, R 
E,R-S 

Mary has sung. 
Mary sang. 

That this theory does not offer a complete account of all temporal construc­
tions either becomes apparent when we try to find a representation for Mary 
would have sung. This cannot be done with just a single point of reference R. 
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There is, however, an analysis in terms of tense operators, namely, PFPp, and 
an integration of these two approaches is still being worked on. 

The second alternative approach assumes that temporal constructions in 
natural language are so complex that more powerful logical machinery is 
needed: (many-sorted) predicate logic with explicit quantification over mo­
ments in time. (The reader is referred to §5.3 in volume 1.) We have already 
mentioned that tense operators behave much as quantifiers, and the same ap­
plies to temporal adverbs like always, sometimes, never, frequently, rarely, 
and so on. In this approach, the predicate letters are fitted out with an extra 
variable for moments in time (t, t', t'', etc.), and proposition letters become 
unary predicates. The language also includes the earlier than relation<. The 
constructions already treated in (23) and (49) are redone in (51): 

(51) Pt 0 

3t(t0 < t 1\ Pt) 
3t(t < t0 1\ Pt) 
3t 3t'(t' < t0 1\ t < t' 1\ Pt) 
3t 3t' (t 0 < t' 1\ t < t' 1\ Pt) 
3t 3t'(t' <to 1\ t' < t 1\ Pt) 
3t 3t'3t"(t" < t0 1\ t" < 
t' 1\ t < t' 1\ Pt) 

Mary sings. 
Mary will sing. 
Mary sang. 
Mary had sung. 
Mary will have sung. 
Mary would sing. 

Mary would have sung. 

Here, we explicitly quantify over moments in time. A special moment t 0 

figures once again as the representation of the current moment of evaluation 
('now'). The formulas in (51) are relatively complex and difficult to interpret 
in comparison with the corresponding formulations in tense logic. They be­
come somewhat more legible, however, if besides t0 a second fixed moment in 
time t1 is introduced as a representation of the point of reference, a move 
which also has the advantage of enabling us to express the difference between 
the simple past and the present perfect tenses. A theory along these lines has 
been developed by Paul Needham. Temporal predicate logics like this give 
rise to relatively complicated representations of the simpler constructions, but 
it must be said in their defence that at least they provide a technical apparatus 
which is capable of representing a tremendously wide variety of temporal con­
structions, constructions for which tense logic would need a whole new set of 
operators. (Two-sorted type theory, a logical system which will be discussed 
in §5.8, can be used as a formal tool in this kind of approach.) 

2.5 Tense and Modality Combined 

Counterfactual constructions like (52) seem to combine tense and modality: 

(52) If I had gone I would have found happiness. 

I did not in fact go, but I might have. Here we see different kinds of inten­
sionality interfering with each other. Very often the resulting whole is no more 
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than the sum of its different parts, but in some cases new puzzles emerge from 
the combination which call for new and creative semantic solutions. 

A combined modal and tense logic is obtained if not only 0 but also the 
operators G and H are added to propositional logic. Various semantic struc­
tures could be chosen, but to keep things from turning into science fiction, we 
will just take a set W of possible worlds, each with the same fixed time axis. 
We can then speak in terms of the truth value of a formula 1J in a world w at 
time t. There is an earlier than relation < on the set T of moments in time 
and an accessibility relation R on W. The key clauses in the truth definition 
are then: 

(53) VM,wi01J) = 1 iff for all w' such that wRw': VM,wi1J) = 1 

(54) VM,w,1(G1J) = 1 iff for all t' such thatt < t': VM,w,1•(1J) = 1 

The clause for 01J expresses a temporalized necessity: 01J is true in watt iff 
1J is true at tin each world w' accessible from w. There is something to be said 
for allowing the accessibility of worlds to each other to change from time to 
time. This can be done by providing R with a temporal parameter, thus obtain­
ing a set of accessibility relations R1, one for each t E T. The clause for 0 
then becomes: 

(55) VM,w,1(01J) = I iff for all w' such that wR1w': VM,w',1(1J) = 1 

Paraphrasing, 01J is true in w at timet iff 1J is true at tin each world which is 
accessible from w at that time t. This last option becomes a little more con­
crete if R1 is defined in the following manner: wR1 w' holds just in case w and 
w' have the same history up until t (at which point they may or may not di­
verge). We then obtain an intuitively plausible branching time structure like 
that depicted in (56): 

(56) 

12 

The bold line represents the actual history of the world. Let us suppose that it 
is 1978 and that we are watching the world cup soccer matches, which in that 
year were held in Argentina. The first rounds are played between times t 0 and 
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t 1, the quarter-finals are played between t 1 and t2 , the semifinals between t2 

and t3 , and the finals at t4 • The actual result of the whole train of events, 2, 
was that Argentina beat the Netherlands in the finals. Another possible result 
would have been 1, in which the Netherlands beat Argentina in the finals. This 
result was still possible at t3 , the moment when the semifinals had just been 
played. The train of events resulting in 3 is one in which Brazil is not elimi­
nated in the first rounds because of a lower goal average than Argentina's 
(which is what in fact happened), and subsequently goes on to win the cup. 
And 4 stands for a train of events which resembles 3 to the extent that Brazil 
makes the finals, but in which Brazil is then beaten by West Germany. The 
trains of events terminating at 3 and 4 were possibilities at the outset of the 
tournament but not after the first rounds. 

This conception of time, in which every point in time is followed by anum­
ber of divergent possible 'futures', would seem the most appropriate for deal­
ing with the counterfactual in (52): I did not in fact go, but it was at the time a 
necessary fact that if I had gone, 1 would have found happiness. The obvious 
formalization of (52) would then seem to be P(•p 1\ D(p-+ Fq)), in which p 
stands for I go and q for I find happiness. This formula becomes true in situa­
tions like that in (57): 

(57) 

But things can't be as simple as this. For it is clear that D((<f> 1\ x)-+ 1/J) always 
follows from D(<f>-+ 1/J), which means that P(•p 1\ D((p 1\ r)-+ Fq)) follows 
from P(•p 1\ D(p -+ Fq)). Now let r stand for I die. Then (58) follows 
from (52): 

(58) If I had gone and had died, I would have found happiness. 
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This inference is at least rather doubtful. But whether (58) is true or not, it 
seems strange that it should follow from (52), as is apparent from (59): 

(59) 

So this formalization of the counterfactual is not entirely satisfactory. It would 
seem that (52) should be interpreted as (60): 

(60) If I had gone, then everything else being equal, I would have 
found happiness. 

So we will have to find some semantic interpretation for the qualification 
everything else being equal. In this particular case, the qualification means 
something like: I did go, but apart from this, the world remained as close as 
possible to what it really is. In general then, in a counterfactual construction, 
D(<f>-+ 1/J) is not to be interpreted as: 1/J holds in every possible world where <P 
holds, but rather as: 1/J holds in every possible world where <P holds, but which 
in all other respects resembles the real world as closely as possible. If we are 
to make this idea precise, then we will have to introduce some new element 
into semantics. One possible solution, that of Lewis, is to assume not only an 
accessibility relation between possible worlds but also a similarity relation. 
This relation would fix the extent to which different possible worlds resemble 
each other. Given such a similarity relation, it is not difficult to see that D(<f> 
-+ 1/J), under the qualified interpretation given to it above, can be true without 
D((<f> 1\ x)-+ 1/J) being true. For the possible worlds which resemble the real 
world as closely as possible apart from having <P 1\ x true will presumably be 
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less like the real world than the possible worlds which resemble the real world 
as closely as possible apart from having cf> true. 

Then we could go a step further and try to define the similarity relation in 
terms of the truth of formulas instead of assuming it as a given. The reader is 
referred to work done by Veltman and Kratzer for elaborations of this idea. 
The resulting theory can also be applied to normal indicative conditional sen­
tences, and it provides an interpretation of if ... then which seems more 
natural than material implication, at least for natural language. 

3 Intensional Predicate Logic 

3.1 Opaque Contexts: Modalities de Dicto and de Re 

As an introduction to intensional predicate logic, we will return to a theme 
from§ I .6. There we introduced intensional constructions as constructions for 
which certain substitution principles of predicate logic which are related to the 
principle of extensionality do not hold. Following Quine, we say that these 
intensional constructions create opaque contexts. These are to be distin­
guished from transparent contexts, for which these substitution principles do 
hold. Here are some constructions which give rise to opaque contexts, to­
gether with examples which show that they violate the principle of exten­
sionality (1): 

(1) s = t I= cf> ..... [t/s] cf> 

Quotation. Sentence (4) does not follow from (2) and (3): 

(2) The gladiator spoke the words Ave Caesar. 

(3) Caesar is Gaius Julius. 

(4) The gladiator spoke the words Ave Gaius Julius. 

Indirect speech. Sentence (7) does not follow from (5) and (6): 

(5) Harry said that John kissed Mary. 

(6) John is the smartest boy in the class. 

(7) Harry said that the smartest boy in the class kissed Mary. 

Constructions with verbs expressing propositional attitudes, like to dis­
cover, to believe, to suspect, and to know. Sentence (10) does not follow from 
(8) and (9): 

(8) The detective knows that the thief entered through the skylight. 

(9) Biggles is the thief. 

(10) The detective knows that Biggles entered through the skylight. 

Constructions with verbs expressing intentions, such as to look for, to wish 
for, and the like. We saw an example in § 1.6: 
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( 11) John is looking for the supreme commander of the armed forces 
of the United States of America. 

(12) The president of the United States of America is the supreme 
commander of the United States armed forces. 

( 13) John is looking for the president of the United States of America. 

Temporal designation. Sentence (16) does not follow from (14) and (15): 

(14) George Bush is the president of the United States. 

(15) In 1963, the president of the United States was assassinated in 
Dallas, Texas. 

(16) In 1963, George Bush was assassinated in Dallas, Texas. 

Modality. It is a necessary truth that nine exceeds seven: given the mean­
ings of nine, seven, and exceeds, the sentence Nine exceeds seven is a neces­
sary truth. nut surely (17) is not a necessary truth: 

(17) The number of planets exceeds seven. 

The truth or falsity of (17) is not to be determined solely on the basis of the 
expressions it contains. In fact, ( 17) expresses a contingent astronomical fact. 
That there are more than seven planets is something which was discovered 
through observation and inference. So (20) docs not follow from ( 18) and ( 19): 

(18) Nine necessarily exceeds seven. 

(19) Nine is the number of planets. 

(20) The number of planets necessarily exceeds seven. 

Besides these, there are many more constructions giving rise to opaque con­
texts. Just about every category of expressions contains elements which can 
create opaque contexts, for example adjectives like suspected and alleged, 
adverbs like apparently, and so on. 

Philosophers have shown different reactions to the invalidity of the substitu­
tion principle (I) in the case of opaque contexts. Let us return to (20). It might 
be argued that there is a reading for (20) in which this sentence does indeed 
follow from (18) and (19). This reading can be paraphrased as follows: that 
number which is in fact the number of planets is necessarily greater than 
seven. This reading translates as (21), whereas the reading of (20) for which 
(20) does not follow from (18) and (19) may be rendered as (22): 

(21) 3x(x =the number of planets 1\ D(x > 7)). 

(22) 03x(x = the number of planets 1\ x > 7). 

Reading (22) says that in every possible situation, the number of planets, what­
ever it happens to be, will exceed seven. The two readings (21) and (22) of (20) 
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lead to a distinction traditionally drawn in modal logic between modalities de 
dicto and de re. This distinction can be expressed in a predicate-logical lan­
guage with an added 0 operator in terms of the scope of D. Let us consider 
the somewhat simpler examples (23) and (24) and their translations (25) 
and (26): 

(23) Necessarily there is something which is greater than seven. 

(24) There is something which is necessarily greater than seven. 

(25) 03x(x > 7) 

(26) 3xD(x > 7) 

In (25) the scope of 0 is 3x(x > 7), and in (26) it is x > 7. The scope of an 
occurrence of 0 may be considered to be the opaque context created by this 
operator. If all variables within the scope of 0 are bound by quantifiers like­
wise within its scope, then 0 is said to be a modality de dicto. As examples, 
then, we have (22) and (25). If, on the other hand, there is a free variab1e 
within the scope of 0, that is to say, a variable bound by a quantifier outside 
the scope of 0, then 0 is said to be a modality de re. As examples of this 
modality we have (21) and (26). Traditionally a modality de dicto was seen as 
an attribution of necessary (or possible) truth to a proposition (dictum), and a 
modality de re was seen as an attribution of a necessary (or possible) property 
to an entity (res). The traditional distinction corresponds to the formal one. In 
asserting the truth of (25), one asserts that the proposition 3x(x > 7) is neces­
sarily true, while in asserting the truth of (26) one asserts the existence of an 
entity which necessarily has the property of being greater than seven. 

Some philosophers have objected to the latter. For them, recognition of 
modalities de re amounts to a revival of essentialism, a philosophical position 
which distinguishes between accidental properties of things and essential 
properties. They have their objections to any such position and therefore reject 
modalities de re as meaningless and thus useless; at best they suggest reducing 
modalities de re to modalities de dicto. One such vigorous opponent of modali­
ties de re has been the philosopher and logician Quine. Even leaving aside the 
question of whether recognizing modalities de re really leads to essentialism, 
it would seem to us that a position like his is particularly unsuited to our pur­
poses. In our opinion, philosophical objections should never be allowed to 
weigh heavily if the aim is the description of natural language. We want de­
scriptions of how we speak, not of how we would have to speak in order to 
earn the approval of philosophers. It is quite possible that speakers of natural 
languages make philosophically dubious assumptions, but that is a fact of life 
which should not be swept under the rug of some philosophically more sophis­
ticated reformulation. But that modalities de re occur in natural language 
seems to us indisputable. An example is (27): 

(27) Each of those present may have committed the murder. 
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It is clear what this means. Sentence (27) may be formalized as Vx<>Mx. It 
certainly does not mean the same thing as <>VxMx, which is the translation 
of (28): 

(28) It is possible that each of those present has committed the 
murder. 

It is not at all clear how a de re modality like (27) could be reduced to a de 
dicto modality. And besides, we are of the opinion that possible-worlds se­
mantics provides a clear interpretation for modalities de re. 

Adding modal and/or tense operators to predicate logic, we obtain a system 
of intensional predicate logic. Tense operators lead to the same kinds of ambi­
guities as we have seen with modal operators. Sentence (29), for example, has 
two distinct readings, (30) and (31). The key to the translations is given 
as (32): 

(29) The president received a decoration. 

(30) P3x('v'y(Py <-+ y = x) 1\ Dx) 

(31) 3x('v'y(Py <-+ y = x) 1\ PDx) 

(32) Px: x is president; Dx: x receives a decoration. 

The same distinction can be drawn as with modalities: (30) is said to be the de 
dicto reading and (31) the de rereading. The reader can practice working with 
the scopes of quantifiers, modal operators, and tense operators in the follow­
ing translation exercises. 

Exercise 1* 

Translate the following sentences into formulas of intensional predicate logic. 
(a) Lendl may win the Wimbledon tournament one day. 
(b) Perhaps everybody has always been aware of something. 
(c) Perhaps there is something that everybody has always been aware of. 
(d) If anybody can be smarter than anybody else, then everybody can be the 

smartest. 
(e) You can fool some of the people all of the time, and all of the people some 

of the time, but you can't fool all of the people all of the time. 
(f) The president will always be a democrat (try to find two translations for 

this sentence). 
(g) Every schoolboy believes that a mathematician wrote Through the Look­

ing Glass (try to find three translations for this one, representing 'x be­
lieves that</>' as B(x, <f>)). 

Exercise 2 

Try to find examples of intensional expressions (i.e., expressions which do 
not allow substitution of materially equivalent expressions in their scope) in 
each of the following categories: 
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(a) adjectives; (b) adverbs; (c) conjunctions; (d) prepositions; (e) determiners. 

The exposition of the semantics of predicate logic given in §3.2 focuses al­
most exclusively on the special case of modal predicate logic. Modal predi­
cate logic is the oldest and best understood member of the intensional family, 
and it remains instructive of what goes on in temporal predicate logic, episte­
mic predicate logic, and other related systems. 

3.2 Proper Names and Definite Descriptions: Rigid Designation 

As we will see in the rest of this chapter, there is no single preferred semantics 
for modal predicate logic. Different choices of domains and the interpretations 
of constants and quantifiers give rise to divergent semantic interpretations. 
A number of different truth definitions arising from such choices will be 
presented below, and their advantages and disadvantages will be compared. 
Besides a frame, which consists of a set W of possible worlds and an ac­
cessibility relation R, a model for modal predicate logic will need a domain 
which decides the range of the quantifiers. And here we face the first choice: 
(1) each world w gets its own domain Dw; the model as a whole will then 
contain a set {DwJw E W} of domains; or (2) we consider a fixed domain D 
shared by all of the possible worlds. Since (2) is a special case of (1) (namely, 
that in which for all w, w' E W, Dw = Dw·), we will begin with a discussion of 
(I), but we will also see that various considerations may ultimately lead us to 
prefer approach (2). But before giving a general definition for the interpreta­
tion of a modal predicate logical language, we will first concentrate on the 
interpretation of constants, this with reference to the debate on the meanings 
of proper names and definite descriptions. 

In interpreting constants we once again face a choice between two alter­
natives. One way would be to choose some fixed entity as the interpretation of 
a constant c; in this case we would end up with an interpretation function I 
which assigns entities to constants. The other way would be to make the inter­
pretation of the constants world-dependent: for every w E W, Iw (c) will then 
be some member of Dw· We say that cis interpreted as an individual (entity) 
in the first case and as an individual concept in the second. So, as we noted in 
§ 1.8, an individual concept is a function from worlds to individuals. Individ­
ual concepts open all kinds of interesting possibilities. A person, for example, 
in view of individual concepts, needs no longer be identified with some ele­
ment of a domain but may (in tense logic) be seen as a function from moments 
in time to biological entities, a conceptual transition which may shed some 
light on the fact that individuals can 'change'. We cannot pause to follow this 
line of thought here, so the interested reader is referred to Stevenson 1886, for 
example. 

It is perhaps something of a surprise that we prefer the first way of interpret­
ing constants. We prefer to interpret them as individuals. The reason for this is 
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that natural language contains expressions which function in this manner, 
namely, proper names. This point will be argued below. Natural language 
also contains expressions of another kind, which refer to entities but may have 
different references in different possible worlds: definite descriptions. This is, 
for example, apparent from sentence (20), in which the number of planets 
functions as a definite description. If the reference of the number of planets 
were to be the same in every possible world, it would in all cases be nine, and 
sentence (22) would be true, contrary to our conclusions about (20). A de­
scription can function in many different ways in the context of a sentence, 
depending on its scope. Is it necessary that the winner wins? That all depends 
on the scope of the operators in DW(1xWx). The description 1xWx can be 
rewritten in Russellian form in two different ways, inside and outside the 
scope of D. We then obtain (33) and (34): 

(33) D3x(Vy(Wy +--+ x = y) 1\ Wx) 

(34) 3x(Vy(Wy +--+ x = y) 1\ DWx) 

Now (33) is always true (if the game is played), but presumably (34) is false: 
the actual winner might have been beaten. Note that the first reading is de 
dicto, and that the second is de re: there is a free variable x within the scope 
of D. In the above example with the planets, things were the other way 
around; the de dicto reading was false, and the much less obvious de re read­
ing was true. The distinction between de dicto and de re would disappear if 
definite descriptions were to have a fixed interpretation, that is to say, the 
same interpretation in every world. 

Philosophers have devoted a considerable amount of energy to the differ­
ences and similarities between proper names and definite descriptions. One 
question of central importance has always been whether or not proper names 
have meanings, and if they do, how they are to be represented. Frege, as we 
saw in § 1. 7, was of the opinion that every name, including every proper 
name, has a Sinn, which may be expressed as a definite description. Accord­
ing to Frege, it is a lamentable shortcoming of natural language that not every­
one associates the same definite description with a proper name. One sees 
Aristotle as the discoverer of syllogistic logic, and another sees him as the 
Stagirite tutor to Alexander the Great. According to Frege, this would never 
be allowed to occur in a logically ideal language: each proper name would be 
introduced explicitly by means of a single definite description. 

Taking definite descriptions as the meanings of proper names solves anum­
ber of difficult problems. First, there is the problem of how proper names refer 
to individuals, or of how we identify the individual to which a given proper 
name refers. We need to know what we mean by a name, and in order to 
single out some individual in particular as the reference of a name, we have to 
exploit any properties which distinguish this individual from others in the do­
main. If proper names are really no more than a shorthand for definite descrip-
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tions, then the problem disappears: the meaning of the definite description 
indicates properties which distinguish the individual in question from all 
others. Second, there are problems with proper names which are like the para­
dox of the morning star and the evening star, which was discussed at length in 
§ 1.6. Hesperus and Phosphorus are two proper names which, like the morn­
ing star and the evening star, refer to the same object, viz., the planet Venus. 
If the meanings of these proper names Hesperus and Phosphorus are descrip­
tions, then it is clear why Hesperus is Hesperus and Hesperus is Phosphorus 
have two entirely different meanings. A third problem concerns statements 
like Pegasus does not exist. A formal representation like •3x(p = x) could 
never be true in the above kind of model, assuming that Pegasus is repre­
sented in the language by means of a constant p. Furthermore, there is the 
philosophical argument according to which anyone who asserts the truth of 
Pegasus does not exist is forced to concede that there is a nonexistent individ­
ual, namely the reference of the proper name Pegasus (this philosophical 
puzzle is known as 'Plato's beard'). If names are analyzed as descriptions, 
then both problems disappear. Understanding Pegasus to mean the flying 
horse and rewriting this description along Russell's lines, Pegasus does not 
exist reduces to· There is no unique flying horse, which has •3x(Vy((Hy 1\ 

Fy) +--+ x = y)) as its formal representation. This formula may very well be 
true in a model, and it does not contain names which may be exploited in a 
Plato's beard type argument. 

These ideas on proper names solve certain problems, but they also raise a 
few of their own. We have seen that in natural language, not everyone associ­
ates the same descriptions with the same proper names. This implies that 
people may assign different meanings to a given proper name, and also that 
some may assign a mistaken meaning to it. It might happen that a description 
is associated with a name which does not apply to the individual to which that 
name refers, and this is a somewhat counterintuitive consequence. 

It has been suggested that we get a better account of the meanings of proper 
names if we regard them as complex descriptions. For the name Agamemnon 
we might have something like: the king of Mycenae who led an expedition of 
all Greeks against Troy, who destroyed that city after ten years at war, and 
who on his return was murdered by his wife and her lover. Now suppose there 
had been a king of Mycenae who had achieved all of what Agamemnon is 
supposed to have achieved, but who on returning home had lived happily ever 
after. Then on the above view we would have to say that there never was an 
Agamemnon. The normal reaction, however, would be to say that Agamemnon 
certainly existed, but that he is wrongly assumed to have been murdered. And 
the same applies to all other information we have about Agamemnon's per­
sonal history: it may yet tum out to be mistaken. This difficulty could perhaps 
be avoided in the following manner. Let ¢~> ... , c!Jn be formulas each of 
which has a free variable x, and which express all properties which we believe 
Agamemnon to have had. Now of each of these properties individually it may 
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be said that Agamemnon might not have had it. But then Agamemnon could 
still answer to the following disjunctive description: 

(35) 1X((1cpl 1\ cf>2 1\ · . · 1\ cf>n) V (cpl 1\ •cf>2 1\ · · · 1\ cf>n) V · · · 
V (cpl Acpz 1\ · · · 1\ •cf>n) V (cpl 1\ cf>z 1\ · · · 1\ cf>n)) 

This, however, is not at all satisfactory. Perhaps we would be prepared to add 
disjuncts to the formula in which more than just one of the formulas cf> is ne­
gated, but where would the limit lie? Would we say that Agamemnon is the 
unique individual who has, say, 50 percent of the listed properties cp? And 
shouldn't some of the properties weigh more heavily than others? It would 
seem that we must conclude that at least in its present form, this theory runs 
into more problems than it solves, and that it does not offer a satisfactory in­
terpretation for proper names. 

The philosopher and logician Kripke introduced a quite different approach 
to the semantics of proper names and definite descriptions (see Kripke 1972). 
His position is that there is the following fundamental difference between 
proper names and definite descriptions. While the latter can change their ref­
erences from world to world, according to Kripke the former refer to the same 
thing in every world in which they have a reference. They are what he calls 
rigid designators. We have already illustrated this difference in the behavior 
of proper names and definite descriptions in § 1. 7, with a counterfactual: 

(36) If Dukakis had won the presidential elections in 1988, then the 
president of the United States would have been a Democrat. 

Dukakis refers to the same person as in the actual world in each of the possible 
worlds introduced by the antecedent of this implication, while the person re­
ferred to as the president of the United States in each of these worlds is differ­
ent from the person this expression refers to in the actual world. Thus Kripke 
reduces the so-called transworld identity problem to the status of a pseudo­
problem. This is a well-known problem raised by possible worlds semantics: 
what does it mean to say that an individual in a given world is the same as an 
individual in another world? According to Kripke, it is senseless to try and 
determine whether two entities in two different worlds are in fact one and the 
same by comparing their properties. Instead this is something which is given 
in advance. In expressing a sentence like (36), we introduce other possible 
worlds in which Dukakis's presence is unproblematic, although the Dukakis in 
these worlds may differ from the real one in various respects. 

So how does Kripke's position fare as far as the other three problems we 
have mentioned are concerned? Kripke's general explanation of how proper 
names relate to descriptions is that names are often assigned to individuals by 
means of descriptions. This occurs, for example, in I will call the littlest goat 
Jenny. Once its reference has been established in this manner, the name Jenny 
remains applicable to the same individual, even if the original description no 
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longer fits (because Jenny has grown up). The goat in question will still be 
called Jenny when she gives birth to her own kids, and the discovery that she 
wasn't actually the smallest goat at the time of her 'baptism' will not change 
the fact that this is her name. This also explains how proper names come to 
refer. For the reference of a name is determined not by the meaning of the 
name but by the description by means of which it was originally fixed in the 
initial baptism. The second problem will be discussed in §3.3.2, when we 
come to identity. A solution to the third problem which is compatible with 
Kripke's position will have to wait until the notion of the existence predicate is 
introduced in §3.3.4. 

Kripke's ideas about the meaning and the roles of proper names are quite 
attractive. And if they are to be reflected in the formal semantics of modal 
predicate logic, then individual constants, as the formal versions of proper 
names, will have to be interpreted as individuals rather than individual 
concepts. 

3.3 The Semantics of Modal Predicate Logic 

3.3.1 Formulas without Variables 

Initially it is helpful to leave out quantifiers when explaining the semantics of 
modal predicate logic, postponing the complications resulting from inter­
ference between quantifiers and modal operators until later. 

We have decided that the interpretations of the constants are to be indepen­
dent of the worlds. But since we certainly want the truth values of sentences 
and the references of definite descriptions to be relative to possible worlds, we 
clearly must interpret the predicate letters in each world separately. So an 
n-ary predicate letter P is interpreted in each world w as a subset Iw(P) of 
(Dw)". To recapitulate: 

Definition 1 

A model M for a modal predicate logical language L consists of: 

(i) a nonempty set W of possible worlds 
(ii) an accessibility relation R on W 
(iii) a domain function D which assigns a domain Dw to each world w E W 
(iv) an interpretation function I which assigns an entity I( c) to each constant 

c of L, and for every world w E W a subset Iw(P) of (D w)" to each n-ary 
predicate letter P of L. 

Now we want to know what it means for a formula lacking variables to be true 
in a world w in a model M. As we shall soon see, there is no single truth 
definition for modal predicate logic that is clearly superior to all the rest. At 
various points we will have to choose between different alternatives, and the 
choices we make will be guided by the applications we have in mind in natural 
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language. Readers with other applications in mind may agree to differ. The 
important thing is that the motives behind our choices are revealed. 

The first problem we are faced with in giving a truth definition is that the 
entities which the interpretation function I assigns to the different constants 
need not exist in every possible world where we evaluate. What, for example, 
is the truth value of sentence (37) 

(37) Eve was blonder than Adam. 

in this our real world (assuming that neither has ever existed)? It would seem 
that the most natural thing to do is not to have (37) false but to leave its truth 
value undefined. We must, however, be careful when writing up the truth defi­
nition: •1> may only be allowed a truth value if 1> gets one, for example, for 
otherwise a sentence like (38): 

(38) Eve was not blonder than Adam. 

might end up with a truth value and (37) without one. We will also deny 1> -> 
1/J a truth value if either 1> or 1/J is lacking one. The definition which these 
considerations lead to, given below as definition 2, still has a few snags. We 
will turn to them shortly and will suggest some improvements. 

Definition 2 

Let M be a model, 1> a formula of modal predicate logic lacking variables, 
and wE W. Then VM,w (<f>), the truth value of 1> in w given M, is defined as 
follows: 

(i) VM,w(Pc 1 ••• C0 ) = 1 iff l(c 1) E Dw, ... , I(C 0 ) E Dw 
and (I(c1), ••• , l(c0 )) E Iw(P) 

= 0 iff I(cJ E Dw, ... , I(C 0 ) E Dw, 
and (I(c 1), ••• , I(c0)) E lw(P) 

(ii) VM,w(•<f.>) = I iff vM,w(cf>) = 0 
= 0 iff VM,w(cf>) = 1 

(iii) VM,w(cf> ~ 1/J) = 0 iff VM,w(cf>) = I and VM,w(l/1) = 0 
=I iffVM,w(cf>) =I and VM,w(l/1) = 1, 

or vM,w(cf>) = 0 and VM,w(l/1) = I' 
or VM.w(cf>) = 0 and VM,w(l/1) = 0 

(iv) VM,w(D<f>) = 1 iff for every w' E W such that wRw': 
VM,w'(<f>) = } 

= 0 iff there is a w' E W such that wRw' 
and VM,w'(<f>) = 0 

The clauses for the other connectives and for <> follow from the above clauses 
together with the definitions of those connectives in terms of-> and-,, and the 
definition of<> in terms of-, and D. 

The comments made above about the interpretations of constants and predi-
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cates and about some formulas having undefined truth values have all found 
their way into this definition. But there still are some problems with it. It turns 
out that clause (iv), which deals with D<f>, is rather too strict. The require­
ments it places on sentences of the form O<f>, if these are to be true, are too 
stringent. According to this clause, any such sentence can be true in a world 
only if all of the constants occurring in it refer to entities which are present in 
all worlds accessible from that world. For otherwise the truth value of O<f> will 
be undefined, since the truth value of <f> will be undefined in some accessible 
world. This means, for example, that in our world it is necessary neither that 
Amsterdam is Amsterdam, nor that the sun rises if the sun rises-for Amster­
dam and the sun might just as well not exist. That is to say, other possible 
worlds are accessible from our actual world in which Amsterdam and the sun 
do not exist. One possible remedy would be to relax clause (iv) so that D<f> is 
true in a world w just in case <f> is true in all worlds accessible from w in which 
1> has a truth value (that is to say, in all worlds which contain the entities re­
ferred to by the constants in <f>). Clause (iv) for the truth value of O<f> then 
becomes (iv'): 

(iv') VM,w(O<f>) = 1 iff VM,w'(<f>) = I for every w' E W such that wRw' 
for which VM,w'(<f>) is defined 

VM,w(O<f>) = 0 iff VM,w'(<f>) = 0 for at least one w' E W 
with wRw' 

Replacing (iv) in definition 2 with (iv') removes the above complications, but 
new ones rush in to take their places. For example, (39) becomes true in the 
actual world without ( 40) becoming true: 

(39) It is necessary that Adam is a mortal. 

(40) Adam is a mortal. 

Clause (iv') has the effect that not all worlds accessible from w need to be 
taken into account in assessing the truth value of a sentence of the form D<t> 
there. This can lead to w itself not being taken into account, even if w is in 
fact accessible from itself. In other words, the reflexivity of R is no longer 
sufficient to guarantee the validity of the logical principle D<t>-> <f>. Ad hoc 
adjustments could be made in order to get this guarantee back, by explicitly 
requiring 1> to be true in w if O<f> is to be true in w (assuming reflexive R). We 
would then replace clause (iv') by (iv"): 

(iv") VM,w(D<f>) = 1 iff VM,w(cf>) = 1 and VM,w'(<f>) = 1 for every w' E W 
such that wRw', for which VM,w'C<f>) is defined 

VM,w(D<f>) = 0 iff VM,w'(<f>) = 0 for some w' E W with wRw' 

But this remains an ad hoc solution which leaves many other problems 
unsolved. Various other principles which were valid in modal propositional 
logic are in danger. One example: O(<f> 1\ 1/J)-> D<f> is no longer valid. For 
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D(<t> 1\ t/1) to be true it is only required that <P 1\ t/1 be true in all worlds which 
have in their domains the references of the constants occurring in either <P or 
t/J. There may well be a lot fewer of these worlds than there are worlds contain­
ing the references of the constants occurring in just <P- This can also be illus­
trated with reference to a concrete model. M has as its set of possible worlds 
the set {w1, w2, w3}, with the accessibility relation given in (41): 

(41) (} 
• 

Let the domain function be as follows: Dw ={a, b}; Dw = {a, b}; Dw = {a}. 
I 2 3 

The interpretation of a predicate letter A in this model is defined by: Iw,(A) = 
{a, b}, Iw (A) = {a, b}, Iw (A) = 0; and that of the constants c1 and c2 is 

2 3 

defined by I(c 1) = a; l(c~ =b. Now in M we have Vw/D(Ac 1 1\ Ac~) = 1, 
according to (iv'') (and in fact according to (iv') as well), since Vw,(Ac1 1\ A~) 

= Yw
2
(Ac 1 1\ Ac~ = 1, while Vw

3
(Ac 1 1\ Ac~ is undefined. But on the other 

hand, Vw/DAc 1) = 0, since Yw
3
(Ac 1) = 0. 

Problems like these would seem to suggest that a 'strong' interpretation of 
the connectives would be preferable to the 'weak' interpretation given them in 
definition 2. Under the weak interpretation, the truth value of a conjunction is 
undefined if that of either of its conjuncts is undefined, even if the other con­
junct is false. Under the strong interpretation, on the other hand, a conjunc­
tion is false if either of its conjuncts is, even if the other conjunct is neither 
true nor false. Thus, we are in effect back with the problems of many-valued 
logic, as discussed in §5.5 in volume 1. This is not a coincidence. Although 
we dismissed many-valued logic earlier on as a serious modeling of modality, 
it is becoming increasingly important in current research on partiality of 
interpretation. 

Returning to the example and recalculating the truth values under the strong 
interpretation of the connectives, we see that because Yw

3
(Ac 1) = 0, Vw,(Ac 1 

1\ Ac~ = 0 instead of being undefined. As a result, we have Vw,(D(Ac 1 1\ 

Ac2)) = 0 instead of Vw,(D(Ac 1 1\ Ac~) = 1. So this model is no longer a 
counterexample to the validity of 0(4> 1\ t/1)-+ D<t>. It is quite possible that the 
approach sketched above, given these adjustments, results in a satisfactory se­
mantics. But the truth definition still seems to lack a coherent intuitive back­
ing. So we will mention a few of the other possibilities. One entirely different 
response to the problems with definition 2 is to impose the following restric­
tion on the domain function: 

(42) if wRw', then Dw C Dw' 
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During transitions to other accessible worlds, in other words, nothing at all 
may get lost. The domain may only grow larger. This restriction has the effect 
that the reference of any constant in a given possible world is also to be found 
in the domain of any world accessible from that world. So given (42), we can 
stick to the original clause (iv) in definition 2 without running into the com­
plications we have just discussed. For given restriction (42), we can be sure 
that Amsterdam, and the sun are to be found in any possible world which is 
accessible from this one, so that the facts that Amsterdam is Amsterdam and 
that the sun rises if the sun rises all become necessary truths. Furthermore, 
(19) and (40) both become undefined, so that they no longer constitute a 
counterexample to D<P-+ <P- And it can easily be seen that the problems 
we had with principles like 0(4> 1\ t/1)-+ D<P are also to be solved in this 
manner. 

It seems likely, however, that the increasing domains requirement has 
ramifications which are less than entirely acceptable. One of these is that it is 
no longer true that Amsterdam and the sun might just as well not have existed: 
they exist in every possible world which is accessible from this one. It should 
be noted that a related objection can be made to the clauses (iv') and (iv''): 
given that Amsterdam is present in our world, they imply that it is necessary 
that Amsterdam exists in our world, and so on. 

3.3.2 Identity 

Our decision to treat constants as rigid designators has quite spectacular con­
sequences for the validity of certain principles concerning identity. We don't 
have much freedom in interpreting the identity predicate: 

(43) in every world w, lw(=) = {(d, d)jd E Dw} 

Given the truth definition and either the increasing domains requirement (42) 
or the modified clause (iv"), (44) will be a valid principle: 

(44) b = c-+ D(b = c) 

As we mentioned in §3.2, the planet Venus happens to be the reference for 
two other proper names: Hesperus (the evening star) and Phosphorus (the 
morning star). It would seem that treating proper names as rigid designators 
inevitably leads to the conclusion that (45) is a necessary truth: 

(45) Hesperus is Phosphorus. 

Kripke is willing to accept this conclusion. For him, the status of a proposi­
tion as necessary has nothing to do with how we come to recognize its truth 
but only follows from the fact that it could not have been otherwise than true. 
He distinguishes between necessary truths and a priori ones. A proposition is 
a priori if its truth status may be established purely by reasoning, indepen-
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dently of (sensory) experience. This makes a priori an epistemological notion. 
A proposition is necessary, on the other hand, if it describes a situation which 
could not have been different from how it is. And this makes necessary an 
ontological notion. It has often been argued that the two notions coincide, but 
according to Kripke this is a mistake: there are in any case examples of neces­
sarily true propositions which are not a priori. Sentence (45) is an example of 
just this. Although (45) is a necessary truth, its truth cannot be established 
independently of sensory experience. This distinguishes (45) from (46): 

(46) Hesperus is Hesperus. 

Sentence (46) is both necessary and a priori. Thus Frege's original problem 
with the difference between these two sentences can be adequately dealt with 
within the theory of rigid designation. As another example of necessarily true 
propositions which need not be a priori, Kripke mentions true but as yet un­
proved mathematical propositions. Either Goldbach's conjecture ("every even 
number larger than 2 is the sum of two primes") is an example of such a 
proposition, or its negation is, depending on which of the two is true. Which­
ever of the two happens to be true, it is a necessary truth. But since the truth of 
Goldbach's conjecture has not yet been decided either way, it is not a truth 
about which we (now) have any a priori knowledge. Perhaps we will have a 
priori knowledge about it some day, if someone ever succeeds in proving or 
disproving Goldbach's conjecture. But we have no guarantee that this can be 
done. So while it is a necessary truth, we may not conclude from this that it is 
also an a priori truth. 

It seems that Kripke has given a satisfactory solution to the problems with 
proper names which we discussed in §3.2 (and see §3.3.4 for the problem 
about Pegasus not existing). It should, however, be noted that complications 
arise in treating belief contexts in a possible worlds semantics with rigid des­
ignation. If belief is analyzed as a relation between individuals and proposi­
tions, as has been proposed, and if proper names are interpreted as rigid 
designators, sentence (48) will, in view of (45), follow from (47): 

(47) The Babylonians believed that Hesperus is Hesperus. 

(48) The Babylonians believed that Hesperus is Phosphorus. 

It is not at all clear whether we have here a problem with the theory of rigid 
designation or a problem with the proposed analysis of belief in possible 
world semantics (also see the comments at the end of §3.5). 

Exercise 3 

Use definition 2, with (iv") instead of (iv). Consider a world in which Adam 
exists, but Eve does not. Determine the truth value in such a world of the 
following formulas: 

(a) 03x(x = Adam) 
(b) 03x(x = Eve) 
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What is the relationship between clause (iv") and the increasing domains 
requirement? 

3.3.3 Variables and Quantifiers 

We encounter the same problem in the semantics of quantification as with 
constants: are quantifiers to range over individuals or over individual con­
cepts? Once again our preference is for individuals. The reason for this is that 
natural language contains a kind of expression, namely, definite descriptions, 
which may be thought of as designating individual concepts. Now if the quan­
tifiers were to range over individual concepts in modal predicate logic, prin­
ciples ( 49) and (50) would end up valid: 

( 49) 'Vxcf> ---> [1yl/J/x]cf> 

(50) [1yl/J/x]cf>---> 3xcf> 

If cf> is true of all individual concepts, then it will most certainly be true of the 
concept 1yl/J in particular, and if cf> is true of the particular concept 1yl/J, then 
there is at least one individual concept for which cf> is true. But these prin­
ciples do not seem to hold for natural language. Here are some examples to 
illustrate this. Sentence (52) does not follow from (51): 

(51) Everyone can lose this game. 

(52) The winner can lose this game. 

Nor does (55) follow from (53) and (54): 

(53) All numbers greater than seven are necessarily greater than 
seven. 

(54) The number of planets is a number greater than seven. 

(55) The number of planets is necessarily greater than seven. 

And finally yet another example which really belongs to deontic logic. Sen­
tence (57) does not follow from (56): 

(56) The president of the United States must have been born in the 
United States. 

(57) There is someone who must have been born in the United 
States. 

In the truth definition, then, we will be dealing with assignments g which 
assign an individual to each variable. The quantifiers will then range over 
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individuals all right, but it would seem only reasonable that in evaluating 
quantified sentences in any given world w, we take into account only the indi­
viduals in (the domain of) that world. We shall now replace definition 2 by a 
definition of valuations VM,w,g based on models M, worlds win those models, 
and assignments g for the full language of modal predicate logic. First we 
define the interpretation of terms: 

(58) [t]M,g = I(t) if t is a constant 
g(t) if t is a variable 

The full definition now reads as follows: 

Definition 3 

Let M be a model, 4> a formula of modal predicate logic, and w E W. Then 
vM,w,g(cp), the truth value of 4> in w given M, is defined as follows: 

(i) VM,w,g(Pt1 ... tn) = l iff [t1]M,g E Dw, ... , [tn]M.g E Dw 
and ([tl]M,g' ... , [tn]M,g) E Iw(P) 

= 0 iff [ti]M.g E Dw, ... , [tn]M.g E Dw 
and ([tl]M,g, ... , [tn]M,g) E Iw(P). 

(ii) VM,w,g(•cp) = 1 iffVM,w,g(cf>) = 0 
= 0 iff VM,w,g{cf>) = 1. 

(iii) VM,w,g(cf> __., t/1) = 0 iff VM,w,g(cf>) = 1 and VM,w,g(t/1) = 0 
= 1 iff VM,w,g(cf>) = 1 and VM,w./t/1) = 1, 

or VM.w,g(cf>) = 0 and VM.w,it/1) = 1, 
or VM,w,g(cf>) = 0 and vM,w,g(t/1) = 0. 

(iv) VM,w,g(Ocf>) = 1 iffforeveryw' EWsuchthatwRw': 
VM,w'.g{cp) = l 

= 0 iff there is a w' E W, such that wRw' 
and VM,w',g(cp) = 0. 

(v) vM,w.l'</xcp) = 1 iff for every dE Dw: vM,w,g[xid](cp) = 1 
= 0 iff there is a d E Dw such that 

VM,w,g[xid](cp) = 0 

The clauses for the other connectives and for <> and 3 follow from the above 
clauses together with the definitions of those connectives in terms of --.. and 
-,, and the definition of<> in terms of 0 and-,, and of 3 in terms of V and-,. 
As in standard logic, the truth values of sentences, i.e., formulas lacking free 
variables, are Independent of the assignment g. So for sentences 4> we can just 
write VM.w(cf>). If this truth definition were to be applied without assuming 
growing domains (or without replacing clause (iv) by a suitably adapted ver­
sion of (iv")), then we would run into even stickier problems with formulas 
with undefined truth values than we have already encountered. For if any 
of the entities in a world w is lacking in any world accessible from w, then 
VM,w('VxOcp) would always be undefined there. We will therefore assume that 
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either the requirement of increasing domains has been met, or that clause (iv) 
has been replaced by a suitably adapted version of (iv"). 

In the semantics of modal predicate logic, a good deal of attention has been 
paid to the interactions between modal operators and quantifiers. This has 
brought out in full relief the distinction between modalities de dicto and de re. 
In studying the interactions between 0 and the quantifiers, the validity of the 
following four principles can be checked: 

(59) O'Vxcp --.. VxOcp 

(60) VxOcp--.. O'Vxcp 

(61) 03xcp--.. 3x0cp 

(62) 3x0cp --.. 03xcp 

The most well known of these schemata is (60), the Barcan formula. It is 
named after Ruth Barcan, who pointed out that it is problematic. An equivalent 
with <> instead of 0 can be obtained for each of these formulas by means of 
contraposition (that is, by means of the equivalence of t/1 ~X and 'X__., •t/J): 

(63) 3x<>4>--.. <>3xcp 

(64) 03xcp--.. 3x<>cf> 

(65) Vx<>cf>--.. <>Vxcp 

(66) <>Vxcf>--.. Vx<>cf> 

As an example we will show how (63) may be derived from (59). O'Vxcp 
--.. VxOcp implies •VxOcp--.. •O'Vxcp, and thus 3xo0cp--.. <>•Vxcp, and thus 
3x<>•4>--.. <>3x•cf>. But if the schema O'Vxcp--.. VxOcp holds for all formulas 
cp, then it holds in particular for all formulas •cf>. So 3x<>••4> ~ 03x••cf>, 
which immediately implies 3x<>cf> --.. 03xcp. 

Unlike (60) and (64), (59) and (63) would seem to be valid. It is clear, for 
example, that (67), which may be symbolized as 3x0cp, is a much stronger 
statement than (68), which may be symbolized as <>3xcp; in other words, it is 
clear that (67) implies (68): 

(67) There is someone who will possibly do better than I. 

(68) It is possible that someone will do better than I. 

That (68) is weaker than (67) is, for example, apparent from the fact that (68) 
can be followed by (69), whereas this is absurd for (67): 

(69) But it is improbable that there is someone who will do better 
than I. 

This comes out quite nicely in the semantics which we have given: (63), and 
thus (59), is valid, while (64), and thus the Barcan formula, (60), is invalid. 
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The validity of 3x<><P-> <>3x<f> may be proved as follows: If VM.w.g(3x0<f>) = 
1, then V M.w.gJxidl( <><P) = 1 for some d E Dw. So then V M.w'.gJxidJ( <P) = 1 for 
some w' with wRw'. In this w', we then have VM.w'_i3x<f>) = l, so that 
VM.wi<>3x<f>) = 1. 

That <>3x<P-> 3x<><P is n-9t valid for every formula <P is clear from the 
counterexample given to <>3Ax-> 3x<>Ax in (70), in which Dw = {a}, Dw 

I 2 

= {a, b}; lw,(A) = 0, lw
2
(A) = {b}. 

(70) () () 
• • 

w 1 w2 

For while, on the one hand, it is clear that vM.w,(3xAx) = I, and thus vM,w, 
(<>3xAx) = 1, on the other hand, taking g(x) = a, we see that VM.w,,i<>Ax) 
= 0, and thus VM,w,(3x<>Ax) = 0, since a is the only value of g(x) which is to 
be found in w 1• 

Principle (61) and its equivalent (65) are extremely implausible. According 
to (65), for example, (72) follows from (71): 

(71) Everyone can win in this game. 

(72) It is possible that everyone wins in this game. 

This is clearly not as it should be, and (61) and (65) do indeed turn out to be 
invalid in the semantics we have given. At first sight, (62) and (66), the con­
verses of (61) and (65), would seem much more plausible. It is worth noting 
that accepting the validity of (62) and (66) practically amounts to accepting 
the increasing domains requirement. This can be shown quite easily. Suppose 
that the domains in a model Mall increase, and that VM,w,g(3x0<f>) = 1. Then 
there must bead E Dw such that VM.w.g[xidJ(D<f>) = 1. Suppose now that wRw', 
that is to say, that w' is accessible from w. Then because increasing domains 
are required, we have dE Dw' and VM,w',g[xid](</>) = l, so that vM.w'.g(3x<f>) = 1. 
As this argument applies to all worlds w' which are accessible from w, we 
now have VM.w,g(D3x<f>) = 1. Thus (62) has been shown to be valid on this 
model. 

That ( 62) and ( 66) are not valid if the increasing domains requirement is not 
satisfied may be seen as follows. Let M be a model which does not satisfy the 
increasing domains requirement. Then there are two possible worlds, w and 
w', such that wRw', and an entity d such that dE Dw and d (f Dw'· Now (62) 
can be falsified in w by letting <P be such that d satisfies <P in w and in every 
world accessible from w and having d in its domain, while no entity at all in 
w' satisfies <f>. For given any such <P and assuming it has a free variable x, we 
have VM.w,g(3xD<f>) = l, since according to clause (iv''), VM,w,g[xidJ(O<f>) = l, 
but VM,w.g(D3x<f>) = 0, since VM.w'.g(3x<f>) = 0. That is, we have VM,w,g 
(3xD<P-> 03x<f>) = 0. 

Examples such as these point at a more general correspondence between 
proposed principles of a modal predicate logic and structural conditions on 
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frames of possible worlds with domains of individuals attached. This theme 
can be pursued just as in propositional modal logic (cf. §2.3.2), but we shall 
not do so here. 

As plausible as (62) and (66) might seem at first sight, it still is possible to 
imagine situations in which one, in violation of (66), would want to accept 
(72) without automatically having to accept (71). It is conceivable that there is 
a game in which everyone can win (that is, in which everyone can end with 
exactly the same score), at least under the proviso that Jones, who is a particu­
larly poor player, does not participate. But this need not mean that everyone 
can win the game, because Jones will always be beaten. It will be clear that 
this matter can only be settled by a thorough analysis in which the modal, 
temporal, epistemic, and deontic aspects of intensionality are all taken into 
account. 

By way of conclusion, it is worth returning briefly to an option we rejected 
earlier on, namely, letti.ng the quantifiers range over individual concepts in­
stead of over individuals. This option does extremely badly in the test posed 
by the principles discussed above: they all turn out to be valid, which is 
enough to remove completely the distinction between modalities de dicto and 
de re. 

Exercise 4* 

(a) Prove that (65) is invalid. 
(b) Show that accepting the Barcan formula (64) implies assuming decreasing 

domains, i.e., assuming that if wRw', then Dw' ~ Dw. 

3.3.4 One Domain: The Existence Predicate 

In the semantics for modal predicate logic given in the last few sections, we 
have not assumed that all formulas must have truth values in all possible 
worlds. This gave rise to various problems with the validity of modal prin­
ciples, some of which we have seen are solvable. But it is not yet clear 
whether any such problems still remain, and that is a rather unsatisfactory 
state of affairs. Furthermore, arguments of a principled nature may be leveled 
against the idea of formulas which are neither true nor false, since it violates 
the principle of bivalence. 

It is possible to set things up in such a way that the principle of bivalence is 
maintained, which means that every atomic formula Pc 1 ..• C

0 
must be as­

signed a truth value in every possible world. One obvious way of doing this is 
to make sure that all individual constants have references in all possible 
worlds. This amounts to creating a single, common domain for all possible 
worlds. From the point of view of any one of these worlds, then, there are two 
kinds of things: there are the things which really exist in that world, but there 
are also the things which really exist in any of the other worlds. In each world, 
the membership of predicates will have to be defined for all entities in that 
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world (even for the ones which don't really exist there). This would seem to be 
a fairly radical solution to all of the problems with undefined truth values. 

Within this approach, it would seem desirable to have some way of distin­
guishing between individuals which really exist in any given world and all of 
the other things there. We do this by means of an existence predicate E. This 
predicate singles out in every world the possible individuals which really exist 
there. Introducing this predicate provides a ready solution to some problems 
with Pegasus's nonexistence which we mentioned earlier on. It is not at all 
clear how a sentence like (73): 

(73) Pegasus does not exist. 

could ever be true in the rigid designators approach. The natural translation 
of (73), •3x(p = x), turns out to be false or undefined in all variants of 
the semantics given above. But using the existence predicate, (73) can be 
rendered as •Ep, a formula which is true in just those worlds in which prefers 
to a nonexistent individual. Nor does a semantics with a common domain and 
existence predicate suffer from the handicap of all the other systems we have 
seen, that an object exists necessarily if it exists at all. 

It is quite possible to find philosophical objections to a domain containing 
all possible individuals, or to analyzing existence as a predicate. But as we 
pointed out in §3.1, philosophical considerations may not be allowed to have 
the last say if our aim is the application of logical methods in the description 
of natural language. And sentences like (73), in which the existence of certain 
kinds of individuals is asserted or denied, are not the only ones for which the 
availability of nonexistent individuals would seem to be an advantage. Con­
sider (74), for example: 

(74) John is talking about Pegasus. 

Obviously the truth of this sentence may not be allowed to depend on the exis­
tence of Pegasus. Now the natural analysis of (74) is one in which is talking 
about is seen as a relation between John and Pegasus. But this means that 
nonexistent entities must be allowed to enter into relations, if (74) is ever to 
be true. 

This approach leads to the following alternative to definition 1 as the defini­
tion of a model: 

Definition 4 

A model for a modal predicate-logical language L consists of: 

(i) a nonempty set W of possible worlds 
(ii) an accessibility relation R on W 
(iii) a domain D 
(iv) an interpretation function I which assigns 

(a) an element I( c) of D to each constant c in L 
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(b) a nonempty subset lw(E) of D to E, for each world w E W 
(c) the same set {(d, d) ld ED} to =, for each world w 
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(d) a subset lw(P) of Dn to each n-ary predicate letter P in L, for 
each w EW 

This definition leads to the following alternative to the truth definition given as 
definition 3 in §3.3.3: 

Definition 5 

Let M be a model, wE W, and g an assignment. Then VM,w,g(4J), the truth 
value of 4> in w given M, is defined as follows: 

(i) VM,w,g(Pt, ... ~) = l iff ([t,]M,g• · .. , [tn]M,g) E lw(P) 
(ii) VM,w,i•¢) = l iffVM,w,i¢) = 0 
(iii) VM,w.i¢--> t/1) = 1 iff vM,w,i¢) = 0 or VM,w,it/1) = 1 
(iv) VM,w,g(O¢) = I iff for each w' such that wRw': VM,w·,i¢) = 1 
(v) VM,w./Yx¢) = 1 iff for all dE D: VM,w,g[xldJ(¢) = 1 

The Barcan formula is true in any such model with a common domain, since it 
satisfies the decreasing domains requirement mentioned in exercise (4b). The 
objections which were originally mentioned in connection with the Barcan 
formula, however, are no longer valid, since now the quantifiers range not 
only over existing individuals but also over possible individuals. The original 
reading of the Barcan formula can, with the help of the existence predicate, be 
reconstructed as: 

(75) 'v'x(Ex--> 0¢)--> O'v'x(Ex--> ¢) 

Restricting the quantifier to E in (75) has the effect of having it range over 
existing individuals. But unlike the original Barcan formula, (75) is not uni­
versally valid under truth definition 5. 

In fact, the quantifiers in most representations of natural language sentences 
of the form all A are B and some A are B will end up being restricted to E. 
That is, these sentences will be represented as 'v'x(Ex--> (Ax--> Bx)) and 
3x(Ex 1\ (Ax 1\ Bx)), respectively. So the validity of the Barcan formula has 
no adverse affects on the applicability of this semantics. Another rather slip­
pery principle which no longer holds if its quantifiers are restricted to E is 
(59), the converse of the Barcan formula. And rightfully so. For (76) would 
otherwise lead to (77) after substitution of Ex for ¢, which would in turn 
imply (78): 

(76) O'v'x(Ex--> ¢) --> 'v'x(Ex--> 0¢) 

(77) O'v'x(Ex -->Ex) --> 'v'x(Ex --> OEx) 

(78) 'v'x(Ex --> OEx) 

And with (78) we would once again be confronted with the specter of all the 
individuals that exist in a world existing necessarily. 



66 Chapter Three 

Exercise 5* 

(a) Show that (75) is not valid. 
(b) Under what condition will (78) be valid in a model? 

Exercise 6 
Give an example of an expression which can be viewed as a one-place predi­
cate P for which the requirement for all w: Iw(P) ~ Iw(E) is not correct. And 
can you think of an expression which must be considered a two-place relation 
Q for which the requirement for all w: {xJthere is a y such that (x, y) E 

lw(Q)} ~ Iw(E) is not correct? 

3.4. Other Kinds of Contexts 

In the above exposition of intensional predicate logic, we have concentrated 
almost exclusively on modal predicate logic. But other intensional operators, 
for example, tense operators, can also be added to predicate logic. The whole 
above discussion about how constants and quantifiers are to be interpreted and 
on the choice of domains may then be repeated more or less as it is. 

Principles (59)-(62) discussed in §3.3.3 all have tense-logical variants. 
The following two formulas are, for example, the tense-logical versions of the 
Barcan formula (60), for future and past, respectively: 

(79) 'tfxGcf> --> G'tfxcf> 

(80) 'tfxHcf> --> H'tfxcf> 

As they stand, we are not inclined to accept the validity of (79) and (80) any 
more than that of the Barcan formula. And the same applies, mutatis mutan­
dis to the other tense-logical principles corresponding to (59), (61 ), and (62). 
In ~dopting moments in time as our contexts, we once again encounter ~ari?us 
alternative ways of setting up the semantics. We can give each moment m time 
its own domain, or we can introduce a single domain which is common to all 
moments in time. The advantages and disadvantages of the different alter­
natives are the same as with modal logic. And the status of principles like (79) 
and (80) in the various alternatives is also analogous to the status of the corre­
sponding modal principles. The considerations with respect to how i~dividual 
constants and variables are to be interpreted are also the same as m modal 

logic. 

Exercise 7 
(a) Translate the following two sentences into the language of temporal predi­

cate logic: 
(i) One day everybody will be happy forever after. 
(ii) There is always someone who is happy only when someone else isn't. 
Show that if we assume that each point in time is succeeded by another 
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one and that the 'earlier than' relation is transitive, then there cannot be a 
model M and a point in time t in which (i) and (ii) are both true. 

(b) Consider the existence predicate E. Is it reasonable to lay down special 
requirements on I(E) in a temporal predicate logic? If so, what should 
these be? 

When. dealing with both modal and tense operators at the same time, our 
contexts will become worlds at moments in time, as was explained in §2.5. 
Different alternative interpretations for the modal operators are then available; 
as far as tense operators are concerned, the combination with modal operators 
does not seem to introduce any new possibilities into the discussion. In chap­
ter 5 we will encounter an intensional logical system with both modal and 
tense operators and in which quantification ranges over a single domain. It is, 
then, a semantics along the lines of §3.3.4. 

Other extensions of intensional logic may be obtained by including yet 
more different factors in the contexts. The contexts we have seen until now­
possible worlds, moments in time, and the combination of the two-may also 
be used in the analysis of epistemic and deontic expressions. But these are not 
the only kinds of expressions with context-dependent interpretations. Personal 
pronouns like /, he, we, and you, locative expressions like here and there, 
and deictic pronouns like this and that are other examples. Let us consider the 
pronouns I and you. Just as the truth status of (81) depends on the time of the 
context, the truth values of (82) and (83) are dependent on the context: 

~81) It is raining. 

(82) I live in Amsterdam. 

(83) You work in Paris. 

Sentence (82) is true in a given context just in case the individual who is 
speaking in that context does in fact live in Amsterdam. And (83) is true in a 
given context just in case whoever is being addressed in that context does in 
fact work in Paris. The point is that in order to represent this, the contexts 
need more than just a world and a time: they need a speaker and someone who 
is being spoken to, an addressee. Locative expressions like here and there 
require further extensions to the notion of context: in order to interpret (84) 
the contexts will also have to specify a place: 

(84) I live here. 

(Actually a sentence like (81) is just as dependent on place.) We can imagine a 
context as a sequence of parameters: a possible world w, a moment tin time, a 
speaker s, an addressee a, and a place p. Of course there are always other 
specifications which could be added to this list. The parameters speaker, ad­
dressee, and place are often treated within the framework of worlds at mo­
ments in time. A distinction is then drawn between indices, or worlds at 
moments in time, and contexts of use, which specify speakers, addressees, 
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and places. It thus becomes possible to draw a line between e~pressions 
whose interpretation differs from index to index and those whose mterpreta­
tion depends on the context of use. The first to systematically explore this 
distinction was Kaplan (1978, 1979). Some authors, notably Cresswell, o~­
ject to the 'open' character of the context notion. According to them: ther~ IS 
no end to the possible parameters. They therefore prefer an approach m which 
contexts are unanalyzed concepts which can have certain kinds of propertie~. 
Instead of specifying a context as (among other things) an individ~al a who IS 
the speaker and an individual b who is the addressee, they would JUSt say that 
there is a context which has the property of containing a speaker a and an 
addressee b. The truth status of a sentence like (82) in any such context is then 
no longer dependent on any parameter in that context but rather on the proper­
ties of that context. It is not yet clear whether this approach leads to results 

other than the original one. . . 
By way of illustration, we will spend the rest of this sectiOn on different 

ways of representing first- and second-person pronouns. A first a~em~t to ~c­
count for the contextual character of I and you might go somethmg bke this. 
A model M consists of a set W of possible worlds with an accessibility rela­
tion R a set T of moments in time with an earlier than relation <, a domain 
D of e~tities, and an interpretation function I. A context k is to be consi~ered 
as a sequence (w, t, s, a) in which wE W, t E T, and s, a ED. (There IS no 
need to ensure that sand a are different elements of D.) So a context k fixes a 
possible world w, a moment in timet, a speakers, and ~n ~~dressee a. The 
symbols s and a must not be thought of as the names of mdividuals; they ~e 
'metanames'. A context would look something like (w 1, t8 , d2, d9). We wish 
to represent the expressions I and you in our formal language by means of 
individual constants. We reserve the constants i and y, respectively, for this 
purpose. These constants can, of course, not be treated as rigid designa~ors, 
for the idea was precisely the opposite: their references were to ~ssentially 
depend on the context in which they are interpreted. The ex~resswns I and 
you are not names for particular individuals anyway. So we will make~ ~x­
ception to the rule that constants are rigid designator_s for i and y ~y reqmnng 
the interpretation function I in a model to comply with the followmg: 

Ik(i) = sk and Ik(y) = ak, for all k 
So given a context k, I assigns the speaker in k, sk, ~o the co~stan~ i, and th~ 
addressee in k, ak, to the constant y. The interpretatiOn functiOn I mterprets z 

andy, in other words, as individual concepts. An i~dividual ~oncep~, were­
call, is a function from contexts to individuals. The mterpretatwn of z may be 
seen as the concept of a speaker and that of y as the concept of an addressee. 
Instead of lk(i) = sk, we could also write I{i)(k) = sk, which is to b~ read as: 
The individual concept I(i) which I assigns to i assumes, when apphed to the 

context k, the value sk. 
This approach accounts for the contextual character ~f I_and you, and thus 

of sentences like (82) and (83). But it is still rather naive m a number of re­

spects. Consider sentences (85) and (86): 
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(85) I am the speaker. 

(86) I shall always be the speaker. 

Even if these sentences are a little strange, they illustrate a general point 
which we want to make. Sentence (85) expresses a necessary truth: I refers, in 
every context, to whoever is the speaker in that context. So (85) can never be 
false. Sentence (86), on the other hand, can most certainly be false. Even 
though (85) is always true, (86) is certainly false in any realistic situation. 
But in the approach we have just sketched, they both tum out to be true in 
all contexts. Sentences (85) and (86) may be represented as (87) and (88), 
respectively: 

(87) Si 

(88) GSi 

Here the predicate S functions as a representation of is the speaker. The inter­
pretation of S in this approach is of course fixed: S has just a single individual 
in its extension in any context k, namely sk. That is: 

Ik(S) = { sJ, for all k 
Now it can easily be checked that (85) is true in every context k: we have 
Ik( i) = sk for all k, and so Ik( i) E Ik(S) for all k. This means that V M.k(S i) = 1, 
for all k. But it also means that (88) is true in every context k. For (88) can 
only be false in a context kif there is some context k' in the future of k (that 
is, for which tk < tk,) in which Si is false. But we have seen that Si is true in 
every context, so there never can be any such k'. So the results this approach 
gives are consistent with the meanings of sentences like (85) but certainly not 
with those of sentences like (86). And these are not the only problematic sen­
tences. The request expressed by sentence (89), for example, becomes ex­
tremely difficult to comply with: 

(89) Would you remind me tomorrow that I must phone Mary? 

Possibly a solution is to be found along the following lines. What (86) ex­
presses is that whoever is now the speaker (I) will at all stages in the future 
also be the speaker. The personal pronoun I thus exhibits the same kind of 
behavior as the temporal modifier now, which refers to the time at which the 
sentence was uttered even if it occurs in an embedded clause (see §2.4.2). In 
exactly the same way, I refers back to the individual who is now, at the time of 
the utterance, the speaker. This is why (86) can be false even though (85) is 
always true. There are different ways of accounting for this aspect of the se­
mantic behavior of I, (and of course of you). One possibility is the following. 
We restrict our contexts to moments in time (the possible worlds parameter is 
of no importance in this context). Instead of including sand a as parameters in 
our contexts, we add two functions sand a to the model. These functions say 
who the speaker is and who the addressee is at each moment in time. And then 
we introduce a fixed moment in time t0 , just as we did when dealing with now 

i 
I 

I 
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in §2.4.2. The only problem is that various moments in time may function 
as the moment of utterance, so it would seem advisable to generalize the 
method given in §2.4.2. We then obtain the method of double_ indexing dev~l­
oped by Kamp (1971). The idea is that sentences are to be mterpreted with 
respect to two moments in time, t and t'. The first is call~d the mome~t of 
utterance and the second is called the moment of evaluatwn. We begm to 
evaluate a statement made at time t with respect to this time t. But the evalua­
tion process may lead us to consider moments in time other than :· An ex­
ample: in order to determine whether P<f> is true in a given model ~t timet, '!'e 
must try and find a moment earlier than tat which<!> is true. Now ~f ~ contams 
expressions like now and I which necessarily ~efer back to t~e ongmal t, then 
we will need some way of keeping track of this t. We do this by always con­
sidering two moments in time. Valuations are then of the following form: 
V M ••••• (<f>) is the truth value of <f> in Matt', given t as the_ moment ~f utterance. 
We will not develop all of the details of this method of mterpretatwn ~ere but 
will make do with an indication of how it solves the above problem with (85) 
and (86). The interpretation function I will also work with_ tw~ moment~ t and 
t'. For almost all expressions, only the moment of evaluatiOn IS of any Imp~r­
tance, but for some, like i and y, it is only the moment of utterance which 

counts: 

I,,,.(i) = s(t) 
I,,,.(S) = {s(t')} 

The interpretation of the personal pronoun I is then: the speaker at th~ m~n:ent 
of utterance· and the interpretation of the predicate S is: the set of all mdividu­
als who are ~he speaker at the moment of evaluation. Under this int~rpretation, 
(87), the representation of (85), is, as required, always true. But this no longer 
implies that (88), the representation of (86), m~st al':ays be t:Ue. We can con­
struct a model in which (87) is always true but m which (88) IS false at at least 

one moment in time. 
We have by no means exhausted the interesting p~zzles arising ~om the 

semantic behavior of I and you. The above was only mtended as an Illustra­
tion of how one of these may be dealt with. But it also shows the importance 
of a certain flexibility with respect to the available semantic apparatus. It oc­
casionally happens that ideas, like our original ideas about the. stn:cture o,f 
contexts, translate directly to other realms and new phenomena. But It doesn t 

happen very often. 

3.5 A Methodological Note 

In spite of its comparatively recent origins in the late fifties ~d e~ly sixt~es, 
intensional logic has become one of the most important fields m philosophical 
logic. It has also proved a worthy tool in the semant~cs of natural_ language. 
And yet the status of intensional logic is not unassailable. We wish to con-
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elude this chapter with some of the objections which have been made to it, and 
which are still being made. 

These objections are of two main kinds. Some are objections of principle, 
objections of a philosophical and methodological nature. Others are of an em­
pirical nature and concern the limits to the applicability of intensional seman­
tics. We will not be able to do full justice to all of the objections we shall 
mention in this short section, so the reader is referred to the literature for a 
more complete account. 

The objections of principle leveled against intensional logic are usually 
aimed at its conceptual apparatus. Possible worlds and possible individuals 
are the main targets. It is argued that these concepts are fundamentally ob­
scure. We do not know exactly what a possible world is, and we have no way 
of finding out. The notion of a possible world is purely metaphysical, it 
is stated, and completely lacks an empirical content. Everything which is 
analyzed in terms of it-the concept of intensionality, the concepts of neces­
sity and possibility, the modalities de dicta and de re, and many more­
consequently remain as obscure as they were in the first place. Although it 
may seem as though they have been clarified, it is argued, intensional logic 
really only succeeds in substituting one murky notion for another. Moreover, 
intensional notions are supposed to lead to dubious philosophical positions. 
For some, as we mentioned in §3.1, recognizing modalities de re amounts to 
embracing essentialism. And intensional semantics is sometimes thought to 
be accompanied by more problems than it solves. Of these, the 'transworld 
identity problem' is one of the more notorious (see §3.2). This problem of 
determining whether an entity in one world is the same as an entity in another 
is supposed to overshadow the problems intensional logic solves. Similar 
doubts are held about possible worlds. How many of these are there? What 
counts as a possible world and what does not? 

The reactions to these objections in the literature are quite divergent. 
Kripke's reaction to the problem about what possible worlds are is, for ex­
ample, as follows. Kripke argues that it is incorrect to think of possible worlds 
as things which we can discover anything about by observation. They must 
rather be thought of in epistemological terms, as being determined by the de­
scriptive terms we associate with them. Among these terms we have, for ex­
ample, counterfactuals like If Dukakis had won the presidential elections in 
1988, then the president of the United States would have been a Democrat 
(cf. (6) in §1.7). Such sentences have the effect of introducing a possible 
world, one in which Dukakis wins the presidential elections in 1988. So ac­
cording to Kripke, possible worlds are not things which we can discover; they 
are things which must be introduced, which must be stipulated. From this 
point of view, the transworld identity problem is not a genuine problem: we 
never need to find out whether an individual in a given world is the same as an 
individual in another world (so it doesn't matter that we can't perform this 
feat). We never need to find out because the only worlds we ever deal with are 
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ones which we have introduced as containing one or more of the individuals 
that are to be found in this world or in another possible world already intro­
duced. The individuals may be quite different in the stipulated worlds from 
what they are in the real world, but we never need to worry about their 
identities. 

Lewis's ontological interpretation is diametrically opposed to this epistemic 
interpretation of Kripke. Lewis defends a purely realistic conception of pos­
sible worlds. For him, possible worlds exist just as much as the actual world 
does. The actual world occupies no exceptional place in Lewis's view; it is 
just one of many possible worlds, just as this instant is one of many possible 
moments in time. This throws a wholly different light on the transworld iden­
tity problem. That individuals in different possible worlds may be identical to 
one another is out of the question. Instead of the relation of identity, then, 
Lewis introduces his counterpart relation. Two individuals in different worlds 
can resemble each other so closely that they are each other's counterparts in 
their respective worlds. 

Another way of dealing with the objections to intensional logic is of a more 
methodological nature. Every theory, it is argued, makes use of concepts 
which it leaves unanalyzed as primitives, and the primitive concepts used in 
intensional semantics are the notions of a possible world and a possible indi­
vidual. The content of the primitive concepts of theory is wholly determined 
by the role which they play in that theory. In the case of intensional logic, this 
amounts to the following. Take modal propositional logic, for example. One 
of the things we want in semantics is a way of accounting for the intuitive 
validity of 0(</>-> 1/J)-> (0</>-> 01/J) as a principle of inference. It turns out 
that this can be accounted for by assuming a set W and then setting up truth 
definitions such that truth is relative to the elements of this set. For with the 
usual truth definition for formulas of the form O<f>, the principle is indeed 
valid. And imposing a particular structure on this set W by means of a relation 
R renders yet other principles valid as well. At no point in this whole story do 
we ever have to take into account the nature of W (or R). We needn't even 
think of them as a set of possible worlds and an accessibility relation. Any set 
of objects and any relation with the right properties would do just as well. So 
as far as the semantic theory of intensional logic is concerned, on this view, 
the meaning of the elements of W need go no further than the role which they 
play as parameters in the truth definition given by this theory. The philosophi­
cal discussion of the nature of possible worlds may then be seen as a part of 
the general debate in the philosophy of science about the role of theoretical 
terms in science. 

From the point of view of the applications of intensional semantics in natu­
rallanguage research, these objections may or may not be correct, but they are 
irrelevant either way. For as we argued in §3 .1, philosophical argumentation 
is out of place if the main interest is the description of natural language. After 
all, what we are trying to describe is not how we should speak if we want to 
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please philosophers but how we do in fact speak. The objections made to in­
tensional logic are not so much refuted from this linguistic perspective as 
simply laid aside. 

A final comment which can be made in connection with these objections of 
principle is that it is at least debatable whether positions like essentialism are 
really as objectionable as they have been alleged to be by some philosophers. 
Others are of the opinion that they are interesting and fertile philosophical 
doctrines and see intensional logic as a suitable aid to further investigations 
into them. 

So much for the philosophical and methodological objections. The other 
objections which have been made are of a more empirical kind, and we will 
briefly discuss two of them. The first concerns whether a complete and em­
pirically adequate semantic theory can be developed on the basis of intensional 
logic. One serious problem in this connection is the existence of hyperinten­
sional contexts. These differ from normal intensional contexts in that even 
logically equivalent expressions cannot always be substituted into them salva 
veri tate. The context created by 0 is an example of a normal intensional con­
text. If <!> and 1/J are logically equivalent formulas (and thus have the same 
truth values in all worlds), then 01/J follows from O<f>. The context created by 
belief, on the other hand, may be said to be hyperintensional. Even if <f> and 1/J 
are logically equivalent, the truth of John believes that <f> does not imply the 
truth of John believes that 1/J, since it may well be that John is not aware of 
their equivalence. The same point can be made using rigid designators. As­
surning that the verb believe creates a normal intensional context, and given 
that Hesperus and Phosphorus are rigid designators which refer to the same 
entity, it would follow from John believes that Hesperus is Hesperus that John 
believes that Hesperus is Phosphorus, which is clearly unrealistic. So inten­
sional semantics clearly runs into complications when applied to the verb 
believe. 

No consensus has been reached on how to get around this. It has been pro­
posed that the solution lies in a more refined intensional semantics. The above 
examples indicate that more than just logical equivalence, that is to say, equal­
ity of intension, is required for interchangeability salva veritate in hyper­
intensional contexts. Apparently expressions need to have more semantic 
properties in common than just the property of having the same reference in 
all possible worlds. Perhaps the ways in which the intensions of expressions 
are built up from the intensions of their composite parts should also be taken 
into account. 

It has also been proposed that the hyperintensional contexts lie beyond the 
limits of (intensional) semantics and that a satisfactory solution will mean get­
ting beyond these limits. It is argued that semantics must join forces with 
pragmatics in order to give an adequate treatment of hyperintensional contexts 
like that created by the verb believe. The relations between language and lan­
guage users can to a large extent be abstracted away in semantics, but not 



74 Chapter Three 

entirely, and the analysis of belief contexts is thought to be one area in which 
the semantic interpretation must take language users into account. 

Be that as it may, if hyperintensional contexts should lie at or beyond the 
limits of intensional semantics, that would in no way diminish its utility in 
research into the semantics of natural language. Moreover, even with the pro­
posed refinements or extensions added, intensional semantics would still have 
an essential part to play. 

Other doubts about the empirical adequacy of intensional semantics con­
cern the extent to which the notion of intension is an adequate explication of 
the concept of meaning. Given a mentalistic approach to meaning, it would 
seem to be a mistake to equate intension and meaning. The intension of an 
expression is a function which indicates its reference in various contexts. But 
familiarity with the meaning of an expression is not always enough to enable 
one to determine its reference. So intension and meaning cannot simply be 
equated. Therefore some see in the notion of intension an explication of the 
semantic competence of an ideal language user. Others distinguish between an 
individual psychological component of the concept of meaning and a social 
one. In this way, the notion of intension that originated in intensional seman­
tics can function as an abstract explication of the function of language as the 
communal instrument by means of which a language community can speak 
about the world. These remarks do not diminish the usefulness of intensional 
semantics any more than the first lot did. They do, however, call for a little 
modesty. The phenomenon of language has facets which lie beyond the reach 
of intensional semantics. 

4 

4.1 Introduction 

The Theory of Types and 
Categorial Grammar 

The subject of this chapter is the theory of types, a more powerful logical sys­
tem than standard predicate logic. It can be considered a further extension of 
second-order logic, which is a logical system in which the quantifiers are al­
lowed to range not only over individuals, but also over properties (see vol. 1, 
chap. 5 for an introduction). Section 4.2 contains an exposition of the theory 
of types and comments on its applicability in linguistics. Section 4.3 is de­
voted to categorial grammar, a model for syntactic description which fits in 
nicely with the theory of types and which is often exploited in grammar models 
which use logical techniques, so-called logical grammars. One such model is 
Montague grammar, which is the subject of chapter 6. The .\-operator is 
added to the theory of types in §4.4. This extension greatly increases the suit­
ability of the theory of types as an aid to the description of the semantics of 
natural language. In chapter 5, the theory of types and intensional logic are 
merged into the intensional theory of types. 

4.2 The Theory of Types 

4.2.1 Type Distinctions in Natural Language 

Besides connectives and quantifiers (and sometimes identity and function 
symbols), languages for predicate logic contain just two kinds of symbols. 
There are individual constants and variables, expressions which refer to en­
tities in some given domain. And besides these there are the predicate con­
stants, expressions which refer to sets of entities in the case of one-place 
predicate constants, and to sets of ordered sequences of n entities in the case 
of n-ary predicate constants. 

This means that in predicate logic one can say things only about the proper­
ties which entities have and the relations they bear to other entities. In a natu­
ral language like English, on the other hand, we can talk about much more 
than those kinds of things. We can say things about properties, for example. 
The point is that any logical system which is appropriate as an instrument for 
the analysis of natural language needs a much richer structure than predicate 
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logic. We shall now consider various kinds of sentences lacking direct transla­
tions into predicate logic and try to think of the new types of expressions which 
we would need in order to express them adequately in a logical formalism. 

Our first examples concern sentences with quantification over properties. 
Besides sentences in which some fixed property is attributed to one or more 
entities, there are, for example, sentences which say that there is some prop­
erty which two entities have in common without explicitly saying what this 
common property is. Consider (1): 

(1) If John is self-satisfied, then there is at least one thing he has in 
common with Peter. 

Sentence (1) contains quantification over properties. Another example of this 
is (2), which asserts that a particular entity has all of the properties which 
typify a particular kind of thing: 

(2) Santa Claus has all the attributes of a sadist. 

Sentence (2) says of every property that if it is a typical property of sadists, 
then it is a property of Santa Claus. If we are to quantify not only over entities 
but also over properties of entities, then we need to extend predicate logic by 
introducing variables other than the ones we already have, which only range 
over entities. Besides predicate letters, we need predicate variables, so that 
we can quantify over this kind of variable in the syntax. Letting X be such a 
variable, (1) and (2) may be represented as in (3) and (4): 

(3) Zj--> 3X(Xj 1\ Xp) 

(4) 'v'X('v'x(Sx--> Xx)--> Xs) 

The logical system with quantification over both entities and properties of en­
tities is called second-order predicate logic. Standard predicate logic is then 
sometimes referred to as first-order predicate logic. Because it lacks a com­
pleteness theorem, second-order predicate logic has been less intensively 
studied by logicians (see vol. 1, chap. 5). This would, however, not appear to 
have much bearing on its utility in linguistics. 

But second-order predicate logic does not exhaust the expressive power of 
natural language any more than first-order logic does. For not only are there 
natural language sentences which quantify over properties of entities, but 
there are also sentences which attribute properties to these properties of en­
tities in turn. The predicate red, by way of illustration, expresses a property of 
individuals, so the predicate color expresses a property of properties of indi­
viduals. So in a sentence like Red is a color, which we represent as C€(R), the 
second-order predicate color is applied to the first-order predicate red. We 
can also quantify over these properties of properties, as in Red has something 
(a property) in common with green. This sentence can be represented as 
32£(2r(R) 1\ 2r(G)). So not only must we introduce predicate constants of this 
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kind, like C€, but we must also introduce predicate variables like 2£ in order to 
be able to quantify over the properties of properties of entities which are rep­
resented by these predicates. In principle there is no limit to this hierarchy of 
increasingly higher order predicates. This results in predicate logic being ex­
tended with predicate constants and predicate variables of arbitrary order. In 
natural language, the fourth and higher orders in the hierarchy are seldom if 
ever used. 

Besides higher-order predicates, there are other kinds of expressions which 
for linguistic purposes may usefully be added to predicate logic. The follow­
ing examples illustrate this. 

One first class of examples is formed by expressions with predicate 
adverbials. 

(5) John is walking quickly. 

In sentence (5), the expression quickly is, from a linguistic perspective, a 
modifier acting on the verb is walking. From a logical perspective, the prop­
erty of walking quickly is attributed to an entity, John, in sentence (5). This 
property cannot be seen as a conjunction of two properties, 'being quick' and 
'walking'. For sentence (5) does not mean the same thing as sentence (6): 

(6) John is walking and John is quick. 

In logical terms, quickly is an expression which when applied to the first-order 
predicate walking results in a new first-order predicate walking quickly. From 
a logical point of view, the relative adjectives are expressions of the same 
kind. Sentence (7) may be represented in first-order predicate logic as for-­
mula (8): 

(7) Jumbo is a pink elephant. 

(8) Ej 1\ Pj 

The adjective pink may, in other words, be represented as a standard first­
order predicate. But the same does not apply to relative adjectives like small. 
Sentence (9) is the same kind of sentence as (7): 

(9) Jumbo is a small elephant. 

But sentence (9) cannot be analyzed as a conjunction of two first-order predi­
cates. The formula (I 0) which we would then obtain: 

(10) Ej 1\ Sj 

expresses something which is generally false. It may well be that Jumbo is 
small (for an elephant), but even small elephants are creatures of considerable 
size. The relative adjective small works the same way as the predicate ad­
verbial quickly. When applied to the predicate elephant, it results in a new 
predicate small elephant. 
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Predicate adverbials and relative adjectives are not the same kinds of ex­
pressions as second-order predicates like color. One of the latter, when ap­
plied to a first-order predicate, results not in a new first-order predicate but in 
a sentence. Color, when applied to red, results in the sentence Red is a color. 
But quickly when applied to walking results in a new predicate walking 
quickly. 

Expressions which in turn modify these predicate adverbials and adjectives 
form yet another distinct category of expressions. As examples we have very, 
as in John is walking very quickly, and terribly, as in Jumbo is a terribly small 
elephant. An expression like terribly, when applied to a relative adjective like 
small, results in a new, composite relative adjective terribly small. Yet other 
new kinds of expressions are to be found in prepositions. In the sentence 
Mary is sitting next to John, the preposition next to is an expression which 
when applied to the term John results in the predicate adverbial next to John. 

These examples should make it clear that a logical language has to contain a 
great diversity of expressions if it is to be a useful instrument in the analysis of 
natural language. One logical system which satisfies this requirement was de­
veloped at the beginning of the twentieth century, although its original moti­
vation was not linguistic but purely logical. This system, which is called the 
theory of types or the theory of finite types, was developed by Russell as a 
response to the paradoxes which had been discovered in set theory. One of the 
best known of these is the Russell paradox, which he himself had discovered. 
This paradox arises as soon as we assume that for every property P, there is a 
set {x 1 Px} consisting of all and only those entities which have P. Under this 
assumption, for example, there must be a set {xlx = x}. This set is the univer­
sal set that contains everything there is, for everything is equal to itself. And 
since this set contains everything, it must also contain itself as a member: 
{xlx = x} E {xlx = x}. Now consider this property of self-membership. Some 
special sets like {x 1 x = x} have this property x E x, but most familiar entities 
do not have it. The number 0, for example, is not a member of itself, since it 
isn't even a set. And {0} E {0}, since {0} has just a single element, the number 
0, and 0 =I= {0}. Nor is the set N of natural numbers a member of itself. N EN, 
since this set only contains numbers, while N is not itself a number but a set of 
numbers~ So Jet us consider the set R of all entities which are not members of 
themselves: R = {x 1 x E x}. The Russell paradox now turns up if we attempt 
to find out whether the set R is a member of itself or not. Suppose, to begin 
with, that R E R. R must satisfy its own requirement for membership x E x, 
so that R E R. So R E R is impossible. But if, on the other hand, R E R, then 
R satisfies its own requirement for membership, so that R E R. We see that 
R E R is impossible too. 

The theory of types gets around this paradox by locating entities at sharply 
distinguished levels. The membership relation is then allowed to obtain only 
between entities which are exactly one level apart. This distinction between 
levels is paralleled in the language of the theory of types by a distinction be-
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tween different types of expressions. Two expressions a and B which refer to 
entities at different levels are said to be of different types. The symbol E, 
which expresses the relation of set membership, can apply to two symbols a 
and B only if B is an expression of a type which refers to sets of the entities 
referred to by expressions of the type of a. This makes it impossible to set up a 
Russell paradox. For a E a is not a well-formed expression. This explicit, 
type-theoretical solution to the problem of the paradoxes is not the most 
highly favored one nowadays. There are axiomatic formalizations of set the­
ory into which the theory of types has been integrated but in which it is no 
longer explicitly present in the language used. These formalisms not only 
avoid the Russell paradox but also have the advantage of being easier to work 
with than the theory of types. But as far as the applications in linguistic analy­
sis are concerned, the theory of types remains a useful tool. 

4.2.2 Syntax 

We shall now turn to the manner in which the languages used in the theory of 
types are built up. We will begin by determining which types of expressions 
any such language may have. It turns out that we can make do with just two 
basic types in the analysis of the examples from natural language presented 
above. All of the remaining types that are needed can be constructed from 
these. As our two basic types we have e, which is the type of those expres­
sions which refer to entities, and t, the type of those expressions which refer 
to truth values. As examples of expressions of type e we have the individual 
constants and variables familiar from standard predicate-logical languages, 
and formulas are examples of expressions of type t. The set of all types may 
be defined in terms of these two basic types in the following manner: 

Definition 1 

T, the set of types, is the smallest set such that: 

(i) e, t E T 
(ii) if a, bET, then (a, b) E T 

The requirement that T be the smallest set satisfying (i) and (ii) has the same 
effect as the usual closure or induction clause: '(iii) nothing is an element ofT 
except on the basis of (i) and (ii)'. Clause (ii) in this definition generates, 
starting with e and t, a supply of types unlimited in principle. The general 
idea behind a type (a, b) is the following: an expression of type (a, b) is an 
expression which when applied to an expression of type a results in an expres­
sion of type b. In other words, if a is an expression of type (a, b) and f3 is an 
expression of type a, then a(/3) will be an expression of type b. This process 
of applying an a of type (a, b) to a {3 of type a is called (functional) applica­
tion of a to {3. 

As an example of a derived type we have (e, t). An expression of this type 
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results, when applied to an expression of type e, in an expression of type t. 
One-place predicate letters belong to this type. For the result of applying a 
one-place predicate to an individual constant or variable, since these are ex­
pressions of type e, is a formula, and these are of type t. 

As a second example of a derived type we have ((e, t), t). The expressions 
in this type are those which result in formulas when applied to one-place 
predicates. So these expressions are predicates of one-place predicates over 
individuals, that is to say, second-order predicates. 

The type ((e, t), (e, t)) contains expressions which when applied to a one­
place predicate result again in a one-place predicate. Predicate adverbials and 
relative adjectives both correspond to expressions of this type. 

One type which deserves special mention is (e, (e, t)). An expression of 
this type results, when applied to an expression of type e, in a one-place 
predicate. Two-place predicates will be considered to be expressions of type 
(e, (e, t)) in the theory of types. A sentence like John loves Mary translates 
into predicate logic as the formula Ljm, in which the two-place predicate L is 
an expression which in combination with the two individual constants j and m 
results in the formula Ljm. In a type-theoretical language, L is treated as an 
expression which, when applied to an individual constant m, results in a one­
place predicate L(m), an expression of type (e, t). This one-place predicate 
expresses the property of 'loving Mary'. And this predicate can in tum be 
applied to the individual constant j, as a result of which we obtain the formula 
(L(m))(j). The formula says that the individual John has the property of loving 
Mary. The proposition is equivalent to the proposition that John bears the rela­
tion of 'loving' to Mary, as will become apparent from the semantic inter­
pretation of the theory of types. This treatment of two-place predicate letters 
like L generalizes very easily ton-place predicate letters. Table 4.1 sums up a 
few types by way of illustration, together with glosses and examples. We now 
have a definition fixing the types dealt with in the theory of types and an in­
dication of how expressions of derivative types are to function. So we can go 
on to define the languages of the theory of types, as follows. 

The vocabulary of a type-theoretical language L contains some symbols 
which are shared by all such languages and a number of symbols which are 
characteristic of L. The shared part consists of: 

(i) For every type a, an infinite set VAR,. of variables of type a 
(ii) The usual connectives A, v, --+, •, ~ 

(iii) The quantifiers 'V and 3 
(iv) Two brackets (and) 
(v) The symbol for identity = 

The part of the vocabulary which is characteristic of L contains: 

(vi) for every type a, a (possibly empty) set CON~ of constants of type a 

Obviously constants and variables of the various types must be kept apart. We 
will write v. for variables of type a and c. for constants of type a (though the 
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Table 4.1 Types and Expressions 

Type Kind of expression Example 

e Individual expression John 
(e, t) One-place first-order predicate Walks, red, loves Mary 
t Sentence John walks, John loves Mary 
(t. t) Sentential modifier Not 
(e, e) Function from individuals to The father of 

individuals 
((e, t), (e, t)) Predicate modifier Quickly, beautifully 
(e. (e. t)) Two-place first-order relation Loves, lies between Amster-

dam and 
(e. (e. (e. t))) Three-place first-order relation Lies between (and) 
((e. t), t) One-place second-order Is a color 

predicate 
((e. t). ((e, t), t)) Two-place second-order Is a brighter color than 

relation 
(e. ((e. t), t)) Two-place relation between Is a property of 

individuals and first-order 
predicates 

( ((e. t), t), t) One-place third-order Is a second-order predicate 
predicate 

subscripts will be dropped where this does not lead to confusion). In practice 
we will tend to revert to the more convenient notations familiar from standard 
predicate logic wherever possible. Thus wherever possible we will represent 
the distinctions between types typographically, writing x, y, ... for variables 
over entities, X, Y, ... for first-order predicate variables, and~, 0Y, ... for 
second-order predicate variables. Individual constants are to be written as the 
lower-case letters a, b, c, ... , I, m, n, and so on; first-order n-place predi­
cate constants as uppercase letters A, B, C, ... , L, M, R, and so on; and 
second-order predicate constants as((&, 'lfe, M, 20, .... Any deviations from 
this practice will be mentioned explicitly. 

The inductive definition of the formulas is more complicated than in predi­
cate logic. For what we have to give is a general definition of what it is to be 
an expression of a type a E T; the formulas are then those expressions which 
are of the particular type t. One characteristic thing about expressions of this 
type, however, is the ways they may be formed. Initially, expressions are 
formed from constants and variables by means of application. Then from ex­
pressions of type t, new expressions of this type may be formed by means of 
the connectives and quantifiers, while insertion of the symbol = for identity 
between any two expressions of the same type also results in an expression of 
type t. Here is the precise definition which fixes the syntax of type-theoretical 
languages: 

Definition 2 

(i) If a is a variable or a constant of type a in L, then a is an expression of 
type a in L 
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(ii) If a is an expression of type (a, b) in L, and f3 is an expression of type a 
in L, then (a(f3)) is an expression of type b in L 

(iii) If cp and l./J are expressions of type tin L (i.e., formulas in L), then so 
are •cp, (cp 1\ l./J), (cp v l./J), (cp--> l./J), and (cp <->1./J) 

(iv) If cp is an expression of type t in L and v is a variable (of arbitrary type 
a), then \:fvcp and 3vcp are expressions of type t in L 

(v) If a and f3 are expressions in L which belong to the same (arbitrary) 
type, then (a = {3) is an expression of type tin L 

(vi) Every expression in L is to be constructed by means of (i)-(v) in a 
finite number of steps. 

We refer to the set of all expressions in L of type a as WE~ or, if it is clear 
which L is meant, as WE •. In this terminology, the formulas are the elements 
of WE,. Clause (ii) in the above definition may seem rather liberal with the 
brackets, since it puts brackets both around the argument and around the en­
tire expression. However, this often helps to keep the expressions legible. 
Where it does not, we will tend to leave off the superfluous brackets. This 
applies, for example, to all outer brackets. But brackets 'inside' can also often 
be left out, especially when the type of the expressions is clear. By way of 
example, according to definition 2, our translation of John loves Mary is the 
formula ((L(m))(j)). Leaving off the outer brackets gives (L(m))(j). The pair 
of outer brackets in (L(m)), however, serves no disambiguating purpose here, 
and so these too may be left off, resulting in L(m)(j). 

Exercise 1* 

Letj be an expression type e; M of type (e, t); S of type ((e, t), (e, t)); and C<? 
of type ((e, t), t). 
(a) Determine whether the following sequences are well-formed expressions 

of the theory of types: 
(i) j(M) 
(ii) S(M(j)) 
(iii) S(M) 
(iv) (S(M))(j) 
(v) C<?(M) 
(vi) (C<?(M))(j) 
(vii) C<?(S(M)) 
(viii) (S(S(M)))(j) 

(b) Determine the types a and b in the following expressions, given that the 
latter are of type t: 
(i) (c.(M))(j) 
(ii) c.(M(j)) 
(iii) (S(M))(c.) 
(iv) cb((S(M))(c.)) 
(v) cb((c.(S))(M)) 
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Exercise 2* 

Translate the following sentences into formulas of the theory of types. Repre­
sent the descriptions the salami and the couch by constants of type e. State the 
translation key and give the types of the various expressions. 
(a) John sleeps soundly. 
(b) John sleeps, presumably. 
(c) Harry slices the salami carefully. 
(d) If you do nothing, you don't do anything wrong. 
(e) If you do nothing, you do nothing wrong. 
(f) Mary is sitting on the couch. 
(g) Mary is sitting between John and Harry. 
(h) Mary is sitting on the couch between John and Harry. 

Exercise 3 

Is it possible to assign types to a, {3, andy in such a way that both (a(f3))(y) 
and a(f3(y)) are well-formed expressions? 

4.2.3 Semantics 

As usual, the semantic interpretation of the well-formed expressions of a lan­
guage for the theory of types follows the definition of those well-formed 
expressions given in the syntax. For example, let W be a well-formed expres­
sion of type (e. t) which stands for walks, and let j be a well-formed ex­
pression of type e. Then W(j) is a well-formed expression of type t. Now 
given that type t expressions refer to truth values and that type e expressions 
refer to entities, the interpretations of type (e. t) expressions will have to be 
things which yield a truth value when applied to an entity. This means that 
the interpretation of the one-place predicate W is a function from entities to 
truth values, namely, a function which yields the truth value 1 when applied 
to an entity d which has the property of walking, and 0 when applied to an 
entity d which does not have this property. That is to say, given a domain 
consisting of people, the predicate W is no longer interpreted as the set of all 
people who walk but as the function which assigns the truth value 1 to the 
elements of that set (the people who walk), and the truth value 0 to everyone 
else in the domain. Any such function that assigns 1 to those elements of a set 
A which are members of a subset B of A, and 0 to the rest, is called the charac­
teristic function ofB (over A). An example. If A= {a, b, c, d} and B ={a, b}, 
then the characteristic function of B over A, written as f8 , may be defined: 
f8(a) = f8 (b) = I, and f8 (c) = f8 (d) = 0. This function f8 has as its domain 
the set A, its range is the set {0, 1} of truth values, and it assigns the truth 
value 1 to all elements of A which are in B and the truth value 0 to all elements 
of A which are not. 

Sets and their characteristic functions really amount to the same thing. 
Given any subset X of a set Y, we can construe X's characteristic function 
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over Y, and conversely, given any function f from Y to {0, 1}, we can deter­
mine the subset X of Y of which that function is the characteristic function. 
Let X k; Y. Then fx is that function from Y to {0, I} such that for ally E Y: 
Fx(Y) = 1 iffy EX. Andiffxisafunction from Yto{O, 1}, then X= {ylfx(Y) = 
1}. In other words, the assertions 'y EX' and 'fx(Y) = I' are equivalent, so that 
the concepts characteristic function of a set X and set X are interchangeable. 

Given a domain D, then, one-place predicates are interpreted as the charac­
teristic functions of subsets of that domain. In view of the interchangeability 
mentioned above, this is no different from the situation in standard predicate 
logic. Different one-place predicates may be interpreted as different character­
istic functions. The interpretation of a one-place predicate is an element of the 
set of all characteristic functions of subsets of the domain D. The notation for 
this set of functions is {0, 1}0 . So for every subset X of D, {0, 1}0 contains the 
characteristic function fx. Because sets and their characteristic functions are 
interchangeable, the set of all characteristic functions of subsets of D and the 
set of all subsets of D are interchangeable too. In short, {0, 1}0 is inter­
changeable with POW(D), the power set of D. 

The interpretation of expressions of type theory follows this functional pat­
tern quite generally. An expression of type (a, b) is treated as a function from 
'type a things' to 'type b things'. The general notation for the set of all func­
tions mapping a set X into a set Y is yx. So this set contains all functions 
which assign an element of Y to each element of X. The set of functions 
{0, 1 }0 mentioned above is a special case of this. X and/or Y themselves may 
be sets of functions, so we also have, for example, ({0, 1}0

)
0

, the set of all 
functions from D to the set of all functions from D to {0, 1}, and {0, 1}<0 '\ the 
set of all functions from functions from D to D, to the set {0, 1}. Notice how 
the brackets play a disambiguating role here. 

By means of this notation, we can represent for every type a the domain 
within which any expression of that type is to be interpreted. Expressions of 
type e are to be interpreted as elements of D. Expressions of type t, formulas, 
are to be interpreted as elements of the set {0, 1} of truth values. And just as in 
the definition of the types, all derived types were constructed from the basic 
types e and t, we will now construct the domains in which these derived types 
are to be interpreted from D and {0, 1}. The ·domain of interpretation of ex­
pressions of type a, given a domain D, is written as Da,D• and is defined as 
follows: 

Definition 3 

(i) De,D = D 
(ii) D,,D = {0, 1} 
(iii) D - D 0

'·
0 

(a,b),D - b,D 

We will drop the subscript D whenever this does not give rise to confusion. 
Here are two worked-out examples by way of illustration. In the theory of 
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types, a two-place predicate L (loves) is an expression of type (e, (e, t)). The 
corresponding interpretation domain D<e.<o» is the set of functions nr.~,>· that 
is, (DP·) 0 ·, that is, ({0, 1}0 ) 0 . The interpretation domain of two-place predi­
cates is thus the set of functions mapping entities onto (characteristic func­
tions of) sets of entities. In concrete terms, this means the following. The 
two-place predicate L is interpreted as a function from entities to sets of en­
tities. This function maps an entity d onto the set of all entities which bear L to 
d, that is, onto the set of all entities which Jove d. The characteristic function 
of this set can then be applied to an entity in order to obtain a truth value. As 
was already hinted at above, there is no essential difference between this way 
of interpreting two-place predicates and the standard way: there is a one-to­
one correspondence between functions in ({0, 1}0 ) 0 and subsets of the set D 2, 

the set of all ordered pairs of elements of D. Foriffis an element of ({0, 1}0 ) 0 , 

then for every d 1 ED, f(dJ E {0, 1}0 and so for every d 2 ED we have 
(f(d 1))(d~ E {0, 1}. The set A corresponding to f can be defined as: A= {(d2, 

d 1)j(f(d 1))(d~ = 1}. And conversely, if A is a subset ofD2, then the function f 
corresponding to A may be defined by means of: for every d 1 ED, f(d 1) is the 
function for which, for every d2 ED, (f(d1))(d2) = 1 iff (d2, d1) EA. 

As a second example, consider the second-order predicate C<5 (color), which 
is of type ((e, t), t). The interpretation domain D((e.t).t) is the set of functions 
{0, I}<lO.Il"l. So the interpretation domain of second-order predicates is the set 
of functions mapping (characteristic functions of) sets of entities onto truth 
values, that is, the set of characteristic functions of sets of characteristic func­
tions of sets of entities. Any such function characterizes a subset of the power 
set of the domain D. In second-order logic, such subsets are the interpreta­
tions of second-order predicates. In this, too, the interpretation of the theory 
of types introduces nothing novel. Table 4.2 sums up the interpretations of the 
expressions included in table 4.1 . In the interest of legibility, the phrase 'char­
acteristic function of a set' has been replaced by 'set' in all but its first 
occurrences. 

A model M for a language L for the theory of types consists of a nonempty 
domain set D together with an interpretation function I. By means of D and 
the truth values, the domains of interpretation for expressions of arbitrary type 
are defined as in definition 3. The interpretation function I assigns to each 
constant in L some element of the interpretation domain which corresponds to 
the type of that constant. That is to say, for each type a, I is a function from 
CONi' into Da,D· Besides this, we need assignments which will interpret the 
variables. Once again, if v is a variable of type a, the interpretation of v is an 
element of the corresponding domain. In other words, for every type a, these 
assignments are functions from VAR. into Da,D· We have thus defined the in­
terpretation of the noncomposite expressions of L, given a model M and an 
assignment g. It remains to provide a definition of the interpretation of the 
composite expressions in L. This is done, in accordance with the principle of 
compositionality, in terms of the expressions of which these are composed. 
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Table 4.2 Types and Interpretations 

e 
l 

(e, t) 

(t, t) 
(e, e) 

Type 

((e, t), (e, t)) 
(e, (e, t)) 

(e, (e, (e, t)}) 

((e, t), t) 
( (e, t), ( (e, t}, t}) 

(e, ( (e, t), t)) 
(( (e, t), t), t) 

Entity 
Truth value 

Interpretation 

Function from entities to truth values, i.e., (characteristic function 
of) a set of entities 

Function from truth values to truth values 
Function from entities to entities 
Function from sets of entities to sets of entities 
Function from entities to sets of entities, i.e., set of ordered pairs 

of entities 
Function from entities to functions from entities to sets of entities, 

i.e., set of ordered triples of entities 
(Characteristic function of) a set of sets of entities 
Function from sets of entities to sets of sets of entities, i.e., set of 

ordered pairs of sets 
Function from. entities to sets of sets of entities 
(Characteristic function of) a set of sets of sets of entities 

The situation is different, however, from that in predicate logic, since not all 
of these composite expressions are formulas. For this reason we need more 
than just a truth definition, that is, a definition of VM.g· We must define the 
general concept of the interpretation of a with respect to a model M and an 
assignment g, to be written as [a]M.g· Just as a valuation VM.g can be regarded 
as a function from formulas into truth values, the interpretation function [ ]M,g 
can be seen as a function which, for all types a, maps WE; into Da.o· For a= 
t, then, [ ]M,g functions as a valuation. The definition of [a]M.g runs, as usual, 
parallel to the syntactic construction of the well-formed formulas of L, which 
was given in definition 2. 

Definition 4 

(i) If a E CON;, then [a]M,g = I(a) 
if a E VAR., then [a]M.g = g(a) 

(ii) if a E WE~.b)• {3 EWE;, then [a({3)]M,g = [a]M,g ([{3]M.g) 
(iii) if cp, t/J E WE~, then 

[<cp]M,g = 1 iff [cp]M,g = 0 
[cp 1\ 1/J]M,g = 1 iff [cp]M,g = [1/J]M,g = 1 
[cp V 1/J]M,g = 1 iff [cp]M,g = 1 Or [1/J]M,g = 1 
[cp-> 1/J]M,g = 0 iff [cp]M,g = 1 and [t/J] M,g = 0 
[cp ~ 1/J]M,g = 1 iff [cp~,g = [1/J~.g 

(iv) if cp EWE~ v E VAR., then 
[\fvcp]M,g = 1 iff for all d E D •. 0 : [cp]M,g[vtdJ = 1 
[3vcp]M,g = 1 iff there is at least one d E D •. o such that: 
[cp]M,g[v/d] = ] 

(v) if a, {3 EWE;, then [a = f3]M.g = 1 iff [a]M,g = [{3]M,g 
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The truth definition can now be extracted from this general definition of the 
interpretation of an arbitrary expression with respect to a model M and an 
assignment g. A sentence cp is said to be true with respect to M just in case 
[cp]M = 1. (As in predicate logic, because sentences lack free variables, their 
truth values are independent of assignments. As a result, these can be left 
out.) A sentence cp is said to be universally valid just in case [cp]M = 1 for 
every appropriate M, and once again the notation is F=cp. We also say that 
two sentences cp and t/J are equivalent iff F=cp +--+ 1/J, that is to say iff [cp]M = 
[t/I]M for every M. More generally: formulas cp and t/J are said to be equivalent 
iff for every M and g, [cp]M,g = [t/1] M,g· In the theory of types there is no rea­
son to restrict the notion of equivalence to formulas. Any two expressions a 
and {3 (of the same type) are said to be equivalent iff for every M and g, 
[a]M,g = [f3]M,g· For expressions lacking free variables, this amounts to a and 
{3 being equivalent just in case F=a = {3. It should be noted at this point that 
for formulas cp and 1/J, cp +--+ tfJ and cp = tfJ mean exactly the same thing. They 
both say that cp and t/J refer to one and the same truth value. 

We shall now illustrate the truth definition by applying it to some concrete 
examples. Clause (ii) assigns, among other things, the truth definition for for­
mulas of the form a(/3). The formula W (j), our representation of the sentence 
John is walking, is an example. Here W is a constant of type (e, t), while j is a 
constant of type e. The formula W (j) itself is of type t. Clause (ii) defines the 
interpretation of this formula with respect to a model M and an assignment g 
as follows: it is the result of applying the interpretation with respect to M and 
g of the predicate W to the interpretation with respect to M and g of the con­
stantj. More succinctly: [W(j)]M,g = [W]M,g([j]M,g). According to clause (i), 
we have [W]M,g = I(W) and [j]M,g = I(j). And according to the definition of 
the interpretation function I, we know that I(W) is an element of the set of 
functions D?' = {0, 1}0 . This is the characteristic function of that set of en­
tities within D which possess the property expressed by W, which is of course 
the set of things which walk. The interpretation of the constant, I(j), is an 
element of D., which means that it is an element of the domain D. It is, then, 
an entity. The interpretation, that is, the truth value, of the formula W(j) is 
now to be obtained by applying I(W) to l(j). It is 1 if I(j) is an element of the 
set characterized by I(W), and 0 if this is not the case. 

Clause (ii) gives the truth definition for sentences which attribute properties 
to properties in just the same way. As an example, take the sentence ~(R), 
which is the representation of the sentence Red is a color. Clause (ii) defines 
the interpretation of~(R) as follows: [~(R)]M,g = [~]M.g([R]M.g). According 
to clause (i), this is equal to I(~)(I(R)). The interpretation function I then says 
that I(~) E D)0 •

0 '> = {0, l}<{o,t}'')_ The interpretation of the second-order 
predicate~ is then (the characteristic function of) a set of (characteristic func­
tions of) sets of entities. The latter are the denotations of those properties 
which themselves have the property of 'being a color'. Furthermore, we have 
l(R) ED~' = {0, 1}0 : the interpretation of R is (the characteristic function of) 
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a set of entities, namely, those which have the property of 'redness'. The 
second-order predication <€(R) is true in a model M just in case the result of 
applying I(<€) to l(R) is I. That is, just in case that set of entities which forms 
the interpretation of R in M is itself an element of the set of sets forming the 
interpretation of <(6 in M. 

Clause (ii) of definition 4 is also responsible for interpreting atomic sen­
tences with relations. As an example, consider the formula L(m)(j), which is 
our representation of the sentence John loves Mary in the theory of types. 
Applying clause (ii), we obtain [L(m)(j)]M.g = [L(m)]M,g([j]M,g). Note that 
this is quite analogous to the earlier examples: the interpretation of an atomic 
sentence is obtained by applying the interpretation of the predicate to the in­
terpretation of the constant. Clause (i) defines [j]M,g as I(j), that is, as one or 
another entity in the domain D. But how are we to determine the interpretation 
of the predicate in this case? L(m) is a composite expression and not a con­
stant, so clause (i) will not be of much help. The answer is that clause (ii) of 
definition 4 also determines the interpretation of this kind of expression. In 
fact, it is responsible for the interpretations of all expressions obtained by 
means of functional application, that is, the application of an expression of 
type (a, b) to an expression of type a. Such expressions include not only for­
mulas but also expressions of types other than t. The composite predicate 
L(m) is a case in point. It is an expression of type (e, t), formed by applying 
the expression L, which is of type (e, (e, t)), to m, which is of type e. 
Its interpretation is to be obtained, once again, by means of clause (ii): 
[L(m)]M.g = [L]M,g([m]M,g). We have once again arrived at constants: 
[L]M.g([m]M.g) = I(L)(I(m)). I(m) is an element ofD, and I(L) is an element of 
the set of functions: (Dp,)o, = ({0, 1}0 ) 0 . As such it is a function which, when 
applied to an entity, yields (the characteristic function of) some set of en­
tities. Applying I(L) to an entity d, we obtain the set of entities that love d. So 
applying I(L) to [m]M.g• we obtain (the characteristic function of) the set of 
entities that love Mary. This function is [L(m)]M,g• the interpretation of the 
composite predicate L(m). When applied to [j]M,g the result is the truth value 
1 if John does indeed happen to love Mary, and otherwise it is 0. We see that 
L(m)(j), the representation of the sentence John loves Mary in the theory of 
types, has just the same truth conditions as Ljm, the standard representation in 
predicate logic. From the perspective of the semantics of natural language, 
however, the theory of types has an advantage compared to predicate logic. 
The latter interprets the proper names John and Mary and the verb to love and 
combines the three into the interpretation of the whole sentence in one step. 
The verb phrase loves Mary receives no independent interpretation. This is 
different in the theory of types. There, the interpretation of the complex predi­
cate L(m) is a representation of the interpretation of the verb phrase loves 
Mary. To this extent, the theory of types does more justice to the syntactic and 
semantic structure of the sentence John loves Mary. 

We now return to the truth definition given in definition 4. Clause (ii) gives 
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the truth definition of atomic sentences. We have discussed three different ex­
amples of these. There are of course many other kinds of atomic sentences, 
but they are interpreted in an analogous fashion. 

The truth conditions for negations, disjunctions, conjunctions, and so on 
are given in clause (iii). These are as in standard logic and need no further 
elaboration. 

Existential and universal quantification are de3.It with in clause (iv). In par­
ticular this of course includes the quantification over entities which is familiar 
from predicate logic and which we now call first-order quantification. This 

~ kind of quantification is interpreted exactly as in the semantics of predicate 
logic. But besides first-order quantification, clause (iv) also deals with quan­
tification over other types of things besides entities. As an example of this 
higher-order quantification, consider the formula 3&:'(3e(R) A &:'(G)), the rep­
resentation of the sentence Red and green have something in common. R and 
G are constants of type (e, t), and ge is a variable of type ((e, t), t). The inter­
pretation of 33£(3e(R) A X( G)) runs as follows: [3X(X(R) A &:'(G))]M = 1 if ,g 

and only if there is ad E D((e.t).t) such that [X(R) A X(G)]M,g[XidJ = 1. D((e.t),t) is 
the set of functions D)DP'> = {0, l}<{O,J}")_ This is the set of properties of proper­
ties of entities. So the formula 3X(X(R) A X(G)) is true just in case there is 
some property d of properties of entities such that [X(R) A &:'(G)]M, [XidJ = 1. 
This is the case if both [X(R)]M,g[XidJ = 1 and [X(G)]M,g[XidJ = 1. The inter­
pretation of these two atomic formulas is once again the business of clause 
(ii). So we have [X(R)]M,g[XidJ = 1 iff [X]M,g!XidJ ([R]M,g!XidJ) = 1. 

Because of (i) we know that [R]M,g!Xidl = I(R) and that [X]M,g!XidJ = 
g[X/d](X) = d. So X(R) is true with respect to M and g[X/d] iff I(R) has d. 
The whole formula 3X(X(R) A X( G)), then, is true if there is some property 
of properties of entities which is shared by both red and green. Such a prop­
erty is in fact easily found: the second-order property 'color' is an example, so 
that sentence (1 0) is trivially true. In uttering ( 10) it will not in general be 
one's intention to express this trivial truth. It is more likely that (10) is uttered 
in order to state some such thing as that red and green are both to be found on 
traffic lights, to take just one possibility. This and similar phenomena are dealt 
with not in semantics but in pragmatics. 

The last section of the truth definition is to be found in clause (v). This 
clause deals with the truth conditions of expressions with identities. Presum­
ably (v) speaks for itself. Suffice it to say that identity can be expressed not 
only of entities in the theory of types but also of other types of things. 

We have now completed our discussion of the truth definition for the theory 
of types, which is implicit in the more general definition of interpretation. For 
~efinition 4 is more than just a truth definition. It is a comprehensive defini­
tion of the interpretation of all expressions in a type-theoretical language. The 
interpretation of all basic expressions (constants and variables) is defined in 
clause (i), and that of the composite expressions comes in the remaining 
clauses. But not all composite expressions are formulas; the composite predi-
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cate L(m) which appears in the formula L(m)(j), for example, is a composite 
expression but not a formula. The interpretation of composite expressions of 
this sort is in all cases laid down in clause (ii). This is apparent from the fact 
that all such expressions, whatever their type, result from functional applica­
tion. By way of illustration, consider the formula (Q(W))(j), which is the rep­
resentation of the sentence John walks quickly in the theory of types. As we 
argued in §4.2.1, the adverbial quickly should be treated as an expression 
whose application to a predicate results in another predicate. It is represented 
by means of a constant Q, which is of type ((e, t), (e, t)). Application of this 
to the constant W of type (e, t) results in the expression Q(W), which is of 
type (e, t). The interpretation of this composite expression is now laid down in 
clause (ii): [Q(W)]M.g = [Q]M.g([W]M.g), and that is I(Q)(I(W)); I(Q) is an ele­
ment of (D~-)ro,o,> = ({0, 1}0)C!O.Il"J, which is the set of functions which map 
(characteristic functions of) sets of entities onto (characteristic functions of) 
sets of entities. 

Note that the above only says what kind of thing the interpretation of an 
adverbial like quickly is: it is a particular kind of function, namely, one which 
takes the interpretations of one-place predicates as its arguments and yields 
things of the same kind as values, the interpretation of the composite predi­
cate. This says nothing at all about the relation between the interpretation of 
the predicate to which Q is applied (W in the example) and the interpretation 
of the composite predicate which is the result (Q(W) in the example). For ex­
ample, the validity of the argument: 

(ll) John walks quickly. 

John walks. 

is then not yet guaranteed: in the theory of types, (Q(W))(j)/W(j) is not a 
valid argument schema. In order to account for the validity of this kind of 
argument, it will be necessary to go beyond the interpretation of the theory 
of types as given in definition 4. We have already encountered a similar state 
of affairs in predicate logic. Consider the following argument: 

(12) Albert is taller than Bert. 
Bert is taller than Charley. 

Albert is taller than Charley. 

The predicate logic schema corresponding to this is Tab, Tbc/Tac. It is not 
valid. The validity of (12) depends essentially on the transitivity of the rela­
tion is taller than. Adding a premise expressing this fact, that if x is taller than 
y, and y in tum is taller than z, then x is taller than z, we obtain the valid 
argument schema Tab, The, 'Vx'Vy'Vz((Txy A Tyz) -> Txz)/Tac. 

Something similar applies to (11). There too an additional premise is 
needed. In this case it would say that whenever x does X quickly, x does X. 
This premise can be expressed, in the formalism of the theory of types, as 
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'v'x'VX((Q(X))(x)-> X(x)). The argument schema (13) is indeed valid in the 
theory of types: 

(13) 'Vx'v'X((Q(X))(x) -> X(x)), (Q(W))(j)/W(j) 

Such extra premises are known as 'meaning postulates', and we will return to 
the part they play in the description of natural language in §6.3.6. 

We will not develop a syntactic notion of derivability for the theory of 
types. The way this could be done and the kinds of problems which would 
have to be overcome have been discussed at length in chapter 5 of volume 1, 
in connection with second-order logic. The relation between the syntactic no­
tion of derivability and semantics is also discussed there. Among other things, 
it is explained why there can be no completeness theorem for second-order 
logic. Much the same argument applies to the theory of types, which includes 
second-order logic. In view of the fact that none of these matters bears directly 
on the applications of logical systems in linguistics, which is our primary con­
cern, we will not go into them in any greater depth here. 

Exercise 4* 

Consider the model shown in the figure. Its domain consists of three points, 
P1, P2 , and P3 , which are denoted by the individual constants e 1 , e2, and e3 • 

The property of being encircled is expressed by the predicate constant M, 
which is of type ( e, t); the relation which holds between two points if there is 
an arrow pointing from the first to the second is represented by the two-place 
predicate constant A, of type (e, (e, t)). The second-order property of being a 
property which applies to encircled points is represented by the constant cg, 
which is of type ((e, t), t). Finally, the operation which maps properties onto 
their complements (the operation of 'predicate negation') is denoted by T, a 
constant of type ((e, t), (e, t)). 

(a) Write out the interpretation function I. 
(b) Determine for each of the following formulas whether it is true in this 

model and work out its interpretation: 
(i) 3x3y3z(A(y)(x) A M(y) A A(z)(x) A •M(z)) 
(ii) 'Vx(A(x)(x) ~ •M(x)) 
(iii) 'Vx(A(x)(x)-> 3y(A(y)(x) A M(y))) 
(iv) 'VX3xX(x) 
(v) 'VX('Vy(M(y) -> •X(y)) -> (3y(X(y) A A(y)(y)) v •3yX(y))) 
(vi) 3X("g(X) A "g(T(X))) 
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4.3 Categorial Grammar 

4.3.1/ntroduction 

The syntax of the theory of types closely resembles categorial grammar. 
There are also some differences, which we will return to in §4.3.4. 

The original formulation of a categorial grammar was done by the Polish 
logician Lesniewski, who developed what he called 'a theory of semantic 
categories' in 1929. His system was further developed by another Polish logi­
cian, Ajduciewicz. The link between categorial grammar and the systematic 
description of the syntax of natural languages was forged by Bar-Hillel in the 
fifties. For the analysis of the syntax of natural languages, he proposed ex­
ploiting a categorial grammar as a mechanical, accepting system. 

In the fifties and the sixties, this idea was forced out of the limelight by the 
mushrooming growth of transformational-generative grammar. John Lyons 
was the first to propose adding a transformational component to a categorial 
grammar, but this proposal was not welcomed in linguistic circles either. 
Things didn't change much until the early seventies, which saw a growing in­
terest in semantic questions and in the application of logical methods to se­
mantics. Around this time, the idea of employing a categorial grammar was 
adopted by a number of philosophers and logicians who were interested in the 
analysis of natural language, among them Lewis, Montague, Cresswell, 
Bartsch and Vennemann, and Geach. The reason for this renewed interest was 
that categorial grammar lends itself naturally to the kind of semantics which is 
done in logic, and especially to that in the theory of types. 

4.3.2 Characteristics of Categorial Grammar 

A pure categorial grammar has the following four characteristics: 

(a) There is a finite (and in practice small) set of basic categories. 
(b) From these basic categories, a set of derived categories is constructed. 
(c) There are either one or two syntactic rules describing the one syntactic 

operation of concatenation and determining the category of the result of 
this operation. 

(d) Every lexical element is assigned to a category. 

Here is a very simple example of a categorial grammar: 

(i) The basic categories are n (for 'noun') and s (for 'sentence'). 
(ii) The derived categories may be obtained as follows: If A and B are cate­

gories, then (A \B) is a category too. 
(iii) The syntactic rule is: If a is an expression of category A, and f3 is an 

expression of category (A \B), then af3 is an expression of category B. 
(iv) John is of category n; walks is of category n \s; and quickly is of cate­

gory ((n\s)\(n\s)) 
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(As usual, we leave off outer brackets.) An expression of a category A \B is 
one which, together with an expression of category A, forms an expression of 
category B. It is the syntactic rule which is responsible for this: it decrees that 
if we first write down an expression of category A and then follow it with an 
expression of category A \B, then the whole thing is an expression of cate­
gory B. 

Note that the category of a composite expression af3 is obtained by 'erasing' 
the category of a in the (derived) category of {3. If this is not possible, then 
the composite expression is said to be ungrammatical. The business of 'erasing' 
is reminiscent of the way the denominator gets erased in simplifying an ex­
pression like 2 X Y2. In fact, other notations for derived categories which 
bring out this analogy with fractions are to be found in the literature, like NB, 
orB:A. 

According to this rudimentary categorial grammar, the expressions in (14) 
and (15) are of category s; they are, in other words, sentences. 

(14) John walks 
n n\s 
I I 

(15) John walks quickly 
n (n \s) \ (n \s) 

In general, then, a categorial grammar enables us to determine whether the 
result of combining expressions of any given categories is itself a grammatical 
expression, and if so, to determine its category. Conversely, it also enables 
finding out whether a given composite expression is in category s or not. That 
is to say, a categorial grammar furnishes an automatic procedure for determin­
ing which expressions are sentences and which are not. 

The above example is of a unidirectional grammar. You can only work in 
one direction, in the sense that if you have an expression of category A \B, 
then you have to write an expression of type A on the left-hand side in order to 
obtain an expression of type B. Of course, there are many expressions which 
would result in a new expression if something were written to their right. 
Take, for example, an adjective like poor. Together with John, obtained from 
category n, this gives us poor John, likewise in category n. The definition of 
derived categories can be modified in the following manner so as to allow for 
expressions like this: 

(v) If A and B are categories, then both (A \B) and (A/B) are categories. 

Thus we obtain a bidirectional categorial grammar. Here the direction of the 
slash indicates whether concatenation is to occur on the left- or the right-hand 
side. Such a categorial grammar needs two syntactic rules: 
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(vi) (1) If a is in category A and f3 is in category A \B, then af3 is in cate­
gory B; 

(2) If a is in category AlB and f3 is in category B, then af3 is in cate­
gory A. 

Both rules deal with the same syntactic operation, namely, concatenation. 
In the example given in (16), both kinds of derived categories are involved: 

(16) poor John loves Mary 
~X'D. n (n\s)/n n 

n I n 

I 
I 

n~s 
I 

In another variant of categorial grammar, expressions in derived categories 
may be concatenated with several other expressions simultaneously. In such a 
categorial grammar, there is a new rule, (vii), for constructing derived catego­
ries. The corresponding syntactic rule is then (viii). 

(vii) If A, B, and Care categories, then A \BIC is a category. 
(viii) If a is in category A, f3 is in category A \BIC, andy is in category C, 

then af3y is in category B. 

In this way, the transitive verb loves may be categorized as n \sIn, instead of 
as (n \s)l n. This means analyzing the sentence John loves Mary in the man­
ner indicated in (17) instead of as in (18). 

(17) John 
n 

(18) John 
n 

loves 
n\s/n 

loves 
(n\s)/n 

n\s 

'----..-----1 

Mary 
n 

Mary 
n 

The analysis depicted in (17) attributes less structure to this example sentence 
than the analysis in figure (18). In (18), loves Mary is treated as a single con­
stituent, which is not so in (17). Generally speaking, an analysis like that in 
( 18) will be preferred, so that categories of the form A\ B I C will not be 
needed. An exception is, for example, formed by coordinative conjunctions, 
for which the categorization s\sls is to be preferred over s\(sls) or 
(s \s)l s. Compare the analyses given in (19) and (20). 

(19) Mary 
n 
I 

(20) Mary 
.n 
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sings 
n\s 
I 

sings 
n\s 

I 
s'/s 
I 

and 
s\sfs 

I 
and 

s\(s/ s) 

I 

John 
n 

John 
n 
I 

dances 
n\s 

dances 
n\s 
I 

Y5 

The analysis of and given in (20) predicts that Mary eats and is a constituent 
of the whole sentence, while according to (19) the sentence has Mary eats, 
and, and John drinks as its three constituents. The latter analysis is certainly 
the more realistic. 

It should be noted that our intuitions about the constituents which an ex­
pression has and the categories to which expressions belong are not indepen­
dent of the semantic functions attributed to the expressions in question. And 
this is precisely why categorial grammars figure, in particular, in semantically 
oriented models of grammar. 

In 1960 it was proved by Bar-Hillel, Gaifman, and Shamir that a pure cate­
gorial grammar is equivalent to a context-free grammar (for the definition of 
context-free grammar, see vol. 1, chap. 7). This applies to both variants, uni­
directional and bidirectional. The equivalence here is a weak equivalence: all 
three types of grammar can be used to generate one and the same language. 
They do not, however, all do this in the same manner, they are not strongly 
equivalent. Thus they do not all attribute the same structures to every expres­
sion in that language. In the cases of unidirectional and bidirectional gram­
mars, this is easily seen. A unidirectional categorial grammar will always 
distinguish more lexical elements than a bidirectional grammar, since any 
single lexical element which can appear in different positions will necessarily 
have to be placed in more than one category. This is illustrated in (21), which 
represents an analysis of John loves Mary in a (left) unidirectional grammar. 

(21) John loves Mary 
n n\s (n \s) \ (n \s) 

L~~~" 
Proper names can appear both to the left and to the right of a transitive v~rb. In 
a bidirectional grammar, the names in both positions may belong to the same 
category, as is apparent from (17) and (18). In a unidirectional grammar, on 
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the other hand, proper names appearing in these positions must be of different 
categories, since we are only able to do the analysis in one direction. So it is 
that in figure (21), for example, Mary is in category (n\s)\(n\s), while John 
is in category n. But as the name Mary can of course also appear to the left of 
the verb, as in Mary loves John, it is clear that Mary will have to be placed in 
at least two different categories. The same applies to all expressions which 
can appear at different places in a sentence. 

The difference between a bidirectional categorial grammar and a context­
free grammar is in essence the following: A bidirectional categorial grammar 
always indicates which of a given pair of constituents is dependent on the other, 
whereas a context-free grammar need not always provide this information. 

Below is an example of a simple context-free grammar and a bidirectional 
categorial equivalent: 

Context-free grammar 

S:;?NPVP 
NP=?N 
VP:;?VNP 
Adj =? poor, lucky 
N =? John, Mary 
N=?Adj N 
V =? kisses, loves 

Bidirectional categorial grammar 

Expressions of category n: John, Mary 
Expressions of category (n \s)/n: kisses, loves 
Expressions of category nfn: poor, lucky 

Exercise 5* 

(a) Convert the following context-free grammar ('I', distinguishes, as usual, 
different options for rewriting a symbol) into a bidirectional categorial 
grammar which has as its basic categories S (for sentences), CN (for com­
mon noun phrases), and T (for full noun phrases): 
S =? NP VP 
VP =? ~ntrans I V trans NP 
NP =? PropN I Det N 
N::} Adj N 
Det =? the, a(n) 
PropN ::} John, Peter 
N =? man, horse 
vintrans =? walks, swears 
Vtrans =? eats, makes, curses 
Adj =?green, big, honest 
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(b) Try to find English expressions which may serve as examples of expres­
sions of the following categories: 
(i) (T\S)\(T\S) 
(ii) ((T\S)\(T\S))/T 
(iii) T\(T /CN) 
(iv) (T\S)/(CN/CN) 
What rules need to be added, or modified in the context-free syntax given 
in (a), for such expressions to be incorporated? 

Exercise 6 

Of what category are expressions such as almost and at most as they occur in 
phrases such as almost all and at most two? Specify the corresponding type 
and give a description of the kind of semantic object denoted by these 
expressions. 

Exercise 7 

Suppose that every lexical element of a certain language belongs to only one 
category. Is it possible for a unidirectional categorial grammar to produce 
complex expressions of the language which are structurally ambiguous? And 
how about a bidirectional one? 

4.3.3 The Descriptive Adequacy of Categorial Grammar 

As was mentioned above, pure categorial grammars are equivalent to context­
free grammars. This was proven in the beginning of the sixties, during the 
heyday of transformational grammar, when the belief that we need grammars 
of greater generative capacity than context-free ones for the description of 
natural language was firmly established. This is certainly one of the reasons 
why categorial grammar has had a hard time acquiring a respectable status 
among syntactically oriented linguists. This has changed, but only recently. 
Some new developments that helped to bring about this change will be intro­
duced in chapter 7. 

Exactly why were context-free grammars, and in their wake pure categorial 
ones, believed to be descriptively inadequate? The reasons mainly concern 
various constructions which such grammars are not supposed to be able to 
deal with, at least in an intuitively adequate way. By way of illustration we 
discuss three of these phenomena very briefly. 

First, there are discontinuous constituents. Compare sentences (22) and 
(23): 

(22) The job was quickly finished. 

(23) The job was finished quickly. 



98 Chapter Four 

In (22), the constituent was finished occurs discontinuously, that is, it is intel­
rupted by another expression. This contrasts with its continuity in (23). In a 
categorial grammar in its pure form, this presents a problem. The rules do not 
allow any part of a constituent to be separated from the rest, since the only 
operation they use is the simple concatenation of two strings of symbols. 
Hence, we are forced to consider was and finished as separate lexical items 
and to place each of them in (at least) two different categories, so that they can 
form both continuous and discontinuous constituents. Sentence (24) gives an­
other example of this phenomenon: 

(24) John never calls up Mary, so she calls him up instead. 

Here we have both a continuous and a discontinuous occurrence of the con­
stituent calls up, in the first and second clause, respectively. Here too, in a 
categorial grammar there is no choice but to classify calls up, calls, and up 
separately, as three distinct lexical items. While this does not constitute any 
formal problem, it certainly seems not to accord with the intuition that it is 
one and the same constituent which appears in the two clauses of (24), even if 
it is continuous in the first and discontinuous in the second. 

A second phenomenon which presents problems for pure categorial gram­
mars and context-free grammars centers around the intuition that sentence 
(25) means the same as sentence (26): 

(25) John loves Mary, and Jack, Jill. 

(26) John loves Mary, and Jack loves Jill. 

This relation between (25) and (26) could be accounted for in a number of 
different ways. One view is that (25) is derived from (26) by leaving out the 
word loves in the second conjunct. Another conjecture is that the 'missing 
part' of (25) gets filled in during the process of interpretation. Either way, 
leaving out a constituent or filling one in introduces context-dependency into 
the picture, since the piece to be left out or filled in must always be present 
somewhere else in the structure (of course, this is not the only condition). 
Such straightforward context-dependent processes clearly fall outside the 
scope of context-free grammars and pure categorial ones. Notice, however, 
that these views about what goes on are not the only ones that are possible: 
there is no proof that an adequate description of the phenomena in question 
must involve context-dependency of this kind. 

A third phenomenon which illustrates that the limited generative capacity 
of context-free grammars and pure categorial grammars may lead to unin­
tuitive results is that of word order. Both kinds of grammar decree a fixed 
word order and hence seem to fail as adequate descriptive tools for languages 
in which it is not word order but, for example, a case system which deter­
mines grammatical relations, or even for languages where the word order of 
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main clauses differs from the word order of subordinate clauses, as in some of 
the Germanic languages. 

Objections such as these have convinced people for a long time that con­
text-free grammars are inadequate for giving a descriptively adequate descrip­
tion of natural languages which accords with our intuitions about constituency 
and the like. This verdict has been extended to pure categorial grammars, the 
grammars of the kind introduced in §4.3.2. 

For quite some time these conclusions have been unchallenged. Yet cate­
gorial grammars remain attractive for those people who are interested in se­
mantics, since they provide a simple account of the correlation between the 
syntactic categories of expressions and their semantic functions. It is for this 
reason that categorial grammar functions prominently in various models of 
'logical grammar' (see chapter 6), the first of which were developed in the 
seventies. A number of different ways to deal with those problems that were 
mentioned above have been proposed. 

One way, which followed the lead of transformational grammar, is to in­
clude a categorial grammar as the input of a transformational component. The 
base component of a transformational grammar is generally a context-free 
grammar, and the idea is to replace it by a categorial one. This suggestion was 
made by John Lyons (1968), and David Lewis (1972) has elaborated on it. 
The idea is that the phenomena discussed above can be accounted for by 
means of transformations. But note that if we do this, all of the objections 
which may be made about the excessive generative power of transformational 
grammars apply here as well. 

A second possibility is to increase the generative power of categorial gram­
mar itself. In pure categorial grammars, concatenation is the only syntactic 
operation which may be applied. It is possible to increase the production, as it 
were, of the syntactic rules by including other syntactic operations. This sec­
ond option was the one followed by Richard Montague (1970, 1973). We shall 
return to this in chapter 6. 

These two approaches accept traditional wisdom concerning the descriptive 
inadequacy of context-free grammars. But lately, people have begun toques­
tion the alleged facts: are natural languages really not context-free, that is, can 
natural languages not be described by means of a context-free mechanism? This 
discussion has unmasked many a proof as unsound, and at the moment the 
question is generally thought to be open (see Pullum and Gazdar 1982 and 
Savitch et al. 1987, for an overview of various arguments, both old and new). 
Moreover, the general feeling among quite a number of linguists nowadays is 
that whatever the final answer to this question may be, trying to define a con­
text -free grammar for a natural language is in itself a significant and worthwhile 
undertaking, if only to pin down where exactly the non-context-freeness, if 
such there be, comes in. Also, the increasing interest in computationally ade­
quate and efficient models of language and the significant lack of success of 
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transformational grammarians in finding any real constraints on the generative 
power of transformational grammars has been a stimulating influence. Vari­
ous models of grammar have been devised in this spirit, the most influential 
being that of 'generalized phrase structure grammar' (Gazdar 1982; Gazdar, 
Klein, Pullum, and Sag 1985) and that of 'lexical functional grammar' 
(Kaplan and Bresnan 1982). 

As for categorial grammar, similar developments have taken place there. In 
this context it is worth pointing out that arguments against the descriptive 
adequacy of pure categorial grammars often involve an appeal, implicit or ex­
plicit, to intuitions about the constituent structure of expressions, about cat~­
gories of lexical expressions, and so on. It turns out that categorial grammars 
can be enriched in certain ways which allow them to deal with the phenomena 
mentioned above, but often in a rather unorthodox manner. According to 
some, this only shows that, for example, the notion of constituent structure is 
much more of a theoretical notion than has been acknowledged, and that 
hence arguments appealing to it are theoretically biased. Some of the tech­
niques that have been introduced in categorial grammar over the last few years 
will be discussed in detail in §7 .3. We refer the reader for references to the 
relevant literature in the same section. 

4.3.4 Categorial Grammar and the Theory of Types 

In this section we will make a few observations on the relationship between 
the syntax of type-theoretical languages and categorial grammar. 

First, we draw attention to the similarity between the definition of types and 
the way categories are defined in categorial grammar. A finite number of basic 
types is specified, and there is a rule saying how derived types may be built up 
from these. The notation for derived types differs from what we gave for de­
rived categories, but as is apparent from (27), the difference is not essential. 

(27) John swims 
n n\s 

Swimming is healthy (H( (e,r),r) (S (e.r))) • 

n\s (n\s)\s 

Categorial grammar Theory of types 

Essential differences are, however, to be found for the other two principles of 
categorial grammar. 

Thus the theory of types makes use of another syntactic operation besides 
concatenation, namely, an operation introducing brackets. The latter serve to 
fix the scope relations between various kinds of expressions. As a result of 
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this bracketing, expressions of type-theoretical languages lack the ambiguity 
which is to be found in many expressions in natural languages. 

There is another respect in which the syntax of the theory of types differs 
from that produced by a categorial grammar. Not all expressions in the lan­
guage are placed in a particular category, in this case a particular type. The 
quantifiers, the connectives, and the relation of identity are introduced syn­
categorematically. That is to say, they are not treated as lexical items of a 
particular type. In the case of connectives, it should be noted that this is not 
necessary. (This matter is discussed in §2.7 of volume 1.) The negation.., 
might, for example, have been introduced as an expression of type (t, t), since 
it results, when placed before a formula, in an expression of type t in a new 
formula. Analogously, the conjunction A might have been introduced as an 
expression of type (t, (t, t) ). Thus expressions would be generated in a nota­
tion with the connectives written as operators in front of their arguments in­
stead of between them, as is more usual. An example: the formula <P A 

(o/ v x) would appear in this notation as A(<f:>)(v(l[J)(X)). The construction 
tree for the latter formula is given in (28) (each expression is followed by 
its type). 

(28) A(cjl)(v(\jf)(X)),t 

---------------A(cjl),<t, t> v(\jf)(X),t 

~ ~ 
A, <t, <t, t>> cjl, t v(\jf),<t, t> X,t 

~ 
v, <t, <t, t>> \jf,t 

In this notation, the brackets are in fact superfluous. We might just as well 
write A <P v l[Jx. This notational variant without brackets is known as Polish 
notation. Things become a little more complicated than this in the case of 
identity. Since two expressions of any type a may be linked up by means of 
the identity relation = as a formula, the symbol = would have to be treated as 
an expression of every type of the form (a, (a, t)). What this means is that for 
every type (a, (a, t)), a separate identity relation of this type must be intro­
duced. In the case of the quantifiers, a categorematic introduction runs up 
against considerable difficulties. The obvious thing would be to treat quan­
tifiers as expressions which tum formulas into other formulas. This approach 
fails, however, as we shall now see. 

According to this idea, quantifiers would be treated as expressions of type 
(t, t). In this case, however, the correspondence between the type of an ex­
pression and its semantic interpretation leads to insurmountable difficulties. 
As we have already seen, an expression of type (a, b) is interpreted as a func­
tion from D. to Db. In the special case of expressions of type (t, t), the seman-
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tic interpretation is thus a function from truth values to truth values. Now here 
is a list of all four functions from {0, 1} into {0, 1}: 

(i) The function mapping both truth values onto 1 
(ii) The function mapping each truth value onto the other 
(iii) The function mapping both truth values onto 0 
(iv) The function mapping each truth value onto itself 

The interpretation of a formula like 'Vx P(x) would then be the result of apply­
ing the interpretation of Yx to the interpretation of P(x). Now the interpreta­
tion of P(x) is a truth value. The interpretation of Yx would, in view of its 
syntactic type, have to be one of the above four functions from truth values 
into truth values. What this means is that the truth value of a formula 'Vx P(x) 
would depend only on the truth value of P(x). The truth value of P(x), a for­
mula with a free variable x, is determined by whether or not g(x), the particu­
lar entity which the assignment assigns to x, has the property expressed by the 
predicate P. But that is, of course, not what the truth of the statement that 
everything has the property should depend on. In order to determine the truth 
value of 'Vx P(x), we need to know whether or not all of the entities in the 
domain have the property expressed by P. We need to know, in other words, 
whether or not P(x) is true with respect to every assignment g. The truth value 
of P(x) with respect to a single assignment is not enough. The conclusion to 
be drawn from this is that the semantic interpretation of a quantifying expres­
sion like Yx cannot be identified with one of the four possible functions of 
type (t, t). And this means that syntactically the expression Yx cannot be 
treated as an expression of type (t, t). So the obvious way of introducing 
quantifiers categorematically is unworkable. This is not to say, however, that 
there is no way at all of introducing the quantifiers syncategorematically. We 
will return to this matter in §4.4.3. 

4.4 .\-Abstraction. 

4.4.1 The .\-Operator 

We shall now extend the theory of types as described in §4.2 by adding a new 
kind of expression, the lambda operator .\. This operator enables us to form 
new expressions from expressions by abstracting over variables. In doing so, 
we increase the expressive power of the theory of types in a way which will 
prove to be of particular interest in the analysis of natural language. Before we 
go on to introduce the .\-operator, however, let us first briefly consider some 
of the forms and constructions of a natural language like English which make 
such an operator desirable. 

Let us begin by discussing the translation of the following sentence into the 
theory of types: 

(29) Jogging is healthy. 
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A translation of this sentence into the theory of types may be obtained as fol­
lows. Given that jogging expresses a property of individuals, the expression 
may be translated as a predicate constant J of type (e, t). Healthy expresses, at 
least in this context, a property of properties of individuals and is as such to be 
rendered as a constant 'lJC of type ( (e, t), t). The whole of (29) is then to be 
translated as the formula ~(J), which expresses the proposition that jogging is 
a healthy activity. 

Let us now turn to an apparently quite analogous sentence and see how we 
would translate it: 

(30) Not smoking is healthy. 

Once again we have a sentence in which a property, that of being healthy, is 
attributed to a property of individuals, that of not smoking. The translation of 
healthy presents no new problems; as with (29), it is translated as a constant 'lJC 
of type ((e, t), t). The problem lies with the translation of not smoking. Let us 
begin by translating smoking as a constantS of type (e, t). Now the problem 
is that negation cannot be applied to this constantS, since the negation sym­
bol--, may only be applied to formulas and not to expressions of other types. 
The expression not smoking could, of course, be translated as a whole as a 
constant N of type (e, t). But this would not do justice to the fact that the 
meaning of not smoking is composed of the meanings of the words not and 
smoking. In the English language, there is a productive process enabling the 
word not to be combined with expressions of various types, thus giving rise to 
new, composite expressions. Parallel to this, the meanings of these composite 
expressions are built up from the meanings of the expressions of which they 
are composed. We now wish to build a similar process into the theory of 
types, so as to obtain a better correspondence with natural language. 

Here is a second example of a productive process of this kind working in 
natural language: the coordination of predicates. Consider example (31). 

(31) Drinking and driving is unwise. 

In (31) we find a composite expression, drinking and driving, which ex­
presses a property of individuals. This expression is formed from the conjunc­
tion and together with the predicates drinking and driving. In translating (31 ), 
we encounter difficulties similar to those we found with (30). Since the con­
junction 1\ may be used only to conjoin formulas, it cannot be used on predi­
cates. We could, of course, just decide to translate drinking and driving as a 
single unanalyzed constant of type (e, t), but once again this would be to ig­
nore the fact that the meaning of the composite expression is built up from the 
meanings of the expressions drinking, and, and driving of which it is com­
posed. And the same remarks apply to unwise as to not smoking in (30). Un­
wise is a composite second-order predicate which is the result of a productive 
process being applied to the second-order predicate wise. 

Yet another example is to be found in the reflexive predicates, like to ad-
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mire oneself. If this predicate were to be dealt with independently of the predi­
cate to admire, then we would be at a loss to explain the close links between 
the properties they express. We would, for example, not be able to account for 
the equivalence of (32) and (33): 

(32) John admires John. 

(33) John admires himself. 

The process by which the composite predicate to admire oneself is obtained 
from the predicate to admire is apparently such that admiring oneself may be 
predicated of an entity d just in case admiring may be predicated of the pair 
(d, d). 

These, then are just a few of the examples which suggest extending the the­
ory of types. 

In order tv account for constructions like these, the following new rule is 
added to the syntax of the theory of types as given in definition 2 in §4.2.2: 

(vii) If a is expression of type a in L, and vis a variable of type b, then Ava 
is expression of type (b, a) in L. 

Let us turn to an example. Let W be a constant of type (e, t), and let x be a 
variable of type e. Then W(x) is a formula in which x appears as a free vari­
able. According to clause (vii), we may form the expression A.x(W(x)) from 
W(x). Since W(x) is of type t and xis of type e, this new expression A.x(W(x)) 
is of type (e, t). We say that the expression A.x(W(x)) has been formed from 
the expression W(x) by abstraction over the free variable x. We say that the 
free occurrences of the variable x in a are bound in A.xa by the A. -operator A.x. 

A word about brackets is in order here. Recall that the brackets around 
W(x) in A.x(W(x)) are introduced by the application of W to x (see clause (ii) 
of definition 2). Here they cannot be left out, since the result of doing so, 
A.xW(x), is an expression with a different syntactic structure. It is what we get 
if we first abstract (vacuously) over x in W, and next apply the result of that, 
A.xW, to x. Now it happens that in this particular case leaving the brackets off 
would not be harmful semantically, since as the interpretation of A.-abstraction 
will make clear, A.xW(x) and A.x(W(x)) happen to be equivalent. However, 
it is not generally the case that if we apply A.-abstraction to a complex ex­
pression formed by functional application, the outer brackets around the lat­
ter can be left off without any semantic harm being done. A case in point 
is A.x(A(x)(x)), to be discussed later on. Leaving out the brackets around 
(A(x)(x)) would yield A.xA(x)(x), and this expression has a different meaning. 

What interpretation is now to be given to expressions formed in this manner 
by means of (vii)? Consider the example of A.x(W(x)) once again. As we have 
already seen, this composite expression is of type (e. t). An expression of this 
type is interpreted as a function from entities into truth values. So the inter­
pretation of A.x(W(x)) is of the same type as the interpretation of the constant 
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W. It will become apparent from the clause defining the interpretations of ex­
pressions formed by A.-abstraction that the interpretations of A.x(W(x)) and W 
not only are of the same type but are identical. To put it generally, then, the 
interpretation of a A.-abstraction A.xbaa (the subscripts refer to the types of the 
expressions) is a function, namely, one belonging to the set of functions D?•. 
For this reason, A.-abstraction is also referred to as functional abstraction. 
Note that if a is of type t, then the interpretation of A.xba, is an element of the 
set {0, 1}0 • of functions. It is, in other words, the characteristic function of a 
set. Given that sets can be identified with their characteristic functions, A.xba, 
can serve as notation for a set. In these cases, the A.-operator is also referred to 
as the set abstractor. 

Now we add the following clause to definition 4 in §4.2.3, which lays down 
how expressions of a type-theoretical language L are to be interpreted with 
respect to a given model M and assignment g: 

(vi) If a E WE!! and v E VARb, then [A.va]M,g is that function h E D?• 
such that for all d E Db: h(d) = [a]M,g[vidJ 

By way of illustration, let us turn back to the example of A.x(W(x)), in which 
W is a constant of type (e. t) and xis a variable of type e. Clause (vi) then 
says that [A.x(W(x))]M,g is the function h derived from the set D~· of functions, 
such that for all d E De we have: h(d) = [W(x)]M,g[xidJ· We know that 
D~· = {0, 1}0 = the set of characteristic functions of sets of entities. Soh is 
the characteristic function of some set of entities. This function is defined as 
follows: for all d E D we have h(d) = [W(x)]M,g[xidJ· Thus h(d) = 1 iff 
[W(x)]M,g[xidJ = 1. We know that [W(x)]M,g[xidJ = 1 iff[W]M,g[xidJ([x]M,g[xidJ) = 1 
iff I(W)( d) = 1. Thus: h( d) = 1 iff d has the property expressed by W. This 
means that h is the characteristic function of the set of all entities having the 
property expressed by W. And this means that the interpretation of A.x(W(x)) 
is just the same as the interpretation of W. For [W]M,g = I(W), while for all d 
in D we have h(d) = I iff I(W)(d) = 1, so that h = I(W). We can therefore say 
that A.x(W(x)) and W are equivalent. 

Let us now consider how the examples of composite expressions referred to 
at the beginning of this section can be analyzed in the theory of types enriched 
with the A.-operator. Sentence (30), Not smoking is healthy, can be translated 
as follows. Let S be the translation of smoking. This is a constant of type ( e, t). 
And let x be a variable of type e. Now S(x) is a formula, an expression of 
type t. Applying negation to this formula, we obtain a second formula: :S(x). 
And applying A.-abstraction over the variable x, we obtain the expression 
A.x•S(x). The latter is of type (e. t), since we abstracted over a variable of 
type e in an expression of type t. The expression A.x•S(x) is therefore a predi­
cate of entities, just likeS. In order to find out which property is expressed by 
this predicate, we must determine its interpretation: [A.x•S(x)]M,g is the func­
tion h ED~· such that for all dE De we have h(d) = [•S(x)]M,g[xldJ· That is: 
h(d) = I iff [•S(x)]M,g[xidJ = 1 iff [S(x)]M,g[x/d] = 0 iff [S]M,g[xidJ([x]M,g[xid]) = 0 
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iff I(S)( d) = 0. Thus: h( d) = 1 iff d does not have the property expressed by S. 
This means that [.Ax•S(x)]M,g is the characteristic function of the set of non­
smokers, that is, it expresses the property 'not smoking'. As such, it is a suit­
able formal translation of the expression not smoking. The expression of the 
whole of (30) may now be obtained by applying the second-order predicate X, 
the translation of the word healthy as it appears in (29) and (30), to .Ax•S(x). 
The result is then 'ffe(.Ax•S(x)). 

In (31), Drinking and driving is unwise, there are two composite predi­
cates: drinking and driving, a first-order predicate, and unwise, in this case a 
second-order predicate. The first of these composite predicates may be trans­
lated as follows. Let D 1 and D2 be the translations of drinking and driving, 
respectively. Both ofthese are constants of type (e, t). And let x be a variable 
of type e. Applying .A-abst~ction over x in the conjunction D 1 (x) A D2(x), 
we obtain .Ax(D 1(x) A Dz(x)). This expression is once again of type (e, t). 
That .Ax(D 1(x) A D2 (x)) expresses the property of drinking and driving is ap­
parent from its interpretation: [.Ax(Dl(x) 1\ Dz(X))]M is the function hE D 0 -,g t 

such that for all dE D, we have h(d) = 1 iff [D 1(x) A D2(x)]M,g[xtdJ = l iff 
[DI(x)]M,g!xtdJ = 1 and [D 2(x)]M,g[xtdl = 1 iffl(D 1)(d) = l(D2)(d) = 1. A trans­
lation of the composite second-order predicate unwise is obtained by .A­
abstraction over a variable of the same type as first-order predicates. As in the 
above, let "W be the translation of wise. This constant is of type ((e, t), t). Let 
X be a variable of type (e, t). Then •"W(X) is a formula expressing that X 
does not have the property of properties of 'being (a) wise (property)'. Ab­
straction over X results in the expression .AX•"W(X). This expression is of 
type ( (e, t), t), since we have abstracted over a variable of type (e, t) in a 
formula. This composite second-order predicate expresses a property of prop­
erties, namely, the propertyof'being an unwise property'. For[.AX•"W(X)]M 
is that k E D)0 •

0
') = {0, l}<{O,I}") such that for all functions hE DP•: k(h) = 'i 

iff[•"W(X)]M,g!XthJ = 1 iffl("W)(h) = 0, which is to say, iffh does not belong 
to the set of wise properties. Now the translation of the whole of (31) may be 
obtained by applying the translation of unwise to the translation of drinking 
and driving: .AX•"W(X)(.Ax(D1 (x) 1\ D2(x))). 

A general strategy for translating predicates composed by means of not, 
and, or, ~d the like may be extracted from these examples. Since in the the­
ory of types, connectives and negation may only be applied to formulas, for­
mulas are first formed by applying the original predicates to one or more 
variables. Then connectives and/ or negation can be applied to these formulas, 
and abstraction over the variables in question then results in the required com­
posite predicate. 

Now it is, of course, also possible to treat the composition of predicates 
without a .A-operator. We shall indicate briefly how this may be done in the 
case of negation. First the restriction in definition 2 that negation may only be 
applied to an expression of type t, a formula, must be done away with. Instead 
we stipulate that if a is an expression of type (a, t), then •a is an expression 

The Theory of Types and Categorical Grammar 107 

of this type too. (For example, smoking and not smoking are of type (e, t); 
wise and unwise are of type ( (e, t), t)). Then definition 4 must be extended 
too, defining [•a]M,g• the interpretation of •a, as that function in D(a.<) = 

{0, 1}0 • such that for all d E D.: [•a]M,g(d) = 0 if [a]M,g(d) = 1, and 
[•a]M,g(d) = I if[a]M,g(d) = 0. Thus, by way of example, •S is interpreted 
as that function which gives value I when applied to d just in case the function 
interpreting S gives 0 as value for d, which is to say, just in case d does not 
smoke; this is the right result. Similar modifications to definitions 2 and 4 
would account for composition of predicates with the other connectives. So 
why do we need a .A-operator? The advantage of a .A-operator is that it pro­
vides a uniform treatment not only of these examples but of many others too. 
For this reason, we will not go any further into the possibility of doing without 
a .A -operator. 

Another example which the .A-operator deals with nicely is that of reflexive 
predicates, like the admires oneself in (33) John admires himself. Here too 
one must first go back to formulas. Let A be a constant of type (e, (e, t) ), the 
translation of admires, and let x be a variable of type e. A(x)(x) is then a 
formula. From it, the expression .Ax(A(x)(x)) may be obtained by abstraction 
over x. Here both occurrences of the variable x are bound by the .A-operator. 
This new expression is of type (e, t); hence it is not of the same type as A. Its 
interpretation is as follows: [.Ax(A(x)(x))]M,g is the function h E DP' such that 
for all d E D we have h(d) = I if and only if [A(x)(x)]M,g!xtdJ = 1 iff 
[A(x)]M,g[xidl ([x]M,g[xidJ) = 1 if and Only if [A]M,g[xid]([x]M,g[xid])([x]M,g[xid]) = 
1 iff I(A)(d)(d) = I. That is, an entity d has the property expressed by 
.Ax(A(x)(x)) just in case the pair of entities (d, d) stand in the relation ex­
pressed by the predicate A. 

As was remarked above, leaving off the outer brackets of (A(x)(x)) would 
result in an expression, .AxA(x)(x), which not only has a different syntactic 
structure but also a different interpretation. For .AxA(x)(x) is equivalent to 
A(x), and the meaning of A(x) and that of .Ax(A(x)(x)) are obviously not 
identical. 

Not only the variables over which we abstract but also the expressions in 
which these occur may be of any type. Let A be as above, and let x and y be 
variables of type e. We may now abstract over the variable yin the formula 
A(y)(x). The result, .Ay(A(y)(x)), is of type (e, t) and expresses the property 
of 'being admired by x'. Then we can abstract over x in this new expression so 
as to obtain the formula .Ax.Ay(A(y)(x)), which is of type (e, (e, t) ), since it 
is formed by abstraction over a variable of type e in an expression of type 
(e, t). We thus obtain a two-place predicate expressing the relation of 'being 
admired by'. 

It is important to note that if there are several variables, the order in which 
abstraction takes place makes a difference. If we abstract over the x in A(y)(x) 
first, we obtain the expression .Ax(A(y)(x)), which expresses the property of 
'admiring y'. If we then abstract over the variable y, we obtain the two-place 
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predicate A.yA.x(A(y)(x)), which, just like the constant A, expresses the rela­
tion 'admires'. But if we start with the same formula A(y)(x) and abstract first 
over y and then over x, what we get is A.xA.y(A(y)(x)), which, as we saw 
above, expresses a different relation, that of 'being admired by'. 

That A.y(A(y)(x)) and A.x(A(y)(x)) express different properties is apparent 
from a comparison of their interpretations: [A.y(A(y)(x))]M,g is the function 
h E DP· such that for all d E D: h(d) = 1 iff [A(y)(x)]M,g[ytdJ = 1 iff 
(I(A)(d))(g(x)) = 1, that is, iff g(x) admires d; [A.x(A(y)(x))]M,g is the h E 
DP· such that for all dE D: h(d) = 1 iff[A(y)(x)]M,g[xtdJ = 1 iff (I(A)(g(y)))(d) 
= 1, that is, iff d admires g(y). 

Exercise 8* 

Letj be a constant of type e; M of type (e, t); S of type ((e, t),(e, t)); and C(6 

oftype ((e, t), t). Furthermore, xis a variable of type e, andY a variable of 
type (e, t). Determine which of the following sequences of symbols are well­
formed expressions. If an expression is well-formed, give its type. 
(i) A.x(M(x))(C{6) 
(ii) A.x(M(x))(j) 
(iii) A.xM(j) 
(iv) S(A.xM(x)) 
(v) A. Y(Y(j))(M) 
(vi) A.xA. Y(Y(x)) 
(vii) A.x(M(x)) 1\ M(j) 
(viii) A.x(M(x) 1\ M(j)) 
(ix) (S(A. Y(Y(x))))(M) 
(x) A.Y(C{6(A.x(Y(x))))(M) 
(xi) A.x(A. Y(Y(x))(M))(j) 
(xii) A.x(A.Y(Y(x))(j))(M) 
(xiii) A.xA. Y(Y(x))(j)(M) 
(xiv) A.Y((S(A.x(M(x))))(j) 1\ C{6(Y))(M) 

Exercise 9* 

Translate the following expressions into the theory of types. State the transla­
tion key. 
(a) To wash yourself properly is important. 
(b) It is healthy to love somebody. 
(c) Forwards or backwards 
(d) To put the queen forwards or backwards leads to checkmate. 
(e) Everything that grows and glows and always restores us again. 
(f) To have forgotten something is to have known something but to not know 

it now. 
(g) Always to be oneself is impossible. 
(h) To be perfect is to have all good properties. 
(i) To share all your bad properties with Mary 
(j) To be or not to be 
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4.4.2 A.-Conversion 

A A.-abstract like A.x•(S(x)) of type (e, t) behaves exactly like any other ex­
pression of the same type. This means that this predicate can be used not only 
in order to represent higher-order predication, as in ~(A.x•(S(x))), but also in 
representing first-order predication. Thus it may be applied to a constant of 
type e, for example j, thus resulting in the formula A.x•(S(x))(j), which ex­
presses the proposition that the entity to which j refers has the property of 'not 
smoking'. This is the same as the proposition that this entity does not smoke, 
which may be represented by means of the equivalent formula •(S(j)). What 
we have done here is to leave out the A.x in A.x•(S(x)) and to replace free 
occurrences ofx in the remaining part, •(S(x)), by j. The general notation for 
the result of replacing all free occurrences of a variable v in an expression f3 
by an expression y is [y/v]/3. So in this terminology, what we have done is to 
form [j/x]•(S(x)) from A. x•(S(x))(j). 

The question now arises as to whether an expression of the form A.vf3(y) can 
always be reduced to [y/v]/3 with conservation of meaning. This reduction 
process is known as A.-conversion. So the question to be addressed here is 
whether A.-conversion always results in an equivalent expression, that is, 
whether or not (34) can be answered affirmatively: 

(34) Question: Does it hold for all v, {3, andy that A.vf3(y) is equiva-
lent to [y/v]f3? 

In the above we saw a number of instances confirming (34). In illustrating the 
clause dealing with the interpretation of A.-abstraction, for example, we saw 
that A.x(W(x)) and W are equivalent. This implies that A.x(W(x))(ce) and 
W(ce) are equivalent for an arbitrary individual constant ce. And indeed, 
[ce/x]W(x) and W(ce) are one and the same expression. And it also follows 
from the interpretation of A.x(A(x)(x)) that A.x(A(x)(x))(ce) is equivalent to 
A(ce)(ce), that is, to [c/x](A(x)(x)). 

And yet (34) cannot be affirmed unconditionally. This can be made clear by 
means of a similar situation which turns up in predicate logic. There it is not 
true that for every cf>, F='t/xcf> --> 't/y[y/x]cf>. The reason for this is that it can 
happen that the variable y which replaces x in cf> can be bound, in cf>, by a 
quantifier 't/y or 3y already present in cf>. As an example of a cf> in which this 
happens, consider 3yRxy. It can easily be seen that [y/x]cf> is the formula 
3yRyy, whence 't/y[y/x]cf> is 't/y3yRyy, which is equivalent to 3yRyy. That 
't/x3yRxy and 3yRyy are not in general equivalent formulas is obvious from 
the particular case in which R is the relation *. The formula 't/x3y(x * y) is 
clearly not equivalent to 3y(y * y), since the first is true in any model whose 
domain contains more than just a single element, while the second sentence is 
true in no model whatsoever: 3y(y * y) is a contradiction. If we now take 
3y(x * y) for our formula {3, then A.xf3(y) is A.x3y(x * y)(y) and [y/x]/3 is 
3y(y * y). And A.x3y(x * y)(y) and 3y(y * y) are certainly not equivalent ex­
pressions. The expression A.x3y(x * y) expresses the property 'there is some-
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thing besides x' (the property of not being unique), since [A.x3y(x =f:. y)]M,g is 
the function which assigns the value 1 to d just in case there is some d' =f:. d 
in the domain, and the value 0 if this is not so. So if D contains more than 
one element, then the function [A.x3y(x =f:. y)]M,g assigns to each of the ele­
ments of D the value 1. Now [A.x3y(x =f:. y)(y)]M,g is the value assigned by 
[A.x3y(x =f:. y)]M,g to g(y), so this value will also be 1 if the domain contains 
more than a single element. This contrasts with [3y(y =f:. y)]M , which will ,g 

certainly be 0. From this it follows that A.x3y(x =f:. y)(y) and 3y(y =f:. y) are not 
equivalent formulas. 

In predicate logic there is, however, a condition under which Vx4> and 
Vy[y /x]4> turn out to be equivalent, namely, the condition that y is free for x 
in 4>. This condition may also be turned to our present purposes, although here 
it must be generalized because of the capacity of the A.-operator to bind vari­
ables. See definition 5: 

Definition 5 

A variable v' is free for v in the expression f3 iff no free occurrence of v in f3 is 
within the scope of a quantifier 3v' or Vv', or a A.-operator A.v'. 

It turns out that A.vf3(v') and [v'/v]f3 are indeed equivalent ifv' is free for v in 
{3. As we have seen, however, some of the expressions 'Y that we have to deal 
with are more complex than just a single variable v'. In such cases, A.­
conversion is allowed only if all of the free variables in 'Yare free for v in {3. 
Thus we have theorem 1. 

Theorem 1 

If all variables which occur as free variables in 'Y are free for v in f3, then 
A.vf3('Y) and ['}'/v]/3 are equivalent. 

We will not prove this theorem here. The proof is by induction on {3. 
Theorem 1 is particularly useful in that it enables long and complex expres­

sions to be reduced to shorter, more readable ones which mean the same 
thing. It also facilitates a simple demonstration of how the order in which an 
expression is applied to two others can matter. If, for example, A.xA.y(A(y)(x)) 
is first applied to j and then to m, then we obtain A.xA.y(A(y)(x))(j)(m). 
This determines the order in which the A.-conversion must take place. The 
functor A.xA.y(A(y)(x)) is first applied to the argument j, and the result, 
A.xA.y(A(y)(x))(j), which is again a functor, to the argument m. (Writing the 
outer brackets around A.xA.y(A(y)(x))(j) would give (A.xA.y(A(y)(x))(j))(m), 
which makes this more clear, though given that A(y)(x) is of type t, it is not 
necessary to do so.) The first reduction step, then, is to apply A.-conversion in 
A.xA.y(A(y)(x))(j), which reduces the entire expression A.xA.y(A(y)(x))(j)(m) to 
A.y(A(y)(j))(m). The next step is to substitute m for y, as a result of which 
A(m)(j) is obtained. This agrees with the meaning of A.xA.y(A(y)(x)). This ex­
pression is, as we saw above, to be interpreted as the relation 'is admired by'. 
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Application to the constant j results in A.y(A(y)(j)), which expresses 'being 
admired by j'. And application of this to m results in A(m)(j), which means 
the same as 'j admires m'. If, on the other hand, A.xA.y(A(y)(x)) is first applied 
tom and then toj, the result is A.xA.y(A(y)(x))(m)(j). A first A.-conversion has 
A.y(A(y)(m))(j) as its result, and a second results in A(j)(m). 

There are cases in which theorem 1 is not directly applicable, but even then 
the situation is not hopeless. Let us return, for example, to the formula 
A.x3y(x =f:. y)(y), on which A.-conversion is not directly sanctioned by theo­
rem 1. The problem lies with the quantifier 3y. We can get rid of this quan­
tifier by replacing 3y(x =f:. y) with the formula 3z(x =f:. z), which has the same 
meaning. This is because z is free for y in x =f:. y. Now we have obtained 
A.x3z(x =f:. z)(y), and y is free for x in 3z(x =f:. z), so that A.-conversion now 
results in 3z(y =f:. z). It is clear that the latter formula has the right meaning. 

Two theoretical questions may be asked concerning A.-conversion in logical 
systems like this. First, does one, in applying successive A.-conversions to a 
complex formula, always reach a stage at which A.-conversion is no longer 
possible? The answer is that one does; A.-conversion cannot be applied indefi­
nitely. This is by no means a trivial result. There are expressions-though 
as it happens they cannot be formed in the version of the theory of types 
with A.-abstraction dealt with here-in which unlimited A.-abstraction would 
be possible. One example of such an expression is A.x(x(x))(A.x(x(x))), which 
is a kind of Russell paradox in lambda form: [A.x(x(x))/x](x(x)) is 
A.x(x(x) )(A.x(x(x))). 

The second question arises from the fact that in complex expressions, A.­
conversion can often be applied at any of a number of different points. So the 
question is this: from the result reported above, we know that A.-conversion 
must at some point come to a halt. Is this point independent of where we be­
gin? Do different series of A.-conversions always give the same result? The 
answer to this question is affirmative, but qualified. One must allow bound 
variables to be replaced by other variables, just as we have done in the above 
by substituting z for yin 3y(x =f:. y). And the final result is unique only to the 
extent that no notice is taken of such variations in bound variables. This re­
sult, too, is anything but trivial. It does not hold, for example, for the inten­
sional theory of types to be discussed in chapter 5. 

Exercise 10 * 
Let j be a constant of type e; M of type (e, t); and A of type (e, (e, t)). Fur­
thermore, x andy are variables of type e, andY is a variable of type (e, t). 
Reduce the following expressions as much as possible by means of A.-
conversion: 
(i) A.x(M(x))(j) 
(ii) A. Y(Y(j))(M) 
(iii) A.xA.Y(Y(x))(j)(M) 
(iv) A.xVy(A(x)(y))(j) 

(v) A.xVy(A(x)(y))(y) 
(vi) A.Y(Y(j))A.x(M(x)) 
(vii) A. Wx(Y(x))A.y(A(x)(y)) 
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Exercise 11 

It is possible to define the usual connectives and quantifiers using just identity 
and the A.-operator. As an auxiliary notion we give the definition of the tau­
tology T: 

T =ctcr .A.p(p) = .A.p(p) 
where p is a variable of type t. Give the definitions of negation, conjunction, 
and the universal quantifier. 

4.4.3 The A.-Operator and Compositionality 

We have seen how the A.-operator provides us with a formal translation for 
various expressions and constructions from natural language. Now we shall 
briefly indicate how it enables the process of translation to proceed more sys­
tematically, in a sense which will soon become clear. The main purpose of 
translating a natural language into a formal language is to obtain a semantic 
interpretation of the former via the semantics of the latter. For the meaning of 
a correct translation is the same as the meaning of what is translated. In order 
for the semantic interpretation to be satisfactory, however, it is necessary that 
the process of translation comply to certain requirements. Among these, two 
important requirements are that the process be explicit and that it can be speci­
fied in a finite manner. Just as in syntax, the requirement that it be explicit 
means that it may not in any way rely on the knowledge or creativity of the 
translator: it must be such that it could, at least in principle, be automated. 
Furthermore, the translation process, though essentially finite, must translate 
a potentially infinite number of sentences. 

One way of doing this is to stay close to the syntactic rules of the natural 
language in question, which are finite in number. Here we assume that transla­
tions are available for all of the lexical elements of the language, which are 
finite in number. Then for each syntactic rule saying how expressions may be 
combined to form composite expressions we formulate a parallel rule, which 
says how the translations of these expressions may be combined to give the 
translations of the composite expressions. This is strongly reminiscent of the 
principle of the compositionality of meaning, and in fact the resemblance is 
not just a coincidence. For given that translations form semantic representa­
tions of the translated, the compositionality of meaning brings the composi­
tionality of translation in its train. 

Now it should be clear that the way we have translated natural language 
sentences into standard predicate logic up until now is neither explicit nor 
compositional. Consider sentence (35) for example, which would most natu­
rally be translated as (36): 

(35) John smokes and drinks. 

(36) Sj 1\ Dj 
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This way of translating is not explicit, in that essential use is made of out 
knowledge of the meaning of (35), in particular our knowledge of the fact that 
(35) expresses a conjunction of two sentences. And it is not compositional, in 
that no account is given of how the translation (meaning) of (35) is built up 
from the translations (meanings) of John and smokes and drinks, or of how 
the translation of the smokes and drinks is built up from the translations of 
smokes and drinks. Indeed, if all of the translations have to be put into a predi­
cate logical language, it is not possible to account for this, since the phrase 
smokes and drinks cannot be translated into such a language. As we have 
seen, however, adding a A-operator makes such a translation possible. Given 
that the lexical elements of (35) are once again rendered as follows: John: j, 
smokes: S, drinks: D, the phrase smokes and drinks can be rendered as (37), 
while the whole of (35) translates as (38). 

(37) .A.x(S(x) 1\ D(x)) 

(38) .A.x(S(x) AD(x))(j) 

Applying A.-conversion to (38) the familiar sentence (36) may be obtained 
(give or take a few brackets). So the result is the same, but the way it was 
reached is preferable. 

As a second example, take the translation of sentences containing quan­
tified terms. A sentence like (39), for instance, is translated as (40) 

(39) Every man walks. 

(40) 'v'x(M(x) ~ W(x)) 

This translation into standard predicate logic is not compositional either. We 
do not have a separate translation for every man. Using the A.-operator, how­
ever, it is possible to give the phrase a translation of its own (and thus its own 
meaning) in the theory of types. Every man is then translated as (41): 

(41) A. Y'v'x(M(x) ~ Y(x)) 

Here Y is a variable of type (e, t), so that (41) is an expression of type ( (e, t), t). 
As such, its interpretation is (the characteristic function) of some set of sets of 
individuals. In other words, (41) is a second-order predicate expressing 'Y is a 
property which is true of all men'. Applying (41) to the predicate W, the trans­
lation of walk, we obtain (42) as our translation of (39): 

(42) .A.Y'v'x(M(x) ~ Y(x))(W) 

This formula expresses the proposition that the property of being something 
which walks is among the properties of all men. This of course means 'every 
man walks'. Once again, (42) reduces by A.-conversion to the more familiar 
(40). So it is not the result of the translation which is better but the way we 
arrive at it. The A-operator enables us to translate (39) compositionally, from 
the translations of every man and walk. 
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Even the determiner every can be given a separate translation, namely: 

(43) A.XA. Y'v'x(X(x) ~ Y(x)) 

The determiner thus translates as an expression of type ( ( e, t), ( ( e, t), t)). Its 
interpretation may be considered a two-place second-order relation, a relation 
between sets of individuals. A set A bears this relation to a set B just in case all 
elements of A are elements of B. Applying ( 43) to a one-place first -order predi­
cate, for example, M, we obtain the one-place second-order predicate (44): 

(44) A.XA. Y'v'x(X(x) ~ Y(x))(M) 

This is then the compositional translation of the quantified term every man. 
Expression (41) may be recovered by applying A.-conversion to (44). 

The procedure sketched above may also be applied to other quantified 
terms, like a woman, three boys, and the king of France, and to other deter­
miners like a, the, all, two, etc. We shall return to these questions at greater 
length in chapter 6. There a translation procedure for a fragment of the En­
glish language is given, working within the framework of Montague grammar. 

The A.-operator also makes it possible to introduce quantifiers cate­
gorematically instead of syncategorematically. Here we shall restrict our­
selves to first-order quantifiers. The categorematic treatment of higher-order 
quantifiers is completely analogous. We shall introduce the first-order quan­
tifiers 3 and 'v' categorematically by treating them as second-order predicates, 
that is to say, as expressions of type ( (e, t), t). When applied to a first-order 
predicate, then, quantifiers result in a formula. Quantifiers remain logical con­
stants. We must therefore add to the definition of the interpretation function 
clauses that state which elements of D ((e.r).r) are to be taken as the interpreta­
tions of the quantifiers: 

1(3) is that function f3 E {0, 1}C{O,Il"l such that if h E {0, 1}0 , then 
f3(h) = 1 iff there is ad ED such that h(d) = l. 
I('v') is that function fv E {0, 1}C{O.Il"l such that if h E {0, 1}0 , then 
fv(h) = 1 iff for all d ED: h(d) = l. 

In other, simpler, words: 1(3) is (the characteristic function of) the set of non­
empty subsets of D, that is, (the characteristic function of) {A I A k D & A =F 
0}. And I('v') is (the characteristic function of) the set of subsets ofD contain­
ing all elements of D, that is, the set with D as its only element: {D}. For a 
one-place first-order predicate P, the formula 3(P) is true just in case at least 
one thing in the domain is a P. And the formula 'v'(P) is true just in case every­
thing in the domain is a P. 

The A.-operator is now needed in order to turn formulas with a free variable 
v (that is, just the kinds of formulas to which we would normally apply a 
quantifier 3v or 'v'v) into one-place predicates to which the categorematically 
introduced quantifiers 3 and 'v' may be applied. So we write 'v'A.x(A(x)(x)) 
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instead of 'v'x(A(x)(x)), and 3A.x'v'A.y(A(x)(y)) instead of 3x'v'y(A(x)(y)). To 
put it generally: 3A.xcp is to be written instead of 3xcf>, and 'v'A.xcf> instead 
of 'v'xcf>. 

We have interpreted 3 as the set of all nonempty subsets of D. This means 
that the quantifier 3 is equivalent to the expression A. Y3x(Y(x)) in the theory 
of types, which contains the normal quantifier 3x. In just the same way, 'v' is 
equivalent to A. Y'v'x(Y(x)). The expression 3 and the equivalent expression 
A. Y3x(Y(x)) may be seen as logical representations of the quantified term 
something (or someone, if the domain under consideration happens to consist 
only of people). The expression 'v' and thus A. Y'v'x(Y(x)) similarly represent 
the quantified term everything (or everyone). The link with, for example, the 
way the term every man was represented in (41) will be obvious. It is also 
possible to give a categorematic treatment of the expressions in the theory of 
types which correspond to determiners. This raises no new issues, however, 
so we will not pursue it here. It is perhaps important to stress that although we 
now have two apparently different ways of translating something, namely, 3 
and A.Y3x(Y(x)), the two are in fact equivalent, so there is no reason to prefer 
one to the other. Both representations represent the same meaning, so that the 
difference is purely one of notation. 

A last point which we wish to make here concerns representing quantified 
expressions like many, most, few, more than half, etc. These expressions can­
not be represented by means of the quantifiers familiar from standard predi­
cate logic. They can, however, be represented in the theory of types with 
A.-abstraction. But even then there is still an essential difference between, on 
the one hand, those quantifying expressions which may be represented in 
terms of the standard quantifiers, such as all, one, exactly one, at most three, 
more than four, and the like, and on the other hand, the expressions just men­
tioned, which cannot be represented in this manner. This difference may be 
illustrated as follows. Sentences with restricted quantification like a man or 
all boys can always be paraphrased using the corresponding unrestricted 
quantifiers: 

(45) A man is walking. 

(46) All boys are sleeping. 

(47) Something (is a man and walking). 

(48) Everything (sleeps, if it is a boy). 

In the case of restricted quantifiers like many men and most boys, however, 
paraphrases of this sort are quite unsuitable. This is apparent from the follow­
ing example: 

( 49) Many millionaires are happy. 

(50) Many (are millionaires and happy). 
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A paraphrase along the lines of the universal quantifier does no better: 

(51) Many millionaires are poor. 

(52) Many (are poor, if they are millionaires). 

~~rea~ (51) is simply false, (52) is true given that there are relatively few 
m~llwnaires (and _given the meaning of the material implication). The point is 
this: sentences with restricted standard quantifiers may always be reduced to 
~enten~es in which a quantifier, this being a one-place second-order predicate, 
rs applied to some composite first-order predicate. This does not, however, 
apply to sentences in which quantifiers like many, most, and the like are re­
s_tricted. Such sentences may not be reduced to sentences in which the quan­
tifier becomes a one-place second-order predicate which is applied to a 
composite predicate. Quantifiers like many and most are essentially two­
p_lace. This can be proved rigorously, but we will not do so here. Such expres­
~wns must, then, be interpreted as expressions of type ((e, t), ((e, t), t)), that 
~s, _as_ two-place second-order relations. Let us take an example: a set A of 
mdividuals bears the relation more than half to a set B of individuals iff more 
th~ half of ~e el~ments in A are also in B. An extra complication turns up 
With expressions hke many, few, and most. These expressions must likewise 
be interpreted as two-place second-order relations, but it is not obvious ex­
actly which two-place second-order relations they refer to. The proportion of 
A's which must be B's in order for the sentence many A's are B's to be true is a 
highly context-dependent matter. 
T~e analysis of quantified expressions outlined above plays an important 

role m the framework of Montague grammar, which will be introduced in de­
tail in chapter 6. Recently it has inspired a lot of research into the nature of 
quantified expressions which is known as 'generalized quantifier theory'. This 
theory is introduced in chapter 7. 

5 

5.1 Introduction 

The Intensional Theory 
of Types 

This chapter is mainly taken up with an exposition of the intensional theory of 
types, a system obtained by providing the theory of types with an intensional 
semantics. The particular intensional semantics used here differs in several 
respects from that given for modal predicate logic in §3.3.4. We will return to 
these differences, and to the similarities, presently. One reason for dealing 
with this particular intensional theory of types is that we will need it later 
when we come to Montague grammar (see chap. 6). The last section of this 
chapter contains some observations on two-sorted type theory. Like the inten­
sional theory of types, this is an extension of the extensional theory of types 
dealt with in chapter 4. 

5.2 Intensional Constructions and Intensional Concepts 

There is much to be said for the intensional theory of types as an intermediary 
between natural language and its semantic interpretation. As was argued in 
§4.2.1, natural languages contain expressions of very many divergent types. 
Thus a logical language with a type structure is indicated. Furthermore, natu­
ral languages are intensional, containing expressions and constructions which 
create opaque contexts. We saw many examples of these in chapter 3, in par­
ticular in §3.1. Opaque contexts are also known as intensional contexts, and 
the expressions and constructions they give rise to are likewise said to be 
intensional. 

The intensionality of natural language is relevant at several different points. 
To begin with, natural languages contain temporal, modal, and deontic ex­
pressions, all of which involve intensionality. An adequate logical system 
would need to contain expressions corresponding to these. Besides these, 
however, it would also need expressions which refer directly to intensional 
entities like propositions, individual concepts, and properties. For natural lan­
guages clearly contain such expressions too. As an example of such an ex­
pression, consider 

(1) John asserts that the Dutch queen resides in the Hague. 
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Now the expression assert in (I) cannot stand for a relation between an indi­
vidual, in this case John, and a sentence, in this case: 

(2) The Dutch queen resides in the Hague. 

For ( l) may well be true without John bearing any special relation to this or 
any other English sentence. He need not have written it, pronounced it, or 
anything else along these lines. John might be an illiterate Welshman who 
wouldn't know an English sentence if he saw one and still assert that the Dutch 
queen resides in the Hague. He might do so, for example, by pronouncing the 
words Mae brenhines yr I salmaen yn byw' n yr H iig, this being the Welsh trans­
lation of (2). This strongly suggests that assert is a relation, not between indi­
viduals and sentences, but between individuals and propositions. In particular, 
(1) says that John bears this relation to the proposition expressed not only by 
(2) but also by its Welsh translation and by the following sentence 

(3) The female monarch of Holland lives in the Hague. 

In sentence (1), then, the expression John refers to an individual and that the 
Dutch queen resides in the Hague refers to a proposition, while assert refers 
to a relation between individuals and propositions. This is of course not to say 
that the truth of (l) may not involve John in certain relations to particular sen­
tences. Typically, in asserting a proposition, one must say, write, shout, or 
otherwise utter some sentence which expresses that proposition. The point is 
just that (1) itself is not about uttering but about asserting. 

If a logical theory is to provide representations of sentences which refer to 
intensional entities like propositions, then it will need expressions which 
stand for such entities. The expression that the Dutch queen resides in the 
Hague refers to a proposition, and a compositional rendering of the meaning 
of (1) will require a logical theory with the capacity to refer to propositions. 
Examples similar to (1) may be constructed to show that logical expressions 
referring to individual concepts and to properties will also be needed. 

We saw in § 1.8 that propositions, individual concepts, and properties are 
the intensions of sentences, terms, and predicates, respectively. The concept 
of intension, which may be defined in terms of multiple reference, is the for­
mal pendant ofFrege's notion of Sinn. It lies at the very core of the concept of 
meaning. Where intensional semantics enables us to define intensional con­
cepts, the intensional theory of types now provides us with expressions by 
means of which we may refer to these. 

5.3 Syntax 

In defining the syntax of the intensional theory of types, we begin, as usual, 
by spelling out the possible types: 
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Definition l 

T, the set of types in intensional type theory, is the smallest set such that 

(i) e, t E T. 
(ii) If a, b E T, then (a, b) E T. 
(iii) If a E T, then (s, a) E T. 

Just as in extensional type theory, we have e and t as our two basic types, e 
once again being the type of those expressions that refer to entities, and t 
being the type of those expressions that refer to truth values. Clause (ii), too, 
is as usual; what is new is clause (iii). This clause enables us to form a new 
type (s, a) from an arbitrary type a. Note that s is itself not a type; its only 
purpose is to enable us to form new composite types. There are, then, no ex­
pressions of 'type' s. This restriction is done away with in the two-sorted the­
ory of types, which is dealt with briefly in §5.8. A type (s, a) can of course be 
used in the construction of yet other composite types, according to clauses (ii) 
and (iii). Expressions of type (s, a) will be seen to refer to functions from 
possible worlds to entities of type a. Such expressions thus refer to intensional 
entities. 

The vocabulary of any particular intensional, type-theoretical language L 
consists once again of a part shared by all such languages, together with a 
number of symbols which are peculiar to it. The shared part is: 

(i) for every type a, an infinite set YAR, of variables of type a 
(ii) the connectives/\, v, -->, •, <-+ 
(iii) the quantifiers V and 3 
(iv) the identity symbol = 
(v) the operators 0, <>,A, and v 
(vi) the brackets ( and ) 

The part which is peculiar to L consists of: 

(vii) for every type a, a (possibly empty) set CON; of constants of type a 

Just as in ordinary type theory, we must take care not to confuse constants and 
variables of different types. To this end we will observe notational conven­
tions already introduced and introduce new ones where needed. 

The syntax may now be defined along the lines of ordinary type theory. 
Novel in comparison with definition 2 of §4.2.2 are clauses (vi), (vii), (viii), 
and (ix): 

Definition 2 

(i) If a E VARa or a E CON;, then a EWE;. 
(ii) If a E WEta.b> and j3 EWE;, then (a(j3)) E WE~. 
(iii) If <f>, 1/J EWE~, then •</>, (</> 1\ 1/J), (</> v 1/J), (</>--> 1/J), and(</><-+ 1/J) 

EWE~. 
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(iv) 
(v) 
(vi) 
(vii) 
(viii) 
(ix) 
(x) 

If cf> EWE~ and v E VAR., then Vvcf>, 3vcf> E WEL. 
If a, {3 EwE;, then (a= {3) EWE~. I 
If a E WEL and v E VARb then A.va E VAR 

a ' (b a)· 
If cf> E WE~, then Dcp, Ocf> E WE~. . 
If a E WEL, then /\a E WEL a (s,a)" 
If a E WEt.a>' then Va EWE}. 
Every element of WE; for any a is constructed in a finite number of 
steps using (i)-(ix). 

C~ause (vii) introduces the modal operators D and 0 in the usual manner. We 
will not go t~ the tr~uble of also introducing temporal operators, since this 
would compl~~~te thmgs unnecessarily. We will briefly return to them later 
on. Claus~ (vm) serves to ~troduce an operator A, read 'cap' or 'up', which 
when apphed to an expressiOn of any type a results in a new expression of type 
(s, a). As will become apparent when we get around to the semantics an ex­
pression Aa refers to the intension of a. For example if "' E WEL then 
1\A,. E WEL , 'I' I , 

'I' <s.1>· Thus where cf> refers to a truth value, Acf> refers to a function 
eo~ possible _worlds into truth values, that is, to a proposition. The operator 

mtroduc~d I~ ~la~se (ix), read 'cup' or 'down', may only be applied to 
an expression If It IS of some intensional type (s, a). If a E WEL the 
v E WEL \11 '11 . . (s.a)' a 

a a· ·~e WI see that m any giVen possible world w, v a refers to the 
re~ult of appl~mg a:s reference in w tow. Obviously this only makes sense if 
a IS of ~orne mtenswnal_ type and as such refers to a function from possible 
worlds mto some domam or other. Two examples: if a E CONL th 
v E WEL 1\ (s,e), en 

a e (and Va E WEt .• )). Furthermore, if cf> E WEL, then 
Acf> E WEt.~>· and thus v Acf> E WE~. ' 

Exercise 1 * 
(a) Letj ~ WE~,j E WErs.•>• ME WEhs.e),l)• and ME WEr •. ~>· Which of the 

followmg sequences of symbols are well-formed expressions of the lan­
guage of intensional type theory? 
(i) M(Aj) 
(ii) M( A j) 
(iii) M( 1\ j) 
(iv) M(Vj) 
(v) M(AM) 
(vi) M(AVj) 
(vii) M(V Aj) 
(viii) M( 1\ Vj) 
(ix) V(M(j)) 
(x) v M(j) 
(xi) A(M(j)) 
(xii) A(M(j)) 
(xiii) 1\ Aj 
(xiv) M(V AAj) 
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(b) What is the type of a in each of the following four cases: 
(i) p E WE~ and a( Ap) E WE~ 
(ii) j E WE; and a(Aj) E WE~ 
(iii) j EWE; and A.a(Va(j))(a) EWE~ 
(iv) p E WEL and Va( 1\ Vp) E WEL 

~~ e 

5.4 Semantics 

The first step in providing the intensional theory of types with a semantics 
again consists of specifying domains of interpretation appropriate to the dif­
ferent types we have at our disposal. What is new is that we are now dealing 
with intensional types, that is to say, with types of the form (s, a). An expres­
sion of any intensional type (s, a) is to be interpreted as a function mapping 
possible worlds to elements of the interpretation domain corresponding to 
type a. Hence, we define the interpretation domains for expressions of the 
various types on the basis of some domain of individuals D and a set of pos­
sible worlds W. This definition of the interpretation domain of expressions of 
type a with respect to a domain D and a set W of possible worlds, which we 
write as Da,D,w• runs as follows: 

Definition 3 

(i) 
(ii) 
(iii) 
(iv) 

D •. o.w = D 
DI,D,W = {0, 1} 
D = DDa,O,W (a.b),D,W b,D,W 
D -Dw (s,a),D,W - a,D,W 

Wherever possible, the subscripts D and W will be left out. The first three 
familiar clauses state that here too expressions of type e refer to entities, while 
expressions of type t refer to truth values, and expressions of functional types 
(a, b) refer to functions from things of type a into things of type b. It is only 
in the new clause (iv) that the set W of possible worlds is really involved. 
D<s.a) = D ':,which is the set of all functions with Was their domain and D a as 
their range. An example: D (s,l) = D ': = {0, 1} w = the set of all functions from 
possible worlds to truth values. An expression of type (s, t) thus refers to a 
function from possible worlds to truth values. Functions of this kind will be 
called propositions. Thus D <s.l) is the set of propositions. A second example: 
D<s.(e.l)) = D~.~> = ({0, 1}0 )w: the set of functions from possible worlds 
to (characteristic functions of) sets of individuals. An expression of type 
(s, ( e, t)) thus refers to a function from possible worlds to sets of individuals. 
Now sets of individuals serve as the interpretations of predicates, and a predi­
cate refers in different worlds to different sets. This multiple reference of a 
predicate may be seen as a function from possible worlds to sets of individu­
als, and this function may be thought of as the predicate's intension. Any such 
intension will be called a property. Thus D <s.(e,l)) is the set of properties of 
individuals, and expressions of type (s, (e, t)) refer to properties of individu-

I 
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Table 5.1 Intensional Types and Interpretations 

Type 

(s. e) 
(s. t) 
(s. (e, t)) 
(s, (e. (e. t))) 

(s, ((e. t), t)) 
((s, e). t) 

(s, ((s, e), t)) 

((s, t), t) 

llllerprelation 

Function from worlds to entities, that is, an individual concept 
Function from worlds to truth values, that is, a proposition 
Function from worlds to sets of entities, that is, a first-order property 
Function from worlds to functions from entities to sets of entities, that 

is, a two-place first-order relation 
Function from worlds to sets of sets of entities 
Function from individual concepts to truth values, that is, a (character­

istic function of a) set of individual concepts 
Function from worlds to sets of individual concepts, that is, a property 

of individual concepts 
Function from propositions to truth values, that is a (characteristic 

function of a) set of propositions 

als. We shall have more to say on the relationship between predicates and 
properties, and more generally on the relationship between reference and in­
tension, once we have dealt with the models of the intensional theory of types. 
Table 5.1 contains more examples of the interpretations of expressions of 
types involving s (examples of types not involving s are to be found in table 
4.2). The italicized terms in table 5.1 are expressions commonly used for the 
intensional entities in question. 

A model M for an intensional type theoretical language L consists of a non­
empty set D, its domain, a nonempty set W of possible worlds, and an inter­
pretation function I. As in §3.3.4, we have thus chosen to deal with a single 
domain. This is not the only course open to us, since we might also introduce 
an accessibility relation between the worlds. We will take every world to be 
accessible from itself and from every other world, however, choosing R as the 
universal relation including every pair of worlds in W. Then the semantics 
may be defined avoiding all mention of R (as it indeed will be defined), the 
modal system thus obtained being S5 (see §2.3.2). But obviously R might just 
as well have been chosen differently. 

Next, the interpretation function I assigns an interpretation to each constant 
in the type-theoretical language L. In extensional logical systems like the type 
theory dealt with in chapter 4, the interpretation of a constant of type a is 
always an element of D •. In an intensional system like the present one, how­
ever, this will not do. We want the interpretations of expressions, for ex­
ample, the truth value of a given formula, to be able to vary from world to 
world. Thus the references of the constants must be able to vary from world 
to world. To this end, the interpretation function I assigns to each constant a 
function which gives, for each world, the interpretation of that constant in that 
world. That is, if a is a constant of type a, then I(a) ED;:", i.e., I(a) is a 
function mapping possible worlds onto elements of D •. l(a)(w) is thus an ele­
ment of D., namely, the reference of a in w. Note how this differs from the 
way things were set up in modal predicate logic in §3.3. There it was only the 
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predicates that were allowed to vary their interpretations from world to world. 
Individual constants were treated as rigid designators, their references being 
the same in every world. Here that is not the case. Constants of type e are 
allowed to refer to different entities in different worlds. Of course, individual 
constants might have been treated as rigid designators simply by stipulating 
that for every constant a of type e, I(a) is a function which takes the same 
value in every world, that is, a constant function. Besides this way of inter­
preting the constants, we also make use of assignments g in order to interpret 
the variables. As usual, if v is a variable of type a, then g(v) is an element 

of D •. 
Given this definition of models M and assignments g, we can define 

[a]M,w.g in the usual inductive manner. We refer to [a]M,w,g as the extension 
(the reference) of a in w, given M and g. The definition runs as follows: 

Definition 4 

(i) If a E CON;, then [a]M,w.g = I(a)(w). 
lf a E VAR., then [a]M,w,g = g(a). 

(ii) If a E WEra.b) and {3 E WE;, then [a({3)]M,w,g = [a]M,w,g([f3]M,w,g). 
(iii) If cp, t./1 E WE~, then [•<f>]M,w,g = 1 iff [</>]M,w.g = 0. 

[cp 1\ t./J]M,w,g = 1 iff [cp]M,w,g = [t./J]M,w,g = 1. 
[cp V t./J]M,w.g = 1 iff [cp]M,w.g = 1 Or [t./J]M,w,g = 1. 
[cp ~ t./J]M,w,g = 0 iff [cp]M,w,g = 1 and [t./J]M,w.g = 0. 
[cp +-+ t./J]M,w,g = 1 iff [cp]M,w.g = [t./J]M,w,g· 

(iv) If cp EWE~ and v E VAR., then 
[Vv<f>]M,w,g = 1 iff for all dE D.: [</>]M,w,g[v/dl = 1. 
[3v<f>]M,w.g = 1 iff for some dE D.: [</>]M,w,g[vtd] = 1. 

(v) If a, {3 E wE;' then [a = f3]M,w,g = 1 iff [a]M,w,g = [f3]M,w,g· 
(vi) If a E WE; and v E VARb, then [A.va]M,w,g is that function h E D?• 

such that for all d E Db: h(d) = [a]M,w.gfvidf· 
(vii) If <P EWE~, then 

[D<f>]M,w.g = 1 iff for all w' E W: [<f>]M,w',g = 1. 
[<><P]M,w.g = 1 iff for some w' E W: [<P]M,w',g = 1. 

(viii) If a EWE;, then [Aa]M,w,g is that function hE D;:" such that for all 
w' E W: h(w') = [a]M,w',g· 

(ix) If a E WETs. a)' then [V a]M,w,g = [a]M,w.g(w). 

Just as in definition 4 of §4.2.3, we are now in a position to define the con­
cepts of truth relative to M, universal validity, and equivalence. The same 
remarks apply here as there. What are new in comparison with the interpreta­
tion of the extensional theory of types are the clauses (i), (vii), (viii), and (ix). 
ln (i), the extension of a constant a in a world w is defined as the result of 
applying the interpretation of a to this world w. Clause (vii) defines the truth 
value of formulas with modal operators: D<P is true in w just in case <P is true 
in all worlds, and <><P is true in w just in case <P is true in at least one world. 
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Clause (viii) defines the extensions of expressions of the form A a. Each of 
the expressions is of some intensional type (s, a), and its domain of interpreta­
tion is, according to definition 3, the set of functions D w which consists of all 
functions mapping worlds onto things of type a. In any ~iven world w, Aa is 
interpreted as that function from worlds to extensions which, when applied to 
any world w', takes the extension of a in w' as its value. An example will 
make this more tangible. If cp is a formula, then Acf> is an expression of type 
(s, t). The extension (or reference) of Acp in w is that function from worlds to 
truth values which when applied to any given world takes the truth value of cp 
in that world as its value: [Acf>]M,w,g is that function h E {0, l}w such that: 
h(w') = [cf>]M,w',g, for all w' E W. The expression Acf> is thus interpreted as 
the proposition expressed by cp. Note that the reference of Acf> is the same in 
every world w. This means that A Acf> is a constant function from worlds to the 
proposition expressed by cp. Indeed, it is only because of this fact that we may 
speak of the proposition expressed by cp: the proposition expressed by cp does 
not vary from world to world. 

Here is a second example. If M is a one-place first-order predicate constant, 
that is to say, it is of type (e, t), then AM is oftype (s, (e, t) ). The extension 
of AM is that function from worlds to sets of entities which, when applied to a 
world w', takes as its value the extension ofM in w': [AM]M,w,g is thus that 
h E D~.t) such that for all w' E W, h(w') = [M]M,w',g· The expression AM 
thus refers to the property expressed by the predicate letter M. 

Clause (ix) defines the extensions of expressions of the form v a. The ex­
pression a is then always of some intensional type (s, a), and its extension is 
always a function from worlds to D a. The expression v a itself is of type a, 
and its extension is thus some element of D a. In (ix) it is stipulated that the 
extension of v a in w is that element of D a which may be obtained by applying 
the extension of a in w tow: [V a]M,w.g = [a]M,w,g(w). Let us once again turn 
to an example: Let m be a constant of type (s, e). Its extension is a function 
from worlds to individuals. Let us just suppose that for a certain w [m]M,w,g 
(=I(m)(w) according to clause (i)) is that function which indicates the most 
powerful individual in each possible world; we shall call this the top-dog func­
tion. The extension of Vm in w is now obtained by applying [m]M,w,g tow: 
[v m]M,w.g = [m]M,w,g(w). The extension of v min w is the top dog ofw, or the 
most powerful individual in w. Note that the extension of m may vary from 
world to world. We stipulated that m was to refer to the top-dog function in w, 
but that says nothing about the extension of m in any other world w': there i1 
might be any other individual concept, say the individual concept which indi­
cates the richest individual in each world. 

Here is a second example. The expression AM is of type (s, (e, t)) and has 
as its reference, as we have seen, the property expressed by M. The expres­
sion v AM is of type (e, t). Its extension in any world w is obtained by apply­
ing AM's extension in w tow: [VAM]M,w,g = [AM]M,w,g(w). The extension of 
AM is that function whose value in any world is the extension of M in that 
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world; thus [AM]M,w,g(w) = [M]M,w,g· One difference between this example 
and the preceding one is that while the extension of m may depend on w, the 
extension of AM is independent of w. The statement that the property AM 
belongs to an individual j in a world w amounts to saying that j belongs to that 
set of entities which is the value of AM in w. Now v AM's reference in w is 
just that set, so that the above statement may be rendered as v AM(j). As we 
will see in §5.5, where we return to the interaction between A and v, this is 
equivalent to the simpler formula M(j). 

Definition 4 defines the extensions of expressions, and we will now define 
their intensions. It should be clear from the foregoing that the intension of a 
can be defined in terms of its multiple reference, that is, the various deno­
tations it has in different worlds. This means that a's intension may be de­
fined in terms of its extension. The intension of a in M relative to g, written 
IntM,g(a), is then defined as follows: 

Definition 5 

If a EWE;, then IntM,g(a) is that hE D;;"' such that for all w' E W: h(w') = 
[a]M,w',g· 

Definition 5 is such that the extension of a in a world w is the result of apply­
ing the intension of a to that world w. That is, IntM,g(a)(w) = [a]M,w.g· Ac­
cording to clause (i) of definition 4, for a constant a we have [a]M,w.g = 
I(a)(w). This means: IntM,g(a) = I( a). We see that constants are interpreted 
intensionally. 

Comparing the definition of intensions with clause (viii) of definition 4, we 
see that the extension of Aa is just the intension of a. That is, [Aa]M,w,g and 
IntM,g(a) have been defined in such a way that they are one and the same func­
tion. What this means is that given any expression a, the A-operator enables 
us to form an expression Aa whose extension is a's intension. This means that 
the A-operator provides expressions referring to the various kinds of inten­
sional objects which are the intensions of different expressions. Thus there­
quirement mentioned in§ 5.2 has been met. 

The following fact is worth mentioning. By definition, the familiar prin­
ciples of extensionality do not apply in intensional logic. That is, in an inten­
sional system we do not have: 

(4) a = {3 F= y = [{3/a]y 

(In the theory of types, placing the identity sign = between any two expres­
sions of the same type gives rise to a formula. Thus (4) expresses the principle 
of extensionality quite generally, covering substitution of formulas, predi­
cates, terms and so on.) In intensional logic expressions with the same inten­
sion may be substituted for one another without changing the truth value of a 
formula. The intensional theory of types provides expressions which denote 
intensions, and it may happen that two such expressions denote the same in-
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tension. If Aa and Af3 denote the same intension, then a and {3 may freely be 
substituted for one another. That is to say, the following theorem can be 
proved: 

Theorem 1 

A a= 1\ f3 F= y = [{3/a]y 

Table 5.2 gives the extensions and intensions of various kinds of expressions 
by way of illustration. Note the following regularity: the extension of an ex­
pression of type (s, a) is the intension of some expression of type a. Note also 
the way the intensions and extensions of various expressions with and without 
A and v are related. 

Exercise 2* 

Consider the following model M: D ={a, b, c, d} and W = {w 1, w2 , w3}. Let 
j and m be constants of type e. In w 1 and w2 j denotes a, in w3 it denotes b; m 
denotes c in all w. M is a constant of type (e, t). In w1 M is true of a and b, in 
w 2 of c and d, and in w 3 of no individual. M is a constant of type (s, ( e, t)). In 
w1 and w2 M denotes the property which M expresses, and in w3 it refers to 
the property which holds of all entities. 
(a) Write down the interpretation function I of M. 
(b) Determine the following values: 

(i) [j]M,w
2
,g 

(ii) [Aj]M,w,.g 

(iii) [ Aj] M,w,.g 

(iv) [M(j)]M,w,.g 

(v) [V M]M,w,,g 

(vi) [V M(j)]M,w,,g 

(vii) [V M(j)]M,w,,g 

(viii) [M = AM]M,w,.g 

(ix) [V M = M]M,w,,g 
(c) Decide whether the following formulas are valid in M: 

(i) O(M= AM); 
(ii) 0(V M = M); 
(iii) 3xO(m = x) 

Exercise 3 

Let x, y be variables of type (s, e), andj and m be constants of the same type. 
Further, let x be a variable of type e, and j a constant of that type. Determine 
which of the following formulas are valid: 
(i) Vx'r/y(x = y-> O(x = y)) 
(ii) j = m-> O(j = m) 
(iii) 3xO(x = j) 
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(iv) 3xD(x = Aj) 
(v) 3x0( Ax = j) 
(vi) 3xD(x = v j) 
(vii) 3xD(x = v j) --> 3x0(x = j) 

5.5 The Operators A and v 

As we have seen, 1\a denotes the intension of a. That is, for any M, w, and g 
we have: 

(5) [Aa]M,w.g = IntM,g(a) 

The denotation of v a in any world w is the extension of a in w applied to w: 
[v a]M,w.g = [a]M,w,g(w). So now the question arises as to how the operators A 
and v interact with one another. 

First we tum to v A. The expression v A a de-notes, in w, the result of apply­
ing the intension of a to w. This is because [V Aa]M,w.g = [Aa]M,w,g(w), 
which, given (5) is just IntM,g(a)(w). Applying the intension of a to w, we 
obtain the extension of a in w. Thus lntM,g(a)(w) = [a]M,w.g· We have thus 
demonstrated that [V Aa]M,w,g = [a]M,w,g· Since the above argument applies to 
any a, M, w, and g, we have now proved the following theorem: 

Theorem 2 

v Aa is equivalent to a. 

This means that a may always be written in place of v Aa. The same does not, 
however, apply to Ava. This may be demonstrated by means of the following 
rather abstract example. Let M be a model with two worlds, w 1 and w2. Con­
sider the constant p of type (s, t). The extension of pis thus a proposition. We 
may assume the extension of p in w 1 to be that proposition k which has the 
truth value 1 when applied to w 1 and the truth value 0 when applied to w 2. We 
may furthermore stipulate that the extension of p in w2 is that proposition k' 
which has the truth value 0 when applied to w 1 and the truth value 1 when 
applied to w2: That is to say: 

I(p)(w 1) = k 
k(w 1) = 1 
k(w 2) = 0 
I(p)(w2) = k' 
k'(w 1) = 0 
k'(w2) = 1 

Now we have [AVp]M,w,.g -:f:- [p]M,w,.g· This may be seen as follows (sub­
scripts M and g have been dropped for legibility's sake): 

[AVp]w, = that function h E {0, l}w such that for all w' E W: 
h(w') = [Vp]w' 
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Exactly which proposition h is may be determined as follows: 

h(w 1) = [Vp]w, = [pL,(w 1) = I(p)(w 1)(w 1) = k(w 1) = 1; 
and 
h(w2) = [Vp]w

2 
= [pL

2
(W2) = l(p)(w2)(w2) = k'(w2) = 1 

129 

The proposition h is thus that function from worlds to truth values which takes 
1 as its value in each and every world. It is always true. But [p L, is not this 
invariably true proposition; it is I(p )( w 1) = k. And k and h are different prop­
ositions. Thus [A v p Dw, -:f:- [p Dw,, which serves as a counterexample to the 
equivalence of 1\ v a and a. 

This rather abstract example can be made a little more tangible. Let us as­
sume the sentence Mary is coming to be true in w 1 and false in w 2. The propo­
sition k may then be seen as the proposition expressed by this sentence; it is 
the proposition that Mary is coming. The proposition k' is expressed by the 
sentence Mary is not coming. It is the proposition that Mary is not coming. 
According to our stipulation above, the extension of the constant p in w 1, the 
world in which she is coming, is the proposition that Mary is coming, while 
the extension of this constant in w 2, the world in which she is not coming, is 
the proposition that Mary is not corning. This makes p a suitable representa­
tion of the expression whether or not Mary is coming as it appears in (6): 

(6) John knows whether or not Mary is coming. 

For consider the following two valid arguments: 

(7) John knows whether or not Mary is coming. 
Mary is coming. 

John knows that Mary is coming. 

(8) John knows whether or not Mary is coming. 
Mary is not coming. 

John knows that Mary is not coming. 

The validity of (7) and (8) shows that given that Mary is coming, the exten­
sion of whether or not Mary is coming is the proposition that Mary is corning, 
that is to say, k; while given that she is not coming, the expression has as its 
extension the proposition that she is not coming, that is to say, k'. And p is 
just the expression which meets these requirements. The expression whether 
or not Mary is coming thus serves as a natural language example of an expres­
sion a for which 1\ v a =t- a. 

There are, of course, expressions a for which 1\ v a and a are equivalent. 
The counterexamples which we have just seen exploit the fact that expressions 
may in general have different extensions in different worlds. And indeed, if a 
is an expression which allows no such variation in its extension, then Ava 
and a tum out to be equivalent. One kind of expression whose extension may 
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not vary from world to world is the variable: its extension depends only on the 
assignment under consideration. Another example, as we have seen, is any 
expression of the form Af3: thus A v Af3 is always equivalent to Af3 (a fact 
which also follows from theorem 2). More generally, we may define a class of 
expressions whose extension does not vary from world to world, the class of 
intensionally closed expressions: 

Definition 6 

ICEL, the class of intensionally closed expressions in L, is the minimal subset 
of WEL such that: 

(i) If v E VAR., then v E ICEL. 
(ii) If a EWE;, then Aa E ICEL. 
(iii) If<{> EWE~, then 0<{>, 0<{> E ICEL. 
(iv) If a is constructed from elements from ICEL using only connectives, 

quantifiers, and the A.-operator, then a E ICEL. 

It should be noted that where accessibility relations R other than the universal 
relation are allowed, the extensions of O<f> and <><{> may differ from world to 
world. In that case, the extensions of O<f> and <><P will be invariant from world 
to world only if the extension of <P is. Defi~ition 6 is then subject to the appro­
priate modifications. 

We can now state the following theorem: 

Theorem 3 

If a E ICEL, then [a]M,w,g = [a]M,w',g• for all M, w, w'. 

We shall not prove this theorem here. As an immediate consequence of the­
orem 3 we have: 

Theorem 4 

If a E ICEL, then Ava is equivalent to a. 

Finally, note that theorems 3 and 4 go in one direction only: membership of 
ICEL in both cases is a sufficient condition, but not a necessary one. For ex­
ample, the relevant properties hold for all valid formulas, too, but not all valid 
formulas are elements of ICEL. 

Exercise 4 

Suppose [q]M,wjw) = 1 for all w, and [q]M,w
2
_g{w) = 0 for all w. Is [qL a 

constant function? And are A v q and q equivalent? 

ExerciseS* 

Prove theorem 4 for the case that a is a variable (of some intensional type 
<s, a)). 
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Exercise 6 

Suppose we define an accessibility relation Ron Was follows: for all w, w 1: 

wRw0 and if wRw 1, then w 1 = w0 • Does this necessitate a modification of 
definition 6 in order for theorem 3 to remain valid? If so, what is this modi­
fication? If not, why not? 

5.6 A.-Conversion 

A final matter concerning the intensional theory of types which we shall now 
turn to is the determination of the conditions under which application of A.­
conversion leads to an equivalent result. Recall that the corresponding condi­
tion in the case of extensional type theory was that no free variables become 
bound in the process of conversion (see theorem 1, §4.4.2). Clearly this con­
dition remains in force. Over and above it, however, another condition has to 
be formulated for the intensional theory of types, a condition which has to do 
with the fact that we are now dealing with expressions whose extensions may 
vary from world to world. 

The following informal example will serve as an illustration. Consider the 
expression A.x3y0(x = y) (in which x andy are variables of type e). It ex­
presses a property of entities, namely, the property that an entity d has if there 
is some entity which is necessarily, that is to say, in all possible worlds, iden­
tical to d. Now of course all entities have this property, since they are all nec­
essarily identical to themselves. This means that the formula A.x3y0(x = 
y)(j) (in which j is a constant of type e) is always true. Applying A.-conversion 
to it, we obtain the formula 3y0(j = y). This formula is true just in case there 
is an entity which, in any given possible world, is identical to whatever entity j 
has as its extension in that world. And that is so only if j is a rigid designator, 
in other words, if j denotes the same entity in every world. But this is not 
guaranteed: the extension of j may well vary from world to world in a model, 
which means that the truth of 3y0(j = y) is not guaranteed either. Thus this 
is a case where A.-conversion does not lead to an equivalent result. 

We have just seen how problems can arise if an expression which is not 
intensionally closed is placed by A.-conversion within the scope of an inten­
sional operator, such as 0, <>, or A. (Treating individual constants as rigid 
designators would remove the above example, but other counterexamples in­
volving, say, predicate constants could easily be generated.) Theorem 5 pro­
vides two conditions under which A.-conversion may freely be applied: 

TheoremS 

A.vf3(y) is equivalent to [y/v]/3 if 

(i) all free variables in y are free for v in {3; and 
(ii) either y E ICEL, or no free occurrence of v in {3, lies within the scope 

of 0, <>,or A_ 
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Note that, again, the theorem states a sufficient condition only, for the very 
same reason that theorems 3 and 4 did. For reasons mentioned in §4.4, 
.\-abstraction has an important part to play if the intensional theory of types is 
to be applied as a formalism for the representation of natural language. The 
process of .\-conversion then enables us to reduce some long and complex 
formulas to relatively short and simple ones. Theorem 5 assures us that, for 
example, .\xV X(x)(j) and v X(j) represent the same meaning. 

Exercise 7* 

Let j be a constant of type e; j of type (s, e); M of type (e, t); M of type 
(s, (e. t) ), and B of type ((s, e), ((s, e), t) ). Let x andy be variables of type 
e; x, y, and z of type (s, e), and X of type (s, (e, t) ). Reduce the following 
expressions as much as possible using theorems 2, 4, and 5: 
(i) .\X(VX(j))(M) 
(ii) .\x.\X(VX(x))(j)( AM) 
(iii) .\x.\XD(VX(x))(j)( AM) 
(iv) .\X.\xD(VX(x))( AM)(j) 
(v) .\xA(M(x) I\ VM(x))(y) 
(vi) .\x.\yD(B(x )(y ))( Aj)U) 
(vii) .\y(.\xA3x(B(x)(y) I\ Ax = y)(A v z))( Ax) 

Exercise 8 

Assume that descriptions are analyzed, not in the Russellian way, but by 
means of the 1-operator (see vol. 1, §5.6). And suppose we want to express 
the de re statement that the unique individual that has the property F neces­
sarily has the property G. What is wrong with the formula DG(1xFx)? Try to 
give a better formalization, using both the .\-operator and the 1-operator. 

5. 7 Temporal Operators 

The intensional theory of types dealt with in the preceding pages is practically 
identical to Montague's system IL, which is applied in Montague grammar. 
The difference is that IL also includes temporal operators. In fact, IL is a 
straightforward extension of our formalism in which the temporal operators P, 
F, H, and G are added to the syntax. The semantics is adapted by adding to 
the models a set of temporal moments T linearly ordered by a relation < (see 
§2.4). The interpretation domains come to depend on T. Only in clause (iv) of 
definition 3 (§5 .4), however, does this make any real difference. This clause 
becomes: 

(v) D(s,a),D,W,T = n:-;.~,T 
W X Tis the set of all ordered pairs (w, t), in which w is a world and t a moment 
in time. The contexts are thus no longer just possible worlds; they have be­
come possible worlds at particular moments in time (see §2.5). Expressions of 
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an intensional type (s, a) thus come to denote functions from worlds at times 
to things of type a. To a constant the interpretation function I assigns a func­
tion which gives, for each world at a time, the denotation of that constant in 
that world at that time. If a is a constant of type a, then I( a) E D:'xT_ 

The definition of extension now features pairs (w, t) instead of simple 
worlds w. The only real difference this makes is in clauses (vii), (viii), and 
(ix) of definition 4 in §5.4. The new versions of these clauses are as follows: 

(vii') If <f> E WE~, then [D<f>]M,(w,t),g = 1 iff for all w' E W and all t' E T: 
[</>]M,(w',t').g = 1. 

(viii') If a EWE~, then [Aa]M,(w,t),g is that function hE D:'xT such that for 
all w' E Wand all t' E T: h((w', t')) = [a]M,(w'.t').g· 

(ix') If a E WEt.a)' then [Va]M,(w,t),g = [a]M,(w,t),g((w, t)). 

Note that according to clause (vii'), D now means necessarily at all times. 
This interpretation is different from the one in §2.5, in which modality was 
relativized to a moment in time. As we then pointed out, there is a great deal 
of freedom to define these things just as one wishes. Definition 4 still needs to 
be supplemented with clauses for the temporal operators, but since these are 
completely straightforward, they are left out. 

The definition of intension, finally, needs adaptation in the obvious manner: 
intensions have now become functions from worlds at times to extensions. 

Other extensions besides this one are possible too. Some of them were dis­
cussed in §3.4. 

5.8 Two-Sorted Type Theory 

This section, which is not required for a full understanding of chapter 6, is 
concerned with the two-sorted theory of types. Just like the intensional theory 
of types, the two-sorted theory of types is an extension of the standard exten­
sional theory of types dealt with in chapter 4. Here too, possible worlds will 
play an important part, but they will be introduced in a different manner. Here 
they are introduced as a second kind of entity which may be treated in the 
same manner as the 'normal' entities in the domain. (Thus, two-sorted type 
theory is a many-sorted logic, in the sense of volume I, chapter 5.) In spite of 
the essential part played by possible worlds, two-sorted type theory, unlike 
intensional type theory, is an extensional system in the sense that it observes 
the extensionality principles familiar from predicate logic and standard type 
theory. The main reason for dealing with it here is that it can lead us to a better 
understanding of intensional type theory. 

In intensional type theory s, unlike e and t, is not a basic type; it is purely a 
technical device enabling the construction of composite types of the form 
(s, a). In two-sorted type theory, on the other hand, sis treated as a basic type 
just like e and t. The set T2 of types for two-sorted type theory is defined as 
follows: 
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Definition 7 

T2 is the minimal set such that: 

(i) e, t, s E T2. 
(ii) If a, b E T2, then (a, b) E T2. 

The set T of types for intensional type theory is a proper subset of T2. Thus, 
for example, both sand (e. s) are contained in T2 but not in T. Expressions of 
type s denote possible worlds of course. The domains of interpretation corre­
sponding to the various types, given a domain D of entities and a set W of 
possible worlds, may be defined as follows: 

Definition 8 

(i) 
(ii) 
(iii) 
(iv) 

D,.o,w = D 
D,,D,W = {0, 1} 
Ds,'),W = W 
D = DD,,o,w 

(a,b),D,W b,D,W 

Note that the domain of interpretation corresponding to an intensional type 
(s, a) is not determined in a separate clause, as it is in intensional type theory 
(see definition 3), but falls under clause (iv). Such types are now generated by 
clause (ii) of definition 7, since s is now itself a type. And given that, accord­
ing to clause (iii) in definition 8, D s = W, clause (iv) gives D < > = D w. The 
result, then, is just the same as in intensional type theory. s.a a 

Now that s is just a normal type, we can have variables and constants of 
type s. Such expressions thus denote possible worlds. Also, it becomes pos­
sible to quantify and to abstract over possible worlds. The syntax of two­
sorted type theory is quite analogous to that of extensional type theory. The 
only difference is that the vocabulary now contains variables and constants of 
types, and of types constructed using s. As we shall see, the modal operators 
0 and <> and the operators A and v now familiar from intensional type theory 
are quite dispensable in two-sorted type theory. The role they formerly played 
has been taken over by quantification and abstraction over, and application on, 
possible worlds. 

In two-sorted type theory, as in extensional type theory, the extensions of 
expressions are relative to models and assignments. A model's interpretation 
function assigns to a constant of type a an element of D a, assignments do the 
same for variables, and the definition of the extension of an expression rela­
tive to a model and assignment is then just the same as the corresponding defi­
nition for extensional type theory (see definition 4 in §4.2.2). This diverges 
once again from the situation in intensional type theory. There the interpreta­
tion did not map a constant, say, of type a, onto an extension, that is, an ele­
ment of D a, but onto an intension, that is, an element of D <s.a). The extension 
of an expression was relative to possible worlds, thus accounting for the con­
text-dependent character of expressions. This is achieved in a different way in 
two-sorted type theory, namely, by equipping expressions whose extension 
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varies from world to world with a variable of type s. The interpretation of 
such a formula then becomes relative to the possible world assigned by the 
assignment to that variable. Context dependence is thus fixed into this kind of 
type theory via dependence on an assignment. 

This may be illustrated by means of an example. One expression whose 
extension varies from context to context is the verb to walk. In intensional 
type theory, this verb was represented by means of a constant W of type (e, t). 
The interpretation function I then assigned to W an intension, that is, l(W) E 
D(s.(e.r))· The extension of Win any given world w could be recovered from 
this intension as the value taken by the intension at w. In two-sorted type the­
ory, to walk is rendered as a complex expression W(a) in which W is a con­
stant of type (s, (e, t)) and a is a variable of types. The result is of course that 
to walk once again is represented by an expression of type (e, t). The inter­
pretation function maps W onto an extension, that is, an element in D(s.(e.r))· 

The extension of W(a) is obtained by applying the extension of W to the ex­
tension of a. The latter is g(a), the world that the assignment g assigns to a. 
The extension of this representation of to walk, W(a), thus depends on what 
world g assigns to a. We see that the context dependence of to walk appears 
here as a dependence on assignments. 

The relation between Wand W(a) may be made more precise by comparing 
with each other the models of intensional type theory and two-sorted type the­
ory. Let M be a model for intensional type theory, and M2 a model for two­
sorted type theory, both being based on the same underlying sets D and W. Thus 
W consists of D and W together with I M, where I M maps constants of type a 
onto elements of D (s.a). And M2 consists of the same D and W together with 
I M2, where I M2 maps constants of type a onto elements of D a. Furthermore, let 
Mbe a constant in the intensional theory of types, its type being (e, t), and let W 
be a constant in two-sorted type theory, its type being (s, (e, t) ). Assume that 
IM(W) = IM2(W). Now it follows that the extension of W relative toM, w, 
and g is just the extension of W(a) relative to M2 and g[a/w]. Choose arbi­
trary wand g. [W]M,w,g = IM(W)(w) (see definition 4 in §5.4). Furthermore, 
we have [W(a)]M2,w,g = IM2(W)(g[a/w](a)) =1M2 (_)(w) (compare this with 
definition 4 in §4.2.2). According to our assumptions, IM(W) = IM2(W), 
from which it immediately follows that IM(W)(w) = IM2(W)(w). Finally, 
since w and g were chosen arbitrarily, we have [W]M,w,g = [W(a)]M2,g[aiwJ· 

It turns out that this relation between M and M(a) may be generalized: in­
tensional type-theoretical expressions can always be translated into two-sorted 
formulas which carry the same meaning. We will show this by defining a 
translation from expressions of intensional type theory to expressions of two­
sorted type theory which preserves interpretation in the sense discussed 
above. Not surprisingly, constants c. are always translated as new constants 
c<s.a)• which are then applied to a. The translation of a complex expression a 
is for the remainder built up just like a itself, except where 0, <>, A, or v 
enter into a. Intuitively it should be clear that 0 corresponds to'<:/ a, <>to 3a, 
A to A.a, and v to application to a. 0, <>, and A thus correspond to binding 



136 Chapter Five 

free occurrences of a, while v introduces such an occurrence. We shall now 
give a precise, inductive definition of the translation, written as trans-a: 

Definition 9 

(i) trans-c.= c(s.a)(a) 
trans-v a = v. 

(ii) trans-(a(,B)) = (trans-a(trans-,8)) 
(iii) trans-•cp = •trans-cp 

trans-(cp A l/1) = (trans-cp A trans-l/J); likewise for v, -+, ~ 
(iv) trans-Vvcp = Vv trans-cp; likewise for 3vcp 
(v) trans-(a = ,8) = (trans-a = trans-,8) 
(vi) trans-A.va = A.v trans-a 
(vii) trans-Dcp = \1 a trans-cp 

trans-<>cJ> = 3a trans-cp 
(viii) trans-"a = A.a trans-a 
(ix) trans-v a = (trans-a(a)) 

It is possible to convert any model M for intensional type theory into a model 
M2 for two-sorted type theory such that for all expressions a, for all w E W 
and for all assignments g, we have: 

Theorem 6 

[trans-a]M2,g[a/w] = [a]M,w,g 

M2 may be obtained from M by taking the latter's domain D and set W of 
worlds, defining IM2(c), for any constant c, as IM(c). Now an inductive proof 
is needed in order to show that theorem 6 does indeed hold. We shall only deal 
with the nontrivial steps of the proof (assuming in the induction that theorem 
6 holds for all w' E W). The clauses have been numbered so as to correspond 
with those in definition 4. 

(i) 

(vii) 

(viii) 

(ix) 

[trans-c]M2,g[alwJ = [c(a)]M2,g[a/wl = [c]M2,g(w) = IM2(c)(w) = 
IM(c)(w) = [c]M,w,g· 

[trans-Ocp]M2,g[alwJ = 1 ¢:> (translation) [\1 a trans-cp]M2,g[alwJ = 1 ¢:> 

(truth definition) for all w': [trans-cp]M2,g[a/w'J = l ¢:> (induction hy­
pothesis) for all w': [cJ>]M,w'.g = 1 ¢:> [Dcp]M,w,g = 1. 

[trans-"a]M2,g[alwJ = [A.a trans-a]Ml,g[alwJ• which is that function h such 
that for all w': h(w') =[trans-a ]Ml,g[alw'J· By the induction hypothesis, 
this means that for all w': h(w') = [a]M , which means that h = 
["a]M,w,g· 

,w .g' 

[trans-Va]M2,g[alwJ = [(trans-a(a))]M2,g[a/wJ = [trans-a]M2,g[alwJ(w) = 
(induction hypothesis) [a]M,w,g(w) = [V a]M,w,g· 

It is striking that the translation process makes use of just one variable a rang­
ing over possible worlds. The expressive power of two-sorted type theory is 
clearly much greater than that of intensional type theory. 
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This translation from intensional into two-sorted type theory throws new 
light on the former. Thus, for example, the equivalence of v "a and a in in­
tensional type theory reappears in two-sorted type theory simply as a case of 
valid A.-conversion. The formula corresponding to v "a is A.aa(a), and this, 
in view of the fact that theorem 1 of §4.4.2 also holds for two-sorted type 
theory, is equivalent to a. 

It also becomes clearer why "v a is not always equivalent to a. The 
counterexample given in §5.5 may be reconstructed in this new setting in the 
following manner. Instead of the constant p which appeared there, we make 
use of the expression A.w(q(w) = q(a)), in which both wand a are variables 
of type s, while q is of type (s, t). If q is taken to represent th~ pr~positi~n 
that Mary is coming, then q(w) is true in g(w) if Mary is comzng IS true m 
g(w), and q(w) is false in g(w) if Mary is coming is false in g(w) .. The e~pre~­
sion A.w(q(w) = q(a)) thus denotes the proposition that Mary 1s commg m 
those worlds in which it is true that she is corning, and the proposition that 
Mary is not coming in those worlds in which it is false that she is corning. 
That is, A.w(q(w) = q(a)) represents whether or not Mary is coming. Just as 
AVp and p were not equivalent, we now have that A.a(A.w(q(w) = q(a))(a)) 
and A.w(q(w) = q(a)) are nonequivalent. For A.a(A.w(q(w) = q(a))(a)) re­
duces to A.a(q(a) = q(a)), and this expression refers to a proposition different 
from that referred to by A.w(q(w) = q(a)). Just like AVp in §5.5, A.a(q(a) = 
q(a)) in fact refers to the proposition which is true in every world. 

We noted in §5.5 that there are circumstances under which" Va is equiva­
lent to a, among others, where a is intensionally closed. What is now the 
pendant in two-sorted type theory of intensionally closed expressions? S~ce 
context dependence is captured here by giving context-dependent ex?res_s1~ns 
a variable a as an extra argument, intensional closure of an expressiOn m m­
tensional type theory amounts to the corresponding two-sorted expression's 
not containing any free occurrences of a. According to definition 6 in §5.5, 
Ocp, <>cJ>, and "a are all examples of intensionally closed expressions. The 
corresponding two-sorted expressions \Ia trans-cp, 3a trans-cp, and A.a trans-a 
may be seen not to contain free occurrences of a. 

It is now not difficult to see what condition (ii) in theorem 5 of §5.6 
amounts to in this setting. This theorem, repeated below, concerns the ad­
missibility of A.-conversion in intensional type theory: 

Theorem 5 

A.v,B(y) is equivalent to [y/v],B if 

(i) all free variables in y are free for v in ,8; and 
(ii) either y E ICEL, or no free occurrence of v in ,8 lies within the scope of 

0, <>,or"· 

In two-sorted type theory, condition (ii) amounts to the condition that if y con­
tains a free occurrence of a, then y may not as a result of the substitution find 
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itself within the scope of Va, 3a, or A.a. But this is already required by condi­
tion (i). So in two-sorted type theory, as in normal extensional type theory, 
condition (i) suffices on its own. 

So we see how certain matters which arose in intensional type theory now 
reappear, in this two-sorted setting, in a form already familiar from exten­
sional type theory. 

Two-sorted type theory enables us to refer to possible worlds and to quan­
tify over them (and over moments in time if we choose to introduce them into 
the picture). Now one objection which may be raised against such a language 
is that it has more ontological commitments than a language with intensional 
operators. It seems to us that this objection is unfounded. A mere language 
doesn't have ontological commitments. What has ontological commitments is 
a language together with its semantics. And the semantics of a language with 
intensional operators, in the form of a truth definition which avails itself of 
possible worlds, plainly refers to possible worlds and quantifies over them 
every bit as much as the semantics of a two-sorted language. The ontological 
commitments are quite the same in both cases. Another reason for preferring a 
language with intensional operators over a two-sorted language has to do with 
their difference in expressive power. A language with intensional operators 
has the advantage that it may be given exactly as much expressive power as is 
needed for a particular application. With applications like the semantics of 
natural language in mind, it becomes an empirical question as to how expres­
sive this power is. Do we or do we not, to take an example, need quantifica­
tion over moments in time in order to render the temporal expressions of 
natural language in a satisfactory manner? These are complex but quite fas­
cinating questions. In §2.4.3 we noted that in the course of time, temporal 
formalisms have been equipped with more and more operators in order to deal 
with temporal expressions and constructions, and that some have argued for 
languages which allow quantification over moments. An issue like this is diffi­
cult to settle; the question is not only whether the different theories capture all 
the phenomena. Their simplicity and elegance is also at stake. 

6 Montague Grammar 

6.1 Introduction 

In this chapter we shall deal extensively with Montague grammar. Montague 
grammar, developed by the American logician Richard Montague in the be­
ginning of the seventies, aims to define a model-theoretic semantics _for _natu­
ral language. The most common version of Montague grammar, wh1ch 1s the 
one introduced in this chapter, achieves this by relating in an explicit and sys­
tematic fashion the expressions of a natural language to those of an inten­
sional, type-theoretical logical system in such a way that the interpretations of 
the latter may also serve as interpretations of the former. 

Montague's model wasn't the only attempt made at that time to use these­
mantic methods of logic in the description of the meanings of natural language 
expressions. Others, e.g., Cresswell, Bartsch and Vennemann, and Lewis, 
made proposals that went in the same direction. A common denominator for 
such models is 'logical grammars'. In this chapter we will be concerned ex­
clusively with Montague's model. For as it is, Montague grammar still serves 
as the standard model of a logical grammar. And the thorough introduction 
that follows will enable readers, if they desire, to master the particularities of 
other models relatively quickly. Also, the more recent developments in formal 
semantics which will be discussed in chapter 7 can be understood properly 
only against the background of Montague grammar. And the same holds for 
such current trends as situation semantics, which at least initially got its mo­
mentum by starting out as a full-blown attack on some of the essentials of 
Montague grammar. 

The idea of the enterprise of a logical grammar for natural language is nei­
ther self-evident nor does it come out of the blue. In chapter 1 of volume 1, we 
discussed briefly the historical development of logic and linguistics and their 
interrelationship. The discussion tried to make it clear that the idea of a com­
mon goal certainly has its roots in history, but at the same time it is made 
feasible only by certain relatively recent developments in both disciplines. 
This chapter starts with a short discussion of three methodological presup­
positions of the enterprise, three general principles which underlie most at­
tempts at a systematic application of model-theoretic semantics to natural 
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language. These concern the principle of compositionality of meaning and its 
consequences for syntax, the problem of semantic closure, and the relation­
ship between truth and meaning. 

6.1.1 Compositionality of Meaning and Syntax 

The principle of compositionality of meaning has important consequences for 
the relationship between syntax and semantics. Usually in a logical system the 
definition of the semantic interpretation of expressions closely follows the 
lead of their syntactic construction. The reason for this is that the semantics 
must specify the interpretation of an infinite number of expressions, but in a 
finite manner. The obvious way to proceed, then, is to let the definition of the 
semantics parallel the finite, recursive definition of the syntax. This method 
ensures that to every syntactic rule which allows us to construct a certain type 
of expression out of one or more simpler ones a semantic rule corresponds, 
which states how the interpretation of the newly formed expression is to be 
obtained from the interpretations of its component parts. Succinctly put, logi­
cal languages satisfy the following principle: the interpretation of a complex 
expression is a function of the interpretations of its parts. This is the principle 
of compositionality of meaning, also referred to as 'Frege's principle'. 

The actual formulation of a logical system may not always carry its com­
positionality on its sleeve, but every such system actually conforms to, or can 
be reformulated so as to conform to, the principle of compositionality. For 
example, in volume 1, §2.7, an alternative definition of the system of proposi­
tional logic is given which is equivalent to the usual one but makes its com­
positionality explicit. Compare also the remarks made above, in §§4.3.4 and 
4.4.3, about the possibility of introducing the existential and universal quan­
tifiers in a categorematic rather than syncategorematic fashion. In fact com­
positionality is so basic a starting point for the logical way of doing semantics 
that in logic proper it almost always goes unnoticed. 

If we consider natural language, however, the compositionality of meaning 
requires more attention, for the following reasons. It is evident that composi­
tionality provides a finite method for the semantic interpretation of an infinite 
number of expressions of a given language. Given that a model specifies the 
interpretation of the basic components, the semantic rules which correspond 
to the syntactic rules uniquely determine the interpretation of every complex 
expression. But it should be noticed that in effect, compositionality puts 
heavy constraints on the syntax, the semantics, and their relation to each 
other. On the one hand, every syntactic rule should have a semantic interpreta­
tion; and on the other hand, every aspect of the semantics which is not related 
to the interpretation of basic expressions should be linked to a syntactic op­
eration. In a logical system, we comply with these requirements simply by 
setting things up in accordance with them. But a natural language is not some­
thing we construct; it comes as given. 
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In fact, the assumption that natural language semantics can be defined com­
positionally is not uncontroversial. Tarski, one of the founders of modem 
model-theoretic semantics, didn't have much faith in the possibility of apply­
ing its methods to natural language. For this requires minimally that the syn­
tax of a language be exactly specified in a rigorously formal way, and Tarski 
was of the opinion that for a natural language this is an unreachable goal. This 
view prevailed among philosophers and logicians for quite some time. It was 
not until the development of generative grammar in the late fifties and early 
sixties that a different attitude began to emerge. Because of the enormous im­
pact of generative linguistics, the conviction grew that the required exact de­
scription of natural language syntax can be given and that the possibility of a 
logical semantics for natural language would become real. 

Ironically, the idea of using the methods of logical semantics in the study of 
natural language didn't receive a very warm welcome among most linguists in 
the Chomskyan tradition, and still doesn't, officially at least, although some 
results and methods did catch on. On the other hand, people like Katz have 
argued for some version of compositionality along the following lines. A 
competent language user is capable of interpreting a theoretically infinite 
number of sentences. The language user's interpretation is based on his 
knowledge of the meaning of the finite number of lexical elements and his 
(implicit) knowledge of syntactic rules, also finite in number. The hypothesis 
of compositionality, requiring that semantic rules correspond to syntactic 
rules, seems to offer an explanation for this fact. (This line of argumentation 
can be found in various authors; cf., for example, Frege 1923. It should be 
noted that the argument does not prove that natural language is compositional; 
it only shows that there must be some effective means to compute meanings. 
And compositionality is only one of the candidates.) 

There are probably two major reasons why generative grammarians are 
skeptical about the enterprise of logical grammar. One is their commitment to 
mentalism, a doctrine that doesn't seem to square with the truth-based ap­
proach to meaning that logical grammar starts from (see §6.1.3 below). The 
other is that logical grammar, with its principle of compositionality of mean­
ing, goes straight against the autonomy of syntax so cherished in the genera­
tive tradition. For compositionality not only requires a well-defined syntax to 
base semantic interpretation on; it also puts some constraints on it. As we re­
marked above and will argue more fully below, in §6.2, it follows from com­
positionality that every nonlexical aspect of meaning must be syntax based. 
(Here it should be kept in mind that we are considering only a sentence gram­
mar consisting of a syntax and a semantics, which has no recourse to dis­
course, intonation, extralinguistic context, and the like.) 

And that means, at least in principle, that semantic considerations may in­
fluence the syntax, thus breaching the supposed autonomy of the latter. 

Exactly what role the principle of compositionality plays in the overall 
layout of a logical grammar will be discussed in §6.2. In §6.5 we will discuss 
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in some detail its methodological status and its relationship with the contrast 
between logical form and grammatical form. For now it suffices to have 
pointed out the important role it plays in the logical grammar enterprise. 

6.1.2 Object Language and Metalanguage: Semantic Closure 

There is a more technical condition that a language must fulfill in order for it 
to be possible to define its semantics along the lines of a logical system. It 
concerns the relationship between the language we want to give a semantics 
for, which is called the object language, and the language we formulate the 
semantics in, which is called the metalanguage. These two languages may 
actually be different, as in the preceding chapters where we used English, the 
metalanguage, to formulate the semantics of several logical languages, the ob­
ject languages. But it is possible for the object language to be part of the meta­
language. Thus, the semantics of a fragment of the English language can be 
stated in English. The terms 'object language' and 'metalanguage', then refer 
rather to different functions of language, which may be performed by different 
languages but also by one and the same language. 

The question that now arises is whether it is possible for object language 
and metalanguage to be identical. At first sight, nothing seems to speak 
against the supposition that this can be the case, but closer scrutiny will show 
that this leads to some unexpected problems. 

In describing the semantics of an object language, among other things we 
state in the metalanguage the truth conditions of sentences in the object lan­
guage. Working in the familiar Tarski style, this means that in the meta­
language, names are available for object language sentences. Usually we use 
the sentences themselves, transforming them into names by putting them be­
tween quotation marks or writing them in italics. As a result, it is possible to 
define in the metalanguage a truth predicate. A truth predicate is a predicate 
of the metalanguage which holds of an object language sentence if and only if 
that sentence is true. That is, giving the truth conditions of object language 
sentences amounts to the same thing as specifying the extension of the truth 
predicate. All this is quite in order, except when object language and meta­
language are identical. For then the truth predicate would ipso facto be part of 
the object language as well, as would the names of object language sentences; 
this would give rise to semantic paradoxes. For instance, suppose that English 
is our object language and our metalanguage. Then it would contain its owL 
truth predicate is true and would contain names for all its sentences; this 
would mean that we could formulate sentences such as: 

(1) Sentence (l) is not true. 

This sentence yields a paradox. For (l) to be true, (I) should not be true, for 
that is what (l) asserts. But if (1) is not true, then the assertion expressed by 
(l) is true, and so (1) is true. We may conclude that we cannot formulate a 
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semantic theory for an object language in a metalanguage which is identical to 
that object language without getting into trouble. But the problem is more se­
rious than that. For in a situation in which object language and metalanguage 
are different, the same unpleasant results may obtain. For instance, if we de­
scribed the meaning of sentence ( 1) in language other than English, say in 
Dutch, the paradox would not disappear. It would just get a different wording. 
The trouble arises with any object language which allows self-reference, e.g., 
by containing names for its own sentences, and which contains its own truth 
predicate. Such a language is called semantically closed. It must be concluded 
that a consistent semantics, one which will not yield paradoxes such as those 
indicated above, can be defined only for those languages which are not seman­
tically closed. 

As example (I) shows, English is semantically closed, and this implies that 
it will not be possible to give a consistent semantic theory for it. Since this 
holds quite generally for any natural language, it seems that we must conclude 
that the enterprise of logical grammar is on the wrong track right from the 
very start. There are several ways to avoid this conclusion. Perhaps the most 
common one is to steer a safe course by formulating the semantics, not for the 
entire language, but only for those fragments of it which are not semantically 
closed. The loss of generality seems rather small. Of course if we take this 
approach, it again becomes possible to formulate the semantics in the lan­
guage itself. In that case, the object language belongs to the metalanguage but 
is not identical with it, and no paradoxes ensue. This way to get around the 
problem is essentially Tarski's (1935, 1944). As a result, we get a hierarchy of 
ever more inclusive languages in which a language of level n + 1 functions as 
the metalanguage for the language of level n. From an empirical point of 
view, it is argued, the restriction this involves is not important, but there are 
several formal conditions which have to be met in a semantic theory set up 
along these lines. 

Beside this rather formal approach, others have been proposed, which pur­
port to take the paradoxes more seriously. Note that if we follow Tarski's ap­
proach, paradoxical sentences aren't assigned the meanings they intuitively 
seem to have, the ones that yield the paradoxes. If there were only such di­
rectly self-referential sentences as (l), this might seem a small price to pay, 
but semantic paradoxes are also generated by more natural examples. Com­
pare the two statements in (2): 

(2) A: Everything B says about me is false. 
B: Everything A says about me is true. 

(If we substituted, for instance, the names of two politicians running for the 
same office, we might get more natural examples.) Now, suppose that in fact 
A and B say only one thing about each other, that is, the statements in (2). Is 
what A says true? Then it should hold that B's statement that everything A 
says about B is true, is false. But since, by supposition, the only thing A says 
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about B is that whatever B says about A is false, that implies that A's state­
ment is false. Similarly, A's statement is true if it is false. Paradox regained. 
Examples such as (2) can be multiplied and can be made more natural by de­
scribing the circumstances more fully. To many this has suggested that seman­
tic paradoxes are a less marginal feature than is often thought, and that rather 
than avoiding them-which is what Tarski's approach essentially comes down 
to-they should be faced head-on. Various solutions have been proposed to 
the problem of setting up a semantic theory that does this, e.g., by Kripke, 
Herzberger, Gupta, and recently by Barwise and Etchemendy in the frame­
work of situation semantics. 

In conclusion, we can say that whatever position one wants to take here, the 
existence of semantic paradoxes does not preclude the possibility of a model­
theoretic semantics for natural language. But of course we have to take mea­
sures. Either we must restrict ourselves in describing natural language, along 
the lines suggested by Tarski, or we must adapt one of the more direct, but 
also more complex, approaches developed by Kripke and others. 

6.1.3 Semantics and Truth Theory 

There seem to be no formal or methodological obstacles to an application of 
the methods of logical, model-theoretic semantics to natural language. How­
ever, it may be argued that although it is perhaps possible to describe the 
meanings of expressions of a natural language along the same lines as those of 
a logical one, it is by no means obvious that it is profitable to approach mean­
ing in natural language this way. Here we touch upon, and only touch upon, a 
very fundamental issue. 

As was explained in chapter 1, model-theoretic semantics can be viewed as 
a referential theory of meaning. Meaning is explained in terms of the relation 
of reference, or denotation, that holds between expressions and some indepen­
dent set of entities. This holds for an intensional semantics, as well as for an 
extensional semantics: multiple reference, in terms of which intension is 
defined, is a relation of reference too, with an extra parameter. Hence, the 
notions of reference and truth are to be regarded as the key notions of model­
theoretic semantics. And if we attempt to use the methods of the latter in our 
description of meaning in natural language, we assume, implicitly or explic­
itly, that at least a substantial part of the meaning of natural language expres­
sions can be caught in terms of the notions of reference and truth. In other 
words, one of the starting points oflogical grammar is the idea that a semantic 
theory for a natural language should at least contain a truth definition for that 
language. 

Exactly at this point there is a marked opposition between the proponents of 
logical grammar and the adherents of generative grammar. Whereas the for­
mer view meaning essentially as a relation between the expressions of a lan­
guage and something else, 'out there', that the expressions refer to, make 
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statements about, or ask questions about, the latter hold that meaning consists 
in the mental representation that accompanies a linguistic expression. The 
controversy may be very great, as between a logical grammarian who sees no 
role whatsoever for mental representations to play, and a mentalist who denies 
that language has any referring function. Or it may be less dramatic, since a 
logical grammarian may acknowledge the existence of mental representations, 
and the mentalist may admit that language somehow, indirectly, also relates to 
the nonmental. But in any case, the difference is a principled one. For al­
though there might be agreement on other things, it represents a fundamental 
difference of opinion about what constitutes meaning: its relation to the 
'world' or its relation to the 'mental'. 

We cannot go into the arguments that have been proposed in its favor. We 
simply note that a long-standing tradition exists in philosophy and in logic 
which assumes that any adequate semantic theory should at least contain a 
theory of truth. About that there has been, and still is, agreement. And since 
the late sixties, several proposals have been made for applying the methods of 
model-theoretic semantics in the analysis of natural language. However, it 
should be remarked that here two main streams of thought have to be distin­
guished. All proposals take the formulation of truth conditions of sentences, 
or more generally, denotation conditions of expressions, to be an essential 
part of the theory, but they agree on neither the method to bring this about nor 
the question of whether a definition of truth conditions is sufficient in itself as 
an analysis of meaning in natural language. With respect to the latter ques­
tion, we may distinguish between 'extensionalists' and 'intensionalists'. Such 
a noted extensionalist as Davidson holds that it is possible and necessary to do 
semantics for a natural language solely in terms of truth conditions. Davidson 
shares this view with Quine, who for philosophical and methodological rea­
sons has always opposed the use of notions such as 'meaning', 'synonymy', 
and so on, even in logic. The position that any explanation of semantic facts 
using such notions would be an explanation of obscurum per obscurior has 
been put forward and defended forcefully by Quine in numerous places. Ac­
cording to Quine and Davidson, then, the use of theoretical notions like those 
of a possible world, intension, and hence of intensional semantics as such 
should be avoided, since no real insight into the meaning of natural language 
is to be expected from them. They are of the opinion that a semantic theory 
ought to be formulated in purely extensional terms. 

The intensionalist stream of thought holds that such a position is inspired 
too much by purely philosophical motives, and that it pays too little attention 
to the requirements of an empirically adequate semantic theory of natural lan­
guage. According to the intensionalists, the intensional character of natural 
language is obvious. Many expressions and constructions pose severe prob­
lems for a strictly extensional semantics. (Cf. the examples in the§§ 1.6 and 
3 .1.) An extensionalist semantics cannot cope with these difficulties. If our 
aim is an empirically adequate semantic theory for natural language rather 
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than a semantic theory that meets some independent philosophical con­
straints, the obvious way to proceed is to use an intensional semantics. This 
view has been put forward both theoretically and practically by several au­
thors, notably by Montague, Lewis, and Cresswell. The models they have de­
veloped really aim to provide a framework for an empirically adequate 
semantic theory for natural language. For this reason, these models can truly 
be characterized as 'logical grammars'. 

This chapter is devoted to a detailed exposition of one of these logical 
grammars, and for reasons indicated in §6.1, the model we have chosen is the 
one developed by Richard Montague. 

6.2 The Organization of a Montague Grammar 

This section deals with the organization of Montague grammar. We adopt 
Montague's model as proposed in "The Proper Treatment of Quantification in 
Ordinary English" (1973), the PTQ model. The PTQ model is one of the pos­
sible versions of Montague's general theory of syntax and semantics which he 
formulated in his "Universal Grammar" (1970b). This general theory has led 
to several somewhat differently organized models; for instance, Montague's 
approach in "English as a Formal Language" (1970a) differs in several re­
spects from the PTQ model, and it is therefore strictly speaking misleading to 
present the PTQ model as the Montague grammar. On the other hand, the 
PTQ model is the best-known and most widely used implementation of Mon­
tague's ideas, and it even counts as the paradigmatic formulation of logical 
grammar as such. So with these reservations in the back of our minds, we 
concentrate on the PTQ model in the remainder of this chapter. 

Methodologically, Montague's most important notion is this: the principal 
task of a linguistic theory must be the framing of a semantic theory. This pre­
supposition has consequences for the organization of the grammar. Composi­
tional semantics requires a syntactic theory. To put it differently: interpreting a 
complex expression compositionally is not merely interpreting the expression 
as such but interpreting it given a syntactic analysis. The syntactic analysis 
tells us what subexpressions the expression is composed of, what rules are 
used to form the expression, and in what order the expression is composed. 
And we need this information if we want to construct the meaning of the ex­
pression out of the meanings of its component parts, as compositionality re­
quires. Semantic interpretation is done not on expressions as such but only on 
expressions given a syntactical analysis. In this sense a semantic theory pre­
supposes a syntactic theory. 

The usual model-theoretic interpretation of logical languages fulfills this re­
quirement. Logical languages are characterized by the fact that expressions 
and their syntactic analysis cannot be distinguished: an expression shows its 
syntactic analysis in its structure. For each expression, there is exactly one 
construction tree that can be deduced from the expression unambiguously, 

Montague Grammar 147 

thanks to the use of brackets. Syntactically ambiguous sentences do occur in 
natural languages, where one expression can be the result of different syntac­
tic processes and hence may have more than one syntactic analysis. Some­
times different syntactic analyses give rise to different meanings. As a result, 
we can determine the meaning of an expression only on the basis of a syntactic 
analysis of it. 

The next three examples will illustrate this. Consider sentence (3): 

(3) John sees old men and women. 

Sentence (3) has two readings: on one, John sees women and old men; on the 
other, John sees old men and old women. The constituent expression old men 
and women is the source of the ambiguity. The scope of the adjective old de­
termines what set of persons the expression refers to. When the scope is just 
the noun men, the reference is as on the first reading, while the second reading 
of (3) is the one in which old applies to the complex expression men and 
women. The corresponding two different ways of constructing old men and 
women can be represented as follows: 

(4) a. [[old men] and women] 
b. [old [men and women]] 

The two meanings of (3) can be constructed using the syntactic analyses (4a) 
and (4b). Hence, the process of interpretation works on representations like 
(4a) and (4b), rather than on unstructured expressions like old men and 
women. 

The ambiguity of (3) is structural: it resides in the two different structures 
that can be assigned to old men and women. But not all syntactic ambiguities 
can be reduced to such structural ambiguities. Consider sentences (5) and (6): 

(5) Everyone in this room speaks one language. 

(6) John seeks a unicorn. 

Each of these sentences has two readings as well. On one reading of (5), there 
is one language which everyone in this room speaks, for example, English, 
while some people may also speak other languages; the other reading has it 
that everyone speaks only one language, possibly every person a different 
one. A de dicto/de re ambiguity occurs in (6). The de reinterpretation states 
that there is a unicorn which John seeks, but the de dicto interpretation does 
not imply the existence of a unicorn. Ambiguities such as these cannot be 
reduced to structural ambiguities, as was the case with (3). For a sentence 
such as (5) or (6) has only one constituent structure. Apparently for sentences 
such as these there are different ways to derive them, which all result in the 
same expression with the same structure but a different meaning. The two 
ways to derive (5) differ in the order in which the quantified terms everyone in 
this room and one language are introduced. If we introduce one language 
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first, we get the second reo.ding; if we start with everyone in this room we get 
the first reading. Something similar happens in (6), as will be shown later on. 
The ambiguity of (5) or (6) is the result of the existence of more than one 
syntactic derivation; hence it is often referred to as a derivational ambiguity. 
The structural ambiguity of (3) can be regarded as a special kind of deriva­
tional ambiguity. 

We may conclude that it is the derivation of an expression which deter­
mines its meaning. We will use the term syntactic analysis in this sense, refer­
ring to the derivational history of an expression, distinguishing it from the 
notion of a structural analysis. 

A compositional semantic theory not only presupposes a syntactic theory 
but also imposes certain conditions on it. Every nonlexical ambiguity, that is 
any ambiguity which cannot be reduced to the ambiguity of a lexical element, 
should correspond to a derivational ambiguity. Another condition requires 
that every syntactic operation be semantically interpretable; its semantic effect 
must be statable explicitly and in general terms. 

All this means that the syntax of Montague grammar is not autonomous, or 
at least it need not be. Semantic considerations may be of paramount impor­
tance in the formulation of the syntax. A syntactic ambiguity might be built 
in, so to speak, merely for semantic reasons, and similarly, semantic consid­
erations might force a choice between alternative syntactic analyses which 
cannot be based on purely syntactic considerations. It remains an open ques­
tion whether this potential transgression of the autonomy of syntax by seman­
tics will be encountered in reality, that is, in the actual description of some 
natural language. 

Though it imposes conditions on the form and content of the syntax, the 
semantics enables us to explain certain semantic features without relying on 
syntactic considerations. Two sentences with the same meaning may differ 
considerably syntactically, even to the extent that from a syntactic point of 
view it is not at all plausible to relate them to each other. As an example, 
consider sentences in their active and passive forms. An explicit semantic the­
ory enables us to account for the conformity in meaning without having to 
subscribe to the hypothesis that the sentences are equal at some syntactic 
level. It is sufficient that their syntactic analyses determine the same semantic 
interpretation. In this sense the nature and power of compositional semantics 
may make up for the transgression on the autonomy of syntax by enabling us 
to eliminate from the latter irrelevant, i.e., semantic, considerations. 

The organization of the PTQ model is dictated not only by the above­
mentioned motives and principles but also by its characteristic method of link­
ing syntax and semantics. It is possible to define a model-theoretic semantics 
for a natural language directly. The syntactic analysis of an expression pro­
vides the basis for a direct interpretation in a model, in the same way as this is 
achieved for the expressions of logical languages. Montague adopted this 
method of direct interpretation in his "English as a Formal Language" 
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(1970). In the PTQ model he used the indirect method, however. In this 
model, expressions of a naturd! language are first translated into expressions 
of a logical language, as is shown in (7). The logical expressions are inter­
preted in the usual model-theoretic fashion. Hence, natural language expres­
sions are interpreted indirectly through the interpretation of the logical 
expressions they are translated into. 

(7) 
natural 

language 
translation 

logical 
language 

D 
interpretation CJ 

As usual, the logical language is a unambiguous language; therefore the se­
mantics assigns one meaning to each logical expression. If the semantic inter­
pretation of a logical expression is to function indirectly as the semantic 
interpretation of a natural language expression, some conditions must be put 
on the process of translation. It is not possible simply to translate natural lan­
guage expressions into logical expressions. If a natural language expression is 
ambiguous, we need to assign it more than one meaning. In the PTQ model, 
this implies that an ambiguous expression must be translated into distinct, 
nonequivalent, logical expressions. The principle of compositionality requires 
the correspondence of every nonlexical ambiguity to a derivational ambiguity, 
as we explained before. 

Since the process of translation is nothing more than an indirect process of 
interpretation, it too should conform to the syntactic analysis. A translation is 
rendered, not for an expression as such, but only for an expression given a 
syntactic analysis. If there are different ways to analyze, that is, to derive an 
expression, there must be different translations, representing different mean­
ings. (As we shall see later on, not every derivational ambiguity corresponds 
to a genuine semantic ambiguity, though the inverse is true.) So in the PTQ 
model, compositionality plays a role on two different levels. First there is the 
level of the interpretation of the logical language, which satisfies composi­
tionality as usual. But compositionality is also involved at the level of the 
translation of the natural language into the logical language. This is necessary 
if we want to ensure the compositionality of the process of interpretation of 
the natural language: we must therefore organize the process of translation as 
a compositional process. All the lexical elements of the natural language are 
translated into logical language expressions and in this way are assigned 
unique meanings. Syntactic rules tell us how to construct new expressions out 
of existing ones. With every such rule a translation rule is associated which 
specifies the translation of the complex expression, given the translation of its 
component parts. Ultimately, every expression is constructed out of basic 
expressions by the application of a finite number of syntactic rules. The con­
struction supplies the syntactic analysis, which determines a unique tran~la­
tion and thus a unique meaning. If an expression can be analyzed syntactically 
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in more than one way, then it has more than one translation and hence possibly 
more than one meaning. 

The general structure of the PTQ model is thus defined. In the following 
sections we shall give an example of a grammar according to the PTQ model 
for a small fragment of English, covering roughly the same area as Montague 
himself covered in PTQ. This description aims at no more than a tangible il­
lustration of the above-mentioned principles and notions, to enable the reader 
to understand Montague's work and the work of others in the tradition he 
founded. Some constructions will be examined more closely than others; we 
shall confine ourselves to a detailed account of those constructions and analy­
ses which form the core of the PTQ fragment. Our exposition will proceed 
step by step. In order to facilitate exposition and, we hope, understanding, our 
fragment will initially be built up in a way which deviates in one important 
respect from PTQ itself. In a later stage, we will add the extra complications 
and thus obtain a fragment which is substantially that ofPTQ. Compared with 
the richness and vastness of natural language itself, this fragment is of course 
very restricted. Nevertheless, it contains an analysis of several phenomena of 
which every adequate semantic theory should provide an account. The limited 
descriptive range of the framgent should not be taken as an indication of lim­
ited possibilities for the application of Montague grammar. A great variety of 
phenomena interesting both syntactically and semantically have been de­
scribed and studied within the framework of Montague grammar. Some ex­
amples will be mentioned in §6.5. 

6.3 A Montague Grammar for a Fragment of English 

6.3.1 Categories and Basic Expressions 

The PTQ model uses a categorial syntax to generate the expressions of a natu­
ral language. As we indicated in §4.3, a pure categorial syntax consists of four 
things: (i) an enumeration of the basic categories; (ii) a definition of the de­
rived categories; (iii) a lexicon, i.e., a specification of the lexical elements of 
each category; and (iv) a specification of the behavior of the syntactic opera­
tion of concatenation. This form of categorial syntax is equivalent to a simple 
system of context-free rewrite rules, and we therefore know that it will have 
difficulties in coping with phenomena such as word order, deletion, discon­
tinuous constituents, morphological features, and so on. Most of these will 
feature in the fragment to be treated. Over the years several proposals have 
been made to make up for the inadequacies of pure categorial syntax. An early 
suggestion, made by Lyons and Lewis, was to use a pure categorial syntax as 
a base component and to add a transformational component to deal with these 
phenomena. At present, other strategies are more popular. One of them is to 
introduce a certain systematic flexibility into the assignment of categories to 
expressions. This approach will be introduced in chapter 7. 

In PTQ, Montague in effect overcame the shortcomings just referred to in a 
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rather crude and ad hoc way, viz., by simply allowing the use of all kinds of 
syntactic operations in the syntactic rules. In a pure, unidirectional categorial 
syntax, the only syntactic operation allowed in forming expressions is con­
catenation (either to the left or to the right). Consequently, such a syntax has 
just one syntactic rule. In PTQ, complex expressions can be obtained by other 
methods besides the simple concatenation of two expressions of suitable cate­
gories, and the number of syntactic rules grows accordingly. Also, the genera­
tive power of the syntax is increased. 

The syntactic operations used in the syntactic rules of the PTQ fragment are 
a rather heterogeneous lot. We find the simple operations of (left and right) 
concatenation but also operations which introduce expressions syncategore­
matically, which change word order, which regulate the morphological form 
of expressions, and we even find operations that perform several of these tasks 
at the same time. From a modem linguistic point of view, the obvious thing to 
do is to look for restrictions on the admissible operations. Various proposals 
have been made in this direction. 

Now let us define a categorial syntax for a small fragment of English, start­
ing with a definition of the categories: 

Definition 1 

CAT, the set of categories, is the smallest set such that: 

(i) S, CN, IV E CAT. 
(ii) If A, B E CAT, then AlB E CAT. 

This syntax contains three basic categories: S, the category of sentences; CN, 
the category of common noun phrases; and IV, the category of intransitive 
verb phrases. The derived categories AlB are functor categories: an expres­
sion of category AlB takes an expression of category B as its argument to 
yield a new expression of category A. In fact, clause (ii) of definition 1 de­
fines an infinite number of derived categories, but only a few of these will 
actually be used. For some derived categories special abbreviations will be 
introduced. Table 6.1 sums up the categories that will be used, giving a defi­
nition if a category name is an abbreviation of a derived category, and a more 
familiar linguistic characterization. It also gives the lexicon of our fragment; 
next to each of the categories the lexical elements of that category are listed. 
In the following sections, we will often designate the lexical elements (also 
called basic expressions) of a category A as B A. According to table 6.1, then, 
BeN is the set {man, woman, language, unicorn, elephant, queen, park}. Note 
that the number of basic expressions of category T is infinite. For every natu­
ral number n, hen E BT. The function of these expressions, called syntactic 
variables, will become clear later on. 

So far we have defined three of the four components of a categorial syntax: 
the basic categories, the derived categories, and the lexicon. What remains to 
be given is an enumeration of the syntactic rules that define how to create new 

I 
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Table 6.1 Categories and Expressions 

Categorial definition 

s 
CN 

IV 

T = S/IV 

TV= IV/T (= IV/(S/IV)) 

IV/S 

IV/IV 

CN!CN 

SIS 

Description 

Sentences 
Common nouns 

Intransitive verb phrases 

Terms 

Transitive verb phrases 

Sentential complement 
verbs 

Infinitival complement 
verbs 

Prenominal adjectives 

Sentence-modifying 
adverbs 

Expressions 

Man, woman, language, 
unicorn, elephant, 
queen, park 

Smoke, sleep, walk, talk, 
stroll 

John, Mary, Bill, Elsie, 
heo, he!> ... 

Love, kiss, know, seek, 
find, be 

Believe that, assert that 

Try to, wish to 

Green, large, pink, 
square, imaginary 

Necessarily 

expressions out of existing ones. The syntactic rules for the fragment will be 
the subject of the next sections. Their definitions will be given one by one: 
first a few to show how the resulting subfragment is translated; then we will 
gradually add more syntactic rules and translation rules. 

6.3.2 Terms, Intransitive Verbs, Sentences 

A syntactic rule should provide us with information on three things: (i) the 
categories of the expressions to which the rule can be applied, (ii) the cate­
gory to which the new expression which results after application of the rule 
will belong, and (iii) the syntactic operation that should be applied to get the 
new expression. Together the syntactic rules supply us with a definition of the 
expressions of the language. Hence, we may look upon an enumeration of 
the syntactic rules as a definition which lays down for every category A the 
expressions that belong to it. In other words, if we denote the set of all expres­
sions belonging to A as PA, the set of syntactic rules can be considered to give 
a simultaneous recursive definition of PA for all A E CAT. 

In this section we shall give rules for the generation of simple sentences 
such as: 

(8) John walks. 

(9) Every man sleeps. 

(10) The elephant smokes. 

(11) A woman strolls. 

(12) One unicorn talks. 

Montague Grammar 153 

Our first concern here is the analysis of terms, both proper names and quan­
tified expressions. 

The starting point of the entire syntax is the following basic rule: 

Sl: BA ~ PA, for every category A. 

This rule states that every lexical element of a category A is an expression of 
category A: the basic expressions are included in the set of all e~pression~. 

The next rule is a rule of functional application. A rule of functiOnal apph­
cation describes how expressions of a certain functor category, that is, a cate­
gory of the form AlB, combine with expressions of cate?ory ~ ~o yield 
expressions of category A. Rule S2 states how terms and mtra~s1t1ve verb 
phrases combine to form sentences. The category of terms, T, 1s a functor 
category: T is defined as S/IV. The category of the intransitive :erb phrases, 
IV, is a basic category, like the category of sentences S. The rule 1s as follows: 

S2: If 0 E PIV and a E PT, then Fl(a, o) E Ps and Fl(a, o) = a o', 
where o' is the result of replacing the main verb in o by its third­
person singular present form. 

For instance, the term John and the intransitive verb walk are combined by S2 
to form the sentence John walks. For John E PT (by rule Sl, because John E 
BT) and walk E PIV (analogously). If we apply F1 to John and w_alk, the _result 
is a sentence: F1 (John, walk) E Ps. The function of the syntacttc operation F1 
is twofold: it inflects the main verb in the IV, and it concatenates the T and the 
'inflected' IV. In this example walk is the only verb, and therefore F1 (John, 
walk) =John walks. Some IVs contain more than one main verb: st:oll ~nd 
talk, sleep or love Mary. These IVs are formed by the rules for conJunction 
and disjunction, which will be dealt with in §6.3.10. Ap~lying F~ to aT and 
such a coordinated IV results in the inflection of all the mam verbs m the IV: F1 
(John, stroll and talk) = John strolls and talks. By way of contr~st, consider 
try to talk, which also contains two noninftected verbs, but of which only one 
is a main verb: F1 (John, try to talk) = John tries to talk. 

The fragment does not contain plural terms; therefore F1 ~eed do no n:ore 
than inflect the main verb. And it need do so only for the thrrd person, smce 
first and second person pronouns do not occur in the fragment. Furthermore, 
F assumes a procedure for recognizing a main verb in an IV. PTQ does not 
s~pply such a procedure, though several have been proposed i~ later work _on 
the PTQ model. Also, the definition of F1 assumes that the th1rd-person sm­
gular present form is known for every verb. From the point o~ view o~ lin­
guistic organization, it would be preferable for su:h morph~logtcal details to 
be treated in a separate morphological component mstead of m the syntax. But 
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surely such a component is not essential for the PTQ model. Considering the 
restricted objective of PTQ, it is clear why Montague didn't bother with that 
type of detail. Showing how syntax and model-theoretic semantics can be sys­
tematically related was his main objective; syntactic and morphological de­
tails, however interesting in their own right, were put aside for the time being. 
In the following sections we will come across similar instances, but we will 
not discuss them explicitly; we will simply assume that certain procedures are 
available and not deny that certain functions of the syntactic operations might 
better be dealt with elsewhere in the grammar. 

Rules S 1 and S2 provide us with the procedure to form sentences with proper 
names (or syntactic variables) in subject position. In sentences like (9)-(12), 
the subject is a quantified term. To produce this kind of sentence, we need 
rules to form quantified terms of category Tout of CNs, common nouns, by 
syncategorematically introducing the expressions every, the, a(n), one: 

S3: If~ E PeN• then FiD E PT and FiD = every ~­
S4: If~ E PeN• then F3W E PT and F3W = the~­
S5: If~ E PeN• then FiD E PT and Fi~) = a(n) ~­
S6: If~ E PeN• then F5W E PT and F5W = one ~-

Rules S3-S6 give four different ways of producing quantified terms. The 
operations F2-F5 each take a CN as argument and syncategorematically intro­
duce a different determiner, combining it with the CN to yield aT. Note that 
these rules take elements of PeN as input, not only elements of BeN. So far we 
have only seen basic expressions of category CN, but CN also contains com­
plex expressions: for instance, noun phrases consisting of an adjective and a 
common noun, like large woman, pink unicorn, or a noun with a restrictive 
relative clause like man who sleeps, woman who seeks Bill. In §6.3.11 we 
shall return to this subject. 

The method employed here, which introduces determiners syncategore­
matically, as quantifiers are introduced in logical languages, is the one Mon­
tague used in PTQ. This means that a separate rule, or separate operation, 
must be provided for every determiner. We might choose to treat determiners 
categorematically. In that case, we would consider every, the, a(n), one to be 
elements of category T!CN. One rule of functional application suffices to 
combine determiners and CNs toTs: 

S3': If cr E PT/CN and~ E PeN• then F;(cr, ~) E PT, and F;(cr, ~) = cr~. 

(Rules and operations that are not part of the fragment but that are introduced 
to show alternative options are marked with a prime to distinguish them from 
their 'actual' counterparts.) The term every man is formed by applying F; to 
the T/CN every and the CN man. The operation F; concatenates them. If we 
restrict ourselves to simple determiners, there is no compelling reason to pre­
fer one method to the other. But once we take complex determiners into con-
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sideration, the situation changes. For instance, we may consider the possessive 
construction John's, as in John's mother, to be a determiner. A CN, mother, is 
combined with it to form a term, John's mother. For such determiners, syn­
categorematic introduction will no longer be feasible. Rather, John's must be 
regarded as a complex element of PT/CN. And perhaps another reason to prefer 
the categorematic approach is provided by the fact that there is a (potentially) 
infinite number of numerals, which act as determiners. 

Using the rules S l-S6, or S 1, S2, and S3', we can construct the sentences 
(8)-( 12). In Montague grammar the derivation of an expression is represented 
in an analysis tree. Figure (13) shows two analysis trees for sentence (9): 
analysis tree (a) shows the derivation using S3, and analysis tree (b), the deri­
vation using S3'. 

(13) a. Every man sleeps, S, S2 

---------------every man, T, S3 sleep, IV 

I 
man, CN 

b. Every man sleeps, S, S2 

---------------every man, T, S3' sleep, IV 

---------------every, T!CN man, CN 

Every node of an analysis tree is labeled with an expression, its category, and 
the name of the rule used in its formation. (S 1 is never mentioned. PTQ gives 
the number of the syntactic operation instead of the name of the syntactic rule, 
as we do here.) 

Before adding more rules to the syntax, which will allow us to deal with 
more constructions and expressions, we shall first look at the organization of 
the process of translation using this very simple fragment. The translation of 
terms is especially important. Proper names and quantified terms are treated 
alike by the syntactic rules: they belong to the same syntactic category. As we 
will see, this has rather far-reaching implications for the translation of the 
fragment. 

6.3.3 The Organization of the Translation Process 

In the PTQ-model, English expressions are assigned a meaning via a transla­
tion into expressions of a logical language. This language is the language of 
intensional type theory, which was defined in chapter 5. In various places we 
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have argued that for an adequate representation of the meanings of natural lan­
guage expressions, we need at least a language with a type structure and an 
intensional semantics (cf. §§3.1, 4.2.1, 5.2). 

. Before proceeding with the specification of the translation process, we first 
mtroduce some notational conventions. (cf. also table 5.2). 

j, m, b, e are constants of type e. 
x, y, z, x0, ••• , X0 are variables of type e. 
X, Y, Z, X0 , ••• , Xn are variables of type (s, (e, t) ). 
X, Y, Z, X 0 , ••• , Xn are variables of type (s, ((s, (e, t)), t)). 

In the translation process, each expression of English is to be associated with 
a logical expression of a suitable type, i.e., of a type that fits the semantic 
import of its category. So first of all, we set up a systematic correspondence 
between the categories of our categorial syntax and the types of the inten­
sional theory of types. Given this correspondence, the translation process 
should yield for each expression of some category a logical expression of the 
corresponding type. For lexical expressions the translation can be given in a 
finite list. For the (infinite number of) derived expressions, the translation 
process will follow the lead of the syntactic rules. Since, as we observed in 
§6.2, if we want the semantics of our English fragment to be compositional, 
the process of translation must be compositional as well. Hence, the transla­
tion of derived expressions will be given by specifying for each syntactic rule 
a translation rule which defines what, given the translations of the input ex­
pressions of the syntactic rule, the translation of its output will be. 

Let us start by defining the correspondence between categories and types. 
One of the leading principles behind categorial syntax is that the syntactic 
category of an expression reflects its semantic function. In Montague gram­
~ar this idea is incorporated by means of the correspondence between catego­
nes and types. In type theory, the type of an expression matches its semantic 
function directly: the extension of an expression of type e is an individual, one 
of typ~ t denotes a truth value, the interpretation of an expression of type 
(a, b) IS a function assigning objects of type b to objects of type a, and so on. 
If we define a correspondence between categories and types, we get, indi­
rectly, a relation between the syntactic categories of English expressions and 
their semantic functions. Hence, we define a functionfmapping categories on 
types as follows: 

Definition 2 

f is a function from CAT to T such that: 

(i) /(S) = t 
(ii) /(CN) = f(IV) = (e, t) 
(iii) /(A/B) = ( (s, f(B)), f(A)) 
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The category S of sentences corresponds to the type t of formulas. Both the 
category IV of intransitive verb phrases and the category CN of common 
nouns correspond to the type of one-place first-order predicates, (e, t). The 
last example illustrates that not every distinct category corresponds to a dis­
tinct type. Although two expressions which belong to the same syntactic cate­
gory necessarily have the same semantic function, the inverse does not hold. 
For instance, man and walk have the same semantic function, but they belong 
to different categories. That is, the syntactic differences between them are re­
garded as having no bearing on their semantic function. 

Clause (iii) of definition 2 defines the types corresponding to derived cate­
gories. Quite generally, a functor category AlB corresponds to a function 
from intensions of objects of type f(B) to objects of type f(A). That is, an 
expression of a functor category semantically operates on the intension of its 
argument. The reason for setting things up in this way is that some expres­
sions create intensional contexts. (Cf. the elaborate though incomplete list in 
§3.1). For example, the transitive verb seek creates an intensional context, as 
is evident from the fact that (16) does not follow from (14) and (15). (In ear­
lier examples we used the more common look for): 

(14) John seeks the supreme commander of the U.S. armed forces. 

(15) The president of the United States of America is the supreme 
commander of the U.S. armed forces. 

(16) John seeks the president of the United States of America. 

Two terms with the same extension but different intension, the supreme com­
mander of the U.S. armed forces and the president of the United States of 
America, cannot be substituted salva veritate in the context John seeks . ... 
In a Montague grammar this is accounted for by stipulating that semantically 
seeks operates on the intension of its object. Note that expressions with the 
same intension can be substituted for each other in an intensional context, as 
is shown by the fact that (18) follows from (17): 

(17) John seeks Peter's barber. 

(18) John seeks Peter's hairdresser. 

In §6.3.5 we shall return to the subject of the representation of the intensional 
nature of some transitive verbs, and in §6.3. 7, to the representation of exten­
sional verbs. The fact that in every functor category expressions can be found 
that create an intensional context is the justification for associating every 
functor category with a type of the form ( (s, b), a). 

The second step in setting up the translation process consists in specifying 
the translation of the lexical elements of the fragment. Most elements will be 
associated with constants of the logical language, but others will be associated 
with complex logical expressions. To the latter group belong the elements of 
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BT, the transitive verb be, and the sentence-modifying adverb necessarily. All 
other lexical elements are translated as constants of the appropriate type. We 
will make sure that no two lexical elements are mapped onto the same con­
stant and will account for synonymy of lexical expressions by other means 
(see §6.3.6). 

To increase the legibility of translations, it is common practice in Montague 
grammar to use constants which resemble the corresponding lexical elements. 
Of course they must be distinguishable: this book prints constants in small 
capital letters. For instance, the IV walk is associated with the constant WALK 
of type (e. t). Formally, the association of lexical elements with constants is 
performed by a function g. meeting the following requirements: 

(i) g is a function from B A (with the exception of B T, be, and necessarily) 

to CON~A>. 
(ii) If a =t= (3, then g(a) =t= g((3). 

Clause (i) expresses that g assigns constants of type f(A) to the basic expres­
sions of a category A, with the exceptions stated, which get a separate treat­
ment. For instance g(man) = MAN. Clause (ii) ensures that no two lexical 
elements are mapped onto the same constant. The function g is the foundation 
of the process of translation. The first translation rule, in fact, is formulated as 
follows: 

Tl(a): If a is in the domain of g, then a translates into g(a). 

Except for the elements of BT, be, and necessarily, the lexical elements of a 
category A are translated by Tl to constants of type f(A). Tl will be extended 
with the translations of the other lexical elements. Then it functions analo­
gously to its syntactic counterpart S l: it gets the translation process started. 

The third step of the translation process consists in a definition of the trans­
lation rules corresponding to the syntactic rules. A syntactic rule operates on 
one or more expressions to produce a new one. The corresponding translation 
rule defines the translation of the new expression in terms of the translations 
of the expressions which are its component parts. Examples will be given in 
the following sections. 

6.3.4 The Translation ofTerms 

This section deals mainly with the translation rules which correspond to the 
rules S3-S6, the syntactic rules that construct quantified terms out of CNs. 
The translation of terms is one of the most interesting features of PTQ. 

Compositionality of semantics requires compositionality of translation, and 
consequently terms should get a separate translation. Some terms, like proper 
names and definite descriptions, may be regarded as referring to individuals: 
John refers to a certain individual John, the smallest prime to the number 2. 
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But quantified terms are different, and this complicates the story. For in­
stance, consider the quantified term every man. This term cannot be regarded 
as referring to an individual, since there is no individual that is every man. In 
§4.4.3, we showed how a separate translation of quantified terms can be ob­
tained. Consider for example: 

(19) Every man sleeps. 

Sentence ( 19) is interpreted as the assertion that the property of sleeping has 
the property of being true of every man. The quantified term every man is 
considered to be the second-order predicate that is true of a property of indi­
viduals if every individual that is a man has that property. Of course in the end 
this is just the more familiar first-order reading of (19), which reads that for 
every individual it is true that if it is a man, it sleeps. So semantically every 
man is considered to be a function applicable to a property. Note that this is in 
keeping with the fact that terms also behave syntactically as functors. Cate­
gory T is defined as the functor category S/IV. Syntactically, the application 
of a term to an IV results in a sentence; semantically, the application of a term 
interpretation to a property, expressed by an IV, results in a truth value (of that 
sentence). The type which corresponds to the category T reflects this: 

(20) f(T) = f(S/IV) = ((s,f(IV)), f(S)) = ((s, (e. t)), t) 

Expressions of this type refer to (characteristic functions of) sets of first-order 
properties (cf. table 5.2.). The term every man is translated into expression 
(21), which refers to the set of properties which are true of every man: 

(21) A.X'v'x(MAN(x)-> VX(x)) 

In (21), X is a variable of type (s, (e. t)) and xis a variable of type e. With 
respect to a value assignment, the variable X refers to a function from possible 
worlds to sets of entities, that is, X refers to a property. Applied to a pos­
sible world, a property yields the set of entities which have that property in 
that world. With respect to a value assignment, v X refers in a possible world 
to the set of entities which in that world have the property to which X refers: 
vx is of type (e. t) and VX(x) is a formula which is true in a world if the 
individual referred to by x has the property referred to by X, i.e., belongs to 
the set of entities referred to by v X in that world. The constant MAN, the trans­
lation of the CN man, is oftypef(CN) =(e. t). The expression MAN(x) is true 
in w iff x belongs to the set of men in w. Formula (22) 

(22) 'v'x(MAN(x) -> v X(x)) 

asserts, with respect to an assignment, that all individuals that are men have 
the property referred to by X. Applying A.-abstraction over the variable X 
results in (21), the translation of every man. This expression is of type 
( (s, (e, t) ), t). It refers in a world w to the set of all those properties such that 
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every ~an in w has those properties, which is exactly what we wanted for the 
trans~atwn of the quantified term every man. When we apply (21) to an ex­
~e~sio_n ofty_pe (~, (e, t)), a pro?erty-denoting expression, we get a formula 
. hich IS ~e m w If the property m question is an element of the set of proper­

ties to which (21) refers in w. For example, the IV sleep translates into the 
constant SLEEP of type f(IV) = (e, t). The expression AsLEEP refers to the 
property expressed_ by SLEEP and is of type (s, (e, t) ). If we apply (21) to 
AsLEEP, the result IS formula (23): 

(23) AX Vx(MAN(x) _,. v X(x))( ASLEEP) 

This formula is true in V: iff sleep is one of the properties every man in w has. 
By_me~s of A-conversion (theorem 5 in §5.6), we can shorten (23) to (24) 
which I~ hlrn can be reduced to (25) by the theorem of v A-elimination (the~ 
orem 2 m §5.5): 

~} .;r~:t:":.i/ 

(24) Vx(MAN(x) _,. v A~f~p(x)) 

(25) 'v'x(MAN(x) -> SLEEP(X)) 

And this brings us back to the standard predicate-logical representation of sen­
tence (19). 

J:Iowever, two _points sho~ld be _borne in mind. First, unlike in predicate 
l~gic, the translatwn of (19) rs obtamed compositionally. Secondly, the transi­
tio~ of (23) t~ (24), and of (24) to (25), is admissible precisely because (23) is 
logically _equivalent to (24), and (24) to (25). As for being a representation of 
the meanmg of (l9), there is no difference whatsoever between (23) (24) and 
(25): they are all logically equivalent and hence represent the same' me~ing. 
We may regru::d (23~, (24), and (25) as three different notations for one and the 
same semantic object. We convert (23) into (25) only because (25) is a 
shorter, more common notation. 

!he compositional translation of quantified terms is illustrated by the trans­
lation of th~ example every man. We will now give the rule of translation T3 
correspondmg to syntactic rule S3. Rule S3 takes an arbitrary CN ~ and yields 
~e term every ~; T3 defines the translation of every ~ in terms of the transla­
tion of~- From now on we will abbreviate the phrase 'a translates into {3' as 
'a 1- {3'. 

T3: If~ E PCN and ~ 1- r, then Fz(D 1-
AX'v'x(r<x) _,. vx(x)). 

Given that man 1- MAN by rule Tl(a), every man(= F
2
(man)) translates into 

(21) by rule T3. 

The translation rules corresponding to S4-S6 follow the same pattern: 

T4: If~ E PeN and~ 1- C then F
3 
I­

AX3x(Vy(r<y) ~ x = y) 1\ VX(x)). 

T5: If~ E PCN and~ 1- r, then F4 I­
AX3x(r<x) 1\ VX(x)). 

T6: If~ E PeN and~ 1- r, then fl; I­
AX3x'v'y((r<y) 1\ VX(y)) ~ x = y) 
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By rule T5, the quantified term a woman is translated into (26): 

(26) AX3x(WOMAN(x) 1\ VX(x)) 

ln a world w, expression (26) refers to a set of properties. A property belongs 
to this set if there is a woman in w having this property. Different women have 
different properties. If Mary sleeps in w, then the property of sleeping belongs 
to the extension of (26) in w, and if Elsie is awake, so does the property of 
being awake. The set of properties referred to by a woman will contain muru­
ally exclusive properties as soon as there is more than one woman. 

T4 gives a Russellian analysis of definite descriptions like the unicorn, 
which translates as: 

(27) AX3x('v'y(UNICORN(y) ~ x = y) 1\ VX(x)) 

In a world w, (27) refers to the set of those properties which hold for the 
unique individual that is a unicorn in w. Existence and uniqueness are asserted 
in this analysis, not presupposed. (For a discussion of these matters, see §§5.2 
and 5.5 in volume 1. The analysis given here is not the only one possible 
within the framework of Montague grammar, but it is the analysis employed 
in PTQ.) Given T6, the translation of one unicorn refers to the set of proper­
ties such that there is precisely one unicorn (not necessarily always the same 
one) that has that property. 

The analysis of quantified terms outlined above affects the analysis of 
proper names. Proper names belong to the same syntactic category as quan­
tified terms. Syntactically there is hardly any difference between the two. 
Their distribution, i.e., the position they may take in a sentence, is virtually 
equal; to regard them as belonging to different syntactic categories would be 
very unnatural, and moreover it would complicate the syntax enormously. 
Every rule applicable to both quantified terms and proper names would have 
to be doubled. Another reason for analyzing proper names in the same way as 
quantified terms is that on that level it becomes possible to give a straight­
forward interpretation of proper names as elements in a conjunction, such as 
in John and Bill, Bill or a woman, which cannot be obtained if we stick to an 
analysis which views them as individual denoting expressions (see §6.3.10). 
Enough reasons, therefore, to regard proper names and quantified terms as 
belonging to the same category. As a result, proper names will translate into 
expressions oftypef(T) = ((s, (e, t)), t) and not into constants of type e as in 
chapter 5. Now this looks more problematic than it actually is. For proper 
names can also be viewed as referring to sets of properties. Sentence (8), John 
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walks, can be interpreted as asserting that the property of walking belongs to 
the set of John's properties. Of course this is just another, more elaborate way 
of saying that John has the property of walking. Just as a proper name is ana­
lyzed syntactically as a functor which takes an IV to give an S, it can be viewed 
semantically as a function which, applied to a property (expressed by the IV), 
yields a truth value (of the S). The proper name John then translates as: 

(28) A.XVX(j) 

where X is a variable of type (s, (e. t)) andj a constant of type e. The formula 
v X (j) is true in w with respect to an assignment if the individual referred to 
by j in w belongs to the set of entities referred to by v X in w, which is the set 
of entities that have the property to which X refers under that assignment. The 
type of (24) is ( (s, ( e, t)), t), and its reference in w is the set of properties that 
are true of the individual j in w. 

The translation of the proper name John is used in the translation of sen­
tence (8) in the same way as quantified terms were used. The IV walk trans­
lates as the constant WALK of type (e. t), and /\WALK refers to the property 
expressed by WALK. Applying (28) to /\WALK yields formula (29): 

(29) A.X v X(j)( /\WALK) 

It asserts that the property of walking belongs to the set of properties of John. 
By means of A.-conversion and v A-elimination, (29) is reduced to (30): 

(30) WALK(j) 

So in this case, too, we get the standard representation of first-order predicate 
logic. 

This treatment of proper names is made possible by the fact that the set of 
properties of an individual and the individual itself are uniquely related. Two 
individuals are identical iff they have the same properties, i.e., iff their sets of 
properties are identical. Formula (31) is a formalization of this: 

(31) VxVy(x = y ~ A.X VX(x) = A.X VX(y)) 

Principle (31) is a valid principle of the intensional theory of types. Not every 
set of properties corresponds to an individual, of course. For example, (21) 
and (26) refer to sets of properties which, except in borderline cases, do not 
define an individual. 

The translation of the basic expressions of category T, the proper names 
John, Mary, Bill, and the syntactic variables he 0 , ••• , hen is given in the 
following addition to rule Tl: 

Tl(b): John~ A.X VX(j) 
Mary ~ A.X VX(m) 
Bill ~ A.X VX(b) 
hen~ AX vx(xn) 
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Syntactic variables, like proper names, are translated into expressions refer­
ring to sets of properties of individuals: with respect to an assignment g, hen 
refers to the set of properties of g(x"), the individual denoted by x". We will 
come back to syntactic variables in §6.3.8. 

Now we have a uniform definition of the translation of all the terms in our 
fragment. What remains to be defined in order to complete the translation of 
the fragment of §6.3.2 is the translation of syntactic rule S2, which combines 
Ts and IVs to form sentences. In view of the foregoing, the translation rule 
seems obvious. A sentence of the form T + IV asserts that the property ex­
pressed by the IV belongs to the set of properties referred to by the T. An IV o 
translates into an expression o' of type (e. t). The expression /\o' of type 
(s, (e. t)) refers to the intension of 01

, a function from possible worlds to sets 
of individuals, the property expressed by o'. The desired result is obtained by 
applying the translation of the T to the intension of the translation of the IV. 
Translation rule T2, then, reads as follows: 

T2: If o E Prv and a E PT and o ~ o' and a ~a', then F1 (a, o) ~ 
a'( Ao'). 

We will see this pattern in every translation rule corresponding to a syntac­
tic rule of functional application: a functor operates on the intension of its 
argument. 

The type corresponding to a functor category A/B is f(AIB) = ( (s, /(B)), 
f(A)). The type corresponding to the argument category is f(B). If thecate­
gory of o is B, and o ~ o', then Ao' is of the type (s,f(B)) and an appropriate 
argument for the translation a' of an expression a of category A/B. 

We do not translate expressions as such but expressions given a syntactic 
analysis, since, as we observed in §6.2, only this guarantees compositionality 
of translation, and hence of interpretation. For there are ambiguous expres­
sions which should get more than one translation. So, the translation process 
operates on analysis trees, which represent the derivations of expressions. We 
start at the bottom of the tree, with the translation of the lexical elements, and 
climb up from node to node, applying at each step the translation rule corre­
sponding to the syntactic rule that labels the node. Using this method, we con­
struct a unique translation which gives the meaning that corresponds to the 
analysis encoded in the tree. The translation itself can also be represented in a 
tree structure. Figure (32) shows an analysis tree and the corresponding trans­
lation tree for sentence (10) The elephant smokes: 

(32) a. The elephant smokes, S, S2 

------------the elephant, T, S4 smokes, IV 

I 
elephant, CN 
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b. A.X3x('v'y(ELEPHANT(y) ...... x = y) 1\ v X(x))( A sMOKE), t, T2 

AX3x('v'y(ELEPHANT(y) <--> x = y) 1\ vx(x)), I ( (s, (e. t) ), t), T4 

ELEPHANT, (e, t) 

SMOKE, (e, t) 

Figure (33) shows how the result can be reduced by means of .A-conversion 
and v A-elimination. 

(33) 3x('v'y(ELEPHANT(y) <-->X = y) 1\ SMOKE(x)), V /\-elimination n 
3x('v'y(ELEPHANT(y) <--> x = y) 1\ v AsMOKE(x)), A.-conversion n 

AX3x('v'y(ELEPHANT(y) <--> x = y) 1\ v X(x))( A sMOKE), t, T2 

A.X3x('v'y(ELEPHANT(y) <--> x = y) 1\ VX(x)), I ((s, (e, t)), t), T4 

ELEPHANT, (e, t) 

SMOKE, (e, t) 

In §6.3.2 we suggested a categorematic introduction of determiners. In that 
approach, determiners would be expressions of category T/CN, and their 
translations would be of type f(T/CN) = ((s, j(CN)), f(T)) = ((s, (e. t)), 
((s, (e. t)), t)). Expressions of this type refer to relations between properties 
of individuals. We can translate the determiner every as (34): 

(34) .AY.AX'v'x(Vf(x)--+ VX(x)) 

This expression refers to the relation between properties which is true of two 
properties Y and X in a world w iff all individuals who have property Y in w 
have property X in w (cf. the discussion in §4.4.3). Applying (34) to /\MAN, 
an expression referring to the property of being a man, results in (35): 

(35) i\YAX'v'x(V Y(x) --+ v X(x))( /\MAN) 

This expression refers to the set of properties X who bear the relation de­
scribed by (34) to the property of being a man. It can be reduced by means of 
A.-conversion and v A-elimination; the result, (36), is the translation of the 
term every man, and it is identical to the translation yielded by the syncate­
gorematic method, (21). 

(36) i\X'v'x(MAN(x) --+ v X(x)) 

In this approach, the translations of the determiners every, the, a(n), one are 
defined in rule Tl, since they are considered to be basic expressions: 
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Tl(c'): every f-7 i\Yi\X'v'x(VY(x)--+ VX(x)) 
the f-7 i\Yi\X3x('v'y(VY(y) <--+ x = y) 1\ VX(x)) 
a(n) f-7 i\Yi\X3x(V Y(x) 1\ v X(x)) 
one f-7 i\Yi\X3x'v'y((Vf(y) 1\ VX(y)) <-> x = y) 
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The translation of the rule of functional application S3', combining deter­
miners and CNs to yield terms, is predictable: 

T3': If cr E PTtcN and~ E PCN and cr 1--7 cr' and~ 1--7 ~,,then F~(cr, ~) 
1--7 cr'(/\n. 

In the categorematic approach, the translations of complex expressions con­
taining terms are constructed analogously. The reader can check that both ap­
proaches yield the same results. 

Exercise 1 * 
(a) Construct analysis and translation trees for the sentence A woman strolls, 

using the categorematic and syncategorematic definitions of determiners. 
(b) Give a translation for the determiner no. 

6.3.5 Transitive Verbs 

In this section we add a syntactic rule, S7, to our fragment, which combines a 
transitive verb with a term to form a complex, nonlexical intransitive verb 
phfase. Such nonlexical JVs combine with terms to form sentences, just as 
lexical elements of that category do, by rule S2. This enables us to give an 
analysis of sentences with relational predicates which preserves the traditional 
subject-predicate analysis. For the new syntactic rule S7 there is a correspond­
ing translation rule which defines the interpretation of complex IVs. 

The treatment of transitive verbs will lead us into a second important aspect 
of the PTQ model: the analysis of intensional verbs and of scope ambiguities. 
We are concerned with finding a correct, compositional analysis of sen­
tences like: 

(37) John kisses a unicorn. 

(38) John seeks a unicorn. 

(39) Every woman loves one man. 

Various aspects of the analysis that PTQ offers will be discussed separately in 
subsequent sections. The translation of sentences in which the transitive verb 
be appears will not be treated until §6. 3. 9. There we shall demonstrate how its 
use both in identity statements such as (40) and in predicative assertions such 
as (41) can be accounted for in a uniform way. 
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( 40) John is Mary. 

(41) John is a woman. 

The syntactic rule S7 which combines TVs and Ts to IVs is a rule of func­
tional application, because TV is defined as IV /T. Transitive verbs are there­
fore functors whose input is a term and whose output is an IV: 

S7: If o E PTV and a E PT, then F6(o, a) E P1v, and F6(o, a) = oa', 
where a' is the accusative form of a if a is a syntactic variable· 
otherwise a' =a. ' 

Note that syntactic rule S7 may have a morphological effect. If the term the 
rule operates on is a syntactic variable, its morphological form has to be ad­
justed. Figure (42) shows an analysis tree of (37). 

(42) John kisses a unicorn, S, S2 

--------------John, T kiss a unicorn, IV, S7 

--------------kiss, TV a unicorn, T, S5 

I 
unicorn, CN 

This ex~ple illus_trates that sentences with relational predicates are assigned 
the traditiOnal subject-predicate structure. 

Our fragment contains only basic expressions of category TV. If a three­
place verb like give (to) were to be added, it would when combined with the 
indirect object t:I ary yield the complex expression give to Mary of category TV. 

The translation rule corresponding to S7 follows the pattern of other rules 
?f functional application. The type that is associated with the category TV 
IS /(TV) =/(IV IT) = ((s, f(T)), f(IV)) = ((s, f(S/IV)), j(IV)) = ((s, ((s, 
(e, t) ), t) ), (e, t) ). Semantically a TV is a function which, when applied to a 
second-order property, yields a set of individuals. So its reference can be 
viewed as a relat~on between individuals and second-order properties. The 
latter are properties of first-order properties, i.e., functions from possible 
worlds to sets of properties of individuals. The reference of a term is a set of 
properties of individuals, so its intension is a second-order property. As usual 
the TV, being the functor, operates semantically on the intension of the T, its 
argument. There are a number of reasons to prefer this translation of TV s to a 
t~anslation which treats them as relations between individuals, i.e., as expres­
siOns of type (e, (e, t) ). In the first place, it enables us to regard TVs quite 
generally as functors, taking direct object terms as their argument, whether 
these terms are proper names or quantified terms. Second, it makes it possible 
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to account for the intensional nature of verbs such as seek. We will go into this 
subject at greater length. But first we formulate the translation rule: 

T7: If o E PTV and a E PT and a ~a' and o ~ o', then F6(o, a) ~ 
0'( Aa'). 

The effect of T7 is illustrated by the translation trees in figure (43), which 
display the translation of sentence (37), given the analysis tree in figure (42). 

(43) KISS( AAX3x(UNICORN(x) !\ v X(x)))(j), A.-conversion and v /\-elimination n 
AXVX(j)( /\Kiss( AAX3x(UNICORN(x) !\ VX(x)))), t, T2 

AXVX(j), ((s, (e, t)), t), Tl(b) KISS( Af..X3X(UNICORN(X) !\ VX(x))), (e. t), T7 

KISS, ((s, ((s, (e. t)), t)), (e, t)), Tl(a) AX3x(UNICORN(x) !\ VX(x)), ((s, (e. r)). t), T5 

\ 
UNICORN, (e, t), Tl(a) 

The translation of the TV kiss is applied to the intension of the translation of 
the term a unicorn in accordance with rule T7. The result, KISS( AAX3x 
(UNICORN(x) 1\ VX(x))) is of type (e. t). In a world, the denotation of this 
expression is a set of individuals, viz., those that kiss a unicorn in that world. 
The property expressed by kiss a unicorn is referred to as A KISS( AA.X3x 
(UNICORN(x) 1\ VX(x))), which is of type (s, (e, t) ). Formula (37) asserts that 
this property of individuals is a property of John. . 

This assertion is expressed by the formula A.XV X (j)( A KISS( A A.X3x 
(UNICORN(x) 1\ VX(x)))). By means of A.-conversion and v A-elimination, this 
will reduce to KISS(AA.X3x(UNJCORN(X) 1\ v X(x)))(j). 

PTQ has a notation for two-place relations which is more reminiscent of 
that of standard predicate logic. We will adopt this convention too: 

Notational convention 1 

If y is an expression of type (a, (b, t) ), a an expression of type a, 
and {3 an expression of type b, then we may write y(/3, a) for 

(y(a))(f3). 

This notational convention, from now on referred to as NC 1, tells us that we 
can treat functions from objects of type a to sets of objects of type b as rela­
tions between objects of type b and objects of type a. The translation of (37) 
can now also be written as follows: 

(44) KISS(j, AA.X3x(UNICORN(X) 1\ VX(x))) 
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Exercise 2* 

Construct analysis and translation trees for the sentences John loves Mary and 
Every woman loves one man. Reduce the result of the translation, usin()' 'A-
conversion, v A-elimination, and NCl. "' 

Now up to what point are the results of the application of the rules ade­
quate? We will try to answer this question by first considering another ex­
ample: (45), the translation of sentence (38): 

(45) SEEK(j, AA.X3x(UN1CORN(X) 1\ VX(x))) 

This translation is obtained in exactly the same way as· (44) is obtained for 
sentence (37), only a different transitive verb is used. Formula (45) asserts 
that the seek relation holds between the individual John and the second-order 
property of being a property of a unicorn. Can this be regarded as an adequate 
representation of the meaning of (38)? When answering this question, we 
must keep in mind what our aims are. We are concerned with finding a correct 
representation of the meaning of the sentences of our fragment. The meaning 
of a sentence appears, among other ways, in its logical relations to other sen­
tences. We must therefore assign a logical interpretation to a sentence in such 
a way that the fact that it bears the relation of logical entailment to some sen­
tences and not to others is accounted for. In the case of sentence (38), we may 
formulate the relevant semantic facts as follows: ( 46) does not follow from 
(38) (John seeks a unicorn.), (48) does not follow from (38) and (47), and 
(38) and ( 49) are not equivalent: 

(46) Unicorns exist. 

(47) Unicorns and centaurs do not exist. 

( 48) John seeks a centaur. 

(49) John seeks every unicorn. 

Obviously sentence (38) has other logical relations with sentences, but if we 
want to make certain that (45) is a correct representation of an important part 
of (38), we must be able to account for at least the entailment relations men­
tioned above. So we want to construe seek as a relation between an individual 
and such a semantic object that the facts just mentioned are accounted for. It is 
evident that we cannot consider seek to be a relation between two individuals. 
If we did, the meaning of (38) would be that John stands in the seek relation to 
a certain individual that is a unicorn, but this would imply that ( 46) follows 
from (38), which contradicts the facts. In the foregoing, we resolved to ana­
lyze terms quite generally as sets of properties of individuals, keeping in mind 
that it is not necessary for every such set to define a unique individual. For 
instance, as we observed in §6.3.4, there is no individual with all the proper­
ties in the set 'AX3x(WOMAN(x) 1\ VX(x)) (unless there is only one woman). 
And every individual that is a man has more properties than those in the set 
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'AXV'x(MAN(x) -+ VX(x)) (again, unless there is only one man): for instance, 
take the property of being equal to John, which is a property of John, but not 
of Bill. An analysis which regards seek as a relation between an individual 
and a set of first-order properties is to be preferred to one which takes it as a 
relation between two individuals, since the former, but not the latter, will ac­
count for the fact that (46) does not follow from (38). 

Note that the seek relation may hold between John and the set of first-order 
properties denoted by 'AX3x(UN1CORN(x) 1\ VX(x)), even in those situations 
where there are no such things as unicorns. In those situations, the seek rela­
tion is true of the individual John and the empty set. If, in a certain world, the 
set of properties in question is empty because there are no unicorns, this 
means that in that world John will never find what he is seeking, but it does 
not imply that John cannot seek what does not actually exist. To put it in other 
words, (46) does not follow from (38), and the negation of (38) does not fol­
low from (46). These results are quite satisfactory. 

But if we look at (45) we see that seek is not regarded as a relation between 
an individual and a set of first -order properties but as a relation between an 
individual and a function from possible worlds to sets of first-order properties. 
Seek does not operate on the term itself but on its intension. Why is that? The 
reason is that seek does not allow substitution of merely extensionally equiva­
lent expressions. With respect to (38) the reason for this is quite evident. Sup­
pose (47) is true. In such a situation AX3x(UNICORN(x) 1\ VX(x)) and 
.AX3x(CENTAUR(x) 1\ VX(x)) would be extensionally equivalent, since both 
would denote the empty set. Still, (48) does not follow from (38), not even 
when (47) is true. But notice that although in this situation the terms a uni­
corn and a centaur have the same extension, they have different intensions. 
There are worlds where unicorns exist but centaurs do not, and vice versa. 
And in a world where both mythological creatures exist, their sets of proper­
ties would be different: a unicorn has one hom, a centaur has a human head. 
These semantic facts, as well as the fact that (38) and (49) are not equivalent, 
are neatly accounted for by taking seek to be a relation between an individual 
and a second-order property. 

With regard to the semantic facts observed above, the PTQ analysis of tran­
sitive verbs and their direct objects is satisfactory. A second-order property, 
though perhaps not the first thing that comes to mind, is semantically an ade­
quate second argument for the seek relation. Surely the analysis as developed 
so far leaves several aspects of the meaning of seek unaccounted for. To put it 
more precisely, so far we have specified only those aspects that make seek an 
intensional transitive verb, i.e., we have accounted for what all intensional 
transitive verbs have in common, but not for what differentiates one from the 
others. We will see in §6.3.1 how one more specific aspect of the meaning of 
seek is explained in the PTQ model. 

Our analysis of transitive verbs, then, is satisfactory for intensional tran­
sitive verbs, but in fact it treats every transitive verb as if it were intensional. 



170 Chapter Six 

If we return to translation (44) of sentence (37), we see why this is so. In (44) 
kiss is also taken to be a relation between an individual and a second-order 
property, implying that (37) does not entail the existence of unicorns. But this 
is not correct; one simply cannot kiss things that do not exist. So kiss does 
express a relation between individuals. Unlike the seek relation, this relation 
is extensional, and (52) follows from (50) and (51): 

(50) John kisses the supreme commander of the U.S. armed forces. 

(51) The president of the United States of America is the supreme 
commander of the U.S. armed forces. 

(52) John kisses the president of the United States of America. 

Although intensional and extensional verbs have different semantic proper­
ties, they belong to the same syntactic category. The analysis of intensional 
verbs seems to necessitate a similar analysis of extensional verbs. In §6.3.7 
we shall see that we can account for the extensional nature of certain transitive 
verbs by putting further restrictions on their interpretation without losing the 
advantage gained by the analysis with respect to intensional verbs. Besides, 
this will provide a solution to the following problem: we want seek to express 
a relation between individuals in a case like: 

(53) John seeks Mary. 

According to (53) the seek relation holds between two individuals, namely, 
John and Mary, and in this case existential conclusions may be drawn, for (54) 
follows from (53): 

(54) There is someone whom John is seeking. 

A second problem is the explanation of scope ambiguities. Exercise 2 illus­
trates that deriving sentence (39), Every woman loves one man, with the syn­
tactic means available up to now only gives the reading in which the scope of 
every woman is wider than the scope of one man. The other reading cannot be 
produced yet, which is unsatisfactory. Something similar holds for the repre­
sentation of de dicto/de re ambiguity that sentences with intensional verbs 
give rise to. Until this point we have only been concerned with an adequate 
representation of the de dicto reading of a sentence such as John seeks a uni­
corn. But quite generally, sentences in which expressions occur which create 
an intensional context have besides a de dicto reading also a de re reading, as 
we saw in §3.1. The de rereading of (38) can be paraphrased as follows: 

(55) There is something that is a unicorn that John is seeking. 

Section 6.3.8 is dedicated to the treatment of these phenomena; it consists in 
the introduction into our grammar of another method of construction for sen­
tences. But first we treat the problems mentioned before. Meaning postulates 
play a central part in this treatment, and therefore §6.3.6 will discuss the 
function of meaning postulates in general. 
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6.3.6 The Function of Meaning Postulates 

In the PTQ model the semantic interpretation of the intensional theory of 
types serves as the indirect interpretation of a fragment ~f Eng_lish. The inter­
pretation determines what suitable models are for the mtens10nal theory of 
types. But not every model that is adequate for an intensional theory of types 
will ipso facto be an adequate model for Englis~. This is bec~use such a 
model contains little information about the meamngs of expressiOns of En­
glish. The meanings of the logical constants, i.e., the connectives, quantifi­
ers, identity predicate, A.-operator, A-and v -operators, and modal operators, 
are defined exactly, but for all other expressions only the general nature of 
their meaning is described. For instance, for the logical constant • the seman­
tics not only states that its interpretation is a function from truth values to truth 
values but it further specifies what function this is: the one th~t maps 0 on _1 
and I on 0. But the meaning of an expression which is not a logical constant IS 

not fully specified in the same way. For such an expression th~ s~mantics o~ly 
states what kind of interpretation it has, i.e., to what domain Its mterpretatwn 
belongs, but it does not specify which element of_ this domain_ t~is is. For ex­
ample, the semantics determines that the constant], of type e, IS mte~reted as 
a function from worlds to individuals, I(j) E nw, but the exact function from 
W to D is not given. Likewise, of the constants BACHELOR a~d ~~RRIED we 
Jearn that their meanings are functions from worlds to sets of mdtvtduals, but 

no more. 
If we translate English into the language of the theory of types, we inherit 

this distinction. The meanings of some expressions are specified exactly. 
Those expressions are the ones which are translated into logical constants or 
in expressions in which only logical constants and bound variables occur. Ex­
amples in our fragment are the determiners. This is as_it should be, for ~very 
semantic theory for the English language should contam at least a fixed ~nt~r­
pretation of the logical constants. It is the only way to account for val1d In­

ferences in English that depend on the meanings of the English counterparts of 
the logical constants. 

On the other hand, we also want our semantic theory to account for those 
inferences whose validity depends on something more than the interpretation 
of the logical constants. For example, we want to account for the fact that (57) 

follows from (56): 

(56) John walks rapidly. 

(57) John walks. 

The validity of this inference may be considered to be due to a semantic prop­
erty of the adverb rapidly. There is a large class of adverbs with the same 
property, but not every adverb has it: for example, (57) does not follow from 

(58): 

(58) John walks often. 
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Anothe~ examp~e of a valid derivation that depends on the semantic content of 
expressions whrch are not logical constants is provided by (59) and (60): 

(59) John is a bachelor. 

(60) John is not married. 

A_s we point.ed out above, the models of the intensional theory of types only 
give .us the mf~rmation that BACHELOR and MARRIED (the translations of the 
En~hsh exp_resswns bach~lor and marriecf) are interpreted as first-order prop­
erties. But If we are to give an account of the relationship between (59) and 
(60), those. constants. should ?ear a specific relation to each other: in any 
model, th~ mterpretatwn function should assign them interpretations such tl-)at 
the extension of BA.CHELOR ~d the extension of MARRIED are disjoint in every 
wo:ld. T?e. semantics of the mtensional theory of types allows both models in 
which this IS the ~ase and models in which it is not. For the intensional theory 
of types as a logzcal theory both kinds of models are admissible. But if we 
want to use the theory to give a semantics for English, clearly the latter should 
be .excluded. We want the semantic theory to admit only those models in 
which BACHELOR and MARRIED are interpreted in such a way that they are re­
lated as indicated above. 

~e function of meaning postulates is to restrict the class of all models to a 
c~rtam subclass. The subclass is to consist of those models in which some 
kind of semantic relation between (classes of) predicates is valid certain sub­
classes of expressions have specific semantic properties, and s~ on. For the 
examples just mentioned, we would want only those models which validate 
the following formulas: 

(61) 'v'x'v'XO((y(X))(x)-+ VX(x)), fory =QUICKLY, SLOWLY, ... 
(but not: OFfEN, ... ) 

(62) 'v'x0(BACHELOR(X) -+ oMARRIED(x)) 

Meaning postulate (61) tells us something about the interpretation of a sub­
cla~s of adv~rbs; ~e have encountered it before, in §4.2.3. In every model in 
which (61) IS valid, it holds that (57) follows from (56). Meaning postulate 
(62} accou~ts fo~ the fact that (59) entails (60), because in every model in 
~hich (62) IS vahd, the extensions of BACHELOR and of MARRIED are disjoint 
m every world. 

. Meaning postulates are formulas from our logical language. We use them to 
Impose restrictions on the models for the logical language, and hence indi­
rectly f~r the. natural language, by stipulating that we consider only those 
models m which they are valid. (Sometimes this type of semantic information 
can be fitted into a model in other ways too, without using a meaning postu­
late. See §6.3.9 for an example.) 

Using meaning postulates we enter the twilight zone between sentence se­
mantics and word semantics. Meaning postulates are used to capture part of 
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the lexical meanings of expressions. But there is a limit to the amount of in­
formation that we can build into our models by means of meaning postulates, 
or would want to. For instance, (62) states about the meaning of bachelor just 
that it is related in the way specified to the meaning of married. But it cer­
tainly does not give the full semantic content of the noun. Whether it is pos­
sible, and for what purposes it would be necessary, to represent the entire 
meaning of a lexical element is a hard question to answer. The most trouble­
some problem is how to make a distinction between entailments which depend 
on the meanings of expressions and those which are due to factual circum­
stances. We want the semantic theory to account for the former, not for the 
latter (which it probably could not anyway). This problem actually is the same 
one every lexicographer struggles with: to distinguish between the semantic 
and the factual information carried by a lexical element. There is no simple 
solution for this problem. 

6.3. 7 Meaning Postulates for the Fragment 

Before formulating a meaning postulate for transitive verbs which will ac­
count for the extensionality of a verb like kiss, we will first formulate a 
meaning postulate that concerns proper names. 

It was argued in §3.2 that proper names, as opposed to definite descrip­
tions, are rigid designators. ln every possible world they refer to the same 
individual. We have regarded all individual constants as rigid designators in 
modal predicate logic, but we did not in the intensional theory of types. The 
extension of a constant of type e may differ from world to world. Recall that 
the proper name John is translated as AX VX(j). In a world w this refers to the 
set of properties which (in that world w) are true of the individual which is the 
reference ofj in that world. In different worlds, AX VX(j) may refer not just to 
different sets of properties but to different sets of properties of different indi­
viduals. Assuming that John is a rigid designator, this is not what we want: 
AX VX(j) should refer to (possibly different) sets of properties of one and the 
same individual, namely, John, in every world. By requiring the reference of 
the constant j to be the same individual in every world, we capture that the 
proper name John functions as a rigid designator. We do not impose this con­
straint on every constant of type e but only on those which are used in the 
translations of proper names. In the fragment, these are the constants j, m, b, 
and e. So we formulate the following meaning postulate: 

MPl 3xO(x = a), where a = j, m, b, ore 

For each of the constants j, m, b, and e, MPl asserts that there is an individual 
that is identical with the extension of the constant in every possible world, 
i.e., that it is a rigid designator. And if we allow only those models of the 
intensional theory of types in which MPl is valid, we ensure that John, Mary, 
Bill, and Elsie are rigid designators. 
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An immediate result of MPI is that if two proper names refer to the same 
individual in some world, they do so in all worlds. In other words, (63) is a 
valid principle: 

(63) a = f3 is equivalent to Aa = Af3, where a, f3 is j, m, b, or e. 

An equivalent principle (see the discussion in §3.3.2) is (64): 

(64) a = f3 is equivalent to D(a = /3), where a, f3 is j, m, b, or e. 

Another consequence of MPI concerns the relation between expressions re­
ferring to individuals and the corresponding expressions referring to sets of 
properties of individuals. An individual is characterized by the set of its prop­
erties. This means that if two expressions a and f3 refer to the same individual 
in a world w, the two expressions A.X v X(a) and A.X v X(/3) refer to the same 
set of properties in that world. In other words, (65) is a valid principle: 

(65) a= f3 is equivalent to A.X VX(a) = A.X VX(/3), where a, f3 are 
expressions of type e. 

(Compare principle (31) discussed in §6.3.4.) Now if in addition a and f3 
are rigid designators, that is, a and f3 refer to the same individual in each 
and every world, then A.X VX(a) and A.X VX(/3) refer to the same set of prop­
erties in every world. Therefore principle (66) and its equivalent (67) are also 
valid: 

(66) a= f3 is equivalent to AA_X vx(a) = AA.X VX(/3), where a and 
f3 are rigid designators. 

(67) a = f3 is equivalent to D(A.X VX(a) = A.X VX(f3)), where a 
and f3 are rigid designators. 

Not only are the constants j, m, b, and e rigid designators, but variables are 
too. The extension of a variable in a world does not depend on the world but 
on the assignment. For nonrigid designators principle (65) is valid, but (66) 
and (67) are not. For example, if c and d both refer to the same individual in 
w 1 , but not in w 2 , then A.X v X (c) and A.X v X (d) refer to the same set of prop­
erties only in W 1 and not in w2 • And thus AA.X VX(c) = AA.X VX(d) does 
not hold. 

So for rigid designators a, and only for rigid designators a, it holds that a 
and AA.X VX(a) are entirely equivalent ways of identifying a certain individ­
ual. If a is a rigid designator, then any expression in which 1\A.X VX(a) oc­
curs can be converted to an equivalent expression in which a occurs, since 
both a and AU VX(a) are necessarily tied to the same individual. 

The second meaning postulate to be discussed here formulates a property of 
certain transitive verbs. We observed in §6.3.5 that some transitive verbs, 
such as seek, can be regarded as relations between individuals and second­
order properties. Such an approach accounts for important semantic facts 
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about such intensional TVs, like the fact that the sentence John seeks a uni­
corn does not entail the existence of unicorns. On the other hand, this analysis 
fails for an extensional TV like kiss: we want the existence of unicorns to be 
implied by John kisses a unicorn. Hence, we must be able to regard these 
extensional TVs as relations between individuals. In the meaning postulate 
MP2, we state that the second-order properties which are related to individu­
als by the relation expressed by an extensional TV are determined by a rela­
tion between individuals: 

MP2 3SVxVXD(o(x, X)+--+ v X( AA.y v S(x, y))), where o =LOVE, 
KISS, KNOW, or FIND. 

The variableS in MP2 is of type (s, (e, (e, t)) ), a two-place first-order rela­
tion, and X is a variable of type (s, ( (s, (e, t) ), t) ), a second-order property. 
MP2 expresses that for each o for which it is defined, there is a relation S 
between individuals such that o(x, X) is true iff A.yV S(x, y), or in other 
words, the property of standing in the relation S to x belongs to the set of 
properties v X, viz., v X(A.yv S(x, y)). We will see that for every o for which 
MP2 is defined, there is exactly one S that fulfills this condition. 

First let us introduce some conventions. Whenever we say that the sentence 
<P is universally valid (I= <f>) we mean that [<P]M = 1 for every model Min 
which the meaning postulates are true. Such models are called 'admissible'. 
Furthermore, we will say that formulas <P and l/J are equivalent if [<f>]M,g = 
[l/1] M,g for every assignment g and admissible model M; and we say that <P and 
l/J are equivalent by MP2 if [<P]M,g = [o/]M,g in all admissible models for every 
assignment g that fulfills MP2 with respect to S, i.e., which assigns a value to 
S so that [VxVXD(o(x, X)+--+ VX(AA.y VS(x, y)))]M,g = 1, where o is as 
in MP2. 

Let us look at an example. The translation of (68) (= (37)) is (69)(= (44)): 

(68) John kisses a unicorn. 

(69) KISS(j, AA.X3x(UNICORN(X) 1\ VX(x))) 

By MP2 it now holds that there exists a relation S between individuals such 
that (69) is equivalent to (70): 

(70) v AA.X3x(UN1CORN(x) 1\ v X(x))( AA.y v S(j, y)) 

In other words, there is a relationS such that (69) is equivalent to the assertion 
that it is true of the property of standing in the relation S to j, i.e., the property 
AA.yVS(j, y) that there is a unicorn which has that property. Formula (70) is 
reduced to (71) by A.-conversion and VA_elimination, and (71) in its tum is 
equivalent to (72): 

(71) 3x(UN1CORN(x) 1\ v AA.y v S(j, y)(x)) 

(72) 3x(UNICORN(x) 1\ v S(j, x)) 
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~n oth~r words, by MP2 there is a relationS between individuals such that (69) 
IS eqmv~len~ to (72), the assertion that there is a unicorn that has the property 
of standmg m the relation S to j. 

The following notational convention, NC2, provides for each extensional 
TV an expression which will be seen to play the role of the relation S. 

Notational Convention 2 

If o is an expression of type ( (s, ( (s, (e, t) ), t) ), (e, t) ), then we may write o* 
instead of Ay'Ax o(x, "'AX VX(y)). 

The expression o* refers to the relation between individuals that holds be­
tween x and y iff the relation o holds between x and the intension of the set 
of all properties of y, that is, "AX VX(y). By this notational convention, 
Vx\:fy(o*(x, y) - o(x, "AX VX(y))) is universally valid, implying that we 
may write o*(x, y) for the assertion o(x, A)V( VX(y)). 

Not every assertion of the form o(x, X) can be rewritten into an equivalent 
one with o*, since not every expression of type (s, ((s, (e, t)), t)) refers to a 
second-order property which is related to a specific individual. For instance, 
A.X3x(UNICORN(x) 1\ VX(x)) does not define a specific individual, because 
if there is more than one unicorn or if there are no unicorns, then AX3x 
(UNICORN(x) 1\ VX(x)) does not refer to a set of properties which is the set of 
p:operties of one specific individual. Although NC2 is defined for all expres­
Sions of type ((s, ((s, (e, t)), t)), (e, t)), the foregoing shows that NC2 is 
merely a notational convention and that it does not entail that o* can always 
replace Sin MP2. The relation SEEK may be true of an individual, for instance 
j, and a second-order property, for instance, AAX3x(UNICORN(x) 1\ VX(x)), 
without it being the case that the relation SEEK* is true of j and a certain indi­
vidual in that situation. The intended connection between o and o* holds only 
in those situations where o is true of an individual x and a second-order prop~ 
erty corresponding to a specific individual y, that is, the second-order prop­
erty that refers in every world to the set of properties of y (in that world). 

An instance of such a second-order property is the one referred to by 
"'AX VX(m). Thanks to MPl, m is a rigid designator, and therefore 
"'AX v X(m) refers to the function that for every possible world gives the set of 
properties of one and the same individual, Mary. 

By NC2 we may write o*(x, m) for o(x, 'AX VX(m)), and thus we have a 
relation between individuals whenever a proper name occurs as the second 
argument of an intensional verb like seek. That is, (74), the translation of (73) 
( = (53)) is equivalent to (75). 

(73) John seeks Mary. 

(74) SEEK(j, AJ..X VX(m)) 

(75) SEEKAj, m) 
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This does not do away with the intensionality of seek. The equivalence of (74) 
to (75) is simply due to the treatment of proper names and the notational con­
vention. Furthermore, we get an account of the fact that (73) entails (76) 
(= (54)), because (75) entails (77): 

(76) There is someone whom John is seeking. 

(77) 3x SEEK*(j, X) 

For those o's for which MP2 postulates their extensionality, every asserti0n 
of the form o(x, X) is equivalent to an assertion about individuals. For in­
stance, as we saw above, by MP2, o(j, "AX3x(UNICORN(x) 1\ VX(x))) 
is equivalent to the assertion that there is an individual x which is a unicorn 
and stands in the relation S to j. In the same manner, MP2 assures that 
o(j, AJ..X\:fx(UNICORN(x) --+ VX(x))) is equivalent to the assertion that for 
every individual x, if it is a unicorn, it stands in the relationS to j. The exten­
sion of S, its existence being guaranteed by MP2, is nothing else than o*. We 
can prove that MP2 and NC2 entail theorem 1: 

Theorem 1 
F=\:;/x\:IXO(o(x, X)- VX("Ay o*(x, y))), where o = LOVE, KISS, KNOW, 

or FIND. 

Proof First we demonstrate the equivalence of o*(x, y) and v S(x, y) 
by MP2. According to NC2, o*(x, y) is equivalent to o(x, "'AX VX(y)). 
By MP2, this is equivalent to VA)V(VX(y)("'Ayv S(x, y)), which by 
v "-elimination and A.-conversion is equivalent to v "'Ayv S(x, y)(y) and, ap­
plying v "-elimination and A.-conversion once more, to v S(x, y). Then, by 
replacing o* by v Sin MP2 we prove the theorem.D 

Theorem 1 allows us to substitute formulas VX( "'Ay o*(x, y)) for all for­
mulas o(x, X) if o is an extensional verb. 

Let us take a look again at the translation of (68), John kisses a unicorn. We 
have already reduced (78) (= (44) and (69)), the direct outcome of the transla­
tion process, to (79) ( = (72)): 

(78) KISS(j, A)0{3x(UNICORN(x) 1\ VX(x))) 

(79) 3x(UNICORN(x) 1\ v S(j, x)) 

It has been proven that v S is equivalent to o*, and hence we may reduce (79) 

to (80) (= (66)): 

(80) 3x(UNICORN(X) 1\ KISS*(j, X)) 

Formula (80) gives us the familiar first-order predicate-logical style represen­
tation of (68). It must be stressed that formulas (78), (80), and all the inter­
mediate steps are equivalent by MP2, and that hence all represent the same 
meaning. The reduction of (78) to (80) is done merely for our convenience. 
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Note also that we can get the same result without the intermediate step (79), 
because by theorem 1, (78) is equivalent to (81): 

(81) VA.\X3x(UNICORN(X) 1\ VX(x))(A.\y KISS*(j, y)) 

Theorem 1 therefore states that the assertion that the relation KISS is true of j 
and the second-order property A.\X3x(UNICORN(x) 1\ VX(x)) is equivalent to 
the assertion that the property of standing in the relation KISs. to j belongs 
to the set of properties of a unicorn. The reduction of (81) to (80) proceeds via 
the intermediate steps (82), (83), and (84): 

(82) .\X3x(UNICORN(X) 1\ VX(x))(A.\y KISS.(j, y)), by V/\_elirni­
nation 

(83) 3x(uNICORN(x) 1\ v A.\y KISS*(j, y)(x)), by .\-conversion 

(84) 3x(UNICORN(X) 1\ .\y KISS*(j, y)(x)), by V /\-elimination 

All this shows that restricting the models of the intensional theory of types by 
MP2 gives us a more satisfactory semantics for English expressions. Exten­
sional verbs are interpreted as relations between individuals, while at the same 
time the representation of intensional verbs remains as it was defined in 
§6.3.5. The mixed method of meaning postulates and notation conventions 
was taken over from PTQ. Note, however, that it would also be possible to 
introduce theorem I as a meaning postulate instead ofMP2. In §6.3.9, in the 
discussion on the transitive verb be, we will explore this other approach a 
little further. 

Exercise 3* 

Reduce the translations of the two sentences from exercise 2 using NC2, 
MPI, and MP2. For each step in the reduction, indicate what validates it. 

6.3.8 Scope Ambiguities, de Re Readings, and Rules of Quantification 

In §6.3.5, we mentioned two problems concerning the analysis of sentences 
with transitive verb phrases. In §6.3.7 we gave a solution for the first prob­
lem, of how to represent the extensional nature of certain TVs while keeping a 
satisfactory representation of the intensionality of others. The second problem 
is how to account for scope ambiguities and the representation of de re read­
ings of sentences with intensional verbs. To illustrate the scope ambiguity 
problem, we look at sentence (85) (= 39)): 

(85) Every woman loves one man. 

If we analyze this sentence using the rules we have defined so far, we get as its 
reduced translation (86): 

(86) \fx(WOMAN(X) -> 3y\fz((MAN(Z) 1\ LOVE*(X, z)) <--+ y = z)) 
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This formula states that for each woman there is precisely one man whom she 
loves, possibly different men for different women. Now there is also a reading 
of (85) which may be paraphrased as (87): 

(87) There is one man whom every woman loves. 

On this reading, it is possible that some women love more than one man, but 
only one man is loved by every woman. Our semantic theory must give both 
interpretations of (85) and of similar ambiguous sentences. The ambiguity of 
(85) is due to the ambiguity of the scope of every and one. 

The distinction between de dicto and de re readings can also be formulated 
in terms of relative scope of expressions. For instance, consider (88) ( = (38)): 

(88) John seeks a unicorn. 

This sentence has two readings; one, the de dicto reading, results from appli­
cation of the rules we have so far. The other, the de re reading, was para­
phrased as (89) (= (55)): 

(89) There is something that is a unicorn that John is seeking. 

As opposed to the de dicto reading, the de re reading of (89) entails the exis­
tence of unicorns. As the wording of (89) suggests, a unicorn has wide scope 
over the intensional verb seek in the de re reading, while in the de dicto read­
ing a unicorn occurs within the scope of seek. There are many ambiguities 
which are based on the relative scope of certain expressions, such as deter­
miners, temporal expressions, modal expressions, intensional verbs, negation 
and so on. The principle of compositionality requires that every (nonlexical) 
semantic ambiguity correspond to a derivational ambiguity. Whenever a sen­
tence has more than one meaning, there should be more than one way of con­
structing it. In the case of scope ambiguities, it seems obvious that the 
different syntactic constructions are a result of the order in which the scope­
bearing elements are introduced. However, the syntactic rules which we have 
defined so far force a certain order. Applying a TV to a T and applying a T to 
the resulting IV is the only way to form a sentence like (85) or (88). The 
functor will always have wider scope than the argument. The subject, there­
fore, has widest scope, then comes the transitive verb, and the scope of the 
direct object is narrowest. 

In order to represent scope ambiguities, among which we now include the 
de dicto/de re ambiguities just mentioned, we introduce a second method of 
sentence construction. The syntactic variables, the basic expressions of the 
form hen, play a key role in this. They are of category T and therefore may 
occur in subject position or in object position with a transitive verb. Thus we 
get sentences like (90), (91), and (92): 

(90) He6 walks. 

(9 I) Every woman loves him2 • 
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(92) He 1 seeks him7 . 

We will formulate a rule which enables us to form a new sentence out of a 
term and a sentence containing a syntactic variable by substituting the term for 
the syntactic variable. This rule is called a rule of quantification and it is for­
mulated as follows: 

S8, n: If a E PT and 1> E P5 , then F7,n(a, 1>) E Ps and F7,n(a, 1>) = 
4>', where 4>' is the result of the following substitution in 4>: 

(i) If a is not a syntactic variable hek, then replace the first 
occurrence of he" or him" with a, and the other occur­
rences of hen or him n with appropriate anaphoric 
pronouns; 

(ii) if a = he k, then replace every occurrence of hen with 
hek and of him" with himk. 

Rule S8, n is not one syntactic rule but a rule schema. It is an abbreviation for 
an infinite number of rules. For every number n we have a syntactic rule as an 
instantiation of the rule schema S8, n. The index n indicates the syntactic 
variable for which we substitute the term a. For example, if we want the term 
a unicorn substituted for he 1 in (92), we apply S8, 1 as shown in figure (93): 

(93) A unicorn seeks him7 , S, S8, 1 

---------------a unicorn, T He, seeks him7 , S 

If we next want to substitute the term every man for him 7 , then we must use 
S8, 7: 

(94) A unicorn seeks every man, S, S8, 7 

---------------every man, T A unicorn seeks him7, S 

If the same syntactic variable occurs in a sentence more than once, we replace 
its first occurrence with the term in question and the other occurrences with 
appropriate anaphoric pronouns. Thus, quantifying the term a woman into 
(95) results in (96): 

(95) He 1 strolls and John loves him1• 

(96) A woman strolls and John loves her. 

(The construction of conjoined sentences like (95) and (96) will be treated in 
§6.3.10.) The formulation of the rule of quantification, essentially taken from 
PTQ, has some shortcomings. For instance, it does not provide us with reflex­
ive pronouns, which are required in some cases: if we quantify John into (97), 
we get (98) and not (99) as we should: 

(97) He 1 loves him1• 

(98) John loves him. 

(99) John loves himself. 
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Another shortcoming is the fact that S8, n permits 'vacuous' quantification. 
S8, n can be applied to a term and a sentence in which no v_ariable with in~ex 
n occurs: the syntactic result will be well-formed, but an mcorrect meanmg 
will be assigned to it. Such problems have been dealt with in the literature, 
and we will not dwell upon them. Finally, note that S8, n by clause (ii) per­
mits the substitution of variables for variables; this fact will not bear on the 
following. 

The construction of a sentence by means of a rule of quantification will be 
called an indirect (way of) construction. The direct (way of) construction of 
sentence (85) and an indirect one are given in figure (100). 

(100) a. Every woman loves one man, S, S2 

-------------every woman, T, S3 loves one man, IV, S7 

I -------------woman, CN love, TV one man, T, S6 

I 
man, CN 

b. Every woman loves one man, S, S8, 4 

-------------one man, T, S6 Every woman loves him4 , IV, S2 

I -------------man, CN every woman, T love him4 , IV, S7 

I~ 
woman, CN love, TV he4 , T 

Now we must demonstrate that the indirect construction yields the reading of 
(85) which was lacking up to now, the one paraphrased in (87). 

The translation rule corresponding to S8, n reads as follows: 

T8, n: If a E PT and 1> E Ps and a~ a' and 1> ~ 4>', then 
F7,n(a, 4>) ~ a'('A.xn1>'). 

A simple example demonstrates how T8, n works. Suppose we have con­
structed sentence (101) by substituting John for he3 in (102): 

(101) John walks. 
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(102) He3 walks. 

~y rule Tl(b), described in §6.3.4, syntactic variables translate into expres­
SIO~s that refer to a set of first-order properties, just like any other term. The 
vanab!e he3 translates as A.X VX(x3). The translation of (102) is (103), by T2; 
(103) IS reduced to (104) in the usual way. 

(103) A.X VX(x3)(i'WALK) 

(104) WALK(x3) 

Formula (104), wi~ the free variable x3 , is converted into a predicate by 
means of A.-abstractiOn: A.x3 WALK(x3). Its intension: 

(105) AA_x 3 WALK(x3) 

refers to the property of walking. According to rule T8, 3, quantification of 
the term John into ( 1 02) semantically boils down to the assertion that the 
property which the sentence with the syntactic variable he

3 
expresses is a 

pro~erty _of John. Formula (105) refers to that property, and formula (106) 
ascnbes It to John. By way of (107), formula (106) is reduced to (108): 

(106) AX VX(j)(AA.x 3 WALK(X
3
)) 

(107) V AA_x 3 WALK(x3)(j) 

(108) WALK(j) 

Formula (108) gives the meaning of (101), which in this case is the same for 
both the direct and the indirect way of construction. 

~his simple example illustrates concretely the semantic effect of the appli­
cat~on of rule S8, n. Quite generally, the semantics of this process can be de­
scnbed as follows: substitution of a term a for a syntactic variable hen in a 
sentence 4> amounts to the assertion that the property which is expressed by 
the sentence 4> with the free variable hen belongs to the set of properties re­
ferred to by a. By abstracting over xn and applying the A-operator, we trans­
form the translation 4>' of 4> into the expression AA.xncf>', which refers to the 
property in qu,estion. ~y ap~lying a', the translation of a, to AA_xncf>' we get 
the formula a (AA.xncf> ), which expresses the intended assertion. 

In the case of (1 0 I), the indirect construction yields the same result as the 
direct way. And rightly so, since (101) is not ambiguous. But in other cases 
of course, the different construction methods yield different results. The trans~ 
lation of (85) by the indirect method is shown in (109), this time not in a tree 
structure but in a list: 

(109) 1. he4 ~ A.X VX(x4) 

2. love ~ LOVE 
3. F6(love, he4) ~ LOVE(AA.X VX(x4)~ 
4. woman ~ WOMAN 

Tlb 
Tla 
T7 
Tla 
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5. Fiwoman) ~ AX'v'x(WOMAN(x)-+ VX(x)) T3 
6. F1(every woman, love him4) ~ 

A.XV'x(WOMAN(x)-+ VX(x)) 
(ALOvE(AA.X VX(x4))) T2 

7. = V'x(WOMAN(x) --> 
v A LOvE( AA.X VX(x4))(x)) A.-conv. 

8. = V'x(WOMAN)(X)--> LOVE(AA.X VX(x4))(X)) v A-elim. 
9. = V'x(WOMAN(X)--> LOVE(X, AA_X VX(x4))) NCl 

10. = 'fx(WOMAN(X) --> LOVEiX, X4)) NC2 
11. man~ MAN Tla 
12. F5(MAN) ~ A.X3zV'y((MAN(y) A 

VX(y)) ~ z = y) T6 
13. F1.ione man, every woman loves him4) ~ 

A.X3zV'y((MAN(y) 1\ VX(y)) ~ z = y) 
( AA_x 4V'X(WOMAN(X)--> LOVE*( X, X4))) T8,4 

14. = 3z'fy((MAN(y) 1\ v AA_x 4'fx(WOMAN(X)--> 
LOVE*(X, X4))(y)) ~ Z = y) A.-conv. 

15. = 3z'fy((MAN(y) 1\ Ax4'fx(WOMAN(X)--> 
LOVE*(X, X4))(y)) ~ Z = y) v A-elim. 

16. = 3z'fy((MAN(y) 1\ V'x(WOMAN(X) --> 
LOVE*(X, y))) ~ Z = y) A.-conv. 

A few remarks. Steps 7-10 show that we reduce subexpressions as much as 
possible during the translation process. It is of course not necessary to do this, 
but it does make things easier. The reduction of 9 to 10 is possible merely by 
NC2, because the variable, x4 , is a rigid designator; MP2 is not needed here 
yet. We may choose a variable other than the one used in the description of 
the translation rule, as we did in step 12; again, this is not necessary, but it 
serves to avoid confusion. The general pattern of the translation of a sentence 
which is derived by means of a quantification rule is shown here in step 13. 
From the translation of every woman loves him4 , step 10, the expression 
AA.x4V'x(WOMAN(x) -+ LOVE*(x, x4)) is formed, which refers to the property 
of being loved by every woman. The translation of the result of quantifying 
one man in every woman loves him4 , 13, states that this property belongs to 
the set of properties for which it is true that exactly one man has those proper­
ties, which is the same as the assertion that there is exactly one man that is 
loved by every woman, which is what 16 expresses in the simplest way. 

Comparing translation 16 in (109) of the indirect construction of (85) to 
(86), the translation of the direct construction, we see that both readings of 
(85) are now adequately represented. The direct and indirect ways of con­
struction are different derivations of one and the same sentence. However, no 
difference in constituent structure corresponds to it. Were we to represent con­
stituent structure in the grammar, (85) would get the same structure, (110), in 
both cases: 
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(I 10) sh[everycN[womanlJ 1vhv[lovesh[onecN[man]]]] 

This example illustrates what was stated in §6.2: it is the derivational history 
of a sentence, and not its constituent structure, which determines its meaning. 

The rule of quantification S8, n is an example of a syntactic rule that is 
primarily semantically motivated. Of course it also performs a certain syntac­
tic function, generating anaphoric pronouns, but the main reason for its intro­
duction is semantic, viz., to account for scope ambiguities. So here we see 
concretely how the semantic principle of compositionality affects the contents 
of the syntax. 

Note that the quantification process provides us with an infinite number of 
ways to derive a sentence: we may use another syntactic variable every time. 
Since these variants do not lead to semantic differences (the resulting for­
mulas, though different, are all equivalent), we will not take them into 
consideration. 

The quantification rule also enables us to derive the de re reading of (88). 
Figure (111) shows the analysis tree for this reading. 

(111) John seeks a unicorn, S, S8, 0 

--------------a unicorn, T, S5 John seeks him0 , S, S2 

I --------------unicorn. CN John, T seek him0 , IV, S7 

~ 
seek, TV 

The important steps in the translation of this tree are the following: 

(112) 1. John seeks hi171o ~ SEEK(j, A/..X VX(x0)) 

2. = SEEK*(j, X0) 

3. F7,0(a unicorn, John seeks him0) ~ 

AX3x(UNICORN(x) 1\ VX(x)) 
( A/..x 0 SEEK*(j, x0)) 

4. = 3x(UN1CORN(X) 1\ SEEK*(j, X)) 

NC2 

T8, 0 
1..-conv., 
v A-elim. 

The transition from 1 to 2 depends on the fact that x0 is a rigid designator. The 
sentence in which it occurs, John seeks him0 , can be viewed as expressing a 
property of individuals, namely, the property of being sought by John. The 
translation of (88) by the indirect way of construction is 4 in (112), which 
asserts that there is something which is a unicorn and which is being sought 
by John, and this assertion expresses the de re reading of (88). 

Exercise 4* 

(a) Construct three analysis trees for the sentence Every man seeks a unicorn 
which give rise to three logically distinct translations. 
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(b) Show that the direct and the indirect constructions of the sentence John 
kisses a unicorn lead to equivalent results. 

Some final remarks. The first one concerns the difference between the de dicto 
and de re readings of such sentences as (88). We have observed that the de 
dicto reading of (88) does not entail the existence of unicorns, whereas the 
de rereading does. The question now is whether its two translations, (113) 
(= (45)) and (114) express this difference. 

(113) SEEK(j, A/..X3x(UNICORN(x) 1\ VX(x))) 

(114) 3x(UNICORN(X) 1\ SEEK*(j, X)) 

Actually, the answer must be no; this is not yet guaranteed. In the intensional 
theory of types we quantify over possible individuals, and thus (114) entails 
no more than that there is a possible individual that is a unicorn. And by the 
way, (116), the translation of (ll5), does not entail the existence of women: 

(115) John kisses a woman. 

(116) 3x(WOMAN(X) 1\ KlSS*(j, X)) 

The introduction of an existence predicate E provides us with several ways to 
cope with this problem. For example, the information that lexical elements 
relate to actually existing individuals can be added to their translation. Tla 
would then be replaced by clauses like: 

woman ~ t..x(WOMAN(x) 1\ E(x)) 

Another method is the introduction of a meaning postulate: 

'v'x0(o(x) ~ E(x)), for 0 =WOMAN, UNICORN, ... 

This postulate imposes restrictions on the interpretation functions of mod­
els, like: 

For all w: l(UNICORN)(w) ~ l(E)(w) 

Each solution claims, not that unicorns exist, but only that if there is some­
thing which is a unicorn, it actually exists. Now (114) does entail the exis­
tence of unicorns: if (114) is true, then there is an actually existing individual 
that is a unicorn. But this conclusion cannot be drawn from (113). The de 
re/de dicto distinction is thus explicated as a distinction between existential 
and nonexistential readings. Sometimes the distinction between (113) and 
(114) is described as the distinction between the specific and nonspecific read­
ings of (88). When someone is seeking a unicorn, she might be looking for the 
unicorn which was presented to her on her birthday only the day before and 
which has run away. This corresponds to the specific reading of (88). On the 
other hand, she might be happy with any old unicorn that she can find: this 
would correspond to the nonspecific reading. Whether we may take (113) and 
(114) to represent the nonspecific and specific readings of (88), respectively, 
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is not clear. The problem here is that the intentions and convictions of the 
seeking person seem also to play a part in establishing the distinction between 
specific and nonspecific readings. For instance, suppose John believes that 
there are unicorns, and that one of these unicorns has a golden mane. John 
wants to find that unicorn. In that case John is looking for a specific unicorn. 
We cannot represent this situation with (I I 3), since that is supposed to be the 
nonspecific reading of (88). On the other hand, (114) entails the existence of 
unicorns, and from the fact that John is looking for a specific unicorn we 
would not want to conclude that unicorns exist. Also, (114) states that there is 
an individual which is a unicorn and which John is seeking, but it does not 
imply that John knows that the individual he is looking for is a unicorn. Sup­
pose that in fact he doesn't (he believes that it is a centaur he is after). In that 
case, we would not say that John has the intention of finding a specific uni­
corn. Even worse, (I 14) does not imply that John has any intention what­
soever of finding that specific individual which ( 114) says he is looking for. If 
there is exactly one unicorn and John sets out to find one, (114) is true even if 
John in fact believes there are many more and would be happy with any one of 
these. But we could hardly call that a situation in which John seeks a specific 
unicorn. Therefore, if we want formulas like (113) and (114) to represent the 
distinction between the specific and nonspecific readings of sentences like 
(88), preserving the representation of existential and nonexistential readings, 
it seems that much more is called for and that we must subject verbs like seek, 
which are not only intensional but also intentional, to closer scrutiny. 

Our second remark concerns possible alternatives for this method of ac­
counting for scope ambiguities. In considering a sentence like Every man 
loves a woman, one could be led to the idea that representation ( 117) is suffi­
cient, since the other reading, ( 118), implies (117) and is thus only a special 
case of it: 

(117) 'Vx(MAN(X)---* 3y(WOMAN(y) 1\ LOVE*(X, y))) 

(118) 3y(WOMAN(y) 1\ 'Vx(MAN(X)---* LOVE*(X, y))) 

The result of the direct construction of the sentence is ( 117), and one might 
conclude that the indirect construction, (118), is superfluous. If it were always 
true that the indirect method yields a special case of the situation described by 
the directly constructed sentence, much could be said for representing only 
the latter. However, this is not the case. First, there are sentences whose direct 
and indirect readings are logically independent. For instance, consider our ex­
ample (85), Every woman loves one man. lts two readings (86) and (109) are 
logically independent; neither of them entails the other. The de re/de dicto 
ambiguity of sentences presents a case of logically independent readings too. 
Second, even if one reading implies the other, it is not always true that the 
direct construction yields the most comprehensive reading. Consider, for in­
stance, sentences like It is not the case that every woman loves a man and A 
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man loves one woman. Here the direct method yields a special case of the 
reading constructed by the indirect method. An adequate representation of 
scope ambiguities, it seems, presupposes a syntax that provides several ways 
to construct a sentence which shows a scope ambiguity. 

The quantification rule provides us with a method for representing scope 
ambiguities. In this section we have looked at the relative scope of quantified 
terms in subject and object position, and that of intensional verbs and quan­
tified terms. But there are many other sources of scope ambiguity which can 
be handled in the same way. We shall come across some instances in §6.3.10 
and 6.3.11. 

6.3.9 The Transitive Verb Be 

Until now the verb be has not been discussed. Recall that we introduced be as 
a basic expression of category TV in §6.3.1. In PTQ, the be of identity and 
the copula are regarded as one and the same transitive verb. This is quite re­
markable, because logical tradition has it that it is necessary from a logical 
point of view to distinguish between is in identity assertions and is in predi­
cative assertions. Compare, for example, (121), the standard logical transla­
tion of (119), and (122), the translation of (120): 

(119) John is Mary. 

(120) John is a man. 

(121) j = m 

(122) MANU) 

Is as it appears in (119), turns up as the identity relation in (121), while the 
copula is in ( 120) seems to have disappeared in translation and instead has 
merged with the application of the predicate MAN to the constantj. So it seems 
that two different verbs need to be distinguished. However, as we shall see, it 
is possible to regard the occurrences of is in (119) and (120) as occurrences of 
the same verb, with one and the same meaning, and yet come up with repre­
sentations of the respective sentences which are equivalent, and indeed re­
ducible, to (121) and (122). 

Since the verb be is regarded as an ordinary transitive verb, the syntactic 
derivation of both sentences is the same, as figure (123) illustrates. 

(123) a. John is Mary, S, S2 

---------------John, T be Mary, IV, S7 

---------------be, TV Mary, T 
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b. John is a man, S, S2 

--------------John, T be a man, IV, S7 

--------------be, TV a man, T, S5 

I 
man, CN 

As was remarked in §6.3.3, the verb be gets a special translation. This trans­
lation is the following: 

Tl(c): be~ AXA.xVX(A.Ay(x = y)) 

Since be is of category TV, its translation is of type f(TV) = ((s, ((s, (e, r)), 
t)), (e, t)). Semantically it expresses a relation between individuals and sec­
on~-order properties. Tic in fact defines what relation this is, namely, there­
latiOn which holds in a world between an individual x and a second-order 
property X iff the property of being equal to x, i.e., A.Ay(x = y), belongs 
to the set of properties which in that world is the reference of X, i.e., iff 
~X( A.Ay(x = y)~. At _first sight this translation seems to render only the mean­
I~g of the be of Identity, but as we will see, it gives the other meaning as well. 
First let us look at (124), the translation of(ll9): 

(124) 1. M~~ .AXVX(m) 
2. be~ AXA.xVX(A.Ay(x = y)) 
3. F6(be, Mary)~ AXA.xVX(A.Ay(x = y)) 

(AA_XVX(m)) 
4. = A_xVAA_XVX(m)(AA_y(x = y)) 
5. = A.x.AXVX(m)(A.Ay(x = y)) 
6. =A_xVAA_y(x = y)(m) 
7. = A.x.Ay(x = y)(m) 
8. = A.x(x = m) - _ . 
9. John 'r--7 .x.xvxm o l 

Tlb 
Tic 

T7 
.A-conv. 
VA_elim. 
.A-conv. 
VA_elim. 
.A-conv. 
Tlb 

10. F1(John, be Mary)~ .AXVX(j)(AA.x(x = m)) T2 
I I. = v AA.x(x = m)(j) .A-conv. 
12. = A.x(x = m)(j) 
13. = (j = m) .A-conv. 

The IV be Mary refers to the set of those entities x for which it is true that the 
pr~perty of being identical to xis a property of Mary, as formula 5 states; as is 
evident from the equivalent formula in 8, this is the set of entities identical to 
Mary, which is of course the singleton set with Mary as its sole element. The 
sentence as a w~ole asse:ts ~at the property of belonging to this set is a prop­
erty of John. This assertion IS equivalent to assertion 13, namely that John is 
identical to Mary. ' 
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The'translation of (120) is constructed in (125): 

(125) 1. man ~MAN Tla 
2. FiMAN) ~ AX3z(MAN(z) 1\ v X(z)) T5 
3. be ~ .AXA.xV X( A.Ay(x = y)) Tic 
4. Fibe, a man)~ A.XA.xVX(AA.y(x = y)) 

(A.AX3z(MAN(z) 1\ VX(z))) T7 
5. = .AxVA.AX3z(MAN(z) 1\ VX(z)) 

(A.Ay(x = y)) .A-conv. 
6. = A.x.AX3z(MAN(z) 1\ VX(z))(A.Ay(x = y)) VA_elim. 
7. = .Ax3z(MAN(z) 1\ VA.Ay(x = y)(z)) .A-conv. 
8. = A.x3z(MAN(z) 1\ .Ay(x = y)(z)) VA_elim. 
9. = A.x3z(MAN(z) 1\ (x = z)) .A-conv. 

10. John 'r--7 .AX VX(j) Tlb 
11. FMohn, be a man)~ .AX VX(j) 

(AA.x3z(MAN(z) 1\ (x = z))) T2 
12. = v AA.x3z(MAN(z) 1\ (x = z))(j) .A-conv. 
13. = A.x3z(MAN(z) ·/\ (x = z))(j) v 1\-elim. 
14. = 3z(MAN(z) 1\ (j = z)) .A-conv. 
15. = MAN(j) first-order 

logic 

As is apparent from step 6, the IV be a man refers to the set of those entities x 
for which it is true that the property of being equal to x belongs to the set of 
those properties X such that there is man that has X. The equivalent formula in 
9 makes it clear that this is the set of entities x such that x is identical with a 
man. According to 12, (120) asserts that the property of belonging to this set 
is a property of John; this assertion is reduced to 14, the assertion that there is 
an individual which is a man and which is identical to John. Of course this is 
equivalent to 15, the assertion that John is a man. Formulas 14 and 15 are 
equivalent in standard predicate logic. 

In fact, there is a shorter route to this result. The translation of be a man is, 
after all, A.x3z(MAN(z) 1\ (x = z)), and it refers to the set of entities x such 
that there is a man that is identical to x. Of course this is nothing but the set of 
all men, i.e., the same set that our constant MAN refers to. So after line 9, we 
might have continued ( 125) as follows: 

(126) 10. = MAN 
11. FMohn, be a man)~ .AX VX(j)(/\MAN) 
12. = MAN(j) 

type theory 
T2 
.A-conv., 
v A-elim. 

We conclude that the translation of be as defined in Tlc gives the right seman­
tics for its use both in predicative statements and in identity assertions. 

As the above results illustrate, the verb be is treated as an extensional verb. 
Like any transitive verb, it is taken to express a relation between individuals 
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and second-order properties. But our translation Tl c actually defines this rela­
tion. And it turns out that it is an extensional relation. 

The same facts could also have been accounted for in a different manner. 
Suppose we had not given a separate translation for be, but that we had trans­
lated it into a constant BE like any other TV. In view of its extensionality, MP2 
would have been applicable to this constant BE, too. Then (127) and (128) 
would have resulted as translations of ( 119) and ( 120): 

(127) BE*(j, m) 

(128) 3x(MAN(X) 1\ BE*(j, X)) 

But notice that these results only account for the extensionality of be; they do 
not represent its full meaning. For instance, according to (127), John is Mary, 
asserts that some extensional relation holds between John and Mary, but it is 
not expressed what relation this is, viz., the identity relation. In order to ac­
count for that we add another meaning postulate: 

MP3 VxVyO(BE*(x, y) <--+ (x = y)) 

This meaning postulate defines BE* as the identity relation. And using MP3, 
(127) and (128) can be reduced to (124) and (125). 

This illustrates that giving the special translation Tlc for be is not the only 
way to account for its meaning. We can get the same result by means of mean­
ing postulates. We can also combine the effects of MP2 and MP3 in a single 
meaning postulate for BE: 

MP4 O(BE = AXA.xVX(AA.y(x = y))) 

Here we have a single meaning postulate which expresses exactly what was 
formulated in a translation rule. This procedure can be applied in other cases 
as well. For instance, we could have translated the determiners into constants, 
EVERY, THE, and so on, explaining their relation to the logical quantifiers in a 
meaning postulate. (Of course this assumes that the determiners are intro­
duced categorematically.) This ability to switch between translation rules and 
meaning postulates shows that the purposes of the two are the same: to give a 
further specification, in some cases a full definition, of the meanings oflexical 
elements. 

In fact, things work out the other way round as well. Instead of using a 
meaning postulate, we could express the extensionality of TVs by means of 
special translation rules. For example, instead of translating kiss as Kiss and 
relating the latter to KISS* by MP2, we can express the extensionality of kiss 
directly in its translation: 

Tl: (a') kiss~ AXA.x VX(AA.y(KISS*(x, y)) 

The similarity to the translation rule for be is obvious. But note that there is a 
difference: Tic not only expresses that be is extensional, i.e., expresses are­
lation between individuals, it also states what relation this is: the identity rela-
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tion. Tla says that kissing is an extensional relation, but it does not define it 
any more precisely than that. 

Exercise 5 

Show how the special translation rule Tl b for proper names can be replaced 
by a meaning postulate. 

The next exercise is concerned with logical relationships between natural lan­
guage sentences. For natural language sentences we define the relation follow 
from as follows: a sentence B follows from sentences A 1, • • • , A. iff for 
every syntactic analysis of Band A1, ••• , A., it holds that the translation of 
Bin that analysis follows from the translations of A1, ••. , A. in that analy­
sis. (Sometimes also use the notion follow from on analysis ... , is used, 
which is a relativized version of this notion.) 

Exercise 6* 

Show that John seeks Elsie does not follow from John seeks the queen and 
Elsie is the queen. 

6.3.10 Conjunction Rules, Disjunction Rules, and Negation Rules 

We start with conjunction and disjunction. Consider the following sentences: 

(129) John sleeps and Mary strolls. 

(130) A man smokes and strolls. 

(131) Every man smokes or kisses a woman. 

(132) Every man loves Mary or Elsie. 

Sentence (129) is a simple case of sentence conjunction, in contradistid;}ction 
to (130)-(132), which are not reducible to conjoined sentences. For surely the 
corresponding sentences (133)-(135) mean something different: 

(133) A man smokes and a man strolls. 

(134) Every man smokes or every man kisses a woman. 

(135) Every man loves Mary or every man loves Elsie. 

We shall account for these facts by introducing not only rules for conjunction 
and disjunction of sentences but also conjunction and disjunction rules for IV s 
and a disjunction rule for terms. (We will not introduce a conjunction rule for 
the latter, since this would involve us in an analysis of plurality, which is be­
yond the scope of this introduction.) The syntactic rules and corresponding 
translation rules are the following: 

S9: If¢, lfJ E P5 , then F8(¢, 1/J) E P5 and F8(¢, 1/J) = 1> and 1/J. 
T9: If ¢, o/ E P5 and 1> ~ 1>' and lfJ ~ o/', then F8(¢, 1/J) 1--o> 

(1>' 1\ l/1'). 
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SlO: If¢, lfJ E P5 , then F9(</>, IJJ) E P5 and F9(</>, IJJ) = </> or IJJ. 
TlO: If </>, lfJ E P 5 and </> ~ </>' and lfJ ~ IJJ', then F9(</>, IJJ) ~ 

(</>' v IJJ'). 
Sll: If y, 0 E PIV• then Fg(y, o) E Piv· 
Tll: If y, o E P1v and y ~ y' and o ~ o', then F8(y, o) ~ 

A.x(y'(x) 1\ o'(x)). 
Sl2: If y, 0 E PIV• then F9(y, o) E PIV· 
Tl2: If y, o E P1v and y ~ y' and o ~ o', then F9(y, o) ~ 

A.x(y'(x) v o'(x)). 
S13: If a, f3 E PT, then F9(a, {3) E PT. 
Tl3: If a, f3 E PT and a ~a' and f3 ~ {3', then F9(a, {3) ~ 

AX(a'(X) v f3'(X)). 

The syntactic operations F8 and F9 introduce and and or syncategorematically 
between sentences, between IVs and between terms. The syntactic rules are 
not in need of further explanation. The effect of translation rules T9 and TlO 
is also obvious. Til and Tl2 make use of the A.-operator to define conjunction 
and disjunction of predicates in terms of the sentential connectives 1\ and v. 
This process was discussed in §4.4.1. Rule Tl3 gives the translation of a dis­
junction of terms similarly. For example, the translation of Mary or Elsie pro­
ceeds as follows. We apply the translation of Mary and the translation of Elsie 
to a variable X of type (s, (e. t)). (As usual, we take a variable Yin the trans­
lation of Mary and Elsie to avoid confusion, but this is not strictly necessary.) 
We take the resulting formulas and form their disjunction A.fVf(m)(X) v 
A.fVf(e)(X), which can be reduced to VX(m) v VX(e). This formula is true if 
X is a property of Mary or a property of Elsie. Abstracting over X yields an 
expression that in a world w refers to the set of those properties that in w are a 
property of Mary or a property of Elsie (or of both): A.X(VX(m) v VX(e)). 

In order to illustrate how rules S9-Sl3 work, (136) gives the most impor­
tant steps of the translation of (130): 

(136) 1. Fg(smoke, stroll) M- Ax(SMOKE(x) 1\ 

STROLL(X)) 
2. F 1(a man, smoke and stroll) ~ A.X3y(MAN(y) 

1\ V X(x))( AJ..x(SMOKE(X) 1\ STROLL(y))) 
3. = 3y(MAN(y) 1\ Ax(SMOKE(X) 1\ 

STROLL(x))(y)) 

4. = 3y(MAN(y) 1\ SMOKE(y) 1\ STROLL(y)) 

Til 

T2 

A.-conv., 
v A-elim. 
A.-conv. 

If we compare (136) with the translation (137) of sentence (133), we see that 
(133) is indeed assigned a different meaning from (130): 

(137) 3x(MAN(X) 1\ SMOKE(X)) 1\ 3x(MAN(X) 1\ STROLL(X)) 

Sentence (135) is translated as (138): 

(138) 'v'x(MAN(X) ~ LOVE(X, m)) V 'v'x(MAN(X) ~ LOVE(X, e)) 
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Sentence (132) has another meaning, as its step-by-step translation (139) 

shows: 

(139) 1. F
9
(Mary, Elsie) ~ A.X(A.Y v Y(m)(X) )f.'' 

A.Y Vf(e)(X)) 
2. = A.X(VX(m) v VX(e)) 
3. F6(love, Mary or Elsie) ~ 

. LOVE(AA_X(VX(m) V VX(e))) 
4. F1(every man, love Mary or Elsie)~ 

A.Y'v'x(MAN(x) ~ v Y(x)) 
(ALOvE(AJ..X(VX(m) v VX(e)))) 

5. = 'v'x(MAN(X) ~ LOVE(X, AA_X(VX(m) 
v VX(e)))) 

6. = 'v'x(MAN(X) ~ VA_X(VX(m) V 

VX(e))(AJ..y LOVE*(X, y))) 
7. = 'v'x(MAN(X) ~ (LOVE*(X, m) V 

LOVE*(X, e))) 

Tl3 
A.-conv. 

T7 

T2 

A.-conv., 
v A-elim., 
NCl 

MP2 

A.-conv., 
v A-elim. 

This gives the correct meaning of (132). MP2 is necessary in line 6, ?ec.a~se 
NC2 does not suffice here: A.X(VX(m) v VX(e)) does not refer to one mdivid­
ual (assuming that m and e refer to different individuals), unlike AXVX(m) 
and A.XVX(e). 

Another thing that becomes apparent now is that if we quantify a term into 
a conjoined sentence in which the same syntactic variable occurs more ~an 
once, we get semantic coreference of the different occurrences. Consider 
(140) (=(96)): 

(140) A woman strolls and John loves her. 

In sentence (140), the anaphoric pronoun her refers back to a woman: it as­
serts that there is a woman that strolls and that is loved by John. Figure (141) 
shows the relevant part of the analysis of sentence ( 140). The relevant steps of 
the translation are given in (142). 

(141) A woman strolls and John loves her, S, S8, I 

~ 
a woman, T He1 strolls and John loves him,, S 

(142) 1. he1 strolls and John loves him1 ~ 
STROLL(X 1) 1\ LOVE*U' XI) 

2. F71(a woman, he1 strolls and John loves him1) 
~ AX3x(WOMAN(x) 1\ v X(x)) 
(AJ..x 1(STROLL(X 1) 1\ LOVE*U' XI))) 

3. = 3x(WOMAN(X) 1\ STROLL(X) 1\ LOVE..U, X)) 

T9 

T8, 1 
.\-conv., 
vA_elim. 
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PTQ gives a separate rule to combine terms and IV s to form negated sentences: 

SI4: If a E PT and 0 E plY• then Fw(a, o) E Ps and Fw(a, o) = 
ao', where o' is the result of replacing the first verb with its 
negative third-person singular present form. 

The corresponding translation rule reads as follows: 

Tl4: If a E PT and 0 E plY and a f--.;. a' and 0 f--.;. 0 1
' then Fw(a, o) 

f--.;. •a'( 1\o'). 

Figure (143) shows the analysis trees of two sentences formed by rule Sl4. 
Their translation is given in (144) and (145). 

(143) a. John doesn't smoke, S, Sl4 

---------------John, T smoke, IV 

b. Mary doesn't love every man, S, S 14 

---------------Mary, T love every man, IV, S7 

---------------love, TV every man, T, S3 

I 
man, CN 

(144) •SMOKEU) 

(145) •'v'x(MAN(X)-> LOVE*(m, x)) 

Using this construction, negation always gets widest scope. For sentences 
(144)-(145) this analysis is correct. Sometimes though, a subject term should 
have wider scope than the negation. This is achieved by quantifying the term 
into a sentence formed with Sl4. For instance, the derivation of the sentence 
The unicorn does not stroll is given in figure (146); the relevant steps of the 
translation are given in (147). 

(146) The unicorn doesn't stroll, S, S8, 7 

---------------unicorn, T, S4 He, doesn't stroll, S, Sl4 

I ---------------unicorn, CN he,, T 

(147) 1. F10(he 7 , stroll)~ •STROLL(x
7
) 

2. F7.7(the unicorn, he7 does not strol[) ~ 
f..X3x('v'y(UNICORN(y) ~X = y) 1\ 

VX(x))(AA.x 7 •STROLL(x 7)) 

stroll, IV 

Tl4 

T8, 7 

3. = 3x('v'y(UNJCORN(y) ~X= y) 1\ 

•STROLL(X)) 
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Note that, given the way it is formulated above, the negation rule functions 
properly only if it is applied to an IV that contains just one main verb. It is 
possible, though, to formulate a rule for the more general case. In PTQ the 
rules for introducing tenses are similar to the rule that deals with negation. 

Like their logical counterparts, natural language conjunction, disjunction, 
and negation (and tenses) are introduced syncategorematically. This is no 
more necessary here than it was for determiners. In §4.3 we discussed to some 
extent the categorematic introduction of conjunction and the like. A cate­
gorematic analysis along the lines sketched there can surely be implemented 
in PTQ. 

Exercise 7* 

Give a derivation tree and a translation for the sentence John kisses Mary or 
the queen and loves her. 

6.3.11 Sentential and Infinitival Complements, Adjectives, 
Relative Clauses and Adverbs 

In this section we shall briefly discuss some rules that produce sentences like 
(148)-(153): 

(148) John asserts that the queen strolls. 

(149) John tries to find a unicorn. 

(150) Elsie is an imaginary pink unicorn. 

(151) Mary loves a man who walks. 

(152) John walks slowly. 

(153) Necessarily, every man is a man. 

For the construction of sentences like ( 148), it suffices to formulate the rule of 
functional application that defines how an expression of category IV /S com­
bines with one of category S to form an IV: 

Sl5: If o E P1v1s and <f> E P 5, then Fll(o, </>) E PIV and Fll(o, </>) 
= o<f>. 

(Note that Fll is merely the operation of concatenation.) The translation rule 
corresponding to S 15 follows the pattern of the other rules of functional 
application: 

Tl5: If o E PIYis and <f> E P5 and of--.;. o' and<!> f--.;.<!>', then Fll(o, </>) 
f--.;. o'(/\<f>'). 
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The translation of sentence (148) in the direct construction is the following: 

(154) ASSERT(j, A3x(\fy(QUEEN(y) <--->X= y) 1\ STROLL(X))) 

Semantically, the functor assert that operates on the intension of its argument. 
The type corresponding to category IV/S is ((s, t) (e, t)). So assert that is 
interpreted as a relation between an individual and a proposition; in (154) 
these are John and the proposition that the queen strolls. The expression 
A3x('v'y(QUEEN(y) <---> x = y) 1\ STROLL(x)) refers to the proposition which is 
true in a world w if the individual that is the unique queen in w strolls in w. 
This proposition is the intension of the sentence The queen strolls. Translation 
(154) gives the de dicto reading of (148). On this reading, (156) does not fol­
low from (148) and (155): 

(155) Elsie is the queen. 

(156) John asserts that Elsie strolls. 

And indeed (154) and (157), the translations of (148) and (155), respectively, 
do not entail (158), the translation of (156): 

(157) 3x(\fy(QUEEN(y) <--->X = y) 1\ e =X) 

(158) ASSERT(j, /\STROLL(e)) 

Besides the de dicto reading of (148), there is the de rereading, in paraphrase: 

(159) Of the queen it is asserted by John that she strolls. 

A representation of the de re reading is obtained· by quantifying the term the 
queen into a sentence with a syntactic variable, the sentence John asserts that 
he3 strolls. This is the result: 

(160) 3x(\fy(QUEEN(y) <--->X= y) 1\ ASSERT(j, /\STROLL(x))) 

This reading of (148) entails (158), given the additional premise (157). 
These semantic results are satisfactory. A less attractive aspect of the analy­

sis is the fact that assert that is considered a syntactic constituent, implying 
that assert that Mary comes is split into assert that and Mary comes. It would 
be more natural to analyze the expression as being composed of assert and 
that Mary comes. The latter expression occurs in other contexts as a separate, 
independent constituent: for instance, in That Mary comes amazes John. It is 
possible to analyze that as an expression which when combined with a sen­
tence yields an expression which refers to a proposition. ASSERT, in that case, 
would take such a proposition as an argument. In the end the result will be th ~ 
same: the representation of the meaning of such sentences as above. 

For the construction of sentences with an infinitival complement, like 
(I 49), it is sufficient to add a rule of functional application: 

Sl6: If y E PIV/IV and 0 E PIV• then Fll(y, o) E PIV· 
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The translation rule corresponding to S 16 is the following: 

T16: Ify E PIV/IV and 0 E PIV andy I--+ y' and 0 ~ o', then F.,(y, o) 
~ y'(Ao'). 
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Sentence (149), John tries to find a unicorn, has two readings as well. The 
direct construction results in the following translation: 

(163) TRY(j, AFJND(AA.X3x(UNICORN(x) 1\ VX(x)))) 

Although the extensionality of find is not apparent in (161), it is guaran­
teed by MP2, and so we could leave it at that. We cannot apply theo­
rem I at this point, since FIND does not have a subject. The expression 
FIND(AA.X3x(UNICORN(x) 1\ VX(x))), however, is equivalent to (162), and 
now it is possible to apply theorem 1, resulting in (163), which is in turn re­
ducible to (164): 

(162) A.y FIND(y, AA_X3x(UNICORN(x) 1\ v X(x))) 

(163) A.y(AX3x(UNICORN(X) 1\ VX(x))(AA.z FIND*(y, z))) 

(164) A.y3x(UNICORN(X) 1\ FIND*(y, X)) 

Formula (161) as a whole can then be reduced to (165): 

(165) TRY(j, AA_y3x(UNICORN(X) 1\ FIND*(y, X))) 

This formula renders the de dicto reading of (149), and it therefore does not 
entail the existence of unicorns. Again, the de rereading is obtained by means 
of quantification: 

(166) 3x(UNICORN(X) 1\ TRY(j, AA.yFIND*(y, x))) 

PTQ introduces a meaning postulate to account for the relation between seek 
and try to find: 

MP5 'v'x'v'XO(SEEK(x, X)<---> TRY(x, AFJND(X))) 

By this meaning postulate, (165) is equivalent to (167)( =(113)), the represen­
tation of the de dicto reading of John seeks a unicorn, and (166) is equivalent 
to (168)(=(114)), the representation of the de rereading. 

(167) SEEK(j, AA_X3x(UNICORN(X) 1\ VX(x))) 

(168) 3x(UNICORN(X) 1\ SEE~(j, X)) 

Note that PTQ considers try a relation between an individual and a property. 
Sentence ( 149) means that John stands in the relation of trying to the property 
of finding a unicorn. This does not assert, as it should, that John will not be 
happy unless he is the one that has this property. If we want to account for 
this, we must account for the several so-called control properties of verbs 
taking infinitival complements. The following examples may clarify this: 
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( 169) John promises Mary to catch a unicorn. 

( 170) John asks Mary to catch a unicorn. 

In (169), John is the subject of the verb catch; in (170) it is Mary. Meaning 
postulates can account for this type of difference. On the other hand, one 
could also analyze infinitival complements as expressions referring to propo­
sitions instead of properties, just like sentential complements. 

Prenominal adjectives are expressions that combine with a noun to form a 
noun: they belong to category CN/CN. Sentence (150) illustrates how an ad­
jective is applied to a CN which already consists of an adjective and a noun. 
The rule of functional application of a CN/CN to a CN and the corresponding 
translation rule are the following: 

Sl7: Ify E PcNICN and~ E PeN• then F11 (y, ~) E PeN· 

Tl7: If 'Y E PCN/CN and~ E PeN and 'Y ~ y' and~~ r, then 
Fn(y, ~) ~ y'(AO. 

Semantically, adjectives are functions from first-order properties to sets of in­
dividuals:f(CN/CN) = ((s, (e, t)), (e, t)). Sentence (150) is translated by Tl7 
as (171): 

(171) IMAGINARY( /\PINK( /\UNICORN))( e) 

As usual, adjectives, being functors, operate on the intensions of their argu­
ments. The reason for this is that among the adjectives there are intensional 
ones. Imaginary is a case in point; note that (150) does not entail (172): 

(172) Elsie is a pink unicorn. 

What individuals are imaginary pink unicorns does not depend on what indi­
viduals are pink unicorns. So the extension of pink unicorn plays no part in 
establishing the extension of imaginary pink unicorn. Rather, it is the prop­
erty of being a pink unicorn, i.e., the function which assigns to every possible 
world the set of pink unicorns in that world, which determines what is the set 
of imaginary pink unicorns in a given world w. To simplify, one could put it 
like this: something is an imaginary pink unicorn in w if it is a pink unicorn in 
a world w' that is epistemically accessible from w. Hence an adjective like 
imaginary is intensional; it requires the full intension of its argument and not 
just its extension. Other examples of intensional adjectives are possible, for­
mer, future, alleged, supposed. 

There are extensional adjectives as well, of course; (173) follows from 
(172). 

(173) Elsie is a unicorn. 

The extension of pink unicorn depends on the extension of unicorn. We can 
express this aspect of the meaning of extensional adjectives in a meaning 
postulate: 
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MP6 'v'X'v'x0(y(X))(x)-> VX(x)), where y is PINK, GREEN, LARGE, 
SQUARE. 

Further distinctions can be made within the class of extensional adjectives. 
For example, pink and square have the following property: whenever some­
thing is a pink (square) A, it is not only an A but it is also pink (square). Such 
adjectives are sometimes called 'intersective', since the set denoted by the 
combination of such an adjective and a CN can be looked upon as the inter­
section of the set denoted by the adjective and the set denoted by the CN. 
So-called relative adjectives are extensional but lack the property of intersec­
tivity. From Jumbo is a small elephant we conclude that Jumbo is an elephant 
but not that he is small. These semantic properties of various classes of adjec­
tives can be accounted for in meaning postulates as well. 

Another way to form complex CNs presented in PTQ is to combine com­
mon nouns with restrictive relative clauses. The complex CN in sentence 
(151), Mary loves a man who walks, consists of a simple lexical CN, man, 
and a restrictive relative clause, who walks. This CN expresses a complex 
property: to be a man and to walk. PTQ forms such complex CNs by combin­
ing a CN with a sentence with a syntactic variable. In this case these are man 
and he0 walks, respectively. The latter sentence expresses a property, since it 
translates into a formula that contains a free occurrence of a logical variable, 
viz., WALK(x0). The result of abstraction over x0 is the predicate A.x 0 w ALK(x0). 

Tying man to he0 walks semantically comes down to the conjunction of the 
predicates MAN and AXo WALK(x0): AX(MAN(X) 1\ AX0 WALK(x0)(x)), which re­
duces to A.x(MAN(x) 1\ WALK(x)). A shorter way to obtain this translation is to 
write directly AX 0(MAN(x 0) 1\ WALK(x 0)). 

The formation of relative clauses is a rather complicated syntactic tJro­
cess, and we will not go into the formulation of the syntactic operation that it 
involves. The syntactic rule and the translation rule have the following general 
form: 

Sl8, n: If~ E PeN and<{> E P5 , then F12.n(~, <{>) E PeN· 
Tl8, n: If~ E PeN and<{> E P5 and~~ r and<{>~<{>', then 

FI2,n(~, <f>) ~ Axn(r<xn) 1\ <{>'). 

These rules, like the rules of quantification, are rule schemata; for every n 
there is an actual rule. By way of illustration we give the relevant steps in the 
translation of ( 151 ): 

(174) 1. F12,0(man, he0 walks) ~ A.xo(MAN(x0) 

1\ WALK(X0)) 

2. F/~~uzn who walks) ~ A.X3x(A.x0(MAN(x0) 

1\ WALK(x0))(x) 1\ VX(x)) 
3. = A.X3x(MAN(x) 1\ WALK(X) 1\ VX(x)) 

The final translation of (151) is (175): 

(175) 3x(MAN(X) 1\ WALK(X) 1\ LOVE*(m, X)) 

Tl8,0 

T5 
A.-conv. 
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Predicate adverbs like slowly in (152) John walks slowly are expressions 
which yield an IV when applied to an IV. It seems obvious to consider them to 
be of category IV/IV, but we have already reserved this category for expres­
sions like try to and wish to. Predicate adverbs cannot be taken as belonging 
to the same category, because their syntactic behavior is different. On the 
other hand, we do want them to operate on IVs. PTQ solves this dilemma by 
introducing a new kind of functional category A//B, besides A/B (and if nec­
essary, even A/liB, and so on). However, such distinct categories are mapped 
onto the same semantic type: f(AIIB) = f(A!B) = ((s, f(B)), f(A)) So we 
distinguish slowly syntactically from try to by categorizing it as an IV//IV. 
But semantically there is no difference: both verbs of category IV/IV and 
predicate adverbs of category lVI/IV are regarded semantically as functions 
from properties of individuals to sets of individuals. 

The rule of functional application and the translation rule introducing predi­
cate adverbs are: 

Sl9: If y E PIY//IV and 0 E Ply, then Fn(y, o) E Prv and Fn(Y, o) 
= oy. 

Tl9: If y E PIVIIIY and 0 E plY andy!---? y' and 0 !---? o', then Fu(y, o) 
~--? y'(Ao'). 

The syntactic operation F13 concatenates the two arguments in the reverse 
order. The translation of (152) is (176): 

(176) SLOWLY(/\WALK)U) 

Predicate adverbs translate into expressions of the same type as prenominal 
adjectives; since /(IV) = f(CN), f(IV//IV) = f(CN!CN). The extensionality 
of some expressions of this type is stated by MP6. MP6 holds not only for the 
translations of some prenominal adjectives but also for those of several predi­
cate adverbs. The latter include slowly, but not often, since sentence (152) 
entails (178), but (177) does not: 

(177) John walks often. 

(178) John walks. 

In addition to predicate adverbs, we have included a sentence-modifying ad­
verb in the fragment. Necessarily in (153), Necessarily, every man is a man, 
is an expression which when applied to a sentence yields another sentence. 
The rule of functional application and the translation rule are: 

S20: If y E Ps1s and cf> E Ps, then F11(y, cf>) E Ps. 
T20: If y E Ps15 and cf> E Ps andy!---? y' and cf> !---? cf>', then F11(y, cf>) 

!---? y'(l\cf>'). 

The translation rule says that a sentence modifier operates semantically on the 
proposition expressed by the sentence that is its argument. It is a function, not 
from truth values to truth values, but from propositions to truth values. Surely 
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almost every sentence modifier is intensional. The truth value of necessarily cf> 
in a world w depends not only on the truth value of cf> in w; the truth value of cf> 
in other worlds plays a role too. The expression A<f>' refers to the intension of 
cf>', the function assigning to every possible world the truth value of <f>' in that 
world. So semantically the sentence-modifying adverb necessarily is a func­
tion from propositions to truth values. Using the logical constant 0 we will 
define the exact function. Necessarily is translated as the constant NECES­
SARILY, of type f(S!S) = ((s, t), t) and the following meaning postulate is 
added (the variable pis of type (s, t)): 

MP7 VpO(NECESSARJLY(p) <-> 0Vp) 

An alternative method would be to specify the relation between necessarily 
and 0 in the translation rule. This translation, which is the one we find in 
PTQ, is Tld: 

Tl(d): necessarily!---? 'Ap OVp 

The translation of (153) in the direct way of construction is (179): 

(179) 0\fx(MAN(X) ~ MAN(x)) 

Of course the indirect construction of (153) would yield a different result. 
We claimed that nearly all sentence modifiers are intensional. Semantically, 

an extensional sentence modifier is a function from truth values to truth val­
ues. There are exactly four such functions (see §4.3.4); one of them is nega­
tion. Sentence negation taken as a sentence modifier would be an extensional 
adverb, which can be defined in terms of• by means of a meaning postulate. 

PTQ also contains rules for tenses, for prepositions, and for quantification 
of terms into expressions other than sentences. Tenses are treated by means of 
rules which are similar to rule S 14 for negation. This rule is problematic in 
several respects, and the objections that can be raised against it hold for PTQ's 
rules for tenses as well. We will not go into this matter here. 

Prepositions are treated as expressions of type (IV//IV)/T. They combine 
with a term to form a (complex) predicate adverb. Among the prepositions 
one may also find intensional and extensional expressions. Compare (180) 
and (181): 

(180) John strolls in a garden. 

(181) John talks about a unicorn. 

The rules introducing and translating prepositions follow the familiar pattern 
of rules of functional application. The extensional nature of certain preposi­
tions is accounted for in a meaning postulate. These are left for the reader as 
an exercise. 

Beside the rule of quantification S8, n described in §6.3.8, which allows us 
to quantify terms into sentences, PTQ also introduces rules for the quantifica­
tion of terms into IVs and CNs. The reason for having the last rule, allowing 
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q~antific~tion into_ CNs, is not clear. There are no known examples for which 
this rule IS essential. The rule of IV quantification, on the other hand is a 
necessary addition. For instance, consider sentence (182). Its de dicto re~ding 
can only be accounted for by means of such a rule: 

(182) John tries to find a unicorn and kiss it. 

Quan~ifica_tion ?f the term a unicorn into the sentence John tries to find him
0 

and kzss hzmo yields the de rereading of (182), whereas the direct construction 
leaves the coreference of it and a unicorn unaccounted for. Hence we need a 
third way of construction. This is supplied by rule S20, nand the correspond­
ing translation rule: 

S20, n: If a E PT and 0 E P,y, then F7.n(a, o) E P,y. 
T20, n: If a E PT and 0 E P,y and a f-,)- a' and 0 f-,)- o', then 

F7.n(a, o) ~ A.ya'(AA.xn(O'(y))). 

These rules are a~ain rule schemata. The syntactic operation F7, n is the same 
as the one u~ed m rule of S-quantification S8, n. The derivation of (182) is 
represented m figure (183) and the relevant steps in its translation in (184): 

(183) John tries to find a unicorn and kiss it, S, S2 

John, T try to find a unicorn and kiss it, IV, S 16 

try to, IV/IV find a unicorn and kiss it, IV, S20, 0 

a unicorn, T, S5 

I 
find him0 and kiss him0 , IV, S II 

unicorn, CN 
~ 

~v k/ZS7 
find, TV he0, T kiss, TV he

0
, T 

(184) 1. F7,0(a unicorn, find him0 and kiss him
0

) f-,)­

A.yA.X3x(UNICORN(x) 1\ 

v X(x))( 1\ A.x0(.X.z(FIND*(z, Xo) 1\ 

KISS*(z, x0))(y))) 
2. = A.yA.X3x(UNICORN(x) 1\ VX(x)) 

(/\Ax0(FIND*(y, Xo) 1\ KISS*(y, Xo))) 
3. = A.y3x(UNICORN(x) 1\ FINU.(y, X) 1\ 

KISS*(y, X)) 

4. F 11(try to, find a unicorn and kiss him) 
~ TRY(AA_y3x(UNICORN(X) 1\ 

FIND*(y, X) 1\ KIS~(y, x))) 

T20, 0 

A.-conv. 

A.-conv., 
v 1\-elim. 
and A.-conv. 

T16 
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5. F 1(John, try to find a unicorn and kiss him) 
~ TRYU, AA.y3x(UNICORN(x) 1\ FINDiy, x) 
1\ KISS*(y, x))) T2, NCl 
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This derivation results in the de dicto reading of ( 182) with the required co­
reference of a unicorn and it. 

Exercise 8* 

(a) Give an analysis tree and reduced translation for every reading of the sen­
tence John asserts that Elsie tries to find a unicorn. 

(b) Formulate a syntactic rule and a translation rule for prepositions. 
(c) Give two analysis trees with two nonequivalent translations for John walks 

in a garden. 
(d) Formulate a meaning postulate for extensional prepositions such as in 

which accounts for the fact that (c) notwithstanding, John walks in a gar­
den is not ambiguous. 

6.4 Individual Concepts 

6.4.1 Arguments for the Introduction of Individual Concepts 

One aspect of the PTQ model that has not been discussed so far is Montague's 
use of individual concepts. ln the fragment treated in §6.3, nouns and intran­
sitive verbs are analyzed as properties of entities. In PTQ, however, CNs and 
1Vs are analyzed as properties of individual concepts. They express not prop­
erties of entities but properties of functions from contexts to entities. Mon­
tague's argument for this approach is that it provides an explanation for the 
invalidity of inferences like the following: 

(185) The percentage of Dutchmen opposing nuclear energy is 38. 

(186) The percentage of Dutchmen 0pposing nuclear energy is rising. 

(187) 38 is rising. 

(188) The population of Amsterdam equals the population of Rot­
terdam. 

(189) The population of Amsterdam is declining. 

(190) The population of Rotterdam is declining. 

These examples require that contexts be interpreted as points in time, or as 
worlds at points in time. The invalidity of (185)-(187) is indisputable: at any 
point in time, 38 is equal to 38; 38 can neither rise nor fall. The value of an 
individual concept can rise or fall. Sentence (185) states that 38 is at this point 
in time the value of the function that for any point in time gives a number 
which represents the percentage of Dutchmen opposing nuclear energy at that 
point in time. Sentence (186) states that this individual concept rises, which is 
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~ ~ssertio~ about a relationship between its values over a certain period. 
R1smg, fallmg, and changing are characteristic properties of functions from 
points in time to numbers. Sentences (185) and (186) make different asser­
tions about the individual concept the percentage of Dutchmen opposing nu­
clear energy: the first makes a statement about the value of the concept at this 
moment, and the second ascribes a property to the concept. 

Nor is (188)-(190) a valid argument. From the fact that at this moment the 
two individual concepts the population of Amsterdam and the population of 
Rotterdam happen to have the same value, it does not follow that if the con­
cept the population of Amsterdam declines, then so does the concept the 
population of Rotterdam. Other nouns referring to individual concepts are 
price, temperature, traveling time, and so on. It should be stressed that al­
though such properties of individual concepts as rising, declining, and chang­
ing may be definable in terms of the values of the individual concepts at 
several points in time, they are not as a consequence properties of these val­
ues. Rising, for instance, is not a property of the value of an individual con­
cept at a given point of time but a property of the concept itself. 

Not everyone agrees that the introduction of individual concepts is the most 
appropriate way to account for the invalidity of these and similar inferences. 
One objection that is often heard is that numbers should not be considered 
basic entities, and hence, that temperature, number, and percentage are not 
functions from points in time to entities, i.e., they are not individual concepts. 
However, the present approach has certain distinct advantages. First, it ex­
plains the invalidity of these inferences. Second, if numbers are analyzed not 
as basic entities but as higher-order entities, a uniform treatment of nouns and 
verbs no longer seems feasible. Third, there are other sentences and expres­
sions for which an analysis in terms of individual concepts seems particularly 
appropriate. Consider the following: 

(191) The treasurer of the charity organization is the chairwoman of 
the Entertainment Committee. 

(192) The treasurer of the charity organization resigns. 

(193) The chairwoman of the Entertainment Committee resigns. 

~his inference is not valid either. The invalidity is explained by the assump­
tiOn that (192) and (193) make assertions about individual concepts. Sentence 
(192) states that the individual who is now the value of the individual concept 
'treasurer' will no longer be its value; in (193) the same is asserted of the 
concept 'chairwoman'. But from the fact that both individual concepts have 
the same value at this moment, which is expressed by the first premise, (191), 
and the fact that this individual will no longer be treasurer, which is what 
(192) states, it does not follow that this individual will no longer be chair­
woman, as (193) would have it. 
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Another example with a 'functional' noun is (194): 

(194) The president is a Republican, but next year he will be a 
Democrat. 
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This sentence has two readings. The most improbable one claims that the 
same individual who is now president will remain in office next year but 
change his political color in the meantime. The reading on which it is asserted 
of the individual concept the president that its value is now some member of 
the Republican party but will be a different individual, a member of the 
Democratic party, next year, is surely more probable. 

Not every sentence containing such a functional noun is an assertion about 
an individual concept. For example, in (195) there is talk of the action of an 
individual, and hence (196) follows from (191) and (195): 

(195) The treasurer of the charity organization is on the run. 

( 196) The chairwoman of the Entertainment Committee is on the run. 

Sentences (185), (188), and (191) are assertions about individuals as well. 
An analysis using individual concepts seems to enable us to explain these 

and similar phenomena. The way PTQ accounts for the fact that some CNs 
and IVs express properties of individual concepts, while others express prop­
erties of entities, is interesting but hard to grasp. It is for this reason that the 
model was not presented in its final form in the preceding sections. In §6.4.2 
we will summarize the changes which need be made to the model in order to 
allow for the introduction of individual concepts and indicate how the result­
ing model accounts for the invalidity of inferences such as those discussed in 
this section. 

6.4.2 Consequences of the Introduction of Individual Concepts 

Individual concepts are objects of type (s, e). CNs and IVs refer to sets of 
individual concepts and should be translated into logical expressions of type 
((s, e), t). This makes it possible to treat CN and IV not as basic categories 
but as functor categories of type A/Band A//B, wheref(A) = t andf(B) = e, 
yieldingf(A/B) = f(A!!B) = ((s, f(B)),f(A)) = ((s, e), t). 

This means that A is S; forB we choose to create E, a new basic category, 
and state that f(E) = e. This gives rise to the following definitions: 

Definition 3 

CAT, the set of categories, is the smallest set such that: 

(i) S, E E CAT. 
(ii) If A, BE CAT, then A/B, A//B E CAT. 
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Definition 4 

fis a function from CAT toT such that: 

(i) j(S) = t, /(E) = e. 
(ii) /(A/B) = f(AIIB) = ((s,f(B)),f(A)). 

Given these new categorial definitions of CN and IV, the definition of catego­
ries defined in terms of them (in our fragment these are all derived categories 
except S/S) change accordingly. Also, they are assigned another type as a re­
sult of the new type assignment of IV and CN. In Table 6.2 we give the new 
definitions and corresponding types for the most important categories. We 
also introduce several new lexical elements. Note that there are neither lexical 
elements nor derived expressions of category E. An expression of category E 
would refer directly to an entity: /(E) = e. The only type of expressions which 
could be considered to belong to this category are proper names, but as we 
argued in §6.3.4, there are good reasons for treating these on a par with quan­
tified terms. Note that it is not strictly necessary to introduce this new cate­
gory E; we could instead retain IV and CN as basic categories and change 
only the definition off Apart from the new definition of the categories and the 
introduction of additional lexical items, the syntax remains as it was. The 
changes in the process of translation are minor; the main difference concerns 
the types of the constants and variables used in the translation rules. Table 6.3 
gives a description of three types which will be used regularly in the following 
sections~ 

The translation of those basic expressions which are not translated sepa­
rately is altered only in the sense that the type of the constants related to them 
by g is modified. For example, MAN and NUMBER are now constants of type 

Table 6.2 Categories and Expressions 

Category Definition 

s 
E 
CN 

IV 

T 

TV 

S/E 

S//E 

S/IV = 
S/(S//E) 
IV/T = 
IV/(S/IV) 
= (SIIE)I 
(S/(S//E)) 

Type 

e 
( (s, e). t) 

((s, e), t) 

( (s, ( (s. e), t) ), t) 

((s. ((s, ((s, e), t)), t)), ((s, e), t)) 

New lexical elements 

Number, 
treasurer, 
chairwoman, 
temperature, 
percentage, 
population 

Rise, fall, change, 
resign 

38 

Table 6.3 Variables and Interpretations 

Type Variable 

((s, e), t) 
(s, ( (s. e), t)) 
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Description of extension 

Set of individual concepts 
Property of individual concepts 
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(s, ((s, ((s, e), t)), t)) 

U, V 
u. v 
u, v Second-order property of individual concepts 

f(CN) = (S/E) = ((s, e), t). The translations of basic IVs, for example, 
STROLL and RISE, are also constants of this type. The translation rule Tl re­
mains the same: 

Tl (a): If a is in the domain of g, then a ~ g(a). 

Terms are now translated into logical expressions of type f(T) = ((s, ((s, e), 
t)), t). They refer to sets of properties of individual concepts. In addition to 
the usual proper names, we also have names of numbers as lexical elements, 
for instance 38. In the translation of this proper name we use 38 as a constant 
of type e. The translation of proper names and syntactic variables is now de­
fined as follows: 

Tl(b): John~ A.UVU(!''j) 

Mary~ A.UVU(I'm) 
Elsie~ A.UVU(I'e) 
38 ~ A.UVU(I'38) 
hen~ A.UVU(xn) 

The translation of John, A.UV U( Aj), refers in a world w to the set of proper­
ties of individual concepts that in w are the properties of the individual con­
cept which is the reference of Aj in w. The reference of Aj in w is the function 
from worlds to individuals that assigns to every world w' the individual that in 
w' is the reference of j. As was remarked in §5.4, the reference of Aa is the 
same in every w, so Aj refers always to the same function. We also retain 
MPl; hence j is a rigid designator, and Aj refers to a constant function, a func­
tion that assigns the same value to every argument. So in every world, Aj re­
fers to the same constant function, viz., the function which in every world 
delivers the unique referent of j. An individual and the constant function from 
worlds to that individual are of course related one to one. Likewise, if a is a 
rigid designator, then a and Aa are uniquely related as well: they identify the 
same individual. We will extend MPl to constants like 38, which figure in the 
translation of names of numbers; these constants are also considered rigid 
designators. 

The translation of a quantified term also results in a logical expression 
which has as its extension a set of properties of individual concepts. The 
translation rules T3-T6 are formulated as follows: 

(<:" 
T3: If~ E PeN and ~~~',then F;~ A.U'ifx(~'(x) ~ v U(x)). 
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T4: If' E PeN and'~ r' then F~~~ A.U3x('v'y(r<y) ....... X= y) 1\ 

v U(x)). r,i::'\ 

T5: If' E PcNand '~ r' thenF4~~ A.U3x(r(x) 1\ VU(x)). 
T6: If 'E PCN and '~ C then F5);,t A.U3x'v'y((r<y) 1\ VU(y)) 

<->X= y). '·~ > 

For example, the term the temperature translates into (197) by T4: 

(197) A.U3x('v'y(TEMPERATURE(y) <-> x = y) 1\ VU(x)) 

The reference of (197) in a world w is the set of properties of individual con­
cepts of which it is true that they are properties of the unique individu~J 
concept that has the property TEMPERATURE in w. 

The translation of the transitive verb be is modified as follows: 

Tl(c): be~ A.UA.x VU(AA.y(Vx = Vy)) 

As before, the translation accounts for the extensional nature of be. It ex­
presses a relation between individual concepts and second-order properties of 
individual concepts which is defined in terms of the identity of individuals: 
Vx = vy is true in w with respect to an assignment g iff g(x)(w) = g(y)(w), 
i.e., iff the value of g(x) in w is identical to the value of g(y) in w. The expres­
sion AA.y(v x = vy) refers to the property of individual concepts of having the 
same value as g(x). So the interpretation of be is that relation which holds in a 
world w between an individual concept and a second-order property iff the 
property of having the same value as that individual concept is a property 
which belongs to the set of properties of individual concepts which is the 
value of that second-order property in w. 

The translation of necessarily, the last basic expression which is translated 
separately, stays as it was, since the categorial definition of SIS has remained 
the same in this new approach. 

No changes are necessary in the translation rules which correspond to the 
syntactic rules of functional application. However, in the translation rules of 
the quantification rules and the relative clause rule, we need to make a slight 
modification. In the old rules, we quantified over variables of type e, but now 
we quantify over variables of type (s, e). For instance, the new quantification 
rule T8, n is formulated as follows: 

T8, n: If a E PT and cf> E P5 and a~ a' and cf> ~ cf>', then F7,n(a, cf>) 
~ a'(AA.xncf>'). 

Similar adjustments have to be made in the rules of conjunction and dis­
junction. 

6.4.3 Some Examples 

By way of illustration we give the translations of two examples discussed in 
§6.4.1. First let us consider (185)-(187). For the sake of convenience, we 
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will represent the complex CN percentage of Dutchmen opposing nuclear en­
ergy as PERCENTAGE. The translation of (185)-(187) is: 

(198) 3x('v'y(PERCENTAGE(y) <->X = y) 1\ V X= 38) 

(199) 3x('v'y(PERCENTAGE(y) <->X= y) 1\ RISE(x)) 

(200) RISE( 1\38) 

The relevant steps in the translation of ( 198) are: 

(201) 1. F6(be, 38) ~ A.UA.x v U( AA.y(V x = Vy)) 
(AA.U Vij(/\38)) 

2. = A.x(A.U v U(A38)(AA.y(Vx = Vy))) 

3. = Ax(Ay(Vx = Vy)(/\38)) 

4. = A_x(Vx = V/\38) 
5. = A.x(Vx = 38) 
6. F1(the percentage, be 38) ~ 

A.U3x('v'y(PERCENTAGE(y) <->X= y) 1\ 

VU(x))(AA.x(Vx = 38)) 
7. = (198) 

T7 
A.-conv., 
VA_elim. 

A.-conv., 
VA_elim. 
A.-conv. 
v 1\-elim. 

T2 
A.-conv., 
VA_elim. 

The IV be expresses the property of individual concepts of having the value 
38. Sentence (185) asserts that the unique concept that is the percentage of 
Dutchmen that are against nuclear energy has that property, in other words, 
that the value of that concept is 38. It is evident that (200) does not follow 
from (198) and (199). The property of rising can be true of a concept at a 
given moment; the value of that concept can be 38 at that moment, but this 
does not entail that the concept 1\38 has the property of rising. On the con­
trary, the concept referred to by /\38 is a constant function, and further speci­
fication of the property referred to by RISE will certainly require the concepts 
of which it is true to have different values at different moments. Assertion 
(200) will never be true then. But even without such specification of what it 
means for a concept to rise, a counterexample can easily be constructed. 

The second example that we will discuss is (191)-{193). The CNs trea­
surer of the charity organization and chairwoman of the Entertainment Com­
mittee will be represented by the constants TREASURER and CHAIRWOMAN. 
The sentences (191)-(193) are translated to the following formulas: 

(202) 3x('v'y(TREASURER(y) <->X = y) 1\ 

3z('v'y(CHAIRWOMAN(y) <-> z = y) 1\ V X = V z)) 

(203) 3x('v'y(TREASURER(y) <->X = y) 1\ RESIGN(x)) 

(204) 3x('v'y(CHAIRWOMAN(y) <->X= y) 1\ RESIGN(x)) 
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The relevant steps of the translation of (202) are: 

(205) l. F6(be, the treasurer)!-? >..U>,xVU(AJ..y(Vx = 
Vy))(AJ..U3z('v'y(TREASURER(y) ~ Z = y) 1\ 

v U(z))) 

2. = AxAU3z('fy(TREASURER(y) ~ Z = y) 1\ 

v U(z))( AJ..y(V x = Vy)) 
3. = Ax3z('v'y(TREASURER(y) ~ Z = y) 1\ 

A.y(Vx = Vy)(z)) 
4. = Ax3z('fy(TREASURER(y) ~ Z = y) 1\ 

Vx = Vz) 

T7 
A-conv., 
v 1\-elim. 
A-conv., 
v 1\-elim. 

A.-conv. 

Formula (202) asserts that the unique concept that is the treasurer and the 
unique concept that is the chairwoman have the same value: both positions are 
filled by the same person. From the fact that both concepts have the same 
value at this moment and the fact that one concept has the property of resign­
ing at this moment, however, it does not follow that the other concept also has 
that property. Again, a counterexample is easy to construct. Hence the argu­
ment is not valid. 

The other examples discussed in §6.4.1 are explained in an analogous 
fashion. We conclude that as far as an explanation of these kinds of phenom­
ena is concerned, the introduction of individual concepts gives quite satisfac­
tory results. But of course we cannot simply leave it at that, since every 
expression is now considered to be a statement about individual concepts, 
and this certainly is too much of a good thing. Sentences like John walks and 
Every man loves a woman are, after all, assertions about individuals. And 
surely, as we have observed, not even every sentence containing a functional 
noun like treasurer is an assertion about an individual concept. We have ac­
counted for the fact that the argument in (191)-(193) is not valid, but we have 
not yet shown that, nevertheless, (191) and (195) entail ( 196). Along with 
CNs like percentage and IVs like rise, which express properties of individual 
concepts, there are CNs like unicorn and IVs like be on the run that ex­
press properties of individuals. The situation we find ourselves in resembles 
the dilemma we encountered in the analysis of transitive verbs. Because 
there are intensional TVs, we analyzed all TVs as relations between indi­
viduals and second-order properties. To express the extensionality of some 
TVs, a meaning postulate was introduced. Here we will proceed along the 
same lines. 

6.4.4 Meaning Postulates 

PTQ formulates two separate meaning postulates for IVs and CNs. The postu­
late for IV s is the following: 

MP8 3X'v'x0(o(x) ~ VX(Vx)), where o is the translation of an IV 
other than rise, fall, change, resign. 
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This postulate guarantees that certain properties of individual concepts corre­
spond to properties of individuals. For instance, MP8 implies that there is a 
property of individuals such that in every possible world, WALK is true of an 
individual concept iff that property is true of the individual that is the value of 
the individual concept of which WALK is true. 

PTQ introduces a notational convention, similar to the one introduced ear­
lier for transitive verbs: 

Notational Convention 3 

lf o is an expression of type ((s, e), t), then we may write o* instead of 
A.x(o( Ax)). 

For instance, WAL~ is an expression of type (e, t) which in every world w 
refers to the set of entities of which it is true that the constant function of 
that entity belongs to the set of individual concepts that is the denotation 
of WALK in W. 

Now let us take a look at the translation of the sentence John walks: 

(206) WALK( /\j) 

As we remarked above, it follows by MPI, which states that j is a rigid desig­
nator, that Aj refers to a constant function. The constant function of an in­
dividual and the individual itself are uniquely correlated. Every constant 
function is related to one individual, and for every individual there is one con­
stant function whose value is that individual. In this sense, (206) is an asser­
tion about an individual as much as it is one about an individual concept. NC3 
provides a more perspicuous notation. By NC3, (206) is written as: 

This is the representation of the sentence John walks that we end up with. It is 
a formula which expresses the assertion that the individual John has the prop­
erty of individuals WALK*. (Note that WALK* is of the same type as WALK in 
the fragment without individual concepts.) So the introduction of individual 
concepts does not make any difference as long as we are dealing with constant 
individual concepts. 

For those lVs o for which it is defined, MP8 guarantees that there exists a 
corresponding property of individuals. The latter property can be written as 
o*. For under the assumption of MP8, the following theorem is true for the o 
for which MP8 is postulated: 

Theorem 2 

'v'xO(o(x) ~ o*(Vx)) 

We will not give a proof of this theorem. The proof is analogous to the proof 
of theorem I in §6.3.7. 

We could have formulated the meaning postulate differently, for example, 
like MP9 (for the same expressions o): 
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MP9 VxO(o(x) ~ 3x(x = vx A O(l'x))) 

Formulated in this way, the meaning postulate expresses that for any individ­
ual concept x (constant or otherwise) in any world w, the assertion that x has 
the property o is equivalent to the assertion that a certain constant concept has 
that property, viz., that concept which is the constant function which in every 
world w' has as its value the value of x in w. And assertions about constant 
concepts are in fact assertions about individuals, as was pointed out above. 

PTQ gives another meaning postulate for CNs: 

MPIO V xD(o(x) ~ 3x(x = Ax)), where o is the translation of a CN 
other than number, treasurer, chairwoman, price, tempera­
ture, or percentage. 

This meaning postulate asserts that every individual concept falling under a 
CN like man, woman, unicorn is a constant function. It is not clear why there 
are different meaning postulates for IVs and CNs. That there is a difference is 
established by the fact that in spite of PTQ's claim to the contrary, theorem 2 
does not hold for the translations of CNs for which MPIO is defined. On the 
other hand, the following theorems do hold for these CNs: 

Theorem 3 

3x(o(x) A v U(x)) is equivalent to 3x(o*(x) A v U( Ax)). 

Theorem 4 

Vx(o(x) ~ v U(x)) is equivalent to Vx(o*(x) ~ v U( Ax)). 

Theorem 5 

3x('ty(o(y) ~ x = y) A v U(x)) is equivalent to 3x(Vy(o*(y) ~ x = y) A 

VU(Ax)). 

Theorem 6 

3xVy((o(y) A v U(y)) ~ x = y) is equivalent to 3xVy((o*(y) A v U( Ay)) ~ 
X= y). 

We will not prove here that theorem 2 does not hold for CNs, nor will we 
prove theorems 3-6. 

As in PTQ, the CNs treated in this fragment only occur in contexts where 
theorems 3-6 hold. Therefore the fact that theorem 2 does not hold for CNs 
will have no consequences. 

Finally, we will give some instances of assertions about individual concepts 
which by theorems 2-6 are equivalent to assertions about individuals: 

(208) A unicorn strolls 1---7 3x(UNICORN(X) 1\ STROLL(x)) 
= 3x(UNICORN(x) 1\ STROLL*(V x)), by theorem 2 
= 3x(UNICORN*(X) 1\ STROLL*(V Ax)), by theorem 3 
= 3x(UNICORN*(x) 1\ STROLLix)), by v /\-elimination. 
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Another way of obtaining this result: 

(209) A unicorn strolls 1---7 3x(UNICORN(X) A STROLL(x)) 
= 3x(UNICORN*(X) 1\ STROLL( Ax)), by theorem 3 
= 3x(UNICORN*(x) A STROLL*(x)), by NC3. 

A second example is the (slightly simplified) representation of (195): 

(210) The treasurer of the charity organization is on the run 1---7 
3x('lfy(TREASURER(y) ~X = y) 1\ ON THE RUN(x)) = 
3x('lfy(TREASURER(y) ~X = y) 1\ ON THE RUN*(V x)). 
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This formula cannot be reduced any further, since MPlO is not defined for the 
CN treasurer: Formula (21 0) says that the individual that is the value of the 
concept the treasurer has the property of being on the run; sentence (196) gets 
a similar translation. It follows from (202), the translation of (191), and (210) 
that the chairwoman of the Entertainment Committee has bolted. Formula 
(202) asserts that the value of the concept treasurer and the concept chair­
woman is the same individual. Formula (210) asserts that that individual has 
the property of being on the run. Thus, it is true of the individual who is the 
value of the concept chairwoman that it has this property. 

A last remark concerns the reformulation of meaning postulate MP2, which 
accounts for the extensionality of certain TVs, and of NC2. The contents of 
MP2 are hardly changed: it now relates relations between individual concepts 
and second-order properties of individual concepts to relations between indi­
viduals. MP2, NC2, and theorem 1 are reformulated as follows: 

MP2 3S'v'xVUO(o(x, U) ~ VU(AA.y(VS(Vx, vy)))), where o is as 
formerly defined. 

NC2 

If o is an expression of type ((s, ((s, ((s, e), t)), t)), ((s, e), t)), then we may 
write o* instead of A.yA.xo(Ax, AA.UVU(Ay)). 

Theorem 1 

VxVUO(o(x, U) ~ VU(AA.y(Voivx, Vy))), where o is as formerly defined. 

By means of the reformulated theorem 1, we can reduce (211) to (212), which 
is in tum reducible to (213) by theorem 3: 

(211) KISS( Aj, A)\U3x(UNICORN(x) A v U(x))) 

(212) 3x(UNICORN(x) 1\ KISS*(j, Vx)) 

(213) 3x(UNICORN*(x) 1\ KISSij, X)) 

In this way, the introduction of individual concepts does not affect the results 
of the fragment without individual concepts; these carry over without restric­
tion. But it enables us to account for the examples given in §6.4.1 and hence 
to formulate a more adequate semantics of English. 
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Exercise 9 

Which of the following sentences can be reduced to formulas with the 
*-notation? What does the reduction depend on? 

(i) John kisses Mary. 
(ii) John kisses a unicorn. 
(iii) John seeks Mary. 
(iv) John seeks a unicorn. 

6.5 Compositionality, Logical Form, and Grammatical Form 

In this section we will briefly take up an issue from §6.1.1: the methodologi­
cal status of the principle of compositionality and its relationship with the 
contrast between logical form and grammatical form. 

The term 'logical form' nowadays may mean two quite different (though 
perhaps historically not unrelated) things. It may refer to a notion widely used 
and explored in generative grammar since the seventies. In generative gram­
mar it stands for a specific level of description in grammar, distinct from sur­
face structure and underlying structure. Or the term may be used to denote a 
concept which is much older and which is of philosophical origin. 

To begin with the latter, a distinction between the grammatical form of an 
expression and its logical form has been made in logic and philosophy at vari­
ous times in history. Especially since the development of modern quantifica­
tionallogic at the end of the nineteenth century, the idea that the 'observable' 
grammatical form of a sentence may mislead as to its real logical form has 
been formulated with vigor and conviction by such notables as Frege, Russell, 
and Wittgenstein. (See chapter 1 of volume 1 for more details.) And this 
'Misleading Form Thesis' and the concomitant view of natural language as 
irregular, unsystematic, vague, and deficient has dominated philosophical and 
logical thinking about language well into the second half of the twentieth 
century. 

This distinction between logical form and grammatical form is quite alien 
to logical grammar. The following quotation from Montague's 'Universal 
Grammar' (1970b) may serve as an illustration: 

There is in my opinion no important theoretical difference between 
natural languages and the artificial languages of logicians; indeed, I 
consider it possible to comprehend the syntax and semantics of both 
kinds of languages within a single natural and mathematically pre­
cise theory. On this point I differ from a number of philosophers, but 
agree, I believe, with Chomsky and his associates. It is clear, how­
ever, that no adequate and comprehensive semantical theory has yet 
been constructed, and arguable that no comprehensive and seman­
tically significant syntactical theory yet exists. 
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From this quotation it is also evident that Montague feels that his conviction 
that natural language can be given a rigorously formal description is shared by 
linguists in the Chomskyan tradition. However-and this brings us to the 
second meaning of the phrase 'logical form' and to the issue of composi­
tionality-he is also convinced that work in the generative tradition offers no 
semantic theory, and that the syntactic theory it presents probably fails to pro­
vide an adequate basis for semantics. 

As for the first claim, 'semantics' in Montague's book means 'truth­
conditional semantics', and indeed this kind of semantics has never been the 
concern of generative linguistics. To be sure, the level of logical form that 
figures in Chomsky-style grammar serves to account for some facts that a 
logical grammarian would classify as semantic and hence would want to ac­
count for too, but the way this is done in the two approaches greatly differs. 
And more importantly, the very idea of a model-theoretic semantics has been 
flatly rejected by some of the leading proponents of generative grammar as 
being irrelevant for natural language. We will not try to give a description of 
the exact nature of the generativist notion of logical form, nor of the role it 
plays in the grammar. It may suffice to note the following. The level oflogical 
form is considered to be a level of description that is different from both the 
surface structure and the underlying (or 'deep') structure of an expression. It 
serves to account for various phenomena, such as coreference and scope, but 
not through a process of interpretation. In fact, it is not always clear whether 
logical form is part of semantics or of syntax. The logical form of an expres­
sion is only partly determined by its surface syntactic structure, the relation 
being one-many. The latter fact means that even if the level of logical form 
were something like a representation of a full-blown model-theoretic inter­
pretation (which it isn't), it still wouldn't fit the most basic principle of logical 
grammar, that of the compositionality of meaning. 

The disagreement between logical grammar and generative grammar is in 
fact nicely illustrated by the second claim attributed to Montague above, viz., 
that existing syntactic theories are not 'semantically significant'. To put it 
rather bluntly, while the starting point for Montague is semantics, for Chomsky 
it is syntax: the former embraces the principle of compositionality of mean­
ing, and the latter advocates the autonomy of syntax. As we remarked in 
§§6.11 and 6.2, these two principles may be in conflict with each other. 

So two things may be noted. First, neither the traditional philosophical no­
tion of logical form nor the modern one which is used in generative grammar 
seems to play a role in logical grammar. And second, the main watershed be­
tween generative grammar and logical grammar seems to be formed by the 
principle of compositionality. This raises two questions. If we want to identify 
a level of representation in logical grammar as a level of logical form which 
approximates the one used in generative grammar, what level is this? And 
what exactly is the status of the principle of compositionality and hence of the 
disagreement between generative grammar and logical grammar? Is it factual, 
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or is it rather methodological? In what follows we will try to answer these two 
questions briefly. 

From now on we will use the phrase 'logical form' to mean the representa­
tion of an expression that determines its meaning. In the PTQ model there are 
three distinct levels of representation. We can distinguish between: 

(i) expressions 
(ii) analysis trees 
(iii) logical expressions 

An expression is a string generated by the syntax, i.e., a sequence of symbols 
which the grammar declares is well-formed. The analysi~ tr~e encod~s the 
derivational history of an expression. It contains the followmg mformatwn. It 
specifies which basic expressions were used and which rules were employed 
to form complex expressions. The logical expression is the result of the trans­
lation process applied to the analysis tree. 

Now consider our by now worn-out example: 

(214) John seeks a unicorn. 

As a string generated by the syntax, i.e., at level (i), (214) represents it­
self. On the second level, there are two representations: the analysis trees 
corresponding to the direct and indirect constructions. These are repeated in 
figure (215). 

(215) a. John seeks a unicorn, S, S2 

---------------John, T seek a unicorn, IV, S7 

---------------seek, TV a unicorn, T, S5 

I 
unicorn, CN 

b. John seeks a unicorn, S, S8, 0 

---------------a unicorn, T, S5 John seeks him0, S, S2 

I ---------------unicorn, CN John, T seek himo, IV, S7 

~ 
seek, TV 

And on the third level we again find two representations: the two (reduced) 
translations (216) and (217) (disregarding individual concepts again): 

(216) SEEKU, AAX3x(UNICORN(x) 1\ vx(x))) I 
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(217) 3x(UNICORN(x) 1\ SEEK*U• x)) 

With respect to the analysis trees and the logical expressions, it should be re­
marked that representations at these levels are not unique. For the translations 
we have stressed this several times: all the reduction and simplification steps 
that we apply are 'meaning preserving' in the sense that we always proceed 
from an expression to one that is logically equivalent with it. So it makes no 
sense, to speak, for example, of the logical expression which is the represen­
tation of the de rereading of (214). For obvious practical reasons, we will use 
(217) as representation in most cases, and in certain circumstances, e.g., 
when we want to apply a syntactic proof mechanism, it may even be necessary 
to do so. But as a representation of one of the meanings of (214), (217) has no 
privileged status: any of an infinite number of equivalent expressions would do. 

The same holds for analysis trees. This is perhaps most clear in the case of 
(215b) where a different choice of syntactic variable would have resulted in a 
different analysis tree which would obviously determine the same meaning, 
since it would have resulted in a translation which is equivalent to (217). As 
for the direct construction exemplified in (215a), note that PTQ also allows us 
to use the quantifying mechanism in an 'empty' way, i.e., with no semantic 
effects. The analysis tree in figure (218) illustrates this. 

(218) John seeks a unicorn, S, S8, 3 

---------------John, T, S5 He3 seeks a unicorn, S, S2 

---------------he,, T seek a unicorn, IV, S7 

---------------seek, TV a unicorn, T, S5 

I 
unicorn, CN 

This tree leads to a translation which is equivalent to (216) and hence also 
represents the de dicto meaning of (214). 

Now what about logical form? Which of these representations determine 
the meaning of (214)? Since (214) is ambiguous, it must be assigned two dis­
tinct logical forms, and hence, (214) itself, i.e., the representation of our ex­
ample as a string generated by the categorial syntax, cannot count as such. 
And this was not to be expected either, since we saw in §6.2 that composi­
tionality implies that meaning is determined given an analysis. This leaves the 
level of analysis trees and that of translations to be considered. In fact, both 
may very well be considered as levels of logical form, as the following consid­
erations may help to make clear. 

Let us start with the translations. We have to bear in mind that it is not 
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proper to speak of a single logical expression as the representation; rather an 
entire equivalence class of expressions is to be counted as such. Two things 
should be noted. First of all, such a class determines, by definition, a unique 
meaning. But second, there isn't much that is formal about the resulting no­
tion of logical form, for the logical equivalence of two expressions need not 
rest on any interesting resemblance between their forms. 

As for the analysis trees, the important thing to note is that an analysis tree 
determines a unique translation. It has basic expressions as its leaves, and it 
has at each node a unique derived expression and an indication of the syntactic 
rule by means of which the latter was formed. The basic expressions have a 
unique translation, which is given in translation rule Tl. And each derived 
expression has a unique direct translation, too, which is determined by the 
translation rule which corresponds to the syntactic rule. Given that logical ex­
pressions are unambiguous, it follows that an analysis tree determines a 
unique meaning. We noted above that, as was the case with translations, we 
must take an equivalence class of an analysis tree, rather than a single tree as 
the representation of the meaning of an expression. The relevant equivalence 
relation is that of generating an equivalent logical expression as a translation. 
Here, too, we note that there is no formal identity between the members of 
one and the same logical form, although it is to be expected that the formal 
resemblances are stronger here than in the case of logical expressions. 

So we conclude that we have two candidates to serve as logical forms. Is 
there any reason to choose one rather than the other? As a matter of fact, com­
positionality again provides us with one. Note that it is the principle of com­
positionality of meaning which dictates that our grammar must contain the 
level of representation of the analysis trees. For compositionality states that 
the meaning of an expression is determined by, i.e., is a function of, the 
meanings of its parts. The meanings, it should be stressed once more, are the 
semantic objects in the model, i.e., the individuals, properties, propositions, 
second-order properties and so on that we associate with the expressions. The 
logical expressions serve to represent these but are not to be confused with 
them. The point is that this description of compositionality refers to an infor­
mal notion of the 'parts of' an expression. In a sense, the main point of doing 
syntax, that is, 'semantically significant' syntax, is to explicate this notion. A 
simple example of an ambiguous expression suffices to show that the parts 
cannot be identified with the lexical elements from which an expression is 
built. Example (214) has two different meanings, both of which are conveyed 
by the same set of basic expressions. And as was remarked in §6.2, the con­
stituents of an expression are not the relevant objects either, since an expres­
sion may be ambiguous without having two distinct constituent structures. But 
compositionality simply requires that there be different 'parts' whenever there 
is nonlexical ambiguity, and if none of the known notions will do, the parts 
have to be 'invented'. In the PTQ framework this has lead to the notion of 
derivations encoded in analysis trees, to the introduction of quantification 
rules, and so on. Other options are available, and other techniques have been 

Montague Grammar 219 

developed, but the important thing to note here is that compositionality de­
mands a disambiguated level of representation in the syntax. 

This establishes the necessity of (something like) the level of analysis trees, 
but it also shows the optional character of the level of logical expressions. For 
if the analysis trees determine meaning, the translations cannot add anything 
to it: they must be superfluous. And in fact they are. Given that an analysis 
tree determines a unique translation, and that logical expressions are unam­
biguous, it is always possible to bypass the translation level and interpret the 
analysis trees directly. Simply assign the semantic objects that are the inter­
pretations of the translations of basic expressions to these expressions di­
rectly, and instead of the translation rules, use the semantic operations which 
correspond to these to operate on semantic objects. This is the method used by 
Montague in "English as a Formal Language" (1970a). So we conclude that 
if we should label one of the three levels of representation in the PTQ model 
as a level of logical form, the most reasonable choice is that of the analysis 
trees. They determine meaning uniquely, and they are a necessary ingredient 
of the grammar, in accordance with the principle of compositionality. 

Let us now finally tum to our second question, which concerns the status of 
compositionality. Is compositionality to be regarded as a kind of empirical 
hypothesis, or is it rather a methodological principle? The considerations 
above suggest an answer. We have noted that the principle of compositionality 
requires a disambiguated level of representation in the syntax. When dealing 
with artificial languages, we simply set up the syntax in such a way that we 
comply with this requirement. For example, the expressions of logical lan­
guages have their derivational history encoded in their structure through the 
use of brackets or similar devices: each expression corresponds to a unique 
derivation tree and hence can be interpreted completely compositionally. For 
a natural language things are different. On the one hand, we have a notion of 
syntactic (constituent) structure which we may assume is motivated indepen­
dently from semantic considerations. On the other hand, we are faced with the 
task of explicating the notion 'part of' that compositionality speaks of. Sup­
pose we come across ambiguous expressions which are not 'structurally am­
biguous', i.e., which cannot be broken up into constituents in two different 
ways. Then we may proceed in two ways. We may admit a level of syntactic 
representation other than that of constituent structure and so comply with com­
positionality. Or we may stipulate that the constituents are the relevant 'parts' 
and that hence natural language meaning cannot be described compositionally. 

The important thing to note is that the first way is always open to us unless 
we decide in advance what can and cannot be part of our syntax. If we start 
out with the assumption that constituent structure and only constituent struc­
ture is what our syntax should represent, then we may indeed say that the 
hypothesis that the semantics of a natural language such as English is com­
positional is 'falsified' by the facts. But note that this initial assumption is not 
an empirical fact but rather a methodological decision. So it seems reasonable 
to conclude that whatever approach we take, compositionality is a method-
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ological issue: we choose to describe the semantics of our language in a com­
positional fashion, or we decide not to, but in both cases what is at stake is a 
matter of methodology rather than of facts. 

6.6 Concluding Remarks 

The foregoing has been devoted to an in-depth introduction to the peculiarities 
of one particular model oflogical grammar, Montague's PTQ. The reasons for 
choosing this model rather than another one were given in §6.1. Having mas­
tered PTQ, the reader will find it a relatively easy task to get acquainted with 
other models and approaches which share its main background assumptions. 
See, for example, Bartsch and Vennemann 1972; Bartsch 1 976b; Cresswell 
1973, 1985; and Lewis 1972. 

It should also be possible for such readers to find their way through the 
enormous amount of theoretically and empirically oriented literature that Mon­
tague's original papers have generated. It is quite impossible to give here a 
survey of the work done in this area, and we must content ourselves with point­
ing out a few particularly important individual contributions and collections. 

Let us first of all mention some other introductory and exegetical literature. 
Dowty, Wall, and Peters 1981 provides an extensive introduction to PTQ 
in English; Link 1979 and Lobner 1976 provide introductions in German. 
Partee 1975 is a lengthy article which introduces PTQ to generative linguists. 
Thomason's introduction to Montague 1974 focuses more on the philosophical 
and logical aspects of Montague's work. Halvorsen and Ladusaw 1979 spells 
out and explains Montague's general semiotic theory, formulated in his "Uni­
versal grammar" (1970a). 

A very thoroughgoing, mathematically oriented study of the content and 
role of the principle of compositionality, to which this introduction owes 
much, can be found in Janssen 1986. This also contains several contributions 
to empirical subjects (relative clauses, tense, and aspect), and an application 
of several of Montague's techniques to problems in the semantics of program­
ming languages. A more empirically oriented study of compositionality is 
Partee 1984a. Compositionality was described above as the watershed between 
generative grammar and logical grammar. But these enterprises may also con­
tribute to each other. Several authors have been concerned with this issue; see 
Partee 1973, 1979a; Cooper and Parsons 1976; Bach 1 979b; McCloskey 
1979. A Montague-style model-theoretic semantics is also employed in other 
models of grammar, notably in generalized phrase structure grammar: see 
Klein and Sag 1984; Gazdar, Klein, Pullum, and Sag 1985. One of the main 
drawbacks of Montague grammar from the point of view of generative gram­
mar is the introduction of the level of analysis trees in the syntax. Cooper has 
developed an alternative to the quantifying mechanism of PTQ which depends 
heavily on the availability of analysis trees as a theoretical tool, while remain­
ing compositional. See Cooper 1983 for a fully worked out analysis of his 

Montague Grammar 221 

'storage' mechanism. An application of these ideas can be found in Partee and 
Bach 1981. A different approach to the problem of representing scope am­
biguities, which requires a certain relaxation of the compositionality re­
quirement, is Hendriks 1988. The issue of the possibility of a 'monostratal 
grammar', i.e., a grammar with only one level of representation, is at the cen­
ter of various developments, e.g., that of generalized phrase structure gram­
mar (see above). See also Hausser 1984. 

Anaphora are intensively studied in both generative and logical grammar. 
The analysis that PTQ offers, though adequate for a large class of cases, is in 
need of extension and refinement. Representative early treatments are Bartsch 
1979; Cooper 1979; Partee 1979b; and Hausser 1979. Two special issues of 
Linguistics and Philosophy, 6(1): (1983) and 7(3): (1984), contain several in­
teresting contributions; the one by Landman and Moerdijk deserves special 
mention in this context. Problems concerning anaphora and indefinite terms 
generated an entirely new theory in the early eighties: discourse representation 
theory, which will be discussed in some detail in §7 .4. References to the 
literature in this area will be given there. 

Let us very briefly mention some contributions on other empirical issues. 
Dowty's work on the analysis of aspectual verbs and tense can be found in 
Dowty 1 979. See also Bennett 1977; Verkuyl 1989. Of related interest is 
Kamp 1980. Control verbs are treated in Bach 1979a and in Klein and Sag 
1984. Adjectives and adverbials are analyzed in Bartsch 1976a; Cresswell 
1976, 1979; Kamp 1975; Klein 1980. See also Stalnaker and Thomason 1973. 
Plurality is another issue that has been the subject of many studies. See espe­
cially Scha 1981; Verkuy I 1981; Link 1 983; Landman 1988. Another topic is 
negation: see Jacobs 1982; Verkuyl 1987. An analysis of generics is presented 
in Carlson 1977, 1982. Questions are studied in Hamblin 1973; Karttunen 
1977; Hausser and Zaefferer 1978; Belnap 1982; Groenendijk and Stokhof 
1982, 1984, 1988; Hausser 1983; Engdahl 1985. The semantics of nomi­
nalized constructions has led to interesting proposals concerning the kind of 
semantic theory that is best suited to natural language; see Turner 1983; 
Chierchia 1982, 1984; Chierchia and Turner 1988. 

The above list is far from complete. The reader may get a glimpse of the 
many other subjects treated in the Montague tradition by browsing through 
collections such as Davidson and Harman 1972; Keenan 1975; Partee 1976; 
Guenthner and Rohrer 1 978; Guenthner and Schmidt 1979; Davis and Mithun 
1979; Rohrer 1980; Groenendijk, Janssen, and Stokhof 1981, 1984; Bauerle, 
Egli, and von Stechow 1 979; Bauerle, Schwarze, and von Stech ow 1983; Land­
man and Veltman 1984; Groenendijk, de Jongh, and Stokhof 1987a, 1987b; 
Klein and van Benthem 1 988; Groenendijk, Stokhof, and Veltman 1988. 

Besides discourse representation theory, two other important developments 
in model-theoretic semantics for natural language will be introduced in chap­
ter 7. These are the theory of generalized quantifiers and flexible categorial 
grammar. References to relevant literature will be given there. 



7 Recent Developments 

7.1 Introduction 

This chapter will introduce three subjects which are currently at the center of 
interest in the field of logical semantics. All three build upon the framework of 
Montague grammar as described in chapter 6, yet they deviate from the course 
set out there in some fundamental respects. The three subjects are the theory 
of generalized quantifiers, flexible categorial grammar, and discourse repre­
sentation theory. 

The theory of generalized quantifiers may be viewed as a further develop­
ment of Montague's analysis of quantifying expressions in PTQ, using the 
tools of abstract model theory. The theory has various objectives. Its aims are 
partly descriptive, and its nature is partly theoretical. The descriptive work 
involves a variety of topics, such as the internal semantic structure of terms, 
the distribution of negative polarity items, there insertion, and conjunction 
reduction. The more theoretical research focuses on restrictions on possible 
meanings of natural language terms, the expressive power of natural lan­
guages with regard to possible meanings, semantic universals, and so on. Key 
references are Barwise and Cooper 1981; van Benthem 1983a, 1984a, 1987; 
Keenan and Moss 1984; Keenan and Stavi 1986; Keenan 1987. 

The framework of categorial grammar has evolved in recent years into a 
flexible tool which is better suited to capture various generalizations concern­
ing natural language syntax and semantics. The main difference with the sys­
tem of Montague's PTQ lies in making the relationship between expressions 
and categories more flexible: it is no longer assumed that an (unambiguous) 
expression belongs to only one category; various rules are postulated that 
allow us to change the category initially assigned to an expression by the lex­
icon into a well-defined set of other categories. In this way, various phenom­
ena which categorial grammar in its original form could not deal with, such 
as discontinuous constituents, can be described adequately. Moreover, the 
category-changing component allows us to simplify some of the complexity 
of the category and type assignment of Montague's PTQ. Furthermore, the 
strict functional tie between syntactic categories and semantic types has been 
loosened. Important work in this field can be found in Partee and Rooth 1983; 
Zwarts 1986; van Benthem 1986; Moortgat 1988. 
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Discourse representation theory is in a sense the most antagonistic to the 
framework of Montague grammar. One of the motives for its development 
was to find alternatives for several central aspects of Montague grammar, and 
one of its objectives is to transcend the restriction of the latter to sentences, by 
moving on to extended discourses, or texts. Discourse representation theory 
was developed by Hans Kamp (198la) and Irene Heim (1982, 1983), but 
similar ideas have been proposed in quite different frameworks (see, for in­
stance, Karttunen 1976; Seuren 1985). Discourse representation theory has 
both descriptive and more theoretical aspects. On the descriptive side we find 
topics such as the distinction between referential and nonreferential terms 
particularly in connection with anaphora (for instance the notorious 'donkey; 
sentences). Furthermore, the theory is tested with respect to the treatment of 
time and aspect (e.g., Partee 1984a; Kamp and Rohrer 1983) and of proposi­
tional attitudes (Asher 1986; Zeevat 1987). A more theoretical ambition is the 
possible synthesis of two views on meaning, the truth-conditional, model­
theoretical conception and the procedural, representational viewpoint. An­
other important objective has already been mentioned: the extension of the 
domain of semantic theories from sentences to texts ('discourses'). 

7.2 The Theory of Generalized Quantifiers 

7.2.1 Principal Objectives 

An important aspect of a semantic theory like Montague grammar is the asso­
ciation of a certain type of semantic objects (truth values, properties, and so 
on) with a certain category of syntactic objects (sentences, common nouns, 
and so on). In general, no further constraints are imposed on the association 
than those which are required in order to account for our intuitions about se­
mantic relations, such as entailment. Where necessary, restrictions are formu­
lated by means of meaning postulates. Most of the meaning postulates apply 
either to individual expressions or to restricted classes of expressions. Their 
function is to isolate certain elements within the totality of semantic objects of 
a certain type as the possible meanings for a (class of) expression(s). But ex­
cept for this kind of restriction, Montague grammar is concerned with the en­
tire class of semantic objects of a type. 

The theory of generalized quantifiers deals with the semantic objects which 
are the interpretations of terms: sets of properties. Within this theory, a main 
~oint of interest is the structure of these semantic objects: what formal proper­
ties do they have, what natural subclasses can be distinguished, and which of 
these can be considered to actually represent meanings of natural language 
terms? The investigation of such topics goes beyond the mere formulation of a 
relation between a syntactic category and a semantic type. We will give some 
examples. 

One of the first lines of research tries to achieve a classification of gener­
alized quantifiers in terms of their formal properties, attempting to give an 
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explanation of several linguistic phenomena. A simple instance of this is there 
insertion. Some terms may occur in context (1); others may not, as the diffr~r­
ence between (2a) and (2b) will show (note that the sentences in (2b) are not 
interpreted as exclamations, in which case they would be correct): 

(1) There is/are ... in the garden. 

(2) a. There is someone in the garden. 
There is no one in the garden. 
There are two unicorns in the garden. 

b. *There is/are everyone in the garden. 
*There is John in the garden. 
*There are the two unicorns in the garden. 

The question which now arises is the following: are there properties of term 
meanings that distinguish the terms which can occur in the context of ( 1) from 
those which cannot? And do these properties explain, together with a seman­
tic analysis of the phrase There is I are . . . , why these terms do or do not fit? 
For answers to these question, see, e.g., Barwise and Cooper 1981; Zwarts 
1981; de Jong and Verkuyll984. . . . 

Another example of research in this direction concerns the d1stnbut10n of 
expressions with 'negative polarity'. Compare (3) and (4): 

(3) John needn't go there. 
*John need go there. 

(4) Nobody saw anything. 
*Somebody saw anything. 

Traditionally, the possibility of the occurrence of expressions with negative 
polarity like need and any has been connected with th~ oc~urrence of a nega­
tive element in the sentence (whence the name): negatiOn m (3), nobody ver­
sus somebody in (4). The traditional explanation, however, is problematic for 
the interpretation of sentences like (5) and (6): 

(5) John needn't get more than a B. 

(6) *John needn't get less than a B. 

The postulate of a separate abstract negative element in syntactic deep struc­
ture which will be merged into the element it operates on at a later stage of 
the derivation, is not a very attractive solution. An explanation in terms of the 
semantic properties of this type of expression (nobody versus somebody, more 
than n versus less than n) seems preferable. The subject is discussed at length 
in Zwarts 1981, 1986. 

A last example deals with the phenomenon of conjunction reduction (the 
name is adopted from transformational grammar). Compare (7) and (8): 

(7) John plays and John sings. 
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(8) John plays and sings. 

The two sentences are equivalent. Transformational tradition once had it that 
(8) is derivable from (7) by the transformation of 'conjunction reduction'. 
But, compare (9) and (1 0): 

(9) Nobody plays and nobody sings. 

(10) Nobody plays and sings. 

The two sentences are not equivalent: (9) implies (10) but not the other way 
around, and the proposed transformation should not be applicable in this case 
(assuming that transformations should be meaning preserving). This problem 
is difficult to cope with in a traditional transformational perspective. On the 
other hand, if we give up the assumption that identity of meaning should be 
accounted for in terms of the identity of syntactic (deep) structure, the situa­
tion changes. If we have an explicit semantics, like the one in Montague 
grammar, which enables us to account for semantic relations like synonymy 
and implication in terms of relations between semantic (model-theoretical) 
objects, and not in terms of relations between syntactic structures, the ques­
tion has to be reformulated as: what properties of the type of semantic object 
associated with terms guarantee such relations of synonymy? 

It should be clear from this short exposition that even the most empirically 
oriented results always have more theoretical or methodological implications. 
This will be discussed later on. 

A second branch of research within the theory of generalized quantifiers 
consists in the search for universals, i.e., the formulation of significant uni­
versal regularities governing the semantic objects which are the meaning of 
terms. 

Characteristically, Chomskyan linguistics looks for the grammatical prin­
ciples that isolate the subclass of all possible human languages from the class 
of all possible languages. Such grammatical principles would form a universal 
grammar. (It seems obvious to associate such a grammar with universal prin­
ciples of human thinking, and appealing to the rationalist tradition, this is 
what Chomsky did.) However, Montague proceeded from a different starting 
point, with a different objective: he wanted one uniform and mathematically 
exact framework which would contain both human, natural languages and for­
mal languages. This was Montague's conception of a 'universal grammar' 
(see Montague 1974, chapter 4). 

The theory of generalized quantifiers seeks to explore the interest of the 
Chomskyan tradition within the framework of model-theoretic semantics: the 
semantic domain of terms, the set of all sets of properties of individuals, is 
extremely 'big'. A priori, the assumption that all these potential meanings are 
suitable, i.e., actually express meanings of natural language terms, does not 
seem plausible; hence universally valid restrictions are to be formulated. The 
ensuing research on universal properties of meanings for natural language 
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terms has been done mostly by Barwise and Cooper ( 1981 ). Examples of this 
kind of semantic universals will be discussed in §7.2.4. 

A third topic in the theory of generalized quantifiers is the search for con­
straints, formal properties which define certain independently interesting 
classes of determiners. This kind of research is closely linked with the preced­
ing. For instance, van Benthem (1983a) raises the problem of what properties 
characterize the class of logical determiners (all, some, no, not all, i.e., the 
traditional Aristotelian square). Surely this class is interesting not only from a 
logical perspective but also from the point of view of natural language seman­
tics. The question can also be put the other way around: given a certain (set 
of) global constraint(s), what is the class of natural language expression-; 
which fulfill it/them? Some results in this field will be discussed in §§7 .2.5 
and 7.2.6. 

Another research topic, which is also connected with the ones mentioned 
before, is the expressive power of natural languages. This research looks for 
constraints which could reduce the number of all potential semantic objects to 
an expressible number. The strategy most commonly followed assumes in­
tuitively plausible constraints and then tries to prove that all meanings in such 
a constrained class can be actually expressed in natural language. The more 
independent the motivation of the constraints, the more the results of the strat­
egy support the principle of expressibility of natural languages (and, if one 
wishes, of human thought). The research in this area will not be discussed in 
the following (but see, for instance, Keenan and Moss 1984; Keenan 1971). 

7.2.2 NPs as Generalized Quantifiers in Montague Grammar 

ln this section we will briefly repeat the most important characteristics of 
Montague's treatment of terms and its application in the theory of generalized 
quantifiers. 

To ensure that our exposition agrees with the literature on this subject, we 
adopt the common linguistic terminology from now on. NP denotes the class 
of expressions such as proper names, descriptions, and quantified terms. NP 
corresponds to Montague's T for Terms. VP denotes all verb phrases, both 
IVs and TVs, and N denotes all nouns, in Montague grammar called CN. 
DET is used to refer to the category of determiners (i.e., the articles and ex­
pressions such as all, some). Furthermore, we will use E, instead of D, to 
refer to the domain, reserving D for the interpretation of determiners. 

Montague's analysis of NPs as it was described in chapter 6 depends on two 
principles: uniformity and compositionality. 

The effect of uniformity is twofold. First, expressions exhibiting similar 
syntactic behavior, i.e., obeying the same distributional laws whenever this is 
syntactically determined, are regarded as belonging to the same syntactic cate­
gory. For this reason, both proper names and descriptions on the one hand and 
quantified NPs on the other are classified as NPs, though their semantic be-
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havior is dilTerent. Second, a syntactic category corresponds to one semantic 
type, that is, all expressions of a category have the same kind of meaning. 
(Recall that categorial grammar was originally conceived as a system of se­
mantic categories.) In the case of NPs, this meant that the useful analysis of 
quantified NPs as sets of properties was extended to proper names. Composi­
tionality implies that an NP has an independent meaning. NPs are independent 
syntactic units, and their meanings are the building blocks for the meanings of 
larger units. Compositionality 'naturally' leads to a semantic analysis of NPs 
as generalized quantifiers, hence as sets of properties (see §§4.4.3 and 6.3.4). 

We may put it very briefly as follows. Consider sentence (lla), its syntactic 
structure (lib), and its translation (llc) in predicate logic: 

(11) a. Every man walks. 
b. s[NP[every man]yp[walks]] 
C. 'lfx(MAN(X) ->WALK( X)) 

The meaning assigned to the expression every man in (llc) is not an indepen­
dent one; compare (12): 

(12) a. Every man sleeps. 
b. 'lfx(MAN(X)-> SLEEP(X)) 

In the comparison of the meanings of (lla) and (12a), intuitively there is 
something which is different in the two sentences (viz., walk, sleep) and 
something which is the same (viz., every man does it). The procedure is now 
to make a variable of the thing that is different and abstract over it, thus retain­
ing the constant factor of the meaning. In the intensional semantics of PTQ, 
we get the following representation: 

(13) A.X'v'x(MAN(x)-> v X(x)), where X is of type (s, (e, t)) 

Notwithstanding the analysis of PTQ discussed in chapter 6, which is heavily 
intensional, the theory of generalized quantifiers is extensional. First, it uses 
only extensional models M = (E, []),where Eisa set of individuals and[] is 
an interpretation function assigning extensional interpretations to expressions 
(i.e., assigning to an expression that which is the extension of that expression 
in the intensional logic of PTQ). Second, the extensions are extensional: indi­
viduals instead of individual concepts, sets of individuals instead of proper­
ties, and so on. 

In other words, (14), and not (13), is the representation of the meaning as­
signed to the NP every man by the theory of generalized quantifiers: 

(14) A.X'v'x(MAN(x)-> X(x)), where X is of type (e, t). 

However, it is common to write these meanings directly in the metalanguage, 
using some set-theoretical notation without an intermediary logical language. 
That is, we get representations such as (15): 

(15) [every man]= {X~ E![man] ~X} 
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The restriction to extensional models looks more severe than it actually is. In 
fact there are not many really intensional NPs or determiners. 

7.2.3 Determiners: Two Perspectives 

Within the theory of generalized quantifiers we can distinguish two different 
perspectives with respect to determiners: a relational perspective and afunc­
tional perspective. The latter is closely related to the traditional linguistic 
analysis of a sentence as being composed of a subject and a predicate, or in 
other words, of an NP and a VP. Consider the following simple sentence (16a) 
and its constituent structure (16b): 

(16) a. All men sleep. 
b. sfNP[oET[alllN[men]]vp[sleep]] 

The determiner all combines with the noun men to form the NP all men. In 
terms of categorial syntax, a determiner is of category NP/N. Semantically 
this implies that it is interpreted as a function: a function which assigns an NP 
interpretation, a set of sets of individuals, to anN interpretation, a set of indi­
viduals. This functional perspective is reflected in the analysis of NPs in the 
framework of Montague grammar (compare §6.3.2 and the representation of 
every man, (13) in §7.2.2). 

A different way of looking at determiners is to regard them as relations. In 
this perspective, all in (16a) is an expression which relates anN to a VP to 
form an S. Both men and sleep are interpreted as sets of individuals, and all is 
regarded as a relation between sets, namely, that relation which holds between 
two sets X andY iff X ~Y. Read in this way, sentence (16a) asserts that the 
set of men is a subset of the set of sleeping individuals. 

At first sight, the two perspectives seem to differ greatly. But if we take 
another look at the representation of NP meanings in a type-theoretical frame­
work, and in particular at the type of this representation, we see that both per­
spectives amount to the same thing. The type of a determiner in the functional 
perspective is ((e, t),((e, t), t)). The corresponding semantic domain is formed 
by the set of functions from (the characteristic functions of) sets of individuals 
to (the characteristic functions of) sets of sets of individuals. In general it 
holds that a function from objects of type a to a set of objects of type b can be 
identified with a relation between objects of type a and objects of type b (as we 
observed in §4.2.3). Let fE ({0, J}E,)Eb. The corresponding relation Rr ~ 
E. X Eb is defined as follows: Rr ={(d., db): d. E E. & db E Eb & (f(db))(d.) 
= 1}. Conversely, if R is a relation, i.e., a subset of E. x Eb, the correspond­
ing function fR E ({0, l}§JEb !,is defined as follows: fo~1!J1 db E Eb, fR(db) is 
that function E {0, l}E• suchthat for all db E Eb, (fR(d.))(db) = 1 iff (d., db) 
E R. Thus, these 'determiner functions' correspond un!qu~ly to 'determiner 
relations' between sets of individuals. 

In the theory of generalized quantifiers, the functional perspective is used in 

Recent Developments 229 

the kind of research which focuses on properties of NPs. And the functional 
perspective provides the framework for actual description, as in Montague 
grammar. The relational perspective is often more comprehensible for an 
analysis of determiners as such. In the following, both will be discussed, be­
ginning with the functional and using the relational perspective later on. 

A final remark concerns a possible misunderstanding. In §4.4.3, we ob­
served that determiners like most and more than half are essentially relational, 
as opposed to, for instance, all and some. In view of what was said earlier, 
this could lead to a misunderstanding, since we just stated that the functional 
and relational perspectives are interchangeable, that they come down to the 
same thing. 

The point is that some determiners, such as the 'logical' determiners all 
and some, provide reasons for a third alternative analysis: we can regard them 
as second-order predicates, i.e., as expressions of type ((e, t), t). For instance, 
all asserts of a (complex) property that every object in the domain has that 
property. Extensionally it is defined as follows: 

(17) [all] = {E} 

The same goes for some, which asserts of a property that it is not empty: 

(18) [some]= {XIX~ E & Xi= 0} 

We may want to apply this interpretation to the analysis of sentences like (16a) 
and (19): 

(19) Some women stroll. 

Then it is essential that we are provided with a way to represent such 
complex predicates as being a strolling woman (for instance, by means of 
.\-abstraction). It is clear, however, that a determiner like most does not per­
mit an analysis as a second-order predicate; we cannot define its interpretation 
without making a separate reference to the interpretation of the noun. Sen­
tence (19) can be paraphrased as 

(20) The set of strolling women is not empty I contains something 
(i.e., is an element of (18)). 

But a similar paraphrase of (21) doesn't make sense, as (22) shows: 

(21) Most men are asleep. 

(22) The set of sleeping men contains most things. 

And other possible reductions fare equally badly. In other words, the inter­
pretation of most essentially refers both to the set which is the interpretation of 
the VP and to the set which is the interpretation of the noun: it expresses a 
relation between the two. In this sense, most is an essentially relational deter­
miner. However, note that in this latter sense of 'relational', both the rela-
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tional perspective and the functional perspective which were described above 
give a 'relational' interpretation of determiners. 

7.2.4 Some Fundamental Properties of NPs and Quantifiers 

Terminology; Examples; Undefined Interpretation 

It is important to make a systematic distinction between NPs and their in­
terpretations. An NP is a linguistic, syntactic object, a natural language ex­
pression. A quantifier is a semantic object, a set of sets. Models M are 
ordered pairs (E, []),where Eisa set of individuals, the domain of the model, 
and [] is an interpretation function assigning interpretations to natural lan­
guage expressions. 

Unlike the method used in Montague grammar, the theory of generalized 
quantifiers does not use an intermediary translation level in an interpreted 
logical language (like IL in PTQ; but Montague also used direct interpreta­
tion; cf. "English as a Formal Language" in Montague 1974). Interpretations 
are written directly in the metalanguage, which is English enriched with some 
set-theoretic and logical notation. 

By way of example, we give the interpretations of some common NPs in 
table 7 .I, using card(X) to refer to the cardinality of X. Note that the inter­
pretation of an NP depends on the model: in the interpretations the domain of 
M, E, occurs as a parameter. In other words, what actual quantifier is the in­
terpretation of an NP depends on the model. Of course we are chiefly inter­
ested in those properties of NP interpretations which they have regardless 
of the model. (In the following we will omit 'X C E' whenever this is not 
misleading.) 

Before going on to discuss some examples of such properties, we must con­
sider briefly what treatment we should give to 'presuppositional' NPs, such as 
definite descriptions. The interpretation of the king of France is the set of sets 
X such that the king of France belongs to X, if there is a unique king of 
France. But what will the interpretation be if there is no such individual? In 
principle, there are several options to choose from, and our choice will de-

Table 7.1 NP Interpretations 

NP 

All N 
AnN 
Not all N 
NoN 
OnlyN 
Exactly 2 N 
At most 2 N 
At least 2 N 

Interpretation 

{XIX k E & [N] n X = [N]} 
{XIX k E&[N] n X* 0} 
{XIX k E & [N] n X * [N]} 
{XIX k E & [N] n X= 0} 
{XIX k E&[N] n X= X} 
{XIX k E & card([N] n X) = 2} 
{XIX k E & card([N] n X),;;: 2} 
{XIX k E & card([N] n X)~ 2} 
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pend, among other things, on what we think is the status of sentences in which 
presuppositional expressions occur, in case the presuppositions are not satis­
fied. If we think that (23) is false under the present circumstances, we can 
choose (24) as interpretation of the king of France: 

(23) The king of France is bald. 

(24) [the king of France]= {XIcard([king of France]) = 1 & [king 
of France] C X} 

If, on the other hand, we consider (23) to be without any truth value, it is 
better to give the NP in question an interpretation only in a subclass of models 
and to consider the condition card([N]) = 1 to be a necessary condition for the 
interpretation to be defined: 

(25) [the king of France] = {X 1 [king of France] C X}, if card([king 
of France]) = 1; otherwise undefined. 

In general, people working in the theory of generalized quantifiers take the 
second approach, usually without much discussion. As a consequence, the in­
terpretation function [] is partial: some sentences have no truth value, and this 
raises the (open) question whether and how a truth value is assigned to com­
plex sentences in which a sentence without a truth value occurs. (See vol­
ume 1 §5.5 for a general discussion and some bibliographical references on 
the subject.) 

In spite of the unresolved issues with respect to the 'undefined interpreta­
tion' approach, it is the one we will take, since, as we have said, this is gener­
ally done in the theory of generalized quantifiers. Other examples of NPs 
getting only a conditional interpretation are (26) and (27): 

(26) [the two N] = {X 1 [N] C X } , if card([N]) = 2; otherwise 
undefined. 

(27) [some N] = {XIcard([N] n X) ;:,: 2}, if card([N]) ;:,: 2; other­
wise undefined. 

Note that some is interpreted as a plural and not as a singular determiner, the 
latter being the usual choice in logical systems. 

Exercise 1* 

Give the interpretations of the following NPs: 

(i) John 
(ii) a few N 
(iii) not only N 
(iv) neither N 
(v) a finite number ofN 
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Monotonicity 

One fundamental property of quantifiers and NPs recognized by the theory of 
generalized quantifiers is upward monotonicity. Consider examples 28-33. 
(Here we use 'F=' to denote entailment between natural language sentences.) 

(28) All men walked rapidly I= All men walked. 

(29) All women walked I= All women moved. 

(30) A man smoked a cigar F= A man smoked. 

(31) A child was dreaming I= A child was asleep. 

(32) Both boys were out on the street playing F= Both boys were 
playing. 

(33) More than half of the girls live in Hoorn F= More than half of 
the girls live in a town. 

Clearly, these entailments hold. And that they do is due to the meaning of the 
NPs in question. Apparently all N, an N, both N, and more than half of the N 
have something in common in their interpretation which accounts for these 
inferences. 

An NP is interpreted as a quantifier, i.e., as a set of sets. The sets which 
form a quantifier can be taken as a (partial) interpretation of predicates: a sen­
tence of the form [NP VP] is true iff [VP] E [NP]. Now if we take another 
look at examples (28)-(33), we see that the predicate in the premise is neces­
sarily subordinate to the predicate in the conclusion: [walked rapidly] C 
[walked], [was dreaming] ~ [was asleep], [live in Hoorn] ~ [live in a town], 
and so on, in every suitable M. 

Apparently the interpretation of the NPs in (28)-(33) is such that whenever 
there is a set that belongs to it, all 'larger' sets belong to it as well. They ex­
press what are called upward monotonic (also: 'monotonically increasing') 
quantifiers. Let Q be a quantifier in l\11, i.e., a set of sets of individuals from 
EM: then this property can be defined as follows: 

Definition 1 

Q is upward monotonic in M iff for all X, Y ~ E: if X E Q and X ~ Y then 
YEQ. 

(Of course the interpretation is determined by M as far as the quantification 
over subsets ofE is concerned.) An NP is called upward monotonic if in every 
model in which its interpretation is defined it expresses an upward monotonic 
quantifier: 

Definition 2 

NP is upward monotonic iff for all M: if [NP] is defined in M, then [NP]M is 
upward monotonic in M. 
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Another way of phrasing 'a is upward monotonic' is 'a is closed under exten­
sion'. Definition 1 provides a test for upward monotonicity: 

Upward monotonicity test 1 
If [VP1] ~ [VP2 ], then NP VP1 F= NP VP2• 

With this test, it becomes clear why the NP not one boy is not upward 
monotonic: 

(34) Not one boy walked rapidly t#= Not one boy walked. 

Exercise 2* 

(a) Which of the following NPs are upward monotonic? 
(i) at least n N 
(ii) then N 
(iii) few N 
(iv) at most n N 
(v) Mary 
(vi) halfoftheNs ·P~-; 

(b) Let P be a predicate such that for all M: [P] = EM. Show that ifcNP is 
upward monotonic and [NP] =I= 0, then for all M: [P] E [NP]. Show also 
that this property is not a sufficient condition for upward monotonicity. 

An equivalent definition of upward monotonicity is the following: 

Definition 3 

Q is upward monotonic in M iff for all X, Y ~ E: if X n Y E Q then X E Q 
and YE Q. 

This definition also gives rise to a test: 

Upward monotonicity test 2 
NP VP1 and VP2 F= NP VP1 and NP VP2 • 

The interpretation of a conjunction of two VPs is the intersection of the inter­
pretations of the two conjoined VPs. The following two examples illustrate 
this test: 

(35) All girls were smoking and drinking F= All girls were smoking 
and all girls were drinking. 

(36) Not one boy was singing and dancing t#= Not one boy was sing-
ing and not one boy was dancing. 

The set of upward monotonic NPs is closed under conjunction and disjunc­
tion. In other words, the conjunction or disjunction of two upward monotonic 
NPs is an upward monotonic NP. Compare: 

(37) All boys and a girl walked rapidly F= All boys and a girl walked. 
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(38) Two men or both women were dreaming I= Two men or both 
women were asleep. 

Semantically the conjunction of two NPs is the intersection of their 
interpretations: 

[NP1 andNPz] = [NP1] n [NP2 ] 

It is easily seen that upward monotonicity is preserved under intersection. Let 
Ql and Q2 both be upward monotonic. Assume for some X andY: X E Q1 
n Qz and X ~ Y. Then X E Q 1 and X E Q2 , hence by upward monotonicity 

of Q 1 and Q2, Y E Q 1 and Y E Q2, from which it follows that Y E Q 1 n Q2. 

Exercise 3 

Define disjunction of NPs and show that upward monotonicity is preserved 
under disjunction. 

Exercise 4* 

Show that definition 1 is equivalent to definition 3. 

Downward monotonicity is a property of NPs and quantifiers, which in a way 
is the mirror image of upward monotonicity. An exact formulation of this will 
be given below. Consider examples (39)-(42): 

(39) No man walked I= No man walked rapidly. 

(40) Not every woman was asleep I= Not every woman was 
dreaming. 

( 41) Less than half of the girls smoked I= Less than half of the girls 
smoked cigars. 

(42) Few boys were playing I= Few boys were playing out on the 
street. 

These inferences are all valid. If we compare them with (28)-(33), we see 
that the entailment goes the other way around. Upward monotonicity accounts 
for inferences in which the predicate (the VP) in the conclusion contains the 
predicate in the premise. In the above examples, the predicate in the premise 
contains the predicate in the conclusion: [walked] ;;2 [walked rapidly], [was 
asleep] ::2 [was dreaming], and so on, for all M. Apparently it is true of the 
NPs in (39)-(42) that whenever a set belongs to the interpretation of the NP, 
so do all of its subsets. These NPs are 'closed under inclusion', which is an­
other way of phrasing their downward monotonicity. The definition is as fol­
lows. First for quantifiers: 

Definition 4 

Q is downward monotonic in M iff for all X, Y ~ E: if X E Q and X ;;2 Y then 
YEQ. 
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As before, we call an NP downward monotonic if its interpretation, whenever 
defined, is a downward monotonic quantifier: 

Definition 5 

NP is downward monotonic iff for all M: if [NP] is defined in M, then [NP]M 
is downward monotonic in M. 

Downward monotonic quantifiers and NPs are also called 'monotonically de­
creasing'. We have a test for downward monotonicity similar to the one for 
upward monotonicity: 

Downward monotonicity test 1 
If [VP1] ;;2 [VP2], then NP VP1 I= NP VP2 

This test shows that, for instance, all men is not downward monotonic: 

(43) All men walked F;i: All men walked rapidly. 

Exercise 5 

(a) Which of the following NPs are downward monotonic? 
(i) many N 
(ii) half of the Ns 
(iii) not John 
(iv) at most n Ns 
(v) exactly n Ns 
(vi) neither N 

(b) Do the properties of upward and downward monotonicity exclude one 
another? 

An equivalent definition for downward monotonicity in terms of union is the 
following: 

Definition 6 

Q is downward monotonic in M iff for all X, Y ~ E: if X U Y E Q then 
XEQandYEQ 

The corresponding test is: 

Downward monotonicity test 2 
NP VP 1 or VP2 1= NP VP 1 and NP VP2 • 

Semantically, the disjunction of two VPs is interpreted as union, while con­
junction is interpreted as intersection: 

Examples that illustrate the test are: 

(43) Neither girl was drinking or smoking I= Neither girl was drink­
ing and neither girl was smoking. 
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(44) All boys sing or dance l;t= All boys sing and all boys dance. 

The set of all downward monotonic NPs is closed under disjunction and con­
junction, just like its upward monotonic counterpart. The interpretation of a 
disjunction of NPs is of course the union of the interpretations of the constitu­
ent elements: 

That downward monotonicity is preserved under union can be argued as fol­
lows: Let Q1 and Q2 both be downward monotonic. Take arbitrary X andY 
such that XU Y E Q1 U Q2 • Then it holds that XU Y E Q1 or XU Y E Q2, 

and hence X, Y E Q1 or X, Y E Q2 since Q1 and Q2 are downward monotonic. 
Therefore in either case X E Q1 U Q2 and Y E Q1 U Q2• 

Upward and Downward Monotonidty and the Negation of Quantifiers 

We have observed that there is a special relation between upward and down­
ward monotonicity. They mirror each other: upward monotonicity involves 
closure under extension, and on the other hand, downward monotonicity in­
volves closure under inclusion. And not only do their definitions show this 
relation, but the various examples illustrate it as well. See the following table: 

Table 7.2 Monotonic NPs 

Upward monotonic 

AIIN 
ManyN 
At least n N 
More than half of the N 
John 

Downward monotonic 

NotallN 
Few N 
At most n N 
Less than half of the N 
Not John 

These examples clearly show that downward monotonic NPs are negated up­
ward monotonic NPs, sometimes literally, on the surface (John vs. not John), 
sometimes implicitly (many vs. few). 

Usually two types of negation of quantifiers are distinguished, namely, ex­
ternal and internal: 

Definition 7 

The external negation •Q of Q in M is {X k EIX E Q}. 

Definition 8 

The internal negation Q• of Q in M is {X k E 1 (E - X) E Q}. 

According to an alternative but equivalent definition, the external negation 
•Q of Q is obtained by taking the complement of Q with regard to the power 
set of the domain E: 
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Definition 9 

•Q = pow(E)- Q. 

This quantifier contains exactly those subsets of E (those elements of pow(E)) 

that are not in Q. 
The internal negation of Q, Q•, can also be obtained by taking for every 

element of Q its complement with regard to the domain E: 

Definition 10 

Q• = {Y k E 1 there is an X E Q: Y = E - X}. 

This quantifier contains exactly those subsets of E whose coll_l~lements with 
regard toE are in Q; hence definition 10 is equivalent to defimtJ.on 8. 

Some examples. Recall the interpretation of all N, an N, not all N, and .no 
N given in table 7.1 above. The external negation of all N is not all N, which 

can be shown as follows: 

(45) •[all N] = {XIX E [all N]} (using definition 7) 
= {XI[N] n Xi= [N]} =[not all N] 

Its internal negation is noN: 

(46) [all N]• = {XI(E- X) E [all N]} (definition 8) 
= {XI[N] n (E-X)= [N]} = {XI[N] n X= 0} =[noN]. 

The external negation of anN is noN: 

(47) •[an N] ={XIX E [anN]} (definition 7) = {XI[N] n X= 0} 
=[noN]. 

And its internal negation is not all N: 

(48) [an N]• = {XI(E- X) E [anN]} (definition 8) 
= {XI[N] n (E-X)* 0} = {XI[N] n X* [N]} 
= [not all N]. 

Both external and internal negation 'reverse' the monotonicity of a quantifier: 

Fact 1 
If Q is upward monotonic, then •Q and Q• are downward monotonic. 

Fact 2 
If Q is downward monotonic, then •Q and Q• are upward monotonic. 

By way of illustration, we prove fact 1. Assume Q is upward monotonic. Take 
arbitrary X, y such that X E •Q andY k X. Now it follows that X E Q and 
therefore y E Q. For assume that Y E Q. Then, since Y k X and Q is upward 
monotonic, X E Q, in contradiction with the assumption. Hence Y E •Q and 
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thus •Q is downward monotonic. Similarly, assume that Q is upward mono­
tonic, X E Q•, andY~ X. Then it follows that (E-X) E Q. Since y ~X, 
it holds that (E- X)~ (E- Y), and hence (by upward monotonicity of Q) 
that (E - Y) E Q, which implies that Y E Q•. This means that Q• is down­
ward monotonic. The proof of fact 2 proceeds analogously. 

Both types of negation undo themselves: 

Fact 3 

--,--, Q = Q = Q•--, 

Not generally valid, however, is •Q• = Q. What does hold is that •Q• is 
equivalent to the dual of Q, written as Q*, which is defined as follows: 

Definition 11 

The dual Q* of Q in M is {X ~ E 1 (E - X) E Q}. 

Some calculations with definition 11 and the interpretations of an N and all N 
will show that these are each other's duals. 

There are also quantifiers which are equivalent to their own dual, the self­
dual quantifiers. Proper names, for instance, are self-dual: 

[John] = [John]* 

Since Q* = •Q•, and both internal and external negation reverse the mono­
tonicity of a quantifier, it follows that the dual of a quantifier has the same 
type of monotonicity as the quantifier itself: 

Fact 4 

If Q is upward (downward) monotonic, then Q* is upward (downward) 
monotonic. 

That this holds is easy to see: Q** = Q. 
Diagram ( 49) sums up the relationships between all N, an N, not all N and 

noN: 

(49) internal negation 
all N *----------~noN 

dual dual 

anN*----:-----:---:----~ not ~(all \ 
internal negation 

This is the 'Square of Opposition' of traditional logic. 
Upward and downward monotonic NPs form two important classes of natu­

rallanguage NPs, which are related by negation. In general, most upward NPs 
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are unmarked, and most downward NPs are (implicitly or explicitly) negated 
upward NPs. But there is no reason for giving this negation a syntactic status, 
since the relation in question can be formulated in purely semantic terms. 

The classification of NPs into upward and downward monotonic ones is not 
exhaustive; some NPs are neither. For instance, consider NPs of the form ex­
actly n N: 

(50) Exactly six boys walked rapidly ~ Exactly six boys walked. 

(51) ExactlY. six boys were asleep ~ Exactly six boys were dreaming. 

The first example shows that exactly six boys is not upward monotonic and the 
second that it is not downward monotonic either. Another instance of a non­
monotonic NP is a few N: 

(52) A few boys were dreaming I* A few boys were asleep. 

(53) A few boys walked ~ A few boys walked rapidly. 

A final example is provided by NPs of the form only NP. Compare: 

(54) Only John walked rapidly I* Only John walked. 

(55) Only John was asleep I* Only John was dreaming. 

(56) Only the men were dreaming~ Only the men were asleep. 

(57) Only the men walked~ Only the men walked rapidly. 

With regard to (55), it might be useful to keep in mind that only John means 
something like John and nobody else; a counterexample would be a situation 
in which John is the only one asleep and John does not dream. 

Note that only as it occurs in (54)-(57) is not a determiner but an NP modi­
fier. Further, it should be remarked that the determiner status of few and many 
is controversial. Some argue that these are adjectives. A similar analysis is 
proposed for numerals like six in six girls. In §7 .2.5 we will take a closer look 
at this. 

Exercise 6* 

Is the interpretation of exactly one boy a nonmonotonic quantifier in every 
model? 

Monotonicity and Semantic Universals 

As a short detour we will take a brief look at two examples, both taken from 
Barwise and Cooper 1981 , of attempts to apply the notions introduced above. 
Barwise and Cooper are interested in the formulation of semantic universals, 
properties of the meanings of natural language expressions, in our case NPs, 
which may be considered to hold for every natural language but which are not 
mere (logically or mathematically) necessary truths. 
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The first example of such a universal illustrates the importance of monoto­
nicity, and it reads as follows: 

Monotonicity constraint 
In every natural language, noncompound NPs express monotonic 
quantifiers or conjunctions of monotonic quantifiers. 

By 'noncompound' NPs we mean: proper names, NPs of the form 'simple 
determiner+ N', and NPs such as someone, everyone, nothing. It should be 
clear that a constraint like this is not an a priori truth. There is no logical or 
mathematical law forbidding a simple NP to have the same meaning as the 
nonmonotonic (and compound) NP an even number of men. In other words, 
there is no logical reason why a natural language should not have a simple 
determiner with the meaning an even number of. If all languages satisfy the 
monotonicity constraint, and as far as we know they do (but see §7 .2.5), it 
expresses a property of languages which on the one hand is not logically nec­
essary but which on the other hand is universally valid for natural languages. 
And this is a significant contribution to the characterization of the notion of 
'possible human language'. 

The monotonicity constraint does not give any clue as to why this should be 
so. In general, this is true of all universals. A formulation of a universal prop­
erty is one thing; the explanation for it is something else. In the case of the 
monotonicity constraint, Barwise and Cooper actually attempt such an expla­
nation (which they do not undertake for other universals). The idea is that 
monotonic NPs are 'easier', i.e., that it is easier to verify or falsify sentences 
with monotonic NPs than sentences with nonmonotonic NPs (this topic will 
be discussed more generally in §7 .2.5). Anyway, with or without an explana­
tion, the simple fact (if indeed such it is) formulated by the monotonicity con­
straint is amazing. And the theory of generalized quantifiers provides us with 
the necessary tools for its formulation. 

The second example concerns the relationship between monotonicity and 
NP conjunction. We have already observed that semantically, NP conjunction 
amounts to taking the intersection of the interpretations of the conjoined NPs. 
From this general perspective, there is no reason to doubt that every pair 
(i.e., every n-tuple) of NPs can be conjoined. However, there are apparently 
restrictions on NP conjunction in natural language. Compare the following 
examples: 

(58) a man and two women 
all boys and Mary 
Pete's father and many children 

(59) no man and few women 
none of the girls and at most three boys 
less than half of the children and not one adult 

(60) *a man and few women 
*John and no woman 
*two cellos and few violins 
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The NPs in the conjunctions in (58) are both upward monotonic, and those in 
the conjunctions in (59) are both downward monotonic. In (60) an attempt is 
made to conjoin NPs which have a different type of monotonicity, and the 
results are not well-formed. These examples and similar ones involving dis­
junction might lead to the conclusion that coordination by means of and and 
or is possible only when either both NPs are upward or both are downward 
monotonic. This restriction could be related to the fact that the properties of 
upward and downward monotonicity are preserved under intersection and 
union, whereas intersection and union of an upward and a downward mono­
tonic quantifier normally do not result in a monotonic quantifier. 

Exercise 7* 

Show that the interpretation of John and no woman is not a monotonic 
quantifier. 

It remains to be seen to what extent this last remark explains the restriction. 
As the monotonicity constraint indicates, natural language prefers monotonic 
NPs that are simple; but surely there are also nonmonotonic compound NPs. 
The fact that conjunction or disjunction of NPs with contrasting monotonicity 
results in a nonmonotonic quantifier provides no reason for the fact that these 
coordinated NPs are not well-formed. 

Two more observations will suffice to show that the last word has not been 
said on the topic of monotonicity and coordination. 

The first observation concerns the fact that a coordinated NP consisting 
of two NPs with contrasting monotonicity conjoined by but is actually 
well-formed: 

(61) many men but few women 
John but no woman 
many children but less than half of the adults 

It even seems that but yields a well-formed NP only if it coordinates NPs with 
different monotonicity. Compare: 

(62) *some boys but two women 
*all boys but my sister 
*none of the girls but at most three boys 

lf we want to stick to the usual view, which goes back to Frege, that but is 
semantically (i.e., as far as truth conditions are concerned) equivalent to and, 
the examples in (62) cast doubt upon the explanation proposed above for the 
restriction on the coordination of NPs by means of and. 

The second observation is directly concerned with the proposed restriction 
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itself. Not only should its explanation be regarded with suspicion, but the fol­
lowing examples raise doubts with respect to the phenomenon as such: 

(63) at most six girls and at least four boys 
Pete's father and a few women 
none of the boys and exactly one girl 
a few men and an even number of women 

These are all well-formed NPs, but none consists of two NPs with equal 
monotonicity. In the first example, an upward monotonic NP and a downward 
monotonic NP are conjoined; in the second, an upward monotonic NP and 
a nonmonotonic NP; in the third, a downward monotonic NP and a non­
monotonic NP; and in the fourth, finally, two nonmonotonic NPs. In all cases, 
the result is a well-formed, nonmonotonic NP. 

This phenomenon illustrates that the universal proposed by Barwise and 
Cooper, which claims that coordination of NPs is restricted to NPs with equal 
monotonicity, does not hold and has to be replaced by a more refined analysis. 
But it is still remarkable that the theory of generalized quantifiers allows us to 
formulate such falsifiable hypotheses. 

Persistence and antipersistence 

The properties of persistence and antipersistence that will be discussed now 
are, as will become apparent, closely related to the properties of upward and 
downward monotonicity. The main difference lies in the fact that persistence 
and antipersistence are properties, not of entire NPs but of determiners. This 
implies that we must look at things from a relational perspective (see §7 .2.3). 
A determiner DET will be considered as an expression which takes anN and a 
VP to form an S. Semantically, a determiner interpretation D will be treated 
as a relation between sets. (From now on, we will be content to state defini­
tions, facts, etc., for the semantic objects only, trusting that the reader will be 
able to furnish the corresponding definitions for the syntactic expressions.) 

Definition 12 

A determiner D is persistent iff for all X, Y, Z: if D(X, Z) and X~ Y then 
D(Y, Z). 

Persistence is a property which relates to the first argument of a determiner 
relation. If we view determiners as linguistic expressions, it is a property ad­
hering to the N to which the determiner is applied. This becomes clear when 
we convert the above definition to a test: 

Persistence test 
If [N 1] ~ [NJ, then DET N 1 VP I= DET N2 VP 

A determiner is persistent if it is closed under the extension of its first argu­
ment, the N to which it is applied. A few examples: 
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(64) Some men walked; men are human beings I= Some human be­
ings walked. 

(65) At least four girls were smoking; girls are women I= At least 
four women were smoking. 

(66) All boys drink; boys are men It= All men drink. 
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Some, at least n are persistent determiners; all is not a persistent determiner. 
The mirror image of persistence is antipersistence: 

Definition 13 

Dis antipersistent iff for all X, Y, Z: if D(X, Z) andY~ X then D(Y, Z). 

An antipersistent determiner is a determiner whose first argument is closed 
under inclusion. The corresponding test is of course the following: 

Antipersistence test 
If [N2 ] ~ [N 1] then DET N1 VP I= DET N2 VP 

The following examples show that all, no, at most n are antipersistent 
determiners: 

(67) All children walked; toddlers are children I= All toddlers 
walked. 

(68) No woman was smoking; girls are women I= No girl was 
smoking. 

(69) At most three Englishmen agreed; Londoners are Englishmen 
I= At most three Londoners agreed. 

Many determiners, including lexically simple ones, are neither persistent nor 
antipersistent: many, few, the n, both, exactly n, more than half of, less than 
half of In this respect, the pair persistence/anti persistence differs remarkably 
from the pair upward/downward monotonicity. 

Persistent and antipersistent determiners are linked by negation. Both exter­
nal and internal negation of a determiner transform a persistent determiner 
into an antipersistent one, and vice versa; and hence, both external and inter­
nal negation of a nonpersistent determiner (i.e., a determiner which is neither 
persistent nor antipersistent) yield a nonpersistent determiner. 

Exercise 8 

Define internal and external negation of determiners and prove the assertions 
made above. 

We have observed, and the definitions have illustrated that persistence and 
monotonicity are closely related. Persistence is upward monotonicity of the 
first argument of a determiner relation, and antipersistence is downward mono-
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tonicity of the first argument. Analogously, the (upward or downward) monoto­
nicity of an NP is (upward or downward) monotonicity of the second argument 
of the determiner in that NP. The usual terminology is: (upward or downward) 
'left-monotonicity' and (upward or downward) 'right-monotonicity'. Often the 
following notation is used: j mon, for upward left-monotonicity, mon t , for 
downward right-monotonicity and so on. In all, there are four possible com­
binations of these monotonicity properties of determiners. Examples of ex­
pressions which exhibit the four possible combinations are given in (70): 

(70) j mon j 
t mon i 
t mont 
i mont 

some 
all 
no 
not all 

at least n infinitely many 

at most n a finite number of 

The examples in the first and third rows may be regarded as climbing, from 
left to right, from the simple to the more general case. This is reflected in their 
linguistic form: the expressions in the first column are simple (except for not 
aU), and those in the second and third columns are complex. Note also that in 
the first column we actually have the traditional determiners of the Aristo­
telian square of opposition. These observations illustrate once more that 
monotonicity and persistence are fundamental notions in the semantics of 
quantifying expressions. (Later, we will see what combination of properties 
will yield exactly the logical square). 

A final observation about the central role of monotonicity is taken from van 
Benthem 1984b. It concerns the quantitative 'ease' with which a sentence of 
the form DET(A, B) can be falsified or verified. Consider table 7 .3, which 
indicates, for a few examples of determiners, the number of elements that 
have to be checked in order to verify or falsify an assertion of the form 
DET(A, B). For instance, let [girl] contain six elements (i.e., n = 6). Then 
the assertion Some girls are dancing needs only one dancing girl in order to be 
verified, but for it to be falsified we must check all six elements in [girl]. As 
another example, consider the sentence At least three boys are smoking. Sup­
pose there are ten boys (i.e., n = 1 0). The assertion will be verified if we can 
find three smoking boys (k = 3). It will be falsified if we conclude that eight 
boys are not smoking, that is, n- (k- 1) = 10- (3 - 1) = 8. 

The number n + 1 turns out to be a provable minimum: for any determiner, 

Table 7.3 Count Complexity of NPs 

Determiner Verification Falsification Total 

All n n + I 
Some n n + I 
At least k k n- (k- I) n +I 
At most k n-k k+l n + I 
Exactly k n k +I n + (k + I) 
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the sum of the numbers of verifying and falsifying instances is larger than or 
equal ton+ 1. Also, it can be proved that all determiners which have 'mini­
mal count complexity', i.e., for which this number is equal to n + 1, are 
(upward or downward) monotonic. This may serve to emphasize again the 
fundamental role of monotonicity with respect to natural language deter­
miners and quantifiers. 

7.2.5 Global Constraints 

Introduction 

We have mentioned several objectives of the theory of generalized quantifiers, 
including the search for constraints on determiners and quantifiers and the 
search for characterizations of specific classes of such expressions, which 
might be interesting for other, unrelated reasons. In the following we will dis­
cuss some global constraints that have been proposed in the literature and out­
line how they can be used to characterize the class of logical determiners (all, 
some, not all, no). Our exposition of this subject will be based mainly on the 
work of van Benthem (1983a, 1984a). 

The search for global constraints does not remain restricted to just deter­
miners and quantifiers. For it holds quite generally for all but a few simple 
types that the set of all semantic objects of a given type is 'too large' in the 
sense that natural language expresses only (a sometimes very small) part of it. 
This is particularly striking if we count only the lexically realized expressions 
but it still holds if we also take into account complex expressions. Besides, in 
almost every type there are rather 'wild' specimens, ill-behaved semantic ob­
jects which would never be classified as meanings of natural language expres­
sions. This is also a reason for finding out whether there are perhaps global 
constraints on the entire class of objects of a certain type that help to reduce 
them to a smaller, preferably 'well-behaved' subset. 

The hunt for global constraints is therefore not restricted to determiners and 
quantifiers. In fact, the meaning postulates familiar from Montague grammar 
can be interpreted as kinds of global constraints too (at least those which apply 
to a class of expressions). 

Conservativity 

Our perspective continues to be relational. The first global constraint we con­
sider has to do with a property of determiners which is called conservativity: 

Definition 14 

Dis conservative iff for all X, Y: D(X, Y) iff D(X, X n Y). 

Definition 14 states that in order to verify or falsify an assertion of the form 
DET(A, B), it is sufficient to look at the interpretation of A and the inter­
section of the interpretations of A and B. In other words, only what is in 
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([A]- [B]) U ([A] n [B]) is relevant; the contents of [B]- [A] are not rele­
vant, and neither is what falls outside [A] and [B], i.e., E- ([A] U [B]). 

A related notion is the 'live on' property of quantifiers defined by Barwise 
and Cooper: 

Definition 15 

Q lives on X iff for allY: Y E Q iff X n Y E Q. 

A quantifier can live on several sets; every man, for instance, lives on E (the 
domain) and on [man]. Intuitively, the latter is an interesting set: it is the natu­
ral restriction on the determiner every in the NP every man. According to 
Barwise and Cooper, the central part played by restriction on quantification in 
natural language ('all quantification in natural language is restricted quan­
tification') is expressed in the following universal: 

In every natural language, simple determiners together with an N 
yield an NP which lives on [N]. 

According to this universal, it would hold for all simple determiners that 
DET(A) lives on [A], i.e., that [DET] is a conservative determiner. Note that 
this universal is a strong constraint on the kind of relation that a simple deter­
miner may express. There are certainly nonconservative determiners, and 
there is no logical reason why these could not be lexicalized in a language by 
means of a simple expression. 

Apparent exceptions are only and many. As usual, a test can be derived 
from definition 14. (Here, we use '¢:>' to denote mutual entailment between 
natural language sentences. I.e., 'A<=> B' means 'A I= B and B I= A'.) 

Conservativity test 
DET N VP <=> DET N are N that VP 

Compare the following examples: 

(71 ) A II boys walked <=> All boys are boys that walked. 

(72) Some girls are dancing<=> Some girls are girls that are dancing. 

(73) Only men smoke cigars ¢ Only men are men that smoke 
cigars. 

It is quite clear that only is not a conservative determiner: only men does not 
live on [man]. The obvious way to save the universal is to regard only not as a 
determiner but as an NP modifier (i.e., as an expression of type NP/NP). 
Constructions like those in (74) seem to support this view; hence the analysis 
of only men in (75), in which 11 represents a morphologically 'null' plural 
determiner, seems reasonable. (Compare the discussion in the section on 
monotonicity in §7.2.4.) 

(74) only John 
only the neighbor 
only a few girls 

(75) NP[NPtNP[only )Nr[oET[f1Mmen]]) 

This takes care of only, but what about many? 

Exercise 9 
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Give an interpretation of many which is not conservative. 
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Although exercise 9 has a solution, there might be reasons for doubting the 
determiner status of many. For many, just as for few, an analysis as an adjec­
tive (N/N) seems plausible. First, both may occur in prenominal position, pre­
ceded by a determiner (the many mistakes, the few results). Second, both have 
comparative and superlative forms (more/fewer, most/fewest). Third, they 
may occur as predicates (The boys are many/few). Finally, they may occur in 
constructions like as ADJ as (compare: as many as/as big as). 

Whether we deal with these two exceptions in this or some other way, it 
seems safe to say that the universal proposed by Barwise and Cooper holds, at 
least for English. 

But note that if we impose conservativity as such as a global constraint on 
the meanings of natural language determiners, what we get is considerably 
stronger. Conservativity as a global constraint amounts to the assertion that 
all determiners, both simple and complex, are conservative. Counterexamples 
to this much stronger claim occur in the form of 'intensional determiners'. As­
suming that new determiners can be formed by adjectival modification of 
existing ones, the following are examples of determiners: 

(76) all 
all red 

(77) some 
some living 

(78) all 
all supposed 

A little reflection shows that not only the simple determiners in (76) and (77) 
are conservative, but also the complex, restricted ones: adjectival restriction 
by means of intersective, extensional adjectives preserves conservativity. But 
(79) shows that this is not true of restriction by means of intensional adjectives 
as in (78): 

(79) All supposed women are men ¢> All supposed women are 
women that are men. 

These cases are usually excluded by means of the following reasoning: the 
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theory of generalized quantifiers was extensional anyway, and if we want to 
intensionalize it, we will have to modify the notion of conservativity. 

At first sight this may seem a rather strange reaction, the more so since 
there is such an obvious alternative: (80) is not to be regarded as the constitu­
ent structure of the NP in (79), but (81 ): 

(80) NrfoET[oET[all]oETtDET[supposed]]N[women]] 

(81) NPfoET[all]N[Nm[supposed] N[ women]]] 

Then we would have, instead of (79), the unobjectionable (82): 

(82) All supposed women are men ~ All supposed women are sup-
posed women who are men. 

Of course, if we choose to analyze the NP in (79) along the lines of (81), we 
must do so generally, i.e., not only in the case of intensional adjectives, but 
also in the case of extensional ones. In other words, we conjecture that there is 
simply no such thing as adjectival restriction of determiners; adjectives are 
noun modifiers of category N IN. 

But there are also good reasons for choosing not to save the universality of 
conservativity in this way. For if we disregard the possibility of adjectival re­
striction with intensional adjectives, we can prove the following (cf. Keenan 
and Stavi I 986, which contains a thorough discussion of conservativity): 

Fact 5 

The class of all conservative determiners is exactly the class of determiners 
generated by (i) all and some, (ii) Boolean combinations, and (iii) extensional 
adjectival restriction. 

Exercise 10* 

Show that Boolean operations and extensional restriction preserve con­
servativity. 

Because of fact 5, it is attractive to retain adjectival restriction of determiners 
as a syntactic process: for then natural language can be said to be 'expres­
sively complete' vis-a-vis possible determiner denotations. 

A final potential counterexample against conservativity as a universal prop­
erty of all natural language determiners is all and only. Compare: 

(83) All and only boys skate ~ All and only boys are boys that 
skate. 

Note that the right side sentence of (83) is equivalent to (84): 

(84) All boys are boys that skate and only boys are boys that skate. 

The second conjunct of (84) is a tautology, and therefore (84) is equivalent 
to (85): 
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(85) All boys are boys that skate. 

And surely the meaning of (85) is different from the meaning of the left side 
sentence of (83). This counterexample can be disputed, however: its validity 
depends on whether all and only, as it occurs in all and only boys, has the 
status of a determiner. Earlier we observed that there might be reasons for 
giving only the status of NP modifier. However, all and only does not fit into 
that analysis easily. In general, it is assumed that coordination is not (very) 
'cross-categorial': coordination is possible only between expressions which 
belong to the same (main) category. This would seem to argue for the deter­
miner status of only after all, at least as it occurs in this construction. 

We have paid a good deal of attention to conservativity, because it is the 
most important, most powerful global constraint proposed in the literature. 

Variety 

A simple, intuitively plausible global constraint on determiners requires them 
to have the property of variety: 

Definition 15 

D shows variety iff there are X, Y such that D(X, Y) and there are X, Y such 
that •D(X, Y). 

Imposing the constraint that determiners must have this property excludes 
'uninteresting' determiners which are either always or never true: only con­
tingent relations are under consideration. 

All simple determiners have this property. Apparent exceptions are at least 
n in a model with a domain of cardinality < n. But in such a case, we decided 
earlier, the interpretation of the determiner is undefined (see §7 .2.4). If we 
keep this condition in mind ("in every model where DET is defined ... "), 
all simple determiners have the property of variety. 

Determiners which do not show variety are Boolean combinations of cer­
tain determiners, such as one or no (which holds of every pair (X, Y)), or at 
least four and at most three (which holds of no pair (X, Y) ). The existence of 
this type of determiner sheds a different light on the status of variety as a 
global constraint. Surely determiners such as these are not very useful: in this 
sense they are not 'meaningful' expressions. On the other hand, they exist, 
and they have a meaning. Therefore we cannot regard variety as a constraint 
which excludes only determiner relations which are 'unnatural' in the sense 
that they are not expressed in natural language. 

Continuity 

In the section on applications, §7 .2.4, we discussed the monotonicity con­
straint, which states that all simple natural language NPs express monotonic 
quantifiers or conjunctions of them. 
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An argument that not all simple determiners are monotonic can be derived 
from an example like one (the numeral), meaning exactly one (the other 
meaning, at least one, is mon j ). This is not a monotonic determiner, as the 
following examples show 

(86) One boy was dreaming f:F One boy was asleep. 

(87) One boy was asleep f:F One boy was dreaming. 

It should be added that the status of one as a determiner is not uncontroversial. 
On the other hand, if one accepts it as a determiner, monotonicity as such may 
not be a global constraint. In that case, it seems necessary to formulate a 
weaker property which characterizes exactly those determiners which are ei­
ther monotonic or a conjunction of monotonic determiners. This weaker prop­
erty is continuity: 

Definition 16 

D is continuous iff for all X, Y 1, Y 2 , Y: if D(X, Y 
1
) and D(X, Y z) and Y 

1 
~ Y ~ Y2 then D(X, Y). 

In Thijsse 1983, where continuity is proposed as the relevant property, we find 
the following fact: 

Fact 6 

The set of all continuous determiners is exactly the set of all monotonic deter­
miners and their conjunctions. 

Exercise 11 * 
Show that all but one can be taken as a conjunction of monotonic determiners 
and that an even number of cannot. 

Extension 

The last global constraint proposed and defended in the literature that we want 
to consider here concerns a form of context independence: 

Definition 17 

D has extension iff for all X, Y, E, E': if E ~ E' and D(X, Y) in E then 
D(X, Y) in E'. 

Determiners which have extension are context independent, in the sense that 
extension of the number of elements in the domain does not make any differ­
ence to their interpretation. These are determiners which do not refer to the 
cardinality of the domain. An instance of an interpretation of a determiner 
which does not have extension is the following: 
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card(XnY) card(Y) 
[many] = {(X, Y)l card(X) > card(E) } 

In this interpretation, many means approximately 'relatively many', 'many in 
comparison with the entire domain'. This interpretation is essentially context 
dependent: if the cardinality of the domain increases or decreases, the deter­
miner may hold of pairs other than those it held for before. 

7 .2.6 Logical Determiners 

In this last section we will briefly discuss the set of constraints on determiners 
that yields exactly the class of logical determiners (all, some, no, not all). Our 
exposition is founded on van Benthem l983a, 1984a. 

Unlike those discussed above, these constraints are not (all) global con­
straints, which express intuitive and universal properties of the meanings of 
natural language determiners. Rather, we are concerned here with principles 
which in a sense characterize the contents of these logical determiners, which 
explicate what it is to be a logical determiner. Of course the constraints dis­
cussed above still play a part; they stake out the field. 

The Tree of Numbers 

In this section, we introduce a constraint on determiners which, in com­
bination with conservativity and extension, makes it possible to represent 
determiners which satisfy these constraints in a very simple and transparent 
way. This method of representation, in the form of patterns which determiners 
assign to a 'tree of numbers', gives a clear insight into the character of the 
various determiners and enables us to specify more exactly what distinguishes 
a logical determiner from a nonlogical determiner. 

The constraint in question concerns the quantitative character of certain de­
terminers. Consider (88): 

(88) 
y 

d 

a = card(X - Y) 
b = card(Y - X) 
c = card(X n Y) 
d = card(E - (X U Y)) 

With the help of the numbers, a, b, c, and d, thus defined, we can define the 
property of quantitativity. A quantitative determiner is a determiner which is 
not sensitive to the properties of, and the relations between, the elements in 
the domain and in the sets which it relates: 
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Table 7.4 Quantitative Determiners 

Determiner 

All 
Some 
No 
Most 

Many 

a=O 
c*O 
c=O 
c>a 

Definition 

c c + b -->-----
c+a c+a+b+d 

The interpretation of Many is the context-dependent interpretation given in §7.2.5. 

Definition 18 

D is quantitative iff for all X, Y: D(X, Y) depends only on a, b, c, and d 

Thus, quantitative determiners can be defined in terms of a, b, c, and d only. 
Some examples are given in table 7.4. 

Not all determiners are quantitative. Some depend on more than just the 
number of elements concerned: for instance they may be sensitive to the prop­
erties of (some of) these elements or to the relationships between them. Two 
instances of nonquantitative determiners which have been much discussed are 
adjectivally restricted determiners, such as all red, and possessive deter­
miners, such as Mary's. The following equivalent definition of quantitativity 
might be useful for settling whether determiners are quantitative or not: 

Definition 19 

Dis quantitative iff for every permutation 1T of E: D(X, Y) iff D (1r(X), 1r(Y)) 

A permutation of E does not affect the relevant numbers a, b, c, and d, but it 
may affect the properties of some of the elements in the domain and their rela­
tions with other elements. A quantitative determiner is insensitive to such per­
mutations, but all red, for instance, is not: 

(89) 
X 

y 

In this model Mit is true that all red(X, Y), and it is not true that all blue(X, 
Y), before the permutation 1T. Now if we substitute an element in the red X's 
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for an element of the blue X's, quantitatively nothing has changed; 1T results in 
a model M' in which a, b, c, and d have the same value as in M. But in M' it 
is no longer true that all red(X, Y): the red X's are no longer only in the 
shaded part (minus the blue intruder), but there is also a red element outside 
Y. So the determiner all red is sensitive to things other than just the number of 
elements; their nature (in this case their being red or not) is relevant too. This 
is of course exactly what adjectival restriction with red of the simple deter­
miner all was supposed to achieve. 

A similar example shows that a possessive determiner like Mary's is not 
quantitative either. In this case, the relation of possession is relevant to the 
validity of assertions of the form Mary's(X, Y). This relation is not preserved 
under permutations of E. 

Cases like this can be covered by a somewhat more subtle notion, called 
'quality'. A domain has a certain structure, and we may restrict ourselves to 
those permutations which preserve that structure. Determiners like all red and 
Mary's supply the information about the relevant structure themselves: all red 
is qualitative with respect to all 1T such that x E [red]¢> 1r(x) E [red], and 
so on. 

Quantitativity is very powerful notion, and combined with conservativity 
and extension it yields the following result. If a determiner is quantitative, we 
know that only a, b, c, and d are relevant for its interpretation. If the deter­
miner satisfies extension as well, d is no longer relevant. If it is also conser­
vative, b does not play a part either. In other words, the interpretation of all 
determiners which are quantitative, conservative, and context independent 
with respect to E can be formulated solely in terms of the numbers a and c. 
Their meaning is fully specified by just stating what they yield for every pair 
of numbers (a, c): true or false. In other words, a quantitative, conservative 
determiner that satisfies extension can be regarded as an assignment of + or -
to all pairs of numbers (a, c). The resulting representation uses the 'tree of 
numbers': 

card(X) = 0 0,0 

= 1 1, 0 0, 1 

=2 2,0 1' 1 0,2 

=3 3,0 2, 1 1, 2 0,3 

and so on. 

If X has no element, then neither have X - Y and X n Y. Hence a = c = 
0:0, 0. If the cardinality of X is 1, there are two possibilities for a and c: the 
one element belongs to X - Y, and therefore not to X n Y: 1, 0, or vice versa: 
0, 1. If X has two members we get three distinct possibilities for a and c: both 
elements belong to X - Y, and hence X n Y is empty: 2, 0; there is one ele-
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ment in X - Y and one in X n Y: I, 1; and both elements may belong to 
X n Y, while X - Y is empty: 0, 2. ln this way the entire tree is constructed. 

In terms of the tree of numbers we can characterize the meaning of a de­
terminer which is quantitative, conservative, and which satisfies extension 
simply by stating to what part of the tree it will assign a plus, i.e., for what 
pairs of numbers (a, c) it is true. For instance, all is true on the right branch of 
the tree, no is true on the left side; the is true in (0, 1) and nowhere else; and 
so on. 

We can also characterize in terms of the tree the various monotonicity con­
cepts: a determiner is mon t if on the horizontal line to the right of any plus 
there are only pluses. Analogously, a determiner is mon ~ if this is true of the 
line to the left of any plus. For a determiner which is t mon, it holds that if it 
is plus on a certain point, it is plus on the downward triangle of which that 
point is the apex; the same for ~ mon, but with an upward triangle. 

For many purposes, the tree of numbers is a useful tool, and it is often used 
in the literature. 

Characterization of the Logical Determiners 

What additional properties distinguish the logical determiners within the class 
of determiners which satisfy quantitativity, conservativity, and extension? We 
now present one analysis to this effect, which uncovers some semantic notions 
which may also be of independent interest. 

The first two properties we have already discussed: they are continuity and 
variety. Logical determiners are mon t or mon ~ and therefore continuous; 
they also satisfy variety. 

The two additional properties that we need both concern a kind of regularity 
in the behavior of determiners and a relative independence of specific num­
bers. These two properties appear to be fundamental characteristics of logical 
determiners (and of logical concepts in general). 

The first of these two properties is the following. (Here, 'D(a, c)', etc. 
means that D assigns a plus to the pair a, c; and '•D(a, c)' etc., means that D 
assigns a minus to the pair a, c.) 

Definition 20 

D has the plus property iff: If D(a, c), then D(a + 1, c) or D(a, c + 1); if 
•D(a, c), then •D(a + 1, c) or •D(a, c + 1 ). 

This definition of the 'plus' property states that D has no 'dead ends': if it 
assigns a certain truth value, then it must be possible to preserve this truth 
value if we add an element to X. In particular, the specific number of elements 
in X does not influence the behavior of D, whereas it is essential for a deter­
miner like the n. 

The second additional property is rather complicated to formulate exactly 
and generally (and there are several alternative formulations around). This 
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property, called uniformity or homogeneity, makes the truth value pattern of 
D 'smooth' by precluding those determiners that show different 'jump pat­
terns' in the tree. For instance, if a determiner is to be uniform and shows 
truth value pattern a somewhere in the tree, it is not allowed to have another 
pattern, say b, somewhere else in the tree: 

a. + b. + 
+ + 

This informal characterization is used in the following definition: 

Definition 21 

D is uniform iff D shows only one truth value pattern. 

If, as is done in van Benthem 1987, we consider quantifiers to be 'semantic 
automatons' which calculate a truth value when given a pair of sets as input, 
uniformity amounts merely to a determiner always embodying the same 
procedure. 

Given these two additional properties, it becomes clear how the logical de­
terminers result. 

Consider the apex of the tree of numbers, where card(X) = 0 or 1: 

card(X) = 0 0, 0 

= 1 1, 0 0, l 

A determiner prints a pattern of pluses and/or minuses on it. There are eight 
possible patterns: 

1. + 
+ + 

5. 

2. + 3. 
+ 

6. 7. 
+ + + 

+ 4. + 
+ 

8. 
+ 

The property of variety precludes 1 and 8: the second row should have both 
plus and minus occurring. Theplus property eliminates 4 and 5: the plus and 
minus, respectively, in the first: row should re-occur in the second row. Four 
patterns, i.e., four determiners, remain: 

2. + 3. + 
+ + 

6. 7. 
+ + 

And in fact, these are the patterns made by no, all, not all, and some, respec­
tively. To show that they are, we must show that these patterns persist in the 
entire tree in the appropriate fashion. That they do can be seen by reflecting on 
uniformity and continuity. Uniformity assures us that we get the same pattern 
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everywhere in the tree. This implies, for instance, that the first four horizontal 
lines of the tree for all look like this: 

card(X) = 0 

= 1 

=2 

=3 

+ 

+ 

+ 
+ 

The pattern of all, given above as 3, is: 'under a plus we find to the left a 
minus and to the right a plus'. This gives pluses on the right branch, with 
minuses immediately to the left. The other positions in the horizontal lines are 
determined by continuity: it says that there can only be minuses further to the 
left (for between two pluses, continuity allows only plus): 

card(X) = 0 

= 1 

=2 

=3 

+ 
+ 

+ 
+ 

So because of uniformity and continuity, the pattern 3 made on the apex of 
the tree of numbers can be expanded only into the pattern made by the deter­
miner all. 

Let us consider another example, some. The tree for card(X) = 0, 1, 2, and 
3 looks like this: 

card(X) = 0 

= 1 

=2 

=3 + 

+ 
+ 

In view of uniformity, the pattern 7 is unique, and it fills the left branch of the 
tree and the immediately adjoining positions. The remainder is again com­
pleted by continuity and consists only of pluses: 

card(X) = 0 

= I 

=2 

=3 

+ 

+ 

+ 
+ 

+ + 
(Note that having a third row of the form - + - would lead to a fourth row 
violating continuity.) By the same kind of reasoning, it can be shown that the 
patterns 2 and 6 can be expanded only into those of no and not all, respectively. 
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This of course is only a sketch of a proof. The literature mentioned above 
should be consulted for more details. There one can also find results concern­
ing the effect of weakening or deleting some of the properties involved. 

Exercise 12 

What class of determiners results if we leave out the property of continuity? 

7 .2. 7 Further Developments 

It must be emphasized that the survey in the preceding sections gives only a 
first, superficial view of the field and of its main concepts and principles. 

For instance, much important empirical research has been done which we 
have not mentioned. Ter Meulen 1983; van Benthem and ter Meulen 1984; 
Groenendijk, de Jongh, and Stokhof 1987b; and Gardenfors 1988 are collec­
tions in which to look for such work. And we have paid no attention to the 
investigation of determiners by means of concepts from the theory of relations 
(see Zwarts 1983; and especially van Benthem 1984a, which studies the con­
nection between the latter approach and the one by means of global con­
straints). And the research on questions of 'expressibility' has not been dealt 
with either (see, e.g., Keenan and Moss 1984; Thijsse 1984; Keenan 1987). 

Another omission is that no attention has been paid to the.conditions which 
have to be satisfied in order to incorporate the theory of generalized quantifiers 
into a grammar. It is obvious that certain conditions must be imposed on the 
semantic component of such a grammar, but the syntactic component will also 
have to satisfy some requirements. For some discussion on this subject, see 
Zwarts 1986; van Benthem 1986. The work of Keenan and Faltz (1985) 
should be mentioned in this context as well, since it tries to transfer the con­
cept of Boolean structure, as we observed in the domain of NP interpretations, 
to other components of the grammar. 

7.3 Flexible Categorial Grammar and Type Theory 

In recent years, there have been some interesting developments in research on 
categorial grammar, partly inspired by developments in Montague grammar 
(see chapter 6). We shall discuss some aspects of this progress, because it 
involves some further links with type theory. 

7 .3.1 Category Change 

Several of the objections against classical categorial syntax mentioned in 
chapter 4 concern the rigidity of the assignment of categories to expressions. 
Natural language is rather flexible in its behavior in categorial combinations. 
For instance, the negation not, which is usually classified as s/s, occurs nut 
only as sentence negation (It is not the case that Archibald cries), but also as 
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predicate negation (Most babies don't cry), NP negation (Not every baby 
cries), adverbial negation (not unkindly), and so on. As far back as 1972, 
Peter Geach proposed to account for this phenomenon by introducing cate­
gory change rules which operate on the basic category assigned to an expres­
sion and then produce successive further admissible categories. 

In order to avoid an excess of slashes, we will use another notation than we 
did before: 

(a, b): 'from category a to category b' 

This notation is to be interpreted nondirectionally, i.e., it carries no informa­
tion about which side a functor takes its argument from. If required, the direc­
tional aspect can be introduced at a later stage. (Note, however, that there are 
also more principled linguistic arguments for a nondirectional approach; cf. 
Hoeksema 1984.) 

In this notation, Geach's category-change rule reads like this: 

If an expression has category (a, b), then it also has category ((c, a), 
(c, b)), for all categories c. 

For instance, sentence negation (s, s) may also occur as predicate nega­
tion ((n, s), (n, s)), or when Geach's rule is used repeatedly, as ((n, (n, s)), 
(n, (n, s))) for negation of a transitive verb. Another application of this 
mechanism concerns the categorial analysis of transitive verbs that take com­
plex NPs in direct object position. An expression like sings every ballad 
yields the following categories: 

sings 
(n, (n, s)) 

every ballad 
((n, s), s) 

These categories cannot be combined by functional application to the desired 
final category, that is, (n, s). The Geach rule provides an instant solution: 
((n, s), s) is changed into ((n, (n, s)), (n, s)), and now functional application 
suffices to yield the desired result. 

Another, in fact equivalent, way of describing what happens here is as an 
increase in the possibilities of categorial combination. Besides the method of 
functional application (consisting of two rules, given our present nondirec­
tional view): 

a + (a, b):::? b ('a combined with (a, b) yields b') 
(a, b)+ a:::? b 

we also admit functional composition: 

(a, b) + (b, c):::? (a, c) ('(a, b) combined with (b, c) yields (a, c)') 
(b, c) + (a, b):::? (a, c) 

To see that this amounts to the same thing, note that with a = n, b = (n, s), 
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and c = s, the above verb phrase derivation becomes an instance of the first 
composition rule. 

Many linguists have (re-)discovered the Geach rule as a descriptive tool. 
We will mention another example, this time of a morphological character, 
which is featured in Moortgat 1988 and Hoeksema 1984. Verbs can be nomi­
nalized, as in Plumbing is a profitable activity. It seems natural to categorize 
this nominalization as ((n, s), n), in other words: a property becomes an ob­
ject. But this gives rise to a problem with an expression like building Ver­
sailles, where the nominalized verb building takes a direct object. One way of 
explaining this would be the following analysis. 

build Versailles 
(n, (n, s)) + n 

-.!} -ing 
(n, s) + ((n, s), n) 

-.!} 
n 

Here we first combine build as a transitive verb with its direct object Ver­
sailles, nominalizing the result by combining it with the particle ending -ing. 
The problem is, of course, to get the right morphological form, i.e., to get the 
particle on the verb. 

The following analysis, which uses the Geach rule, would therefore be 
more natural from a morphological point of view: 

build -ing 
(n, (n, s)) + ((n, s), n) 

-.!} Versailles 
(n, n) + n 

-.!} 
n 

Several other type change rules have been proposed in recent years. One ex­
ample is the 'Montague rule': 

from category a to category ((a, b), b), for every category b 

This principle accounts for phenomena of coordination, as in 

Mary 
n 
-.!} 

and every boy 

((n, s), s) 1\ ((n, s), s) 
-.!} 
((n, s), s) 
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Compare the treatment of terms and proper names in §6.3.4. Other forms of 
flexibility in categorial grammar can be found, for instance, in Partee and 
Rooth 1983; van Eyck 1985; Groenendijk and Stokhof 1984, I988a. 

7.3.2 A Logical Point ofView 

Not every transition between categories should be considered a well-motivated 
type change rule. As a matter of fact, the examples given above show a clearly 
defined pattern. This was observed early by Lambek (1958), in which an anal­
ogy was drawn with logical implications. In many respects, a functional type 
(a, b) behaves as an implication a-> b. This analogy provides an explanation 
of the above type changes in terms of logical entailments between implica­
tional formulas: 

a-> b I= (c-> a)-> (c-> b) (Geach rule) 
a I= (a-> b) -> b (Montague rule) 

This test fits other kinds of flexibility as well. For instance, Partee and Rooth 
use 'argument lowering': 

(((a, b), b), c)::} (a, c) 

which is also valid as an implicationallaw: 

((a-> b) ->b) -> c I= a-> c 

These valid transitions can be described by an implicationallogic, as Lambek 
did. And for this purpose, natural deduction, as presented in volume 1, chap­
ter 4, turns out to be quite useful. The 'Lambek calculus' can be described as 
an intuitionistic implicationallogic, with several additional restrictions on the 
'bookkeeping' rules for assumptions which are used in derivations. 

Example. A derivation of the Geach rule 

a~b assumption 

c~a assumption 

3. c assumption 
4. a E~ (2, 3) 
5. b E~ (4, 1) 

6. c~b r~ 

7. ((c~ a)~ (c~ b)) ~~ 

Not all implication laws from the system in volume 1 are admissible here. For 
example, b -> a is not derivable from a. For the Lambek calculus only allows 
the withdrawal of actually used assumptions. And indeed, in natural lan­
guage, transitions likes::} (n, s) ('a sentence becomes an intransitive verb') 
do not seem to occur. 
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Even so, there exist various defensible logical options for a reasonable cate­
gory change system. For instance, the strictest variant does not validate: 

a-> (a-> b) f- a-> b 

The reason for this is that multiple use of the same assumption (which would 
be needed in this derivation) is not allowed in the Lambek calculus either. One 
might argue that this pattern does occur occasionally in natural language, for 
example, a transition like the following: 

wash ::} wash oneself 
(n, (n, s)) (n, s) 

But there seems to be no general linguistic license to drop arguments in 
this way. 

The general picture then becomes this. Below the intuitionistic or even 
minimal conditional logic of volume 1 , there lies a spectrum of weaker im­
plicationallogics which can serve as 'categorial engines' for category change. 
One interesting system of this kind is the Lambek calculus, which allows the 
withdrawal of only one occurrence of an assumption in the introduction rule 
for implication. That is, it is a logic of occurrences of premises. But forcer­
tain applications, it is also wise to study stronger logics which allow multiple 
use of assumptions. 

A more systematic way of viewing such options for category change is re­
lated to the following rather obvious question. On the analysis just presented, 
category transitions taken as implications show a nice syntactic, proof-theoretic 
pattern; but what is their semantic meaning? 

This question is easy to answer in specific cases. For instance, the Geach 
rule is attractive precisely because of the underlying natural 'recipe' for con­
verting a meaning in category (a, b) to one in category ((c, a), (c, b)): 

from M(a,b) to AYtc,a) AZc[M(a,b)(Y(c,a/Zc))] 

Note how the A.-operator introduced in chapter 4 plays a key role here. 
Analogously, here is the recipe for the Montague rule: 

from M. to "-Yta,b)[Yta,b)(M.)] 

Evaluation of entire expressions then proceeds as follows, by an interplay of 
category change and ordinary functional application: 

Mary sings 
n (n, (n, s)) 

An B(n,(n,s)) 

every ballad 
((n, s), s) 

c((n,s).s) 
{),-
c ((n,(n,s)),(n,s)) 
AX(n,(n,s)) Ay .[C((n,s),s)(X(n,(n,s))(y n))] 
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AX (n,(n,s)) A y n [ c((n,s).s) (x,n,(n,s)) (y n))] (B (n,(n,s))) 
which reduces by A.-conversion to: 
Ay n[C((n,s),s)(B(n,(n,s))(y n))] 

Ay n[C((n,s),s)(B (n,(n,s))(y n))](An) 
which reduces to the intended reading: C,,n,s>.s>(B,n,(n.snCAn)) 

We could impose the general restriction on 'reasonable' category change rules 
that they must have such a type-theoretic explanation. Now some general 
logical observations can be made on this subject (see van Benthem 1986, 
chap. 7). All derivations in the Lambek calculus can be systematically pro­
vided with such type-theoretic terms: the corresponding category transitions 
are correct in the sense just stated. There are also converse results, indicating 
how type-theoretic terms can be effectively associated with implicational 
derivations. The general situation here is diverse. Different implicational cal­
culi turn out to correspond to different fragments of a type-theoretic language 
with A.-operators-with the full intuitionistic calculus corresponding to the 
complete language, but the Lambek calculus using only part of it. More­
over, there has been further research into additional constraints on 'natural' 
category changes, that is, 'A.-recipes', which are meant to ensure that the 'A.­
transforms' of the original denotations still retain roughly the same semantic 
behavior as the originals. 

Thus, it appears that there is a family of flexible, category-changing cate­
gorial grammars. Current research concentrates on the technical properties of 
such grammars. One central issue here is the recognizing power of such gram­
mars (see vol. 1, chap. 8). Probably categorial grammars based on the origi­
nal Lambek rules recognize only context-free languages, but this question has 
not yet been settled. Stronger calculi, curiously enough, may loose recogniz­
ing power, even to the extent that only regular languages can be recognized. 

A second series of questions concerns the semantic properties of the A.­
terms which are assigned to expressions by our flexible grammars. For in­
stance, it has been proved that no matter how many readings of an expression 
are produced by derivations in the Lambek calculus, the related 'meaning rec­
ipes' yield only a finite number of logically nonequivalent meanings. In this 
sense, the richness of category changes is kept within reasonable bounds. 

Furthermore, in this setting various generalizations of important semantic 
properties, such as monotonicity (see §7.2.) are being investigated. Not only 
NPs and determiners can be monotonic but also, e.g., adjectives, adverbial 
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expressions, and prepositions. This is an instance of a current tendency to for­
mulate semantic observations made in special categories (quantifiers, verbs, 
adverbs) quite generally. For instance, the central notion of conservativity en­
countered with determiners turns out to be an instance of a general restricting 
behavior of common noun phrases across whole expressions. Witness such 
patterns as: 

All A fear a B ~All A (fear n (A x B)) a B. 
No A gave every B a C ~No A (gave n (A X B X C)) every B a C. 

In fact we can systematically derive such more complex forms of conser­
vativity through the A.-recipes accompanying the categorial derivation of such 
sentences. Thus, we increase our insight into the categorial system of natural 
languages as such. 

7.3.3 Further Developments 

At the moment, several extensions and variants of the approach explained 
above are being investigated. We have mentioned the discussion about the 
precise nature of the link between semantic type change and syntactic cate­
gory change. Other topics concern various extensions of the type-theoretic ap­
proach formulated so far. One such extension concerns the following logical 
strengthening. Standard categorial grammar produces meanings which can be 
described by using only function application. The category changes intro­
duced in §7.3.1 and §7.3.2 also give rise to A.-abstraction. The next step 
could be the admission oflogical identity between type-theoretic terms. A lin­
guistic example of this feature is the following (not uncontroversial) German 
example: 

Der Heinrich. 

The determiner der is of category ((n, s), ((n, s), s)), and the proper name 
Heinrich is of category n. If an NP, i.e., ((n, s), s) is to be the result of the 
application of one to the other, the category of Heinrich should be converted 
to (n, s). A possible recipe here would use identity: 

n ::} (n, s) 

from An to AYn [An = Ynl (the property of being An) 

Another extension leads to the addition of intensional types (see §5.6), since 
category changes also occur in intensional contexts. So far no definite system 
has been proposed for this purpose. Finally we mention a possibly more sur­
prising issue. It is one thing to propose a general mechanism for natural lan­
guage, such as category change. But we cannot leave matters at that, because 
this mechanism will display interactive behavior with other important features 
of natural language. For instance, if we can make logical deductions from a 
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certain expression, what happens if this expression is exposed to a category 
change? Will conclusions be preserved, and if so, in what form? In fact, there 
is a current line of research concerning inference and category change in com­
bined calculi. Other types of interaction are still awaiting investigation. 

Further literature on these subjects may be found in Oehrle, Bach, and 
Wheeler 1988; Ruszkowski, Marciszewski, and van Benthem I 988; Klein and 
van Benthem 1988. 

7.4 Discourse Representation Theory 

7.4.1 Introduction 

Discourse representation theory is a semantic theory for natural language 
which was developed in the early eighties by Hans Kamp ( 198 I a). Many ideas 
incorporated in discourse representation theory were present in seminal form 
in earlier work of a number of other authors. And around the same time, simi­
lar proposals were developed independently by among others Irene Heim 
(1982, 1983) and Pieter Seuren (1985). 

One of the characteristics of discourse representation theory, as the name 
suggests, is that it focuses on the semantic interpretation of discourses, i.e., 
on coherent sequences of sentences, also called 'texts', instead of on isolated 
sentences, as in Montague grammar. In discourse representation theory, 
henceforth DRT, the primary semantic (and syntactic) unit is not the sentence 
but the discourse (or the text). 

Another characteristic of DRT is that it regards semantic interpretation not 
as a direct relation between expressions and (a model of) reality; instead, an 
intermediate level of semantic representation is postulated where the informa­
tion conveyed by a discourse is stored. This characteristic, too, is reflected in 
the name of the theory. 

Unlike the intermediate level in Montague grammar, where syntactic struc­
tures are translated into expressions of the system of intensional logic IL (see 
§6.2), the corresponding level of discourse representation in DRT is consid­
ered to be an essential component of the grammar. It is assumed that it is not 
possible to do without this level of analysis, whereas the level of translation in 
Montague grammar is there for convenience only, being eliminable because of 
the compositionality of the translation and interpretation processes. So the 
representationalism of DRT makes it a noncompositional semantic theory. 

The idea is that a discourse representation reflects the information conveyed 
by a discourse. As such, it may be regarded as a partial description of reality. 
Certainly a text never gives information on everything which is true in some 
reality (fictional or otherwise); it describes at most only part of it. The mean­
ing of an expression will be regarded primarily as the contribution of that ex­
pression to the discourse representation of the greater whole in which it 
occurs. This concept of meaning differs from the familiar concept of the inter-
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pretation of an expression in a model. In a model, an expression is interpreted 
within a complete picture of reality. 

This more familiar level of semantic interpretation, however, is also present 
in DRT, in the form of the definition of the truth of a discourse. The truth of a 
discourse in a model is defined in terms of whether the partial information 
represented by its discourse representation can be embedded in a complete 
model. 

There are various motives for the development of DRT. First of all, general 
theoretical and methodological issues are at stake. DRT is claimed to bridge 
the gap between the (psycho-) linguistic view of meaning, in which syntactic 
structures are related to mental representations, and the logico-semantic view, 
in which syntactic structures are related to (a model of) reality. In this respect 
it is said that DRT reconciles the declarative or static view of meaning with 
the procedural or dynamic view. The procedural view, which is dominant in 
cognitive science, holds that the meaning of an expression is to be regarded as 
an instruction to the hearer to 'construct' (part of) a representation. The static 
view is usually held by logicians and philosophers of language; it connects 
meaning to truth conditions, or more generally, denotation conditions. 

Of course the motives behind the development of DRT are not just method­
ological. DRT also aims to give an account of empirical issues which other 
semantic theories, e.g., Montague grammar, can not cope with. An important 
cluster of such phenomena concerns the interpretation of pronouns, and in 
particular, the anaphoric relations between pronouns and indefinite terms, 
both within and across sentence boundaries. DRT provides a solution to sev­
eral problems in this field. Other areas to which DRT is applied include the 
interpretation of tense and aspect, in particular the role they play in establish­
ing the coherence of texts, and the analysis of belief sentences and other re­
ports of propositional attitude. 

In this introduction we will concentrate on some central problems from the 
first cluster of phenomena. We do so for expository reasons, since here the 
contrast between DRT and Montague grammar can be displayed most clearly. 
Some distortion may result from this approach. Certainly there should be no 
suggestion that the application of DRT to other empirical phenomena is less 
important. The reader is referred to the works of Heim, Kamp, and Seuren 
and to the literature mentioned in §7 .4.6. 

We will introduce DRT from the point of view of Montague grammar. In 
§7 .4.2 we present certain problems with anaphoric relations and indefinite 
terms that arise in Montague grammar. Next, we sketch the solution that DRT 
offers to these problems. In §7.4.3 we give an informal introduction to DRT. 
In §7 .4.4 we give definitions of the syntax and semantics of the formal lan­
guage used in DRT to represent the information conveyed by a discourse. 

As we indicated above, the intermediate level of discourse representation 
that DRT postulates is at odds with the methodological principle of composi-
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tionality, which occupies such a central position in Montague grammar. In 
§7 .4.5 we address this issue, and we argue that contrary to what is often sug­
gested, representationalism is not essential to DRT, in the sense that its ex­
planatory power does not presuppose it. The empirical success of DRT rests 
rather upon its procedural, dynamic view of meaning. 

7.4.2 Some Problems with Anaphoric Relations and Indefinite Terms 

In Montague grammar as it was presented in chapter 6, anaphoric pronouns, 
i.e., pronouns which are interpreted as 'referring back' to the denotation of a 
term, are analyzed systematically as bound variables. The following examples 
illustrate this: 

(90) John loves Mary and he kisses her. 

(91) Every woman loves a man who admires her. 

In sentence (90), he is understood as referring back to John, and her as refer­
ring back to Mary; in (91), the pronoun her is bound by the quantified term 
every woman. Of course, there are also readings of (90) and (91) in which the 
referents of the pronouns are determined otherwise, for instance, by pointing 
to persons present in the context of the utterance; but this deictic use of pro­
nouns will not concern us here, and in the following we will systematically 
ignore this possibility. The intended readings of (90) and (91) are obtained in 
Montague grammar by means of the quantification rules (see §6.3.8). 

For instance, sentence (90) is derived from a sentential structure in which 
two different syntactic variables occur, he 1 loves him2 and he 1 kisses him2 , 

into which the terms John and Mary are successively introduced by means of 
the quantification rule S8,n. The effect of this rule is that the term in question 
is substituted for the first occurrence of the relevant syntactic variable, and 
that eventually suitable pronouns, i.e., pronouns which agree in gender, 
number, and case with the term in question, take the place of the other occur­
rences. By the way, it may be observed that the use of a type of pseudo­
pronoun as a syntactic variable may lead to confusion: the syntactic variables 
themselves are not pronouns but can be replaced by them if necessary. We 
could also have used x andy instead of he1 and he2 • 

Semantically the process of quantification corresponds to the following: a 
syntactic variable is translated into a logical variable. Next, the formula which 
is the translation of the sentence in which the syntactic variable occurs is 
turned into an expression which refers to a property by .\-abstraction over the 
logical variable. Terms are translated into expressions referring to sets of 
properties, and the translation of the final sentence, with the term quantified 
in, is the result of applying the translation of the term to the intension of the 
.\-expression. The result is a formula asserting that the property expressed by 
the .\-expression belongs to the set of properties which is the denotation of the 
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translation of the term. If this is a quantified term, like every woman or a 
man, then by .\-conversion the quantifier occurring therein binds the occur­
rences of the free variable in the original sentence. In the translation of proper 
names, all occurrences are replaced by the constant which occurs in the trans­
lation of the proper name. In this sense, anaphoric pronouns are regarded as 
bound variables in Montague grammar. 

What then are the difficulties arising from this treatment of anaphoric pro­
nouns, for which DRT attempts to give a solution? In this section we will con­
fine ourselves to the discussion of three examples which, though apparently 
simple, illustrate the major problems. Of course, there are more phenomena 
related to terms and anaphoric relations. For a thorough and extensive over­
view we refer to Heim (1982, chap. 1). 

The first topic centers on the treatment of anaphoric relations across sen­
tence boundaries. Montague grammar cannot effectively treat this type of 
anaphoric relation. Consider example (92): 

(92) A man walks in the park. He whistles. 

On the reading we are concerned with here, the pronoun he in the second sen­
tence is bound by the term a man in the first sentence. In other words, this 
sequence of sentences is given the same meaning as the single sentence (93): 

(93) A man walks in the park and he whistles. 

Deriving (93) with the intended reading in Montague grammar is easy. The 
process of quantifying in, sketched in the preceding paragraphs and discussed 
extensively in §6.3.8, enables us to derive (93) with reduced translation (94) 
(we ignore the internal structure of walks in the park and translate it in a 
single predicate constant WALK IN THE PARK): 

(94) 3x(MAN(X) 1\ WALK IN THE PARK(x) 1\ WHISTLE(x)) 

This formula not only expresses the correct meaning of (93) but also gives the 
meaning of (92). At a first glance then, extending Montague grammar in order 
to get a satisfactory treatment of examples like (92) seems a simple matter. 
We can introduce a syntactic operation of 'sentence sequencing', which is in­
terpreted semantically as conjunction, and apply the quantification rule to 
sequences of sentences as well. If we start with the sentences He 1 walks in 
the park and He 1 whistles, we form from these He 1 walks in the park. He 1 

whistles, and into this structure we quantify the term a man. The (reduced) 
result is (94). 

But there is a problem. The discourse (92) may be continued with sentences 
in which the pronoun he occurs again, with the intention of referring back to 
a man: 

(95) A man walks in the park. He whistles. Apparently he is in a 
good mood. 
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If we derive the first two sentences of (95), i.e., (92), in the manner described 
above, it will not be possible to add the third sentence to it in such a way that 
the occurrence of he is bound by a man. In general-and therefore also in the 
case of (92)-this way of accounting for anaphoric reference across sentence 
boundaries presupposes that the entire text is generated first, with syntactic 
variables at the appropriate places, after which the introduction of the re­
quired terms and their dependent anaphoric pronouns can take place by means 
of the quantifying-in process. 

But from the semantic perspective, doing it this way implies that the inter­
pretation of a term and of the related anaphoric pronouns can take place only 
when we are sure that the discourse or text will not be continued but is closed. 
And this implies that the process of interpretation does not proceed step by 
step, even though intuitively that is how we perceive the process. When we 
read or hear a text, we analyze and interpret the first sentence, then the second 
sentence, and so on. In other words, interpretation is an incremental process. 
The interpretation of earlier sentences will influence the interpretation of later 
ones, and this presupposes that the interpretations of earlier sentences are 
available later on. The Montague grammar method of dealing with anaphoric 
relations by means of quantification rules, on the other hand, does this no jus­
tice. Whenever an anaphoric relation crosses a sentence boundary, the inter­
pretation of the first sentence cannot be determined until the entire discourse is 
completed, that is, until the entire text is available. In other words, a text can 
be interpreted only holistically, not incrementally. 

One could regard this as a somewhat counterintuitive result, as one of those 
inevitable instances of the theoretical explanation and the pretheoretical intui­
tion diverging. But a second example will show that the problem is deeper. 
Consider the following variation of (92): 

(96) Exactly one boy walks in the park. He whistles. 

If we derive (96) in the same way as (92), by quantifying in the term exactly 
one boy in the open sequence of sentences He0 walks in the park. He

0 
whistles, (97) results as its (reduced) translation: 

(97) 3x'v'y((BOY(y) 1\ WALK IN THE PARK(y) 1\ 

WHISTLE(y)) <-+X = y) 

But (97) does not represent the meaning of (96). This formula expresses that 
there is exactly one individual that has the properties of being a boy, of walk­
ing in the park, and of whistling; in other words, there is exactly one boy who 
walks in the park and whistles. But it does not exclude other boys walking in 
the park. The meaning of (96), on the other hand, is that there is exactly one 
boy walking in the park, and that this boy whistles. Therefore it is (98) and not 
(97), which gives the correct representation of the meaning of (96): 
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(98) 3x('v'y((BOY(y) 1\ WALK IN THE PARK(y)) <-+ 
X = y) 1\ WHISTLE(X)) 

This observation shows that the problem with extending Montague grammar 
in the way sketched above is not just that it accounts for anaphoric rela­
tions across sentence boundaries in an unintuitive way; it also makes wrong 
predictions. 

The difference between examples (92) and (96) also makes it intuitively 
clear why this method will be incorrect in general. The underlying idea is to 
regard a discourse or a text as a description of a complex property subse­
quently ascribed to the term in question. In example (92), this results in the 
property 'walking in the park and whistling' being applied to a man, which is 
correct. On the other hand, the result of the operation in the case of (96) is the 
property 'walking in the park and whistling' being applied to exactly one boy, 
which is not the meaning of (96). While (92) and (93) are equivalent to (99), 
(96) is not equivalent to (100): 

Efl"~Q./)'1_ 

(99) A lYjiy walks in the park and whistles. 

(100) Exactly one boy walks in the park and whistles. 

In the sequence of sentences (96), it is first asserted that there is exactly one 
boy who is walking in the park, and next it is asserted of this boy that he 
whistles. This could also be described as follows: the first sentence introduces 
an individual, the unique boy walking in the park, and the second sentence 
gives a further description of this individual: he whistles. This suggests a quite 
general way of dealing with the continuation of a text. For example, sequence 
(96) can be continued as in (101): 

(101) Exactly one boy walks in the park. He whistles. He has blue 
eyes. 

As we observed above, the quantifying-in approach runs into difficulties here. 
However, if we follow the suggestion made above, it seems that there is a way 
to avoid these difficulties. As the text proceeds, we dress up the introduced 
individual with more properties. Of course, we can deal with an example like 
(92) in the same way: the first sentence introduces a (not necessarily unique) 
individual that is a man and walks in the park. The succeeding sentences as­
cribe more properties to the individual: he whistles, he is in a good mood, and 
so on. 

Such individuals, first introduced and then further described in a discourse 
or a text, are sometimes called discourse referents. They are stand-ins for the 
individuals to which a discourse or text refers. We observed earlier that a 
given discourse almost always gives only a partial description of a certain do­
main. Whether the discourse is true or not in some given model depends on 
whether a correspondence can be established between the discourse referents 
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introduced by the discourse and real individuals in the domain of the model in 
such a way that all assertions made in the discourse about the discourse refer­
ents are true. Sometimes there is exactly one way to get such a correspon­
dence, and sometimes there is more than one. 

These informal observations about how to interpret a discourse lie at the 
bottom of the DRT approach. But before we go into details, we want to dis­
cuss yet a third phenomenon, another one that Montague grammar cannot 
cope with and for which DRT proposes a solution. 

The problem in the examples discussed above concerns sequences of sen­
tences where a pronoun in a sentence is anaphorically related to an indefinite 
term in a preceding sentence. The third phenomenon also concerns indefinite 
terms and anaphoric pronouns, but this time within sentence boundaries. Con­
sider the following examples: 

(102) If John owns a donkey, he beats it. 

(103) Every farmer who owns a donkey beats it. 

In sentence (102), we find an indefinite term in the antecedent of an implica­
tion and a pronoun in the consequent; in (I 03) we find an indefinite term in a 
relative clause modifying a universally quantified term, and a pronoun in the 
main clause. Both sentences illustrate the same problem, which is known in 
the literature as the problem of the donkey sentences. The problem is the 
following. 

A correct semantic analysis of the examples (102) and (103) should render 
the following (reduced) translations: 

(104) 'v'x((DONKEY(X) 1\ OWN(JOHN, X))-+ BEAT(JOHN, X)) 

(105) 'v'x'v'y((FARMER(X) 1\ DONKEY(y) 1\ OWN(X, y))-+ BEAT(X, y)) 

The problem, of course, is not what the meanings of the sentences (102) and 
(1 03) are or how they should be represented; the first-order predicate-logical 
formulas (104) and (105) express their meanings adequately. The heart of the 
problem, as in the examples discussed above, is how to obtain the representa­
tions (104) and (105). 

Let us take a closer look at example (1 02). We notice immediately that the 
indefinite term a donkey reappears in (104) not as an existential quantifier but 
as a universal one, and that it has scope over the entire implication. In view of 
the meaning of (1 02), this is correct; the question now is how to obtain this 
meaning in a compositional way. It seems reasonable to assume that the term 
a donkey as it occurs in sentences such as (I 02) and (1 03) is assigned its usual 
meaning, represented in IL by the familiar expression A.X3x[DONKEY(x) 1\ 

vx (x)]. But if we want to derive (102) in such a way that the pronoun it in the 
consequent of the implication is bound by the term a donkey in the anteced­
ent, we get into difficulties. The only way to get this binding would be to 
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quantify the term a donkey into the sentence If John owns him0 , th~p. he beats 
.?ill1o· The result of this operation is (I 06): - -

(106) 3x(DONKEY(X) 1\ (OWN(JOHN, X)-+ BEAT(JOHN, X))) 

But this formula does not express the meaning of (102). And the only alter­
native that Montague grammar offers is the direct introduction of the term, 
i.e., a derivation without any quantifying in. The result of this is (107): 

(107) 3x[DONKEY(X) 1\ OWN(JOHN, x)] -> BEAT(JOHN, x) 

Here, the occurrence of x in the consequent is not bound by the existential 
quantifier in the antecedent, and therefore the anaphoric relation between a 
donkey and it is not accounted for; ( 107) is not equivalent to the correct trans­
lation (104). In general, a formula of the form 3xcp-+ t/J is equivalent to 'v'x(cf> 
-+ 1/J) only if t/J does not contain free occurrences of x. The consequent of 
(107) does contain a free occurrence of x, and hence (107) is not equivalent 
to (104). 

We meet the same kind of problems, of course, if we try to get (105) as a 
translation of (103) in a compositional manner. 

These examples are similar to the examples discussed earlier as far as the 
anaphoric relation is concerned. If there is no anaphoric pronoun, as in ( 1 08), 
then we can manage with the standard representation of a donkey, and the 
result is the adequate translation (109): 

(108) If John owns a donkey, then Jack is jealous. 

(109) 3x(DONKEY(x) 1\ OWN(JOHN, X))-+ JEALOUS(JACK) 

The specific problem raised by the donkey sentences is finding a semantic way 
of dealing with these indefinite terms which accounts for the fact that in one 
construction their import is existential and in another construction it is univer­
sal. Section 7 .4.3 will show that the analysis using discourse referents pro­
vides an adequate solution for the problem. 

Exercise 13 

Show that sentence (103) cannot be dealt with successfully in the Montague 
fragment of chapter 6. 

7.4.3 An Informal Introduction to DRT 

In section 7.4.2 we discussed several phenomena concerning indefinite terms 
and anaphoric pronouns that cannot be solved within the framework of Mon­
tague grammar as it was presented in chapter 6. One of the empirical claims of 
DRT is that it offers a semantic framework in which a uniform and elegant 
description of these facts can be given. This section will introduce this frame­
work by showing how the problems are dealt with. 
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There is no really definitive formulation of DRT that is strictly adhered to. 
The definitions given below differ in several respects from the original version 
of DRT that is given in Kamp 198la. However, we trust that readers will be 
able to explore the DRT literature after acquainting themselves with the ver­
sion presented here. 

Like Montague grammar, DRT offers a semantic interpretation of (a frag­
ment of) natural language. The first difference lies in the fact that Montague 
grammar is a sentence grammar, while DRT in principle attempts to interpret 
sentence sequences. For the kind of examples that we discuss here, this differ­
ence turns out to be not that important, since all instances of sentence se­
quences that we will encounter can be paraphrased as sentence conjunctions. 
The claim is, however, that the way these simple sequences are dealt with 
provides a fruitful perspective for the treatment of more complicated cases. 

DRT offers a semantic interpretation, and hence we are justified in expect­
ing a syntax at the starting point of the analysis and a model at its finish. We 
will not go into the syntax of the fragment treated here. We will merely as­
sume that a syntax assigning simple constituent structures to the sentences of 
the fragment is available. We further assume that the fragment contains: ex­
tensional intransitive and transitive verb phrases; common noun phrases; 
proper names; singular personal pronouns; existentially and universally quan­
tified terms; restrictive relative clauses; and the sentential operations of nega­
tion, disjunction, implication, and sentence sequencing. Simple extensional 
first-order predicate-logical models can serve as models for the fragment. 

A characteristic property of DRT is that, given a syntactic structure, (se­
quences of) sentences are provided with a representation. One of the mecha­
nisms of DRT is a set of rules converting syntactic structures into discourse 
representation structures, DRSs. These rules are called DRS, construction 
rules. DRSs themselves are expressions of a somewhat unorthodox formal 
language. We will introduce two kinds of notation for DRSs, both of which 
can be found in the DRT literature: pictorial and linear notations. In this sec­
tion we give an informal sketch of the DRS construction process and of the 
interpretation of the resulting DRSs, using the pictorial notation. In §7 .4.4 we 
tum to a formal definition of a syntax and semantics ofDRSs, using the linear 
notation. 

As a first example of the construction of a DRS for a natural language sen­
tence, consider (110): 

(11 0) John loves a girl who admires him. 

We assume that a constituent structure of sentence (110) is given. The first 
step in the DRS construction is to put the sentence in a box: 

(Ill) 
John loves a girl who admires him. 
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The second step in the construction leads to the following box: 

(112) 
X 

John= x 
x loves a girl who admires him"· 

In the transition from (111) to (112), three things have happened: (i) a variable 
x is introduced into the box, called a reference marker in DRT, which plays 
the role of what we called a discourse referent in §7 .4.2; (ii) the term which is 
the subject of the sentence, the proper name John, is replaced in the sentence 
by the reference marker x; (iii) an identity assertion John = x is added. Appli­
cation of the rule connected with proper names always makes these three 
things happen. The rule is applied whenever we come across something of the 
form s[NP[proper name],v[ ... ]] (though not exclusively in that case). 

Proceeding with the construction, the third step leads to the following box: 

(113) 
X y 

John = x 
x loves y 
girl(y) 
y admires him 

In the third step, a new reference marker y is introduced. Markers are intro­
duced not only for proper names but also for indefinite terms, like a girl, or in 
this case, a girl who admires him. In what remained of the original sentence 
in box (112), this term is replaced by the newly introduced marker y, and the 
result is the formula x loves y. Finally, the formula girl(y) is added, and si­
multaneously a reconstruction is applied to the relative clause. In essence, the 
latter amounts to the relative pronoun who being replaced by the marker y. If 
the original sentence had been John loves a girl, we would end up with box 
(113) minus the last line, and the construction of the DRS would be complete. 

Only one thing remains to be done with our sentence: the anaphoric pro­
noun him must be taken care of. The relevant DRS construction rule sub­
stitutes a suitable previously introduced marker for the pronoun. Since him is 
masculine, the only suitable marker is the x which was introduced by John. In 
other instances there might be more than one candidate, and hence more than 
one DRS would be possible. In the present case, however, the result is not 
ambiguous: 
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(114) 
X y 

John= x 
x loves y 
girl(y) 
y admires x 

Thus the final stage of the DRS construction process is reached. No further 
DRS construction rules are applicable to box (114). The result is a box con­
taining two types of things: (i) a set of reference markers: {x, y}; (ii) a set of 
formulas: {John = x, x loves y, girl(y), y admires x}. The formulas which 
occur in a DRS are called conditions. In our example, all conditions are 
atomic formulas. Such simple DRSs, consisting of a set of reference markers 
and a set of atomic conditions, form the basic building blocks of DRSs. Later 
we will see that DRSs may also contain complex conditions. 

If sentence (109) were to be continued with sentence (115): 

(115) She loves him too. 

then this sentence would be added to box (114), and the construction process 
would continue. The final result would then look like this: 

(116) 
X y 

John= x 
x loves y 
girl(y) 
y admires x 
y loves x 

Boxes like these are meant to represent the meanings of (sequences of) sen­
tences. So let us now turn to the interpretation of DRSs. 

We have observed that a DRS is considered to be a partial description of (a 
model of) reality. To put it somewhat differently, we may regard a DRS as a 
partial model of reality. In (116) and (114), this is a model with a domain 
containing two individuals, whose properties are (partly) specified by the for­
mulas in (116) and (114). The idea now is that a DRS can be called true in 
relation to an ordinary, total model M if the partial model corresponding to 
the DRS can be taken to be a part of, i.e., can be embedded in, M. 

The interpretation of a DRS proceeds as follows. A model M specifies a 
domain D and an interpretation function I. I interprets proper names, common 
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nouns, and verbs in the same way that individual constants and predicates are 
interpreted in predicate logic. 

We define the notion of a verifying embedding of a DRS into a model M. 
Such a verifying embedding is a function f which assigns elements of D to the 
reference markers in the DRS in such a way that all conditions in the DRS 
come out true in M. 

In terms of this notion of a verifying embedding, the notion of truth of a 
DRS in a model M is defined. A DRS is true in M iff there is at least one 
verifying embedding for that DRS in M. 

For instance, DRS (116), the DRS of the sequence of sentences (109) and 
(115), is true iff there is a verifying embedding f assigning individuals from D 
to the reference markers x andy in such a way that f(x) =John, and f(y) is a 
girl loved by John who in turn loves and admires John. In other words, the 
truth conditions of DRS (116) have the same effect as if the indefinite term a 
girl who admires him is analyzed as an existentially quantified term with wide 
scope over the conjunction of (109) and (115), and the pronouns are analyzed 
as bound variables. But no existential quantification is used to obtain this re­
sult. The effect of existential quantification is the result of the truth conditions 
for DRSs, which require the existence of at least one verifying embedding of 
the DRS into the model. 

But we saw above that indefinite terms sometimes correspond to universal 
quantification. How does DRT manage to account for that? DRT's treatment 
of the donkey sentence, (103), repeated below as (117), illustrates this: 

( 1 I 7) Every farmer who owns a donkey beats it. 

The first step in the construction of a DRS for (I I 7) is again to put the entire 
sentence in a box. The sentence has the form 5[NP[ every cN[a]] ,v[.B]], i.e., its 
subject is a universal term. The second step in the construction is the applica­
tion of the DRS construction rule for universal NPs. This rule introduces 
something new, namely, an implication relation ~between DRSs. After these 
first two steps, the result looks like this: 

(118) 
X 

farmer(x) x beats it 
x owns a donkey 

The DRS (118) consists of three boxes. The outer box, where the original 
sentence was placed, is called the main DRS. The implication relation~ be­
tween the two sub-DRSs turns them into a complex condition, and this com­
plex condition is placed inside the main DRS. 
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The process also introduces a relation of subordination between DRSs. The 
two sub-DRSs related by-> are subordinated to the main DRS; and the one on 
the right of ..... is subordinated to the one on the left. 

In the left box a reference marker x is introduced. In the right box, a for­
mula appears which results from replacing the universal NP in the sentence 
with the introduced marker x. The formulas in the left box correspond to the 
CN and its relative clause, which are treated in the same way as was illustrated 
in example (11 0) with an indefinite term. 

The two sub-DRSs in (118) are subject to further DRS construction rules. 
So within the left box and the right box, we continue the DRS construction 
process. In the left box, the indefinite term a donkey occurs, and we apply the 
construction rule for indefinite terms as discussed in the analysis of sentence 
(II 0). This means that a new marker y is introduced into the left box, together 
with a formula asserting that y is a donkey; and the object NP a donkey is 
replaced by the newly introduced marker y in the phrase x owns a donkey. 

Finally, in the right box, the pronoun it should be taken care of. In the pre­
vious example, there was only one box, and there we described the construc­
tion rule for pronouns as follows: substitute a suitable introduced reference 
marker for the pronoun. But this rule should be extended by use of the rela­
tion of subordination between DRSs introduced above: substitute for the pro­
noun a suitable reference marker introduced in one of the boxes to which the 
box in which the pronoun occurs is subordinated. In this case, this can only be 
the box to the left of the implication sign, since no marker has been introduced 
into the main DRS, and only y is suitable. The final result of the construction 
process is the following DRS: 

(119) 
X y 

farmer(x) x beats y 
x owns y ~ 

donkey(y) 

Now let us take a look at the interpretation of this new type of DRS. The main 
DRS of (119) contains no reference markers and only one complex condition. 
So the definition of the notion of a verifying embedding introduced above re­
quires for this DRS that the condition which consists of the two sub-DRSs 
joined by the implication sign be true. The latter is defined to be the case if 
every verifying embedding of the antecedent DRS gives rise to a verifying 
embedding for the consequent DRS. For (119), this implies that every assign­
ment f that assigns a farmer to x and a donkey to y must verify that the farmer 
beats the donkey. 

In other words, the truth conditions of the discourse representation (119) of 
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sentence (117) are exactly the same as those of its translation ( 105) in ordi­
nary predicate logic, discussed in §7 .4.2, with wide scope universal quan­
tification over x and y. But this time we did not meet the problem mentioned 
there. In the DRS construction we treated the indefinite term a donkey in 
(117) in the same way as we treated the indefinite term in example (110). But 
the interpretation of DRSs ensures that in the latter case it gets the force of 
existential quantification, whereas in the former it acquires universal strength 
because it occurs inside the antecedent of a conditional DRS. 

We end this section by noting that the conditional sentence (120) results in 
exactly the same DRS as the donkey sentence (117) we just dealt with: 

(120) If a farmer owns a donkey, he beats it. 

The DRS construction associated with a conditional sentence consists of in­
troducing two sub-DRSs connected by-> in the main DRS. In the antecedent 
DRS we continue with the reconstruction of the antecedent of the sentence, in 
this case a farmer owns a donkey; in the consequent DRS we continue with 
the consequent of the sentence, in this case he beats it. 

Exercise 14 * 
Construct DRSs for the following (sequences of) sentences: 
(a) A boy loves every girl. 
(b) Every boy loves every girl. 
(c) If John loves Mary, then she loves him. If she hates him, he hates her. 

Exercise 15* 

Formulate a DRS construction rule for subject NPs with the determiner ex­
actly one and use it to construct a DRS for example (96), discussed in §7.4.2: 

Exactly one boy walks in the park. He whistles. 

7.4.4 Formal Definitions 

In this section we give formal definitions of the syntax and semantics of DRSs 
in a linear, set-theoretical notation. 

In the vocabulary of the DRS language we find individual constants and 
reference markers (together forming the class of terms), n-place predicate 
constants, identity, negation, disjunction, and implication. (So identifying 
reference markers with variables, the vocabulary of the DRS language forms a 
real subset of that of first-order predicate logic.) 

As was indicated in §7.4.3, a DRS may be viewed as apair(V, C), with Va 
(finite and possibly empty) set of reference markers, and C a (finite and possi­
bly empty) set of conditions. The latter may be either atomic or complex. 
(Strictly speaking, C is not a set of formulas but rather a set of occurrences of 
formulas, or a bag or multiset of formulas. In the remainder we will ignore 
this technical detail.) Complex conditions are formed from DRSs, so the defi-
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nitions of DRSs and of conditions have to go hand-in-hand. We use the lower­
case Greek characters <P and l./J as metavariables ranging over conditions, and 
the uppercase Greek characters <I> and"¥ as metavariables ranging over DRSs. 

Definition 1 

(i) If P is a n-place predicate constant and t 1 , ••• , tn are terms, then 
P(t 1, ••• , t.) is a condition; 

(ii) If t and t' are terms, then t = t' Is a condition; 
(iii) If <I> is a DRS, then •<I> is a condition; 
(iv) If <I> and"¥ are DRSs, then (<I> -> "¥) is a condition; 
(v) If <I> and"¥ are DRSs, then (<I> v "l').fs a condition; 
(vi) If x 1, ••• , x. are reference markers (n ;:_;.; 0), and </> 1 , ••• , <Pm are 

conditions (m ;:_;.; 0), then ({x 1 , ••• , x.}, {</> 1 , ••• , <Pm}) is a DRS; 
(vii) Nothing is a DRS or a condition except on the basis of (i)-(vi). 

By means of clauses (i) and (ii), atomic conditions can be formed which differ 
in no re'\pect from the atomic formulas in predicate logic. Clauses (iii)-(v) 
form negations, implications, and disjunctions. While in predicate logic these 
operations tum formulas into more complex formulas, here they tum DRSs 
into complex conditions. It is only by means of clause (vi) that DRSs can be 
formed, which are represented in a set-theoretical notation. This notation 
makes it possible to apply set-theoretical operations to DRSs. In fact, the 
operations on boxes which are used in the DRSs construction rules, such as 
adding reference markers and conditions to DRSs, can be viewed as such set­
theoretical operations. 

The set of reference markers in a DRS fulfills the role of a quantification 
mechanism. Free occurrences of reference markers in the (atomic or complex) 
conditions of the DRS are bound by it. The binding force of sets of reference 
markers is more powerful than that of the quantifiers in predicate logic. Quan­
tifiers can only bind variables within their scope. If we identify the scope of a 
set of markers V in a DRS (V, C) with the conditions in C, then the set V can 
bind markers outside its scope. This happens in case (V, C) is the antecedent 
of a conditional (V, C) -> (V', C'). In case a marker x E V has a free occur­
rence in the consequent (V', C'), that occurrence is bound by the set V in the 
antecedent. This more global notion of variable binding is an essential feature 
of DRT; it lies at the heart of its treatment of the donkey sentences, where an 
indefinite term within the antecedent of an implicational structure can be 
anaphorically linked to a pronoun outside its scope in the consequent. 

In the DRS language defined above, this more relaxed notion of binding is 
restricted to implications. In a disjunction, it is not possible for the set of 
markers of one of the disjuncts to bind markers in the other disjunct. Simi­
larly, a set of markers under the scope of negation has no binding force out­
side the negation. Of course the binding properties of DRSs discussed here 
informally are effected by their semantics, to which we tum below. 
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By way of illustration, we present the DRSs of the two examples discussed 
in §7 .4.3 in the linear notation of definition 1. In the pictorial box notation, 
the sequence of sentences John loves a girl that admires him. She loves him 
(too) was represented as (121) (= (116)): 

(121) 
X y 

John= x 
x loves y 
girl(y) 
y admires x 
y loves x 

In the formalism of definition 1, (121) corresponds to the following DRS: 

(122) ({X, y}, {JOHN = X, LOVE~(x, y), GIRL(y), ADMIRE~(y, X), 
LOVE~(y, x)}) . 

Our second example is the DRS of the donkey sentence Every farmer who 
owns a donkey beats it(= (119)): 

(123) 
X y 

farmer(x) x beats y 
x owns y _.,. 
donkey(y) 

The main DRS ( 1 23) consists of an empty set of reference markers and a set of 
conditions with one element: a complex condition which has the form of an 
implication. The box to the left of the implication sign, the antecedent DRS, 
is written as (124) in the linear notation of definition 1: 

(124) ({x, y}, {FARMER(X), DONKEY(y), OWN(X, y)}) 

The box to the right of the implication sign, the consequent DRS, is now writ­
ten as (125): 

(125) (0, {BEAT(X, y)}) 

Together they form the complex condition (126): 

(126) (({x, y}, {FARMER(X), DONKEY(y), OWN(X, y)})-> 
(0, {BEAT(X, y)})) 
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DRS (123) as a whole then corresponds to (127): 

(127) (0, {(({x, y}, {FARMER(X), DONKEY(y), OWN(X, y)})--+ 
(0, {BEAT(X, y)}))}) 

For reasons of readability, we will sometimes write (0, {c/> 1, ... , cf>o}) as 
{c/> 1, ... , c/>n} and {c/>} as c/>, and leave off the outer brackets. With these con­
ventions, (127) can then be written as: 

(128) ({x, y}, {FARMER(X), DONKEY(y), OWN(X, y)}) ---> BEAT(X, y). 

Exercise 16* 

Write the DRSs for the (sequences of) sentences (a)-( c) of exercise 14, and 
the DRS for (d), which was the subject of exercise 15, in the linear notion of 
definition 1: ,+,::-, 
(a) A boy loves every girl. 
(b) Every boy loves every girl. 
(c) If John loves Mary, then she loves him. If she hates him, he hates her. 
(d) Exactly one boy walks in the park. He whistles. 

We now tum to the semantic interpretation of DRSs. We interpret DRSs in 
a model, just like formulas of an ordinary logical language. For the DRS lan­
guage treated here, extensional first-order models are adequate. Thus, a 
model M = (D, I) consists of a domain D and an interpretation function I. 
I interprets the individual constants and predicate constants in the usual way. 

Since the syntactic definition defines both conditions and DRSs, the seman­
tic definition also has to state the interpretations for the two kinds of expres­
sions. Two notions are defined simultaneously: 

I= M,gc/> Condition cf> is true in model M with respect to assignment g. 
hi=M,g<I> Assignment h is a verifying embedding for DRS <I> in 

model M with respect to assignment g. 

In terms of these two notions, the interpretation of conditions and DRSs is 
given by a simultaneous recursive definition. We use the following notational 
conventions: 

[t]M,g = IM(t) ift is an individual constant; 
= g(t) if t is a variable. 

h[x 1, ... , X0 ]g: Assignment h differs at most from assignment g 
in the values it assigns to the reference markers 
X1, ... , X0 • (For n = 0, this amounts to h =g.) 

Definition 2: 

(i) I= M,gP(tl, · · · , t 0 ) iff ([ti]M,g• · .. , [tn]M,g) E IM(P); 
(ii) I=M,gt = t' iff [t]M,g = [t']M,g; 
(iii) I= M,g •<I> iff for no h: hi= M,g <P; 
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(iv) I=M,g(<I> --+ 'I') iff for all h: if hi=M,g<I>, then there is a k such that 
ki=M,b 'I'; 

(v) I= M,g(<I> v 'I') iff there is some h such that hi=M,~<I> or there is some h 
such that hi= M,g 'I'; 

(vi) hi=M,g({xl, ... , X0 }, {c/>1, ... , c/>m}) iff h[xl, ... , X0 ]g & 
FM,hc/>1 & · · · & FM,hcf>m· 

In terms of the notion of a verifying embedding for a DRS, we define the 
notion of truth of a DRS: 

Definition 3: 

A DRS <I> is true in model M with respect to an assignment g, I=M,8 <I>, iff 
there is an assignment h such that hi= M,g<I>. 

Note that the notion of truth of a DRS implicitly plays a role in definition 2 in 
clauses (iii)-(v). Using the notion of truth of a DRS defined in definition 3, 
these clauses can be written more economically as: 

(iii') I= M,g-, <I> iff FF M,g <I>; 
(iv') I=M,g(<I>--+ 'I') iff for all h: if hi=M,8<I>, then I=M,h 'I'; 
(v') I= M,g( <P v 'I') iff I= M,g <I> or I= M,g 'I'. 

In words: a condition •<I> is true with respect to an assignment g iff the DRS 
<I> is false with respect to g; a condition <I> --+ 'I' is true with respect to g iff 'I' is 
true with respect to every assignment h which is a verifying embedding for <I> 
with respect to g; a condition <I> v 'I' is true with respect to g iff <I> is true with 
respect tog or 'I' is true with respect to g. 

The truth definition also makes it clear that the set of reference markers in a 
DRS fulfills the role of a quantification mechanism. A DRS ({x1, ... , X0 }, 

{c/> 1, ... , c/>m}) is true with respect to g iff there is some assignment h 
such that h differs at most from g with respect to the values it assigns to 
x1, ... , X0 and c/> 1, ... , c/>m are true with respect to h. This means that a 
DRS such as ({x, y}, {P(x), R(x, y)}) gets the same truth conditions as the 
predicate-logical formula 3x3y(P(x) 1\ R (x, y)). 

In case the set of reference markers of a DRS is empty, its truth conditions 
coincide with the truth conditions of its set of conditions. For example, ac­
cording to clause (vi) of definition 2, his a verifying embedding for (0, {Qx}) 
with respect tog iffh is an assignment which differs in no respect from g, i.e., 
iff h = g, and Qx is true with respect to g. In case Qx is false with respect to 
g, (0, {Qx}) has no verifying embedding with respect tog, and in case Qx is 
true with respect tog, g itself is the only verifying embedding for (0, {Qx}) 
with respect to g. According to definition 3, this means that the DRS (0, 
{Qx}) is true with respect to an assignment g iff the condition Qx is true with 
respect to g. In general it holds that I=M,8(0, {4>1, ... , cf>m}) iff I=M,gc/>1 

& · · · & I=M,gc/>m· 
To illustrate the working of definitions 2 and 3, we consider again the DRSs 
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(122) of the sequence of sentences John loves a girl that admires him. She 
loves him (too), and the DRS (127) of the donkey sentence Every farmer who 
owns a donkey beats it. First the interpretation of ( 129) ( = (122)): 

(129) ({x, y}, {JOHN = X, LOVE(X, y), GIRL(y), ADMIRE(y, X), 
LOVE(y, x)}) 

According to definition 3, DRS (129) is true (reference to an assignment can 
be omitted since ( 129) does not contain free occurrences of variables) iff there 
is some assignment h which is a verifying embedding for (129). According to 
clause (vi) of definition 2, this is the case iff there is some assignment h such 
that l=hJOHN = x, l=hLOVE(x, y), l=hGIRL(y), l=hADMJRE(y, x), and l=h 
LOVE(y, x). And according to clauses (i) and (ii), this is the case iff there is 
some assignment h such that h(x) = I(JOHN), (h(x), h(y)) E I(LOVE), h(y) E 
I( GIRL), (h(y), h(x)) E !(ADMIRE) and (h(y), h(x)) E l(LOvE). In other words, 
DRS (129) is true under exactly the same circumstances as the predicate­
logical formula (130), which is in turn equivalent to (131). 

(130) 3x3y(JOHN = X 1\ GIRL(y) 1\ LOVE(X, y) 1\ ADMIRE(y, X) 1\ 

LOVE(y, x)) 

(131) 3y[GIRL(y) 1\ LOVE(j, y) 1\ ADMIRE(y, j) 1\ LOVE(y, j)] 

As our second example, we consider the interpretation of the DRS (132) 
(= (127)) corresponding to donkey sentence (103): 

(132) (0, {(({x, y}, {FARMER(x), DONKEY(y), OWN(X, y)})-> 
(0, {BEAT(X, y)}))}) 

Since the set of markers of the main DRS of (127) is empty, its truth condi­
tions coincide with those of its only condition, (133) (= (126)): 

(133) ({x, y}, {FARMER(X), DONKEY(y), OWN(X, y)}) -> 
(0, {BEAT(X, y)}) 

According to clause (iv) of definition 2, (133) is true iff the consequent DRS 
(0, {BEAT(x, y)}) is true with respect to all assignments h that are verifying 
embeddings for the antecedent DRS ({x, y}, {FARMER(X), DONKEY(y), OWN(X, 
y)}). The truth of the consequent DRS (0, {BEAT(x, y)}), which has an empty 
set of markers, amounts to the truth of its condition BEAT(x, y). This means 
that the truth conditions for (133), and hence for (132), amount to the follow­
ing: for every assignment h, if h(x) E !(FARMER), h(y) E !(DONKEY), and 
(h(x), h(y)) E I( oWN), then (h(x), h(y)) E I(BEAT). In other words, the truth 
conditions of DRS (132) for the donkey sentence (117) are the same as those 
for its translation (134) (= (105)) in predicate logic. 

(134) 'fx'fy[(FARMER(X) 1\ DONKEY(y) 1\ OWN(X, y)] -> BEAT(X, y)] 
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It is DRT's interpretation of implication which takes care of the fact that a set 
of markers in the antecedent can bind occurrences of variables in the conse­
quent and which lends it its universal quantificational force. 

Exercise 17 

Determine the truth conditions of the DRSs of the (sequences of) sentences 
(a)-( c), and (d), from exercise 16, by applying definitions 2 and 3: 
(a) A boy loves every girl. 
(b) Every boy loves every girl. 
(c) If John loves Mary, then she loves him. If she hates him, he hates her. 
(d) Exactly one boy walks in the park. He whistles. 

Until now we have paid little or no attention to negation and disjunction of 
DRSs. We end this section with a few remarks about these operations. First 
we look at negation. Consider the following two sequences of sentences: 

(135) It is not the case that a man walks in the park. He whistles. 

(1 36) No man walks in the park. He whistles. 

In both cases we observe that the pronoun in the second sentence cannot be 
anaphorically linked to the terms a man or no man in the first sentence. This 
fact is taken care of in DRT. Using the box notation once more, the DRS con­
struction of the first sentence would lead to DRS ( 137): 

(137) 
X 

I man(x) 
walk in the park(x) 

This DRS has an empty set of reference markers and contains a single condi­
tion, the negation of the DRS that corresponds to a man walks in the park. If 
we add the second sentence to this DRS, we can get no further than the 
following: 

(138) 
X 

I man(x) 
walk in the park(x) 

he whistles 
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We cannot resolve the pronoun. ln the main DRS, no reference markers have 
been introduced. The set of markers inside the negation is not accessible. We 
can also look at this in the following way. Take the linear representation (139) 
of DRS (138), where we replace the pronoun by the marker x: 

(139) (0, {•({x}, {MAN(X), WALK IN THE PARK(X)}), WHISTLE(x)}) 

The occurrence of the marker x in the condition WHISTLE(x) is a free occur­
rence. The set of markers of the DRS to which it belongs is empty, and it is 
not in the consequent of an implication. The example is an instance of the 
general fact that terms in a negated sentence cannot enter into anaphoric rela­
tions with pronouns in subsequent sentences. 

In the second example, (136), we get an equivalent result. In the box nota­
tion, we would get the following DRS as its representation: 

(140) 

walk in the park(x) 

he whistles 

Once again, the pronoun cannot be resolved. And correspondingly, in linear 
representation (141), we find an occurrence of the marker x in the condition 
WHISTLE(x) which is not bound: 

(141) (0, {(({x}, {MAN(X)}) -> •(0, {WALK IN THE PARK(x)})), 
WHISTLE(X)}) 

Under this representation it is not negation as such that blocks anaphoric rela­
tions in (136) but rather the fact that terms within a conditional sentence can­
not enter into anaphoric relations with pronouns in subsequent sentences of 
the discourse. This means that in case of discourses (142)-(144), too, DRT 
correctly predicts that pronouns in the second sentence cannot be anaphorically 
related to terms in the first sentence: 

(142) Every man walks in the park. He whistles. 

(143) If a farmer owns a donkey, he beats it. He hates it. 

(144) No man walks in the park. He whistles. 

However, sometimes structurally similar discourses are OK: 

(145) Every player chooses a pawn. He puts it on square one. 

(146) If a client enters, you treat him politely. You offer him a cup of 
coffee and you ask him to wait. 
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In (145) and (146), the first sentence corresponds to a DRS that contains a 
condition that has the form of an implication. Correct representations of the 
meanings of (145) and (146) would result if the condition that corresponds to 
the second sentence were included in the consequent of the implication that 
corresponds to the first sentence. So it is not impossible to construct a DRS 
for these discourses, but the DRS construction process for the second sen­
tences has to be different from the normal procedure. The normal procedure 
would enter the second sentences in the main DRS, whereas in these cases we 
would enter them in the consequent DRS in the representation of the first sen­
tence. Further, one would have to explain why this procedure is not allowed 
for (142) or for many other cases. 

Similar observations can be made concerning double negation. In some 
cases, though not in all, we get anaphoric relations: 

(147) It is not the case that John doesn't own a car. It is red and it is 
parked in front of his house. 

DRT can not easily explain this; negation blocks anaphoric relations, and this 
feature of negation is not annihilated by double negation. 

Similar limitations in accounting for anaphoric relations can be observed 
with disjunctions. The interpretation of disjunction as it is given in definition 2 
prohibits anaphoric relations between a pronoun in the second disjunct and a 
term in the first. Hence, sentences like (148) and (149) cannot be accounted 
for by simply taking the disjunction of the two constituting sentences: 

(148) Either there is no bathroom here, or it is in a funny place. 

(149) Either John doesn't own a donkey, or he beats it. 

This fact is surprising, since these disjunctions seem to be simple variations of 
ordinary donkey sentences; donkey disjunction (149) is equivalent to our ear­
lier example (102). But there is no easy and straightforward way to improve 
the DRS language and its interpretation to get better results for these problem­
atic examples. 

Exercise 18* ,- 1-: 

Give DRSs for examples (14~]-(146) which correctly present their meaning. 

7.4.5 DRT and Compositionality 

One of the starting points of model-theoretic semantics is that meaning resides 
in truth conditions. The notion of truth of DRSs defined in §7 .4.4 provides 
truth conditions for DRSs, and in an indirect way, via their DRS reconstruc­
tion, truth conditions for natural language sentences and discourses. 

Consider the following pair of examples: 

(150) A man walks in the park. 
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(151) Not every man does not walk in the park. 

The DRSs corresponding to (150) and (151) are (152) and (153), respectively: 

(152) ({x}, {MAN(X), WALK IN THE PARK(X)}) 

(153) (0, {•(({x}, {MAN(x)}) ---* •(0, {WALK IN THE PARK(x)}))}) 

Using our abbreviation conventions, the latter can be written as: 

(154) •(({x}, MAN(X)) -*'WALK IN THE PARK(x)) 

Some calculation will show that (152) and (153) do indeed have the same truth 
conditions in DRT, just like the corresponding formulas in predicate logic. 
Hence, if we identify logical meaning with truth conditions, we should con­
clude that (150) and (151) have the same logical meaning. 

On the other hand, let us consider what happens if we follow each of the 
sentences (150) and (151) with the sentence He whistles. We then have the 
two following discourses (the first of which we met before; (155) = (92)): 

(155) A man walks in the park. He whistles. 

(156) Not every man does not walk in the park. He whistles. 

Clearly, there is a difference now. Only in case of (155) can we interpret the 
pronoun in the second sentence as anaphorically linked to a term in the first 
sentence. This fact is mirrored in the two DRSs (157) and (158) for discourses 
(155) and (156): 

(157) ({x}, {MAN(X), WALK IN THE PARK(X), WHISTLE(x)}) 

(158) (0, {•(({x}, {MAN(x)}) ---* •(0, {WALK lN THE PARK(X)})), 
WHISTLE(X)}) 

The latter can again be abbreviated: 

(159) {•(({x}, {MAN(x)})---* •WALK IN THE PARK(X)), WHISTLE(x)} 

While DRS (158) has an empty set of markers, the set of markers of (157) is 
the nonempty set {x}. It is precisely this difference which accounts for the fact 
that in (155) the pronoun in the second sentence can be anaphorically linked to 
the indefinite term in the first sentence, while such an anaphoric link is not 
possible in (156). Since in (158) the set of markers {x} is inside a condition in 
its set of conditions, it is unable to bind the variable x in another condition, in 
this case WHISTLE(x), in that set. 

So despite the fact that (150) and (151) have the same truth conditions, i.e., 
have the same logical meaning, the difference between (155) and (156) shows 
that they have a different role in discourse, a different 'discourse meaning'. 
Hence, to be able to account for this difference, it seems to be essential that 
sentences (150) and (151) correspond to different DRSs, with different dis­
course properties. 
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From this it is a small step to draw the conclusion that the level of discourse 
representation is an essential level in semantics. If the two DRSs (152) and 
(153) which correspond to the sentences (150) and (151) are different but their 
logical meaning is the same, it is only their difference inform, their difference 
as representations, that can account for their difference in discourse behavior. 
Associating DRSs to sequences of sentences by means of the DRS construc­
tion rules is then an essential element of semantic interpretation which cannot 
be eliminated. 

This conclusion is at odds with the principle of compositionality, the lead­
ing principle of Montague grammar. The situation we are confronted with is 
the following: DRT offers a noncompositional semantic theory which is able 
to account for certain empirical phenomena which, as we demonstrated in 
§7 .4.2, cannot be accounted for in the compositional semantics offered by 
Montague grammar. This seems to suggest rather strongly that cornposition­
ality has been refuted by the facts. 

But how can that be, since in chapter 6 we stressed the fact that composi­
tionality is a methodological principle rather than an empirical hypothesis? 

It is the principle of compositionality itself that points the way out of this 
dilemma. Consider again the two discourses (155) and (156) discussed above. 
The two discourses differ in meaning. They are both simple sequences of two 
sentences, and the second sentence is the same in both. Hence, since the 
meanings of the two discourses differ, compositionality dictates that the first 
sentences of (155) and (156) differ in meaning. But didn't we see that they 
have the same truth conditions? Then compositionality shows that their mean­
ing does not reside in their truth conditions. 

What notion of meaning can provide a means to make a difference between 
the two discourses? 

In a sense, the required notion of meaning is already implicit in definition 
2, in particular, in clause (vi), where the interpretation of DRSs is defined. 
For note that the basic recursive notion in the semantics of DRSs is that of an 
assignment h being a truthful embedding for a DRS with respect to an assign­
ment g. 

The notion of the truth of a DRS is not the basic recursive semantic notion 
in DRT; it is a derived semantic notion. In definition 3, the truth of a DRS is 
defined in terms of its embedding conditions. Truth is a global notion here; it 
is not the notion that oils the wheels of the definition of interpretation. For 
example, the truth of a condition of the form <I> ---* i' is defined in terms of the 
verifying em beddings of <I> and 'I' and not in terms of their truth conditions. 

Thus, what DRT-properly, i.e., compositionally, interpreted-really 
shows is that the meaning of a sentence or discourse cannot be identified with 
its truth conditions but rather resides in the embedding conditions of the DRS 
into which it translates. 

And indeed two DRSs may have the same truth conditions even when their 
embedding conditions differ. For example, the two DRSs (152) and (153), 
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which correspond to the opening sentences of discourses (155) and (156) and 
which have the same truth conditions, differ not only in form but also in their 
embedding conditions. 

So there is no need at all to draw the conclusion that we need a level of 
representation as an essential level of interpretation. There is no empirical 
reason to abandon compositionality. It is compositionality that leads the way 
to the conclusion that what we really need is a richer notion of meaning than 
that of standard semantics. 

What all this adds up to is that in principle, nothing stands in the way of a 
unification of DRT and Montague grammar into one grand compositional the­
ory of discourse meaning, as long as we properly interpret what is going on in 
DRT. We cannot discuss all the details of such a unification here. For one 
thing, DRT is a first-order extensional theory, while in Montague Grammar 
we use a higher-order intensional semantics. Again, this choice of logical 
framework is dictated by compositionality. So our unifying theory must ex­
tend discourse interpretation to such a higher order and intensional logic. 
Doing this is beyond the scope of this introduction. We will concentrate on the 
first-order case, just to show the way. 

We will do so by comparing, for a few simple examples, the semantic rep­
resentations in the DRS language with translations in first-order predicate 
logic. In this comparison, we concentrate on the question of to what extent 
these two ways of representation can be obtained by means of compositional 
processes. The answer to this question will be that sometimes DRSs can be 
obtained in a 'more compositional' way than the corresponding translations in 
predicate logic, but that in other cases, the DRS construction also leaves 
something to be desired. We will indicate a way to overcome this lack of com­
positionality in DRT, which will amount to returning to the language of first­
order predicate logic, interpreting it, however, in a different way. 

First we consider the simple donkey sentence (160): 

(160) If a man walks in the park, he whistles. 

Its translation (161) in predicate logic and the corresponding DRS (162) differ 
essentially in structure: 

(161) 'v'x((MAN(X) 1\ WALK IN THE PARK(X))-+ WHISTLE(X)) 

(162) (0, {({x}, {MAN(X), WALK IN THE PARK(x)})-+ 
(0, {WHISTLE(x)})}) 

From a compositional point of view, DRS (162) is a far better representation 
of sentence (160) than formula (161). The two sentences a man walks in the 
park and he whistles, from which sentence (160) is built up, can be recovered 
in DRS (162) as the sub-DRSs ({x}, {MAN(x), WALK IN THE PARK(x)}) and 
(0, {WHISTLE(x)}). This is not the case for the predicate-logical translation 
(161). In fact, a compositional translation of sentence ( 160) in predicate logic 
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(163) 3x(MAN(X) 1\ WALK lN THE PARK(x))-+ WHISTLE(X) 

But of course (163) is not an appropriate translation of (160). The variable in 
the consequent is not bound by the existential quantifier in the antecedent; 
(163) is not equivalent to the correct but noncompositional translation (161). 
We have seen that the interpretation of the relation of implication in DRT en­
sures that the set of markers in the antecedent has binding force over variables 
in the consequent. 

As a second example, let us consider once again the simple sequence of two 
sentences (164) (= (155) = (92)): 

(164) A man walks in the park. He whistles. 

This time, translation (165) (= (94)) in predicate logic and the corresponding 
DRS (166) (= (157)) have essentially the same structure: 

(165) 3x(MAN(X) 1\ WALK IN THE PARK(X) 1\ WHISTLE(X)) 

(166) ({x}, {MAN(X), WALK IN THE PARK(X), WHISTLE(X)}) 

Unlike the previous examp~,,,!he, ~2 sentences a man walks in the park and 
he whistles from which seJ!ieilce'rfM) is built up cannot be recovered in DRS 
(166) as sub-DRSs. For this to be the case, we would need an operation on 
DRSs, say A, that would tum two DRSs into a new one. If such an operation 
were available, sentence (164) could be represented more compositionally 
as (167): 

(167) ({x}, {MAN(X), WALK IN THE PARK(X)}) 1\ (0, {WHISTLE(x)}) 

In fact, the structure of (167) is like what the translation of (164) would be in 
predicate logic if we constructed it compositionally: 

(168) 3x(MAN(X) 1\ WALK IN THE PARK(X)) 1\ WHISTLE(X) 

But again, this formula does not give a correct representation of the meaning 
of(l64). 

To make sense of the conjunction of the DRSs in (167), we must add (169) 
as a clause to definition 1: 

(169) If <I> and 'IJr are DRSs, then (<I> A 'I') is a DRS. 

And we must add to definition 2 a clause presenting its interpretation. 
To find the interpretation of the operator A, we first look again at the inter­

pretation of DRSs. As we have seen, definition 2 defines the interpretation of 
DRSs in terms of the relational notion ht=M,g: 'his a verifying embedding of 
DRS <I> with respect to g'. What this amounts to is that we can take the inter­
pretation of a DRS to be a relation between assignments of values to reference 
markers. In ordinary predicate logic, where we define the notion of a formula 
as true with respect to an assignment, we can view the meaning of a for­
mula as a set of assignments: the assignments under which the formula is true. 
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assignments. For example, the set of pairs of assignments which is the inter­
pretation of the simple DRS ({x}, {Fx}) can be written as: 

(170) {(g, h) I h[x]g & h(x) E I(F)} 

Note that the order of the pairs in ( 170) is the reverse of that in the notion 
hi= M,g· The reason for this is that it makes sense to look at such pairs in input­
output terms. With respect to an input assignment g, the output of the proce­
dure of interpreting ({x}, {Fx}) is those assignments h which differ from gat 
most in that they assign an object to x such that the object belongs to the inter­
pretation of the predicate F. 

From this perspective, the task of finding an interpretation of <I> 1\ 'l' 
amounts to specifying the input-output relation of <I> 1\ 'l' in terms of the 
input-output relations associated with <I> and with 'l'. A candidate for the in­
terpretation of 1\ that suggests itself almost immediately is the following: If h 
is to be a possible output for <I> 1\ 'l' with respect to g as input, then there has 
to be some k such that k is a possible output for <I> with respect to g as input, 
and h is a possible output for 'It with respect to k as input. In terms of the 
notion hi=M,g of definition 2, this amounts to adding the following clause: 

(171) hi=M,g<I> 1\ 'l' iff there is some k such that ki=M,g<I> and 
hi=M,ki'. 

For example (164) this means that we can represent it by means of the con­
junction of DRSs (167). And under clause (171) for the interpretation of se­
quencing, the interpretation that ( 167) gets is the same as that of the original 
DRS (157). So we get the DRT way of interpreting sequences of sentences 
with an indefinite term in the first sentence and a pronoun in the second, but 
we can now represent it by means of a DRS in which the compounding sen­
tences of (164) are represented by sub-DRSs in (167). 

As our last example in discussing compositionality, we turn again to don­
key sentence (172) (= (103)): 

(172) Every farmer who owns a donkey beats it. 

Sentence (172) gets the same translation (174}(=(i05)) in predicate logic as 
(173) (= (120)), and both are represented by the same DRS (175) (= (127)): 

(173) If a farmer owns a donkey, he beats it. 

(174) \fx\fy((FARMER(X) 1\ DONKEY(y) 1\ OWN(X, y))-> BEAT(X, y)) 

(175) (0, {(({x, y}, {FARMER(X), DONKEY(y), OWN(X, y)})-> 

(0, {BEAT(X, y)}))}) 

As compared to the previous example, we find in this case a more dramatic 
breach of compositionality in the translation in predicate logic. Sentence 
(172) contains an indefinite term a donkey which normally translates as an 
existentially quantified phrase. In translation (174), however, we are forced to 
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associate it with universal quantification. Further, this quantifier has to be 
given wide scope over the implication as a whole, whereas the indefinite term 
a donkey occurs inside the relative clause which is part of the subject term of 
( 172) and hence from a compositional point of view should belong inside the 
antecedent. 

But similarly, no subexpression can be found in DRS (175) which corre­
sponds to the common phrase farmer who owns a donkey which forms a con­
stituent in sentence (172). And the same holds true for the intransitive verb 
phrase owns a donkey in sentence (173). A DRS that would correspond to the 
latter is (17 6): 

(176) ({y}, {DONKEY(y), OWN(X, y)}) 

To get from here to farmer who owns a donkey, we can use our new operator 1\: 

(177) (0, {FARMER(x)}) 1\ ({y}, {DONKEY(y), OWN(X, y)}) 

The verb phrase beats it can be associated with DRS (178): 

(178) (0, {BEATS(X, y)}) 

What we need now is an operation to combine DRS (177), which corresponds 
to the common noun phrase of sentence (172), with DRS (178), which corre­
sponds to its verb phrase. This operation has to turn these two DRSs into an 
implication which has (177) as its antecedent and (178) as its consequent. 
Moreover, the reference marker x should get bound, i.e., the antecedent 
should in addition contain a set of markers {x}. DRS (179) would do, in the 
sense that it would get the right interpretation; it has the same embedding con­
ditions as the original DRS (133): 

(179) (({x}, {FARMER(x)}) 1\ ({y}, {DONKEY(y), OWN(X, y)}))-> 
(0, {BEAT(X, y)}) 

But this result can only be obtained by replacing the empty set in the first 
conjunct of (177) with the set {x}. This is a kind of syntactic maneuvering 
which is, to say the least, hard to interpret semantically. It is not the kind of 
move that is allowed in a compositional framework. It forces you to break into 
a structure that has already been built up. It would be preferable if we could 
simply prepose {x} to the antecedent: 

(180) {x}((0, {FARMER(x)}) 1\ ({y}, {DONKEY(y), OWN(X, y)})) -> 
(0, {BEATS(X, y)}) 

But this is not in accordance with clause (vi) of definition 1 of the syntax of 
DRSs and conditions. According to that clause, the set of markers {x} should 
combine with a set of conditions and not with a DRS. 

In fact, the moment we can connect a set of markers with a DRS to form a 
new and more complex DRS, we can define an iterative notion of quantifica­
tion, connecting a singleton set {x} to a DRS, instead of the noniterative no-
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tion of definition I, which in one step combines a set {x 1, ••• , X0 }, 'for 
n ;;::. 0, to (a set of) conditions. The latter was needed in definition 1 because 
adding a set of markers changes syntactic status: it turns conditions into 
DRSs. An iterative notion of DRS quantification applies a singleton set {x} to 
a DRS <1>, which results in a DRS {x}<l>, to which another singleton set, say 
{y}, can in turn be preposed, resulting in {y}{x}<l>. Of course, if quantification 
is defined in this way, we can just as well return to the familiar quantifier 3x 
and do away with sets of markers. 

It then makes sense to drop the syntactic notion of a condition altogether. 
(Or alternatively, to add an operation which turns a condition into a DRS; but 
we will choose the former option here.) Then we no longer need sets of condi­
tions; we replace them with conjunctions of DRSs, using the notion of con­
junction already defined. 

What all this amounts to is that the syntax of DRSs can be made identical to 
the syntax of ordinary first-order predicate logic. With one exception so far, 
we still lack the universal quantifier; but we shall see that it can be introduced 
and defined in terms of the existential quantifier and negation in the usual way. 

To get the effects of DRT, we only have to adapt the semantics. Instead of 
defining the notion of 'formula <P is true with respect to assignment g', we 
define the notion 'assignment h is a verifying embedding for a formula <P with 
respect to assignment g'. The system that thus results is called dynamic predi­
cate logic. (See Groenendijk and Stokhof l988a, 1990 for a more detailed 
introduction.) 

We then arrive at the following definition for the semantic interpretation of 
dynamic predicate logic (DPL). 

Definition 4: 

(i) hF= M,gP(tl, ... , tn) iff h = g and ([tl]M,h• ... , [tn]M,h) E fM(P) 
(ii) hFM,gt = t' iff h = g and [t]M,h = [t']M,h; 
(iii) hF= M,g•<P iff h = g and there is no k such that kF=M,h<P; 
(iv) hF=M,g(<P 1\ t/1) iff there is a k: kl= M,g</> and hi= M,kt/J; 
(v) hF=M,g(</>-> t/J) iffh = g and for all k: ifkF=M,h<f>, then there is aj such 

that j I= M,k t/J; 
(vi) hF=M,g(</> v t/J) iffh = g and there is a_!<: ki=M,h<P or ki=M,htfl; 
(vii) hF=M,g3x<P iff there is a k such that k[x]g and hi= M,k<P; 
(viii) hF=M}fx<P iff h = g and for all k: if k[x]h, then there is a j such that 

jFM,k<f>· 

Clauses (i)-(iii) and (v)-(vi) are essentially the same as in definition 2. 
Clause (iv) introduces DRS conjunction as it was discussed above. In (vii) we 
find the iterative notion of DRS quantification. Clause (viii) introduces a new 
feature, universal quantification. As we already indicated, Vx<P can be defined 
in the usual way as •3x•<f>. As the reader can verify, the following holds: 

(181) For all M, g, and h: hF=M,gVx<P iff hF=M,g•3x•<f>. 
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The formulas Vx<P and •3x•<P are semantically equivalent in the strong sense 
that they have the same embedding conditions. It should be noted, though, 
that the existential quantifier cannot be defined in terms of negation and the 
universal quantifier: 3x<P and •Vx•<P are not equivalent in the strong sense 
that they have the same embedding conditions. For example, the formulas 
3xFx and •Vx•Fx are assigned the following embedding conditions by defi­
nition 4: 

(182) hF=M,g3xFx iff h[x]g and h(x) E I(F). 

(183) hF=M,g•Vx•Fx iffh = g and for some k such that k[x]h: k(x) 
E I(F). 

In both cases it is required that some individual belong to the interpretation of 
F. But in (182), output assignments h will possibly differ from gin that they 
assign such an individual to x, while in (183) input and output assignments are 
required to be the same. 

This makes all the difference if we add a new conjunct which contains the 
same variable x again, say Gx, to each of the two formulas. The resulting 
formulas: 3xFx 1\ Gx and •Vx•Fx 1\ Gx, get the following embedding 
conditions: 

(184) hF= M,g3xFx 1\ Gx iff h[x]g and h(x) E I(F) and h(x) E I( G). 

(185) hF= M,g...., Vx •Fx 1\ Gx iff h = g and for some k such that k[x ]h 
k(x) E I(F), and h(x) E I(G). 

In case of (184), we find that the variable x in the second conjunct is still 
bound by the existential quantifier in the first conjunct. That is, we find that 
3xFx 1\ Gx has the same embedding conditions as 3x(Fx 1\ Gx). In fact, the 
following holds in DPL: 

(186) For all M, g, and h: hF=M,g3x<P 1\ t/1 iff hi= M,g3x(<f> 1\ t/1). 

In ( 185), however, the variable in the second conjunct Gx is not bound by the 
universal quantifier. Condition (185) requires that h(x), which must be the 
same as g(x), is an element of I( G). 

Of course these facts are in accordance with our discussion earlier in this 
section of the difference between the two discourses (187) (= (164)) and (188) 
(= (156)): 

(187) A man walks in the park. He whistles. 

(188) Not every man does not walk in the park. He whistles. 

These two discourses translate into the following two DPL formulas: 

(189) 3x(MAN(X) 1\ WALK IN THE PARK(X)) 1\ WHISTLE(X) 

(190) •'r/x(MAN(X) ->•WALK IN THE PARK(X)) 1\ WHISTLE(X) 
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As we have just seen, the first conjuncts of ( 1 89) and ( 1 90) are not equivalent 
in DPL, precisely because the existential quantifier in ( 189) has binding force 
over the second conjunct of (189) as well. In DPL, (189) is equivalent to (191): 

(191) 3x(MAN(x) 1\ WALK IN THE PARK(X) 1\ WHISTLE(X)) 

This does not hold for (190). 
Of course the truth conditions for the first conjuncts of ( 189) and (190) are 

the same, even though their full meaning is different. The truth definition re­
mains essentially the same as it was in DRT: 

Definition 5: 

A formula cf> is true in a model M with respect to an assignment g, F= M,gc/>, iff 
there is an assignment h such that hF= M,gc/>· 

Returning to our two simple examples again, given the embedding conditions 
(182) of 3:xFx and (183) of--, \fx •Fx, it can easily be checked that their truth 
conditions are the same according to definition 5. In fact, it holds quite gener­
ally that: 

(192) For all M and g: F=M,g3xcf> iff F=M,g •\fx•cf>. 

Another important fact about DPL is related to the interpretation of donkey 
sentences. Formulas (196), (197), and (198) are the DPL translations of don­
key sentences (193), (194), and (195), respectively(= (160), (172), (173), 
respectively): 

(193) If a man walks in the park, he whistles. 

(194) Every farmer who owns a donkey beats it. 

(195) If a farmer owns a donkey, he beats it. 

(196) 3x(MAN(X) 1\ WALK IN THE PARK(X)) ~ WHISTLE(X) 

(197) \fx((FARMER(X) 1\ 3y(DONKEY(y) 1\ OWN(X, y))) ~ 
BEAT(X, y)) 

(198) 3x(FARMER(X) 1\ 3y(DONKEY(y) 1\ OWN(X, y))) ~ BEAT(X, y) 

Of course (196)-(198) would not do as translations in ordinary predicate 
logic. The essential fact which determines their correctness as translations in 
DPL is best illustrated by the simplest of the three examples. Formula (196) is 
an implication with an existentially quantified antecedent and a consequent in 
which a 'free' variable occurs. In fact, the variable isn't free at all in DPL; it is 
bound by the existential quantifier in the antecedent. Since we have a univer­
sal quantifier at our disposal, this fact can be stated in the following way. In 
DPL formula (196) has exactly the same interpretation as (199), which is the 
usual translation of donkey sentence (193) in predicate logic: 

(199) \fx((MAN(X) 1\ WALK IN THE PARK(x)) ~ WHJSTLE(x)) 
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Quite generally, we have the following equivalence: 

(200) For all M, g, and h: hF= M,g3xcf> ~ l/J iff hF= M,g \fx( cf> ~ l/J). 

Unlike in predicate logic, the equivalence of 3xcf> ~ l/J and \fx(cf> ~ l/J) holds 
irrespective of whether or not l/J contains free occurrences of x. Of course ac­
cording to (200), formulas (197) and ( 198) are equivalent as well, and further, 
they are equivalent to (201), which is their correct translation in ordinary 
predicate logic: 

(201) \fx\fy((FARMER(X) 1\ DONKEY(y) 1\ OWN(X, y)) ~ BEAT(X, y)) 

We end this section with the remark that apart from offering a more orthodox 
logical system which provides a better tool for compositional semantic analy­
sis of natural language discourses, DPL and DRT have the same empirical 
impact. In particular, the problematic cases of anaphoric relations discussed at 
the end of §7.4.4 are equally problematic in the DPL framework. One needs 
an essentially richer dynamic semantics, a more dynamic semantics, to handle 
these problematic phenomena. (See Groenendijk and Stokhof 1988a.) 

Exercise 19* 

Consider again example (96), which was discussed in §7.4.2 and is the sub­
ject of exercise 15: 

Exactly one boy walks in the park. He whistles. 
Give a correct translation of (96) in (i) predicate logic; (ii) in the DRS lan­
guage of definition 1; (iii) in dynamic predicate logic. Compare (i)-(iii) with 
respect to their 'degree of compositionality'. 

Exercise 20* 

Consider the following alternative for the semantic interpretation of 
disjunction: 

hF=M,gc/> v t/1 iffhF=M,gc/> or M=M,gt/1 

(i) Discuss the differences between this interpretation of disjunction and its 
interpretation as given in clause (vi) of definition 4. 

(ii) Is it possible to account for examples (148) and (149) of §7 .4.4 under 
this interpretation of disjunction? 

(iii) Try to find a typical example of a sequence of sentences which exhibits 
the kind of anaphoric relation that can be accounted for on the basis of 
this alternative interpretation of disjunction. 

Exercise 21 * 
In ordinary predicate logic, it is possible to start from a minimal set of con­
nectives and quantifiers and to define the others in terms of them. For ex­
ample, 1\, v, and 3 can be defined in terms of--,, \f, and ~. Determine such 
a minim~] ~P.t fnr ilvn~mlr- nr&:~>Alro"l.f-~ 1...-...rr.:"" 
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Exercise 22 * 
Several notions of entailment are feasible for dynamic predicate logic (and 
DRT). Consider the following three alternatives: 

(a) cp I= at/1 iff for all M,g and h: if hi=M,gc/> then hi=M,g"'· 
(b) cp i=bt/J iff for all M,g: if I=M,gc/> then I=M,gt/1-
( c) cp I= co/ iff for all M, g and h: if hi= M,g cp then I= M,h t/J. 

(i) Determine for which of these three notions of entailment it holds that: 
3x.Fx I= Fx; 3xFx I= 3yFy. 

(ii) Determine for which of the three notions it holds that: 
cp I= t/1 iff I= cp-> t/J. 

(iii) In ordinary predicate logic, the entailment relation is reflexive and tran­
sitive. Does this hold for the three notions defined above? If not, present 
a counterexample. 

7.4.6 Conclusion 

The main conclusions to be drawn from the foregoing discussion are the fol­
lowing. First of all, it has been amply shown that the change of DRT from a 
static and sentential toward a dynamic and discourse semantics is a very suc­
cessful move. Second, we have seen that some of the distinctive features of 
DRT, the unorthodox DRS language and in particular its postulate of an inter­
mediate level of semantic representation between natural language syntax and 
semantic interpretation, are not necessary ingredients for its empirical suc­
cess. Instead we can use the language of first -order predicate logic interpreted 
in the usual compositional manner, if only we use a richer dynamic notion of 
meaning. 

Dynamic predicate logic is not simply a more orthodox notational variant of 
DRT; it enables us, to the extent that this is possible in a first-order language, 
to get straightforward compositional translations of the sentences that ex­
emplify the empirical import of DRT. 

Since DPL is an orthodox compositional logical framework, it does not 
seem to be a major task to transfer its dynamic interpretation to higher-order, 
intensional languages such as the one used in Montague grammar, thus aiming 
at a unification of discourse representation theory and Montague grammar. 

And Montague grammar may also benefit from such an undertaking. It was 
shown in §7.4.2. that the mechanism of the quantification rules is not ade­
quate to deal with the anaphoric relations to which DRT addresses itself. In 
fact, the DPL translations we get for donkey sentences and the DPL treatment 
of other anaphoric relations inside and outside sentence boundaries strongly 
suggest that we do not need the quantification mechanism to account for 
anaphoric relations. The translations DPL offers look like the ones we get on a 
direct construction, where the proper bindings are established by the dynam­
ics of the interpretation mechanism instead of by the mechanism of quantifica-
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tion rules. This robs the latter of one of their two functions: accounting for 
anaphoric relations. The sole function of the quantification rules that remains 
is accounting for scope ambiguities. (But as we indicated in §6.6, alternatives 
have been developed that deal with scope ambiguities in a different way as 
well.) 

Let us finally remind the reader that the kinds of phenomena that have been 
studied in the DRT framework are not limited to what has been the main focus 
here, viz., anaphoric relations. A first example of another field of application 
is studies of tense and aspect. In Hinrichs 1986, Kamp 1981a, Kamp and 
Rohrer 1983, and Partee 1984a, it is argued that the role of tense and aspect in 
discourse is an important aspect of the semantics of tense and aspect, and that 
the dynamic approach to meaning sheds a new light on their analysis. 

Another phenomenon that has been approached within the DRT framework 
is the semantic analysis of belief sentences and other propositional attitude 
reports. In Asher 1986, 1987 and Zeevat 1987, it is argued that the representa­
tional philosophy behind DRT provides a better means to deal with many of 
the long-standing problems in this field. So, this is an area where the represen­
tationalism of DRT is considered to contribute positively to our understanding 
of the phenomena in question. 

Besides tense and aspect and propositional attitudes, other phenomena have 
also been addressed in DRT, such as the discourse impact of many other terms 
and determiners besides the small group discussed above and more complex 
anaphoric relations in intensional contexts. (See Kadmon 1987; Roberts 1987, 
1989; van Eyck 1985.) 



Solutions to Selected Exercises 

Chapter 2 

Exercise 1 

(a) <>•p 1\ •D•p 
(b) <>p---> D<>p 
(c) <>(<>p---> p) 
(d) <>Dp ---> Dp 
(e) <>p 1\ <>Dp 
or: <>p 1\ <>D<>p 

Exercise 2 

key: p: you understand me. 
key: p: it is raining 
key: p: it is raining 
key: p: it is raining 
key: p: it is raining (this = it is raining) 
key: p: it is raining (this = it may be raining) 

(a) (i) in w 1: Vw,(Dp) = 0 because Yw2(p) = 0 and w 1Rw2 • So it follows 
that vw,(Dp---> DDp) = 1; in Wz: Vw,(Dp) = 1, for VwJP) = 1 and 
only WI is accessible from Wz, and vw2(00p) = 0 because VwJDp) 
= 0 and WzRWI. So vw,(Dp---> DDp) = 0. Since Vw,(Dp---> DDp) 
= 0, Dp---> DDp does not hold in M. 

(ii) in wl: vw,(•Dp) = 1 because VwJDp) = 0; in Wz: vw2(•0p) = 0 
because Vw,(Dp) = I. Thus, in model M, •Dp is not valid. 

(iii) Vw,(<>p) = 1 because Vw,(P) = 1 and w 1Rw 1 , and Vw,(<>p) = 1 be­
cause Vw,(P) = 1 holds and w2Rw 1 • This means that both VwJD<>p) 
= 1 and Vw,(D<>p) = 1 obtain, and hence both VwJP---> D<>p) = 1 
and Vw2(p---> D<>p) = 1. So, in M, p---> D<>p is valid. 

(b) (i) See the figure: 

w, o -----~.• w2 

p,q l ~p,q 
w3 ··------~ • W4 

p, -,q -,p, -,q 

(ii) 1. Vw,(q) = 1 implies that Vw,(Dq) = 1, because only w 2 is acces­
sible from w 1• 
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2. ·vw,~•(p- q)) = I implies Yw,(D•(p- q)) = I because only 
w3 rs accessible from w2 • 

3. Yw,(P 1\ q) = I implies that Yw,((p 1\ q) V (•p 1\ •q)) = I, 
and Yw.(•p 1\ •q) = I implies that Yw.((p 1\ q) v (•p 1\-, q)) 
= I. So Yw,(D((p 1\ q) v (•p 1\ •q))) = I, because only w 1 

and w4 are accessible from w3 • 

4. Yw,(P) = l, so Yw,(Dp) = 1, because only w3 is accessible from 
w2 , so Vw,C<>Dp) = l, because w 1Rw2 • 

5. Yw,(P) = 0, so Yw,(<>p) = 0, because only w 2 is accessible from 
w 1 , so Yw,C<>p A Oq) = o. 

(iii) l. Yw (Dp) = I iffw = w2 • Therefore Yw(<>Dp) = 1 iffw = w 1 or 
w = W 4 , because w 2 is accessible only from w 1 and w4 • From 
this it follows that Yw(<><>Dp) = I iffw = w3 , because both w 1 

and w 4 are accessible only from w 3 • So V w, ( <>Dp v <><>Dp) = 0 
and <>Dp v <><>Dp is not valid on M. 

2. Yw(Dp) = I iff w = w2 • Also: Yw,(•p) = l. So for all w E W, 
Yw(Dp - •p) = I. In M, Dp --+ 'P is valid. 

3. Yw,(P) = 1 and Vw,(<>p) = 0, since Yw (p) = 0 and only w2 is 
accessible from w 1 • It follows that V w, (p - <>p) = 0 and hence 
that Yw,((p- Op) 1\ (q- Oq)) = 0. In M, (p-Op) A (q ·-> 

Oq) is not valid. 
4. The formula p v •p is a tautology. So, Vw(<>(p v •p)) = I for 

all w E W for which there is a w' E W such that wRw'. On the 
other hand, Yw,(D(p v •q)) = 0, for Yw,(P v •q) = 0 and 
w 1Rw2 • From this it follows that Yw,(<>(p v •p)- O(p v•q)) 
= 0. So O(p v •p)- D(p v •q) is not valid in M. 

(iv) I. Suppose V~(Dp) = I for some wE Wand an arbitrary V' on the 
frame. This means that V~.(p) = I for all w' which are accessible 
from w. As there accessible worlds for any w, there will be such a 
w'. Hence V~.(Op) = I. So Dp- Op is valid on the frame. 

2. Suppose V~(<><>Dp) = I for some w E Wand an arbitrary V' 
on the frame. Then there are a w' and a w" such that wRw' 
w'R w", and V~ .. (Dp) = 1. To prove the validity of <><>Dp - p, i~ 
is sufficient to show that w"Rw must hold. (If this is true, V~(p) 
= I follows from V~.(Op) = I). This is indeed the case: 

if w = w 1, then it must be the case that w' = w2 and w" = w · 3• 

ifw = w2 , then it must be the case that w' = w 3 and w" = w4 

orw" = w 1; 

ifw = w3 , then it must be the case that w' = w 1 or w' = w4 

and w" = w2 ; 

ifw = W 4 , then it must be the case that w' = w2 and w" = w3 • 

In all these cases w''Rw holds, so <><>Dp - p is valid in the 
frame. 

Solutions to Selected Exercises 301 

Exercise 3 

(a) (i) Suppose M is a model with an underlying symmetric frame. Sup­
pose now that Yw(<>D</>) = 1. It must be shown that Vw(</>) = 1. 
From Yw(<>D</>) = 1 it follows that for some w' such that wRw': 
Yw.(D</>) = I. From the symmetry of R it follows that w'Rw. This 
fact, together with the fact that v w' (0</>) = 1' implies that v w ( </>) = 1. 

(ii) Suppose now that the relation R on a frame is not symmetric. Then 
there are worlds w 1 and w2 such that w 1Rw 2 , whereas w2Rw 1 does 
not obtain. Now on that frame we define a model by stipulating that 
Yw(P) = 1 if and only ifw2Rw. Then Yw,(Dp) = 1 and so Yw,(<>Dp) 
= l. However, Yw,(P) = 0, and so it follows that Yw,(<>Dp- p) = 
0. In this model, <>Dp- pis not valid. 

(b) We only give the outcomes. On frames, <><><><!> --+ </> corresponds to 
VwVv1Vvi(Rwv1 1\ Rv1v2) - v2 = w); <><><><><!> -</>corresponds to 
VwVv1Vv2Vv3((Rwv1 1\ Rv 1v2 1\ Rv2v3)- v3 = w). Then the generaliza­
tion to the case with arbitrary sequences <> 1 , ••• , <> n will be obvious. 

Exercise 7 

(a) p 1\ F•p 
(b) p 1\ Gp 
(c) Pp 1\ Pq 

(d) P(p 1\ Pq) 

(e) P(p A Fq) 
(f) (Fp v •Fp) 1\ (Fp- HFp) 
(g) Gq- Gp (or: Gq ..._.. Gp) 

Exercise 8 

(a) (i) See the figure: 

key: p: You are young. 
key: p: I am faithful to you. 
key: p: John reads War and Peace. 

q: Charles reads War and Peace. 
key: p: Mary enters in. 

q: John puts the whiskey bottle 
in the refrigerator. 

key: as in (d) 
key: p: A sea battle is fought. 
key: p: You are with me. 

q: I am really happy. 

-,p -,p 

(ii) I. Since Y1(•p) = I only in case t = t4 and t = t 5 , we need to deter­
mine Y1(FGp) for these values oft only. Now Y1,(Gp) = 1 be­
cause Y1.(p) = I and t6 is the only t later than t5 • Also Y1.(Gp) = 1 
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since there are not such that t6Rt. So V14(FGp) = 1 and V
15

(FGp) 
= 1 and •p -> FGp is valid in the model. 

2. Vt.(F•p) = 1 since V1/P) = 0 and t4Rt5 , but V1.(FF•p) = 0 
because •p is not true at t 6 • Hence F•p-> FF•p is not valid in 
the model. 

3. V1,(P•p ..... •p) = 0, since V1,(P•p) = 1 and V1.(•p) = 0. It 
follows that, for example, V1/G(P•p -> •p)) = 0 because 
t5Rt6 , and so G(P•p-> •p) is not valid on the model. 

4. V1,(p 1\ Gp) = 1, whereas V1.(Hp) = 0 because t5Rt6 and V1/P) 
= 0. It follows that (p 1\ Gp) -> Hp is not valid in the model. 

(b) (i) Validity of FG<P-> GF<f> in a frame F means with respect to the time 
axis T of F that if two points of time are later than a given point in 
time, there will always be a point in time which is later than the two 
points; i.e., iftRt 1 and tRt2 , then there is a t3 in T such that t 1Rt3 and 
t2Rt3 • ln other words, a configuration like figure a. can always be 
extended to a configuration as sketched in figure b. 

Assume first that this property holds for F and that V1 (FG<P) = 1 for 
some t E Tin a model on F. Then there is a t 1 E T such that tRt1 , 

and for every t' with t 1Rt' it is the case that V1.(</>) = 1. Now take an 
arbitrary t2 with tRt2 • As assumed, there is a t3 with t 1Rt3 and t2Rt3 • 

Since t 1Rt3 , V1,(</>) = 1, and because t2Rt3 obtains, V12(F</>) = 1 
holds. Since t2 was arbitrarily chosen with the property tRt2 , it fol­
lows that V1(GF<f>) = I. This means that if the given relational prop­
erty holds for F, FG<f>-> GF<f> is valid on every model in F. 

Suppose now that the property does not hold for F. Then there are 
points of timet, t 1 , t2 E T ofF such that tRt1 and tRt2 , whereas there 
is no t3 such that both t 1Rt3 and t2Rt3 • Now define a model on F 
by stipulating that V1.(p) = 1 iff t 1Rt'. Then V11 (Gp) = 1 and so 
V1(FGp) = 1. On the other hand, V12(Fp) = 0 because there is not' 
with t2 Rt' such that V1.(p) = 1. So V1(GFp) = 0. Hence FGp -> 
GFp is not valid in this model, and hence it also fails in F. 

(ii) Validity of G(<f> 1\ •</>) v FG(</> 1\ •</>) in a frame F means that on 
the time axis of the frame every point in time is followed by a final 
point (except for the latter point itself). We pointed out in the text 
that tis a final point in time iff V1(G(</> 1\ •</>)) = I. This implies 
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that V1(FG(<f> 1\ •</>)) = 1 iff t is followed by a final point and 
V1(G(</> 1\ •</>) v FG(</> 1\ •</>)) = 1 iff tis a final point or is fol­
lowed by one. 

(iii) Validity of PP</> -> P</> in a frame means that the accessibility rela­
tion R of the frame is transitive. To see this, suppose first that R is 
transitive and that V1(PP<f>) = 1. Then there will beat' and at" with 
t"Rt' and t'Rt such that Vf(</>) = 1. Since R is transitive, t"Rt also 
obtains and hence V/P</>) = I. So for every model in a frame with a 
transitive accessibility relation, PP<P -> P<f> is valid. 

Suppose now, on the other hand, that R is not transitive. In that 
case there are t", t', and t with t"Rt' and t'Rt, while t"Rt does not 
hold. Now define a model by stipulating that Vf(p) = 1; but V 
makes p false everywhere else. Then V1(PPp) = 1 indeed holds, 
whereas Y;(Pp) = 0. So PPp-> Pp is not valid in this model. 

Chapter 3 

Exercise 1 

Keys and domains will be left implicit in the following solution. Furthermore, 
we abbreviate H<P 1\ <P 1\ G<P as A<f> (always</>) and P</> v <P v.F<f> as E<P 
(sometimes <f>). It will be clear that A</> is equivalent to •E•</>, and E<P with 
•A•<f>. 
(a) OFWlw 
(b) O'v'x(Hx -> H3yAxy) 
(c) 03y'v'x(Hx-> HAxy.) 
(d) 'v'x'v'y(x =I= y -> OSxy) -> 'v'xO'v'y(x =I= y -> Sxy) 
(e) 'v'x(3y0AFxy 1\ 'v'yOEFxy A•O'v'yAFxy) 

(You is interpreted here as everyone. This is just one possible reading.) 
(f) 3x('v'y(Py <-+ y = x) 1\ GDx) 

(The present president will always be a democrat) 
and: G3x('v'y(Py <-+ y = x) 1\ Dx) 
(Whoever will be the president, he or she will be a democrat.) 

(g) 'v'x(Sx-> B(x, 3y(My 1\ Wyt))) (de dicto) 
3y(My 1\ 'v'x(Sx-> B(x, Wyt))) (de re) 
'v'x(Sx-> 3y(My 1\ B(x, Wyt))) (de re, but for every schoolboy possibly a 
different one) 

Exercise 4 

(a) We construct a counterexample to 'v'xO<f> -> O'v'x<f> in the figure. 
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D = D = D = {a b}· 1 (A) = 0, Iw (A) = {a}, Iw (A) = {b}. It is 
WI W2 W) ' ' WI 2 3 

clear that for arbitrary g, VM,w,,glxiaJ(Ax) = 1 and hence VM,w,,glxial(<> Ax) 
= 1. Also VM,w,,g(x/bj(Ax) = 1 and consequently vM.w,,g(x/bj(<> ~x) = 1. 
So it follows that VM.w,,g('Vx<>Ax) = 1. On the other hand, smce both 
vM.w,('VxAx) = 0 and vM,w,C'VxAx) = 0, vM,w,C<>'VxAx) = 0. So 
Vx<>Ax-+ <>'VxAx is not valid in M. 

(b) Suppose that M satisfies the assumption of decreasing domains and that 
VMw(<>3xcp) = 1. In order to show that (64) is valid in M we must 
no~ show that VM.w(3x0cp) = 1. Take an arbitrary g. The fact that 
V (03x,~-) = I means that for some w' with wRw', it is the case that M.w.g 'I" 

VM,w',g(3xcp) = 1, and so VM.w',glxldl(cp) = 1 is the case for some dE Dw'· 
Since M satisfies the assumption of decreasing domains, it is also true that 
dE Dw. This means that VM,w.g(x/dj(Ocp) = I, and hence vM.w,g(3x0cp) = 1. 

If M does not satisfy the assumption of decreasing domains, then there 
are worlds wand w' where wRw', with an entity d such that dE Dw' and 
d E Dw. Now set g(y) = d. Then VM.w',glxldl(x = y) = 1, and hence 
V , (3x(x = y)) = 1 and VM w (03x(x = y)) = 1. On the other hand, 
M~· '. ' ford' E Dw (which is always distinct from the above d) and wRw, the 

value VM,w'.glxld'l(x = y) is always 0 or undefined. So VM,w,g(xld'l(<>(x = y)) 
= 0. From this it follows that VM,w,g(3x<>(x = y)) = 0, and hence 
VM,w,g(03x(x = y)-+ 3x0(x = y)) = 0. 

Exercise 5 

(a) We define a model Mas follows: W = {w 1 , w2}; R = {(w 1 , w2)}; D = 
{a, b}; Iw,(E) ={a}; Iw,(E) ={a, b}; Iw,(A) = Iw,(A) ={a}. We shall show 
that VM,w,('Vx(Ex-+ OAx)-+ O'Vx(Ex-+ Ax)) = 0. For an arbitrary as­
signment g, VM,w,.g(x/bj(Ex) = 0 holds, and so VM,w,,g(x/bj(Ex-+ DAx) = 1. 
Also VM,w,.g[x/aj(Ax) = 1 obtains, and so vM,w,.g(x/aj(OAx) = 1 and 
VM,w,.g[xlal(Ex-+ DAx) = 1. Therefore VM,w,,8 ('Vx(Ex-+ DAx)) = 1. On the 
other hand, VM,w,,g('Vx(Ex -+ Ax)) = 0, whence VM,w,.g(D'Vx(Ex -+ Ax)) 
= 0, which is what we wanted. 

(b) In a model M, (78) holds iff existence in M is increasing, that is, if wRw' 
implies that Iw(E) ~ Iw.(E). Suppose first that the latter condition is met, 
and let VM,w.g(Ex) = 1. This means that g(x) E Iw(E). Because of Iw(E) ~ 
Iw.(E), g(x) E lw·(E) will hold for all w' with wRw', i.e., VM,w',g(Ex) = 1. 
This proves that VM,w,g(DEx) = 1. Since g was chosen arbitrarily, it fol­
lows that VM wC'Vx(Ex -+ DEx)) = 1. Now assume that VM,w('Vx(Ex -+ 
OEx)) = 1 ~d let wRw', dE Iw(E). It suffices to show that dE Iw-(E) 
holds as well. Now VM,w.g(xldJ(Ex -+ DEx) = 1. From d E Iw(E) it also 
follows that VM,w,g(x/d](Ex) = 1, and thus vM,w.g(x/d](OEx) = 1. But this 
means that VM,w',g[x/d](Ex) = 1 and so d E Iw.(E). 
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Chapter 4 

Exercise I 

(a) (i) no; (ii) no; (iii) yes, type (e, t); (iv) yes, type t; (v) yes, type t; (vi) 
no; (vii) yes, type t; (viii) yes, type t 

(b) (i) c.(M) must be of type (e, t), since j is of type e, so a = «e. t), 
(e, t)). 

(ii) M(j) is of type t, so a= (t, t). 
(iii) S(M) is of type (e, t), so a is e. 
(iv) Again, a = e, sob = (t, t). 
(v) Because c. is applicable to S, a= (((e, t), (e, t)), a'), for some type 

a'; since c.(S), being of type a', is applicable toM, a' = ((e, t), a") 
for some type a"; then b = (a", t) for the same type a". So here we 
don't have a unique solution. 

Exercise 2 

j: John; h: Harry; m: Mary; s: the salami; c: the couch; M: sleep; S: slice; R: 
sit; T: soundly (type ((e, t), (e, t))); C: carefully (type ((e, t), (e, t))); c

1
: 

presumably (type (t, t)); c2: do (type ((e, t), (e, t))); c3 : wrong, (in (d), type 
(((e, t), (e, t)), ((e, t), (e, t)))); c4 : on (type (e, ((e, t), (e, t)))); c

5
: between 

(and), (type (e, (e, ((e, t), (e, t))))); 'W: wrong (in (e), type ((e, t), t)). 
Translations: 
(a) (T(M))(j) 
(b) c1(M(j)) 
(c) (C(S(s)))(h) 
(d) 'Vx(•3Y(ciY)(x)) -+ •3Y(c3 (c2)(Y)(x))) 
(e) 'Vx(•3Y(ciY)(x)) -+ •3Y(c2(Y)(x) 1\ 'W(Y))) 
(f) ((c4 (c))(R))(m) 
(g) ((c5(j)(h))(R))(m) 
(h) ((c5(j)(h))((c4(c))(R)))(m). 

Exercise 4 

(a) l(ei) = P1; l(e2) = P2; I(e3) = P3 ; l(M)(P1) = 1; I(M)(P2) = 1; I(M)(P
3

) = 
0; I(A)(P1) is the function f 1 such that f 1(P1) = 0, f

1
(P2) = f1(P3

) = 1. 
I(A)(P2) is the function f2 such that fiP1) = f2(P2) = f2(P3) = 0. I(A)(P

3
) 

is the function f3 such that f3(P1) = 0 and f3(P2) = f3(P3) = 1. I(cg) (f.) = 
1 iff X =t= 0, X =t= {f1}. I(T)(f.)(y) = 1 iff (f.)(y) = 0. 

(b) (i) This formula expresses that there is a point with arrows to two 
points, one of which is encircled, while the other one is not en­
circled. This holds for P1 , so the sentence is true. The interpretation 
can be worked out with the help of definition 4, as follows: 
Set g(x) = P1; g(y) = P2; g(z) = P3 • By this choice, I(A)(g(y))(g(x)) 
= 1 and I(A)(g(z))(g(x)) = 1, so [A(y)(x)]M,g = [A(z)(x)]M,g = 1. 
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Further, I(M)(g(y)) = I, so [M(y)]M,g = 1 and I(M)(g(z)) = 0, so 
[M(z)]M,g = 0 and [•M(z)]M,g = 1. From this and the preceding 
facts it follows that [A(y)(x) 1\ M(y) 1\ (A)(z)(x) 1\ •M(z)]M,g = 1, 
and thus it follows that [3x3y3z(A(y)(x) 1\ M(y) 1\ A(z)(x) 1\ 

•M(z))]M,g = 1. 
(ii) This formula expresses that an arrow is going from a point to itself if 

and only if it is not encircled. This is true because there is an arrow 
from P3 to P3 itself, and P3 is the only point that is not encircled. 

This can be worked out as follows: [A(x)(x)]M,gfxiP.J = 
[A(x)(x)]M,gfx/P

2
J = 0 and [A(x)(x)]M,gfxiP,J = 1. Furthermore: 

[•(M(x))]M,gfxiP.J = [•(M(x))]M,gfxiP
2
J = 0 whereas [•(M(x))]M,gfxiP,J 

= 1. Hence, [A(x)(x) ~ •M(x)]M,gfxidJ = 1 for all d E D, which 
means that [\fx(A(x)(x) ~ •M(x))]M,g = 1. 

(iii) This formula expresses that from every point with an arrow going to 
the point itself there is also an arrow going to an encircled point. 
This is true: P3 is the only point with an arrow going to itself, and 
from P3 there is an arrow going to P2 , which is an encircled point. 

This can be worked out as follows: we have [A(x)(x)]M,gfxiP,J = 0 
and [A(x)(x)]M,gfx/P

2
J = 0, whereas [A(y)(x)]M,gfxiP,][yiP

2
J = 1 and 

[M(y)]M,gfxiP,Jfy/P
2
J = 1. From the latter two results it follows that 

[3y(A(y)(x) 1\ M(y))]M,gfxiP,J = 1, and also that [A(x)(x) -+ 
3y(A(y)(x) 1\ M(y))~M,glxJP,J = I. From the first two results we ob­
tain [A(x)(x) -+ 3y(A(y)(x) 1\ M(y))]M,gfxiP.J = l, fori = 1, 2. 
Hence [\fx(A(x)(x) --> 3y(A(y)(x) 1\ M(y))]M,g = 1. 

(iv) This formula means that every subset of the domain contains an ele­
ment. This is not true: the empty set contains no element. More for­
mally, take g(X) to be the characteristic function of 0, i.e., that 
function on the domain which assigns the value 0 to all three points. 
Then [X(x)]M,gfxiP,J = g(X)(g[x/PJl(x)) = g(X)(P1) = 0, and also 
[X(x)]M,gfxJP

2
J = [X(x)]M,gfxiP,J = 0. This implies that [3xX(x)]M,g = 

0, and so [\fX3xX(x)]M = 0. 
(v) This formula expresses that if a set of points does not contain en­

circled elements, it either contains an element with an arrow point­
ing to itself or it is the empty set. This is true: a set without encircled 
elements can only be {P3} or 0. This can be worked out as follows: it 
suffices-on the assumption that [\fy(M(y)-+ •X(y))]M,gfXJCJ = 1, 
for some arbitrary C in the domain-to show that [3y(X(y) 1\ 

A(y)(y)) v •3yX(y)]M,g[X/C] = 1. 
First we show that C does not contain P1 or P2 , that is, that 

[X(y)]M,g[Xtc][ytP,J = [X(y)]M,grx;cJ[ytP
2
J = 0. For instance, suppose 

that [X(y)]M,giXtCJ[ytP.J = 1; then it would follow that 
[•X(y)]M,gfXtc][ytP,J = 0, and consequently, given our assumption, 
[M(y)]M,g[XtCJ[ytP,J = 0, and so l(M)(g[X/C] [y!PJl(y)) = l(M)(P1) = 
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0 which contradicts our assumptions. Now there are two possibil­
ities: (a) [X(y)]M,gfX/ClfyiP,J = 0; or (b) [X(y)]M,gJXiCJJytP,J = I. In (a), 
[3yX(y)]M,g[XIcJ = 0, and so [•3yX(y)]M,g[XICJ = l. Because, in (b), 
[A(y)(y)]M,g[Xtc][y/P,J = 1, and also [X(y) 1\ A(y)(y)]M,g[XtClfytP,J = 1; 
so [3y(X(y) 1\ A(y)(y))]M,g[XICJ = 1. In both cases, [3y(X(y) 1\ 

A(y)(y)) v •3yX(y)]M,g[X/C] = 1. 
(vi) This formula asserts that there is a set such that both the set and its 

complement contain encircled points. This is true. Take {P1}, for ex­
ample. Both {P1} and {P2 , P3} contain an encircled point. This is 
worked out as: I('jg )(f{P,l) = I('jg)(f{P,.P,/) = I; I(T)(f{P,}) = f{P

2
.P,/. Set 

g(X) = f{P,/; then both [<jg(X)]M,g = 1 and [T(X)]M,g = f{P
2
,P,} hold, 

and so [<jg(T(X))]M,g = 1. With this [<jg(X) 1\ 'jg(T(X))]M,g = 1 and 
finally [3X('jg(X) 1\ 'jg(T(X))]M,g = l. 

Exercise 5 

(a) The basic expressions obtain the following categories: 
CN: man, horse 
T: John, Peter 
T /CN: the, a(n) 
CN ICN: green, big, honest 
T\S: walk, swears 
(T\S)/T: eats, makes, curses 

(b) (i) predicate modifiers like softly, quickly, ... , e.g., swears softly 
(ii) prepositions like on, above, over, ... , e.g., on the horse 
(iii) possessive 's: e.g., John's horse 
(iv) the copula is: e.g., is honest. (There is a problem here: expressions 

like is honest and is green become of category T\S, so it should be 
possible to combine them with predicate modifiers, but this is not the 
case. In Montague grammar this problem is solved by 'duplication' 
of categories (see §6.2.11).) 

The complete context-free grammar is now: 
S ::} NP VP N ::} man, horse 
VP::} VP Adv Adv::} softly, quickly 

{ 

Y;"" Adv:::} P NP 
VP::} V" NP Vintr::} walks, swears 

Ycop Adj V trans:::} eats, makes, curses 

{ 

PropN Ycop ::} is 
NP ::} Adj ::} green, big, honest 

DetN 
PropN :::} John, Peter 
N::} Adj N 
P ::} on, above, over 

Det ::} the, a(n) 
Det ::} NP Poss 
Poss :::} 's 
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Exercise 8 

(i) no 
(ii) yes, t 
(iii) yes, (e, t) 
(iv) yes, (e, t) 
(v) yes, t 
(vi) yes, (e, ((e, t), t)) 
(vii) no 

Exercise 9 

(viii) yes, (e, t) 
(ix) no 
(x) yes, t 
(xi) yes, t 

(xii) no 
(xiii) yes, t 
(xiv) yes, t 

The key used in the following solution is: 
E: wash 9:!: healthy 
C: put M 1: lead to checkmate 
B: restore M 2 : possible 
F: have forgotten 'ffe 1: good 
G 1: have known 'ffe 2: bad 
G2 : know now L 1: grow 
c 1: always, type (t,t) L 2: glow 
c2 : again, type (t, t) M: human 
T: properly, type 

((e, (e, t)), (e, (e, t))) 
Sl: forwards 
Sz: backwards 
L: love 
'X: important 

The translations are: 
(a) 'X(A.x((T(E))(x)(x))) 
(b) 9J(A.x3y(L(y)(x))) 

Rl: perfect 
Rz: be (exist) 
q: queen 
m: Mary 

(c) A.UA.yA.x((S 1(U))(y)(x) v (S2(U))(y)(x)) (compare answer (d)) 
(d) M 1(A.x((S 1(C))(q)(x) v (S 2(C)}(q)(x))) 
(e) A.x(L 1(x) 1\ L2 (x) 1\ Vy(M(y) ~ c 1(c2(B(y)(x))))), taken as the set of ob­

jects satisfying the description (there is also a noun phrase reading, which 
is omitted here) 

(f) A.x3y(F(y)(x)) = A.x3y(G 1(y)(x) 1\ •G2 (y)(x)) 
(g) •M2(A.x(c 1(x = x))) 
(h) A.xR 1(x) = A.x'v'X('ffe 1(X) ~ X(x)) 
(i) A.x'v'X('Jez(X) ~ (X(x) <---> X(m))) 
(j) A.y(A.x(R2(x))(y) V •(A.x(R2(x))(y))) i.e.: A.y(R2(y) V •R2(y)) 

Here translations arise in general from a rendering of general categorial 
forms, together with a spelling out of logical constants wherever possible. 
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Exercise 10 

(i) M(j); (ii) M(j); (iii) M(j); (iv) Vy(A(j)(y)); (v) direct A.-conversion is not 
possible: y is not free for x in Vy(A(x)(y)). However, A.-conversion is possible if 
Vy(A(x)(y)) is first transposed into 'v'z(A(x)(z)), in which case one obtains 
'v'z(A(y)(z)). (vi) M(j). (vii) Here too, direct A.-conversion is not possible. By 
transposing Vx(Y(x)) into 'v'z(Y(z)), one first obtains \>'z(A.y(A(x)(y))(z)) and 
then 'v'z(A(x)(z)). 

Chapter 5 

Exercise 1 

(a) (i) yes, t (viii) no 
(ii) no (ix) no 
(iii) no (x) no 
(iv) yes, t (xi) yes, (s, t) 
(v) no (xii) no 
(vi) yes, t (xiii) yes, (s, (s, e)) 
(vii) yes, t (xiv) yes, t 

(b) (i) a is of type ((s, t), t), for Ap is of type (s, t); 
(ii) ((s, e), t); 
(iii) Va(j) is of type t, so va is of type (e, t), and a of type (s, (e, t)); 
(iv) va is of type ((s, t), e), and so a is of type (s, ((s, t), e)). 

Exercise 2 

(a) I(j)(w 1) = I(j)(w2) = a; I(j)(w3 ) = b; 
I(m)(w) = c for all w E W; 
I(M)(w 1)(a) = I(M)(w1)(b) = 1; 
I(M)(w 1)(c) = I(M)(w1)(d) = 0; 
l(M)(w2)(a) = I(M)(w2)(b) = 0; 
I(M)(w2)(c) = I(M)(w2)(d) = I; 
I(M)(w3)(e) = 0 for all e E D; 
I(M)(w J = I(M)(w2) = I(M); 
I(M)(w3)(w)(e) = I for all wE Wand for all e ED. 

(b) (i) [j]M,w
2
,g = I(j)(wz) = a; 

(ii) [Aj]M,w
1
.g = that h E ow such that for all w E W: h(w) = [j]M,w.g• 

i.e., I(j); 
(iii) [Aj]M w g = l(j), as in (ii); 

' 3• 

(iv) [M(j)]M,w
2

,g = [M]M,w
2
,g ([j]M,w

2
,g) = I(M)(wz)(l(j)(wz)) = 

l(M)(w2)(a) = 0; 
(v) [V M]w

3 
= [M]w

3 
(w3) = I(M)(w3)(w3 ) = the function from {0, 1}0 

which yields the value 1 for all e E D; 
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(vi) [VMk = [M]w, (w 1) = l(M)(w 1)(w 1) = I(M)(w 1) and [VM(j)]w, 
= l(M)(w 1)(w 1)(1(j)(w 1)) = I(M)(w 1)(a) = I; 

(vii) [v M(j)]w
2 
= l(M)(w2)(w2)(l(j)(w2)) = l(M)(w2)(a) = 0; 

(viii) [M = AM]w,= l iff [ML,= [AM]w,· Now, [ML,is the function 
I(M)(w 1) = l(M). On the other hand, [AML,is the function h such 
that for all wE W: h(w) = [M]w and this is also exactly I(M). From 
this it follows that [M = AML,= 1; 

(ix) [V M = ML, = 1 iff [V M]w, = [M]w,. Now, as in (v), [V M]w,is the 
function from {0, 1}0 which yields the value I for all dE D. On the 
other hand, [M]w = l(M)(w3), the function which assigns the value 

3 

0 to all dE D. Thus [V M = M]w,= 0. 
(c) (i) Because of (bviii), [M = AM]M,w,.g = I holds. So it follows that 

[<>(M = AM)]M,w,g = l, for all wE W. So <>(M = AM) is valid in M. 
(ii) Given (bix), [V M = M]M,w,.g = 0 holds. This means that for all wE 

W, [O(V M = M)]M,w.g = 0, and so 0(V M = M) is invalid in M. 
(iii) In all w E W, m refers to c. This means that [m = x]M,w.g[xicJ = 1, 

[O(m = x)]M,w.g[xicJ = 1, and [3xO(m = x)]M,w,g = l, for all w E W. 
This means that 3x0(m = x) is valid in M. 

Exercise 5 

[AVa]M,w.g =the function hEn:- such that h(w') = [Va]M,w'.g• for all w' E 
W =the function hE D;:" such that h (w') = [a]M,w',g(w'), for all w' E W = 
the function hE D;:" such that h(w') = g(a)(w'), for all w' E W. This means 
that h = g(a), so [A v a]M,w,g = h = g(a) = [a]M,w,g. 

Exercise 7 

(i) v M(j) (theorem 5); 
(ii) A.xA.X(VX(x))(j)(AM) reduces to AX(VX(j))(AM) and then to VAM(j) 

by theorem 5, and this is reduced to M(j) by theorem 2. 
(iii) A.xAXO(VX(x))(j)( AM) does not reduce, because the variable xis in the 

scope of 0 and j EE ICE. 
(iv) AXA.xO(VX(x))(AM)(j) reduces to A.xO(VAM(x))(j) by theorem 5, 

because AM E ICE. By theorem 2, Ax0(V AM(x))(j) is reduced to 
A.xOM(x)(j), which cannot be reduced, since xis in the scope of 0 and 
j EE ICE. 

(v) Ax A(M(x) 1\ v M(x))(y) reduces to A(M(y) 1\ v M(y)) by theorem 5, 
since y E ICE 

(vi) AxAyO(B(x)(y))( Aj)(j) reduces to A.yO(B( Aj)(y))(j) by theorem 5, 
because Aj E ICE. Since y is in the scope of 0 and j EE ICE, 
A.y O(B( A j)(y) )(j) cannot be reduced any further. 

(vii) Since z E ICE, A.yAx A3x(B(x)(y) 1\ Ax= y)(AVz)(Ax) reduces by 
theorem 3 to AyAx A3x(B(x)(y) 1\ Ax= y)(z)(Ax), which reduces by 
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theorem 5 to Ax A3x(B(x)(z) A Ax= z)(Ax), again because z E ICE. 
The reduction stops here, since xis in the scope of 3x. If we replace this 
quantifier and its bound variable by 3y and y, respectively, we can con­
tinue the reduction with the help of theorem 5, because AxE ICE, thus 
obtaining A3y(B( Ax)(z) 1\ Ay = z). 

Chapter 6 

Exercise 1 

(a) Categorematically, the analysis tree is given in figure (a): 

a. a woman strolls, S, S2 

---------------a woman, T, S3' stroll, IV 

---------------a, T/CN woman, CN 

The translation tree is given in figure (b): 

b. 3x(WOMAN(X) A STROLL(x)), V /\-elimination n 
3x(WOMAN(X) A V 1\STROLL(X)), A-Conversion 

n 
AX3x(WOMAN(x) A VX(x))(ASTROLL), t, T2 

AX3x(WOMAN(x) A VX(x)), v A-elimination n 
A.X3x(V 1\WOMAN(X) A VX(x)), A-conversion n 
AYA.X3x(VY(x) A VX(x))( A woMAN), ({s, {e, t)), t), T3' 

STROLL, {e, t), T!a 

AYAX3x(VY(x) A VX(x)), ({s, {e, t)), ({s, {e, t)), t)), Tic' WOMAN, {e, t), Tla 

Syncategorematically, the analysis tree is given in figure (c): 

C. a woman strolls, S, S2 

a woman, T, S5 stroll, IV 

I 
woman, CN 
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The translation tree is given in figure (d): 

d. 3x(WOMAN(X) 1\ STROLL(X)), V "-elimination 

n 
3x(WOMAN(x) 1\ v "sTROLL(x)), A-conversion 

n 
AX3x(WOMAN(x) 1\ vx(x))("STROLL), t, T2 

AX3x(WOMAN(x) 1\ VX(x)), ((s, (e, t)), t), T5 

I 
STROLL, (e, t), TJa 

WOMAN, (e, t), Tla 

(b) A.YA.X•3x(VY(x) 1\ VX(x)) 

Exercise 2 

(i) Analysis tree: see figure (a); translation tree: see figure (b). 
(ii) Analysis tree: see figure (c); translation tree: see figure (d). 

a. John loves Mary, S, S2 

--------------John, T love Mary, IV, S7 

---------------love, TV Mary, T 

b. LOVEU, "AXVX(m)), NCl n 
LOVE("AXVX(m))(j), v "-elimination 

n 
v "LOvE( "AXV X(m))U), A-conversion 

n 
uv XU)( "LOVE(" AXVX(m))), t, T2 

uvxu), ((s, (e, t)), t), Tlb 

LOVE, ((s, ((s, (e, r)), t)), (e, t)), Tla AXVX(m), ((s, (e, r)), t), Tlb 
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C. every woman loves one man, S, S2 

--------------every woman, T, S3 love one man, IV, S7 

I --------------woman, CN love, TV one man, T, S6 

I 
man, CN 

d. 
Vx(WOMAN(x)--> LOVE(x, "AX3yVz((MAN(z) 1\ VX(z)) +--+ y = z)))V"-elim, A-conv, NCI n 

AYVX(WOMAN(x)--> Vf(x))("LOVE("AX3yVz((MAN(z) 1\ VX(z)) +--+ y = z))), t, T2 

AYVX(WOMAN(X)--> Vf(x)) LOVE( "AX3yVz((MAN(Z) 1\ VX(z)) +-> y = z)) I ( (s, (e. t) ), t), T3 (e. t), T7 

WOMAN, (e, t), Tla LOVE, Tla AX3yVz((MAN(Z) 1\ VX(z)) <-> y = z) 
((s, ((s, (e. t)), r)), (e, r)) I ((s, (e, t)), t), T6 

MAN, (e, t), Tla 

Exercise 3 

(i) LOVE(j, AA.XVX(m)) = LOVE*(j, m) 
(ii) Vx(WOMAN(x) -> LOVE(x, AAX3yVz((MAN(z) 1\ 

VX(z)) ~ y = z))) 
= Vx(WOMAN(x) -> 

VAAX3yVz((MAN(z) 1\ VX(z)) ~ y = z) 
(AA.w LOVE*(X, w))) 
= Vx(WOMAN(x) -> A.X3yVz((MAN(z) 1\ 

VX(z)) ~ y = z) (AA.w LOVE*(X, w))) 
= Vx(WOMAN(x) -> 3yVz((MAN(z) 1\ 

v AA.wLOVE*(x, w)(z)) ~ y = z)) 
= Vx(WOMAN(x) -> 3yVz((MAN(z) 1\ 

AWLOVE*(x, w)(z)) ~ y = z)) 
= Vx(WOMAN(x) -> 3yVz((MAN(z) 1\ LOVE*(x, z)) 
~ y = z)) 

Exercise 4 

BPI and NC2 

Theorem 1 

.\-conv. 

.\-conv. 

(a) The sentence Every man seeks a unicorn has three different readings. First 
of all, it has a de dicto reading which does not commit us to the belief that 
unicorns exist. Second, there is a reading in which every man seeks the 



314 Solutions to Selected Exercises 

same existing unicorn. And third, the sentence can mean that every man 
seeks a unicorn which exists; the sentence is indeterminate as to whetl!er 
or not all men try to find the same unicorn. The last two readings are both 
de re. 

The first reading can be constructed directly, as shown in figure (a). 

a. every man seeks a unicorn, S, S2 

------------every man, T, S3 seek a unicorn, IV, S7 

I ------------man. CN seek, TV a unicorn, T, S5 

I 
unicorn, CN 

The translation of (a) is: 
1. unicorn ~ UNICORN Tla 
2. F4(unicorn) ~ .\X3x(uNICORN(x) 1\ v X(x)) T5 

3. seek~ SEEK Tla 
4. F6(seek, a unicorn) ~ SEEK(A.\X3x(UNICORN(x) 1\ 

VX(x))) T7 

5. man~ MAN 
6. F2(man) ~ .\YVy(MAN(y) -> v Y(y)) 
7. F1(every man, seek a unicorn)~ .\YVy(MAN(y) -> 

v Y(y)) (A sEEK( A.\X3x(UNICORN(x) 1\ v X(x)))) 
8. = Vy(MAN(y) -> v A sEEK( A.\X3x(UNICORN(x) 1\ 

v X(x)))(y)) 
9. = Vy(MAN(y) -> SEEK(A.\X3x(UNICORN(X) 1\ 

VX(x)))(y)) 
10. = Vy(MAN(y) -> SEEK(y, A.\X3x(UNICORN(X) 1\ 

VX(x)))) 

Tla 
T3 

T2 

.\-conv. 

v A-elim. 

NCl 

The second reading can be obtained by quantifying a unicorn into every 
man seeks him0 , as shown in figure (b): 

b. every man seeks a unicorn, S, SS, 0 

------------a unicorn, T, S5 every man seeks him0 , S, S2 

I ------------unicorn, CN every man, T, S3 seek him0 , IV, S7 

I ~ 
man, CN seek, TV 
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The translation of the analysis tree (b) is as follows: 
l. he 0 ~ A.XVX(x0) 

2. seek ~ SEEK 
3. F6(seek, he0) ~ SEEK(AA.XVX(x0)) 

4. man~ MAN 
5. F2(man) ~ .\YVy(MAN(y)-> VY(y)) 
6. F1(every man, seek him0) ~ .\YVy(MAN(y) -> 

VY(y)) (ASEEK( AA.XVX(x0))) 

7. = Vy(MAN(y)-> VAsEEK(A.\XVX(x0))(y)) 
8. = Vy(MAN(y)-> SEEK(A.\XVX(x0))(y)) 
9. = Vy(MAN(y)-> SEEK(y, A.\XVX(x0))) 

10. = Vy(MAN(y) -> SEEK*(y, x 0)) 

11. unicorn ~ UNICORN 
12. F4(unicorn) ~ .\X3x(UNICORN(x) 1\ VX(x)) 
13. F7,0(a unicorn, every man seeks him0 ) ~ 

.\X3x(UNICORN(x) 1\ v X(x))( AA.x0 Vy(MAN(y) -> 

SEEK*(y, X0))) 

14. 3x(UNICORN(x) 1\ v AA.x0 Vy(MAN(y) -> 

SEEK*(y, X0 ))(x)) 
15. 3x(UNICORN(X) 1\ .\x0 Vy(MAN(y) --> SEEK*(y, x0))(x)) 
16. 3x(UNICORN(x) 1\ Vy(MAN(y) -> SEEK*(y, x))) 

Tlb 
Tla 
T7 
Tla 
T3 

T2 
.\-conv. 
v A-elim. 

NCI 
NC2 
Tla 
T5 

T8,0 

A.-conv. 
v A-elim. 

.\-conv. 

In the third reading, a unicorn has wider scope than seek, but it is in the 
scope of every man. This reading can be obtained by first quantifying a 
unicorn into the sentence he1 seeks him 0 • This results in he1 seeks a uni­
corn. Then every man can be quantified in, as shown in (c). 

C. every man seeks a unicorn, S, S8, I 

------------every man, T, S3 he, seeks a unicorn, S, SS, 0 

I ------------man. CN a unicorn, T, S5 he, seeks him0, S, S2 

I~ 
unicorn, CN he,, T seek him0, IV, S7 

The translation of (c) proceeds as follows: 
1. he0 ~ A.XVX(x0 ) 

2. seek ~ SEEK 
3. F6(seek, he0 ) ~ SEEK( A,\XV X(x0)) 

4. he1 ~ A.YVY(x 1) 

~ 
seek, TV 

Tlb 
Tla 
T7 
Tlb 
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5. F1(he1 , seek him0 ) ~ A.fVY(x 1) 

('\SEEK(AA.XV X(x0))) T2 
6. = V/\SEEK(AA_XVX(x0))(x 1) A.-conv. 
7. = SEEK(AA_XVX(x0))(x 1) v A-elim. 
8. = SEEK(XI> AA_XVX(x0)) NCl 
9. = SEEK*(X 1, X0) NC2 

10. unicorn ~ UNICORN Tla 
11. F4(unicorn) ~ A.X3x(UNICORN(x) A vx(x)) T5 
12. F7,0(a unicorn, he1 seeks him0 ) ~ 

AX3x(UNICORN(X) 1\ VX(x)) (AA.x0 SEE~(x 1 , x0 )) T8,0 
13. 3x(UNICORN(X) 1\ V/\A_x0 SEE~(X 1 , Xo)(X)) A.-conv. 
14. 3x(UNICORN(x) 1\ AXo SEEK*(X 1, Xo)(x)) v A-elim. 
15. 3x(UNICORN(X) 1\ SEEK*(X1 , X)) A.-conv. 
16. man~ MAN Tla 
17. F2(man) ~ A.XV'y(MAN(y)--> VX(y)) T3 
18. F1,1(every man, he1 seeks a unicorn) ~ 

AXV'y(MAN(y) __,. VX(y)) 
(/\Ax 13x(UNICORN(x) 1\ SEEK*(X 1, X))) T8, 1 

19. = V'y(MAN(y) --> V 1\ Ax 13x(UNICORN(X) 1\ 

SEEK*(X 1, x))(y)) A.-conv. 
20. = \fy(MAN(y) --> A.x 13x(UNICORN(x) A 

SEEK*(X 1, X))(y)) v A-elim. 
21. = V'y(MAN(y) --> 3x(UNICORN(X) 1\ SEEK*(y, x))) A.-conv. 

(b) We begin with the indirect construction of John kisses a unicorn. This is 
represented in the analysis tree (d). 

d. John kisses a unicorn, S, S8, 3 

--------------a unicorn, T, SS John kisses him3, S, S2 

I --------------unicorn. CN John, T kiss him3, IV, S7 

---------------kiss, TV 

The translation of the tree (d) is: 
1. he 3 ~ A.XVX(x3) 
2. kiss ~ KISS 
3. F6(kiss, he3 ) ~ KISs(AA_XVX(x3)) 
4. John~ A.fVY(j) 
5. F1(John, kiss him3) ~ A.fVf(j)(AKiss(AA.XVX(x3))) 
6. = V/\KISS(/\A_XVX(x3))(j) 
7. = KISs(AA_XVX(x3))(j) 
8. = KISS(j, /\A_XVX(x3)) 

Tlb 
Tla 
T7 
Tlb 
T2 
A.-conv. 
VA_elim. 

NC1 
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9. = KISS*(j, X3) 
10. unicorn ~ UNICORN 
11. F4(unicorn) ~ AX3x(UNICORN(x) A VX(x)) 

NC2 
Tla 
T5 

12. F7,3(a unicorn, John kisses hi~)~ AX3x(UNICORN(x) A 

VX(x))(/\Ax3 KISS*(j, X3)) 
13. 3x(UNICORN(X) 1\ v /\A_x3 KISS*(j, X3)(x)) 
14. 3x(UNICORN(x) 1\ Ax3 KIS~(j, x3)(x)) 
15. 3x(UNICORN(x) 1\ KISS*(j, x)) 

The direct construction is shown in figure (e). 

e. John kisses a unicorn, S, S2 

--------------John, T kiss a unicorn, IV, S7 

--------------kiss, TV a unicorn, T, SS 

I 
unicorn, CN 

The translation of the analysis tree (e) is: 
1. unicorn ~ UNICORN 
2. F4(unicorn) ~ A.X3x(UNICORN(x) A VX(x)) 
3. kiss ~ KISS 
4. F6(kiss, a unicorn)~ KISs(AA.X3x(uNICORN(x) A 

VX(x))) 
5. John~ A.fVY(j) 
6. F1(John, kiss a unicorn)~ A.fVY(j) 

( AKiss(AA.X3x(uNICORN(x) A v X(x)))) 
7. = V/\Kiss(AA.X3x(UNICORN(x) A vx(x)))(j) 
8. = KISS(AA.X3x(UNICORN(X) 1\ VX(x)))(j) 
9. = KISS(j, /\A_X3x(UNICORN(X) 1\ VX(x))) 

10. = VAA_X3x(UNICORN(X) 
1\ VX(x))(AA_y KISS*(j, y)) 

11. = A.X3x(UNICORN(X) 1\ VX(x))( AA_y KISS*(j, y)) 
12. = 3x(UNICORN(X) 1\ V AA_y KISS*(j, y)(X)) 
13. = 3x(UNICORN(X) 1\ Ay KISS*(j, y)(x)) 
14. = 3x(UNICORN(X) 1\KISS*(j, x)) 

Exercise 6 

T8, 3 
A.-conv. 
VA_elim. 

A.-conv. 

Tla 
T5 
Tla 

T7 
Tlb 

T2 
A.-conv. 
v A-elim. 
NCl 

Theorem 1 
VA_elim. 

A.-conv. 
v 1\-elim. 
A.-conv. 

The problem is to show that (iii) does not follow from (i) and (ii): 

(i) John seeks the queen. 
(ii) Elsie is the queen. 
(iii) John seeks Elsie. 



318 Solutions to Selected Exercises 

We do this by analyzing each of these sentences syntactically such that the 
translation of (iii) does not follow from the translations of (i) and (ii), given 
these syntactic analyses. Sentences (ii) and (iii) are not ambiguous. They can 
be constructed in different ways, but they result ultimately in the same transla­
tions, (iv) and (v), respectively. 

(iv) 3x(\fy(QUEEN(y) <---*X = y) 1\ X = e) 
(v) SEEK*(j, e) 

On the other hand, sentence (i) is ambiguous. It has a de rereading and a de 
dicto reading. We obtain the latter by constructing (i) directly, as in (a). 

a. John seeks the queen, S, S2 

~ 
John, T seek the queen, IV, S7 

~ 
seek, TV the queen, T, S4 

I 
queen, CN 

This syntactic analysis yields the following translation: 

(vi) SEEK(j, AA_X3x(\fy(QUEEN(y) <---*X= y) 1\ VX(x))) 

Formula (v) does not follow from formulas (vi) and (iv). Assume a model M 
with a world w such that (vi) and (iv) are true in w given M. A counter­
example can now easily be produced by showing that it does not follow that 
(v) is true in Min was well. 

To see this, observe first that from the definition of SEEK* it follows that (v) 
is equivalent to (vii): 

(vii) SEEK(j, AA_XVX(e)) 

Formula (vii) follows from (vi) only if AA.X3x(\fy(QUEEN(y) <---* x = y) 1\ 

v X(x)) refers in M to the same function from worl~s to sets of first-order 
properties as AA_XV X(e) does. (The extension of these two expressions is de­
pendent only on model M, not on the world or the assignment. This is because 
they are intensionally closed expressions containing no free variables. This is 
the case if in all w' E Win M A.X3x(\fy(QUEEN(y) <---* x = y) 1\ VX(x)) refers 
to the same set of first-order properties as A.XVX(e). 

This is true just in case (iv) 3x(\fy(QUEEN(y) <---* x = y) 1\ x = e) is true in 
all w'. By assumption, (iv) is true in wand so both A.X3x(\fy(QUEEN(y) <---* 

x = y) 1\ VX(x)) and A.XVX(e) refer in w to the same set of first-order 
properties. 

However, this does not say anything about the truth value of 
3x(\fy(QUEEN(y) <---* x = y) 1\ x = e) in worlds different from w. So, without 
contradicting our original assumptions, we may assume that Min addition to 
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w also contains a world w' in which (iv) is false. In w' A.X3x(Vy(QUEEN(y) <---* 

x = y 1\ VX(x)) and A.XVX(e) refer to different sets of first-order properties. 
From this it follows that AA.X3x(Vy(QUEEN(y) <---* x = y) 1\ VX(x)) and 

AA_XVX(e) refer in M to different functions, and hence also that formula (v) 
does not follow from (vi), even if (iv) holds. Thus we can construct a counter­
ex'ample to the statement that (v) follows from (vi) and (iv) by taking a model 
M with a world win which both (vi) and (iv) are true, whereas (v) is not true, 
and a world w' in which (iv) is not true. 

This shows that (iii) does not follow from (i) and (ii). After all, we have 
given syntactic analyses for (i), (ii), and (iii) such that the translation of (iii) 
does not follow from the translations of (i) and (ii). 

It should be noted, however, that the de re reading makes the argument 
valid. This reading results from an indirect construction, as given in figure (b): 

b. John seeks the queen, S, S8, 4 

~ 
the queen, T, S4 John seeks him4 , S, S2 

I~ 
queen John, T seek him4 , IV, S7 

~ 
seek, TV he4 , T 

The resulting translation is: 

(viii) 3x(Vy(QUEEN(y) <---* x = y) 1\ seek*(j, x)) 

Formula (v) follows directly from (viii) and (iv). 

Exercise 7 

For the sentence John kisses Mary or the queen and loves her, there are two 
analysis trees, resulting in two nonequivalent translations. The first analysis 
tree is given in figure (a): 

a. 
John kisses Mary or the queen and loves her, S, S8, 0 

~ 
Mary or the queen, T, SI3 John kisses him0 and loves himo, S, S2 

~ ~ 
Mary, T the queen, T, S4 John, T kiss him0 and love him0 , IV, S 11 

I ~ 
queen, CN kiss him0, IV, S7 love him0, IV, S7 

~~ 
kiss, TV hen. T love. TV ht>_ T 
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The translation of analysis tree (a) is: 

1. kiss ~ KISS 
2. he 0 !---? A.XV X(x0 ) 

3. F6(kiss, he0 ) ~ KISs(AA_XVX(x 0)) 

4. love f- LOVE 
5. F6(love, him 0 ) f- KISS(AA_XVX(x 0)) 

6. Fs(kiss him 0 , love him 0 ) f-
A.x(KISS( AA_XVX(x0))(x) 1\ LOVE( AA_XV X(x0))(x)) 

7. = A.x(KISS(X, AA_XVX(x0)) 1\ LOVE(X, AA_XVX(x0))) 

8. = A.x(KISS*(X, Xo) 1\ LOVE*(X, Xo)) 
9. John ~ A.XV X(j) 

10. F1(John, kiss him0 and love him0 ) ~ 

A_XVX(j)(AA.x(KISS*(X, Xo) 1\ LOVE*(X, X0))) 

11. = V AA_x(KISS*(X, x0) 1\ LOVE*(X, Xo))(j) 

12. = A.x(KISS*(X, x 0) 1\ LOVE*(X, x 0))(j) 
13. = KISS*(j, X0) 1\ LOVE*(j, X0 ) 

14. Mary f- A.XVX(m) 

15. queen~ QUEEN 
16. F3(queen) ~ A.Y3x(Vy(QUEEN(y) ~ x = y) 1\ Vf(x)) 

17. F9(Mary, the queen)~ A.X(A.XVX(m)(X) v 
A.Y3x(Vy(QUEEN(y) ~ x = y) 1\ Vf(x))(X)) 

18. = A.X(VX(m) v 3x(Vy(QUEEN(y) ~ x = y) 1\ VX(x))) 

19. F1,0(Mary or the queen, John kisses him0 and loves him0 ) 

1---?A.X(VX(m) v 3x(Vy(QUEEN(y) ~ x = y) 1\ VX(x))) 

( AA_x 0(KISS*(j, Xo) 1\ LOVE*(j, Xo))) 
20. = V AA_x 0(KISS*(j, x 0) 1\ LOVE*(j, x 0))(m) V 

3x(Vy(QUEEN(y) ~ X = y) 

1\ V AA_x0 (KISS*(j, x0 ) 1\ LOVE*(j, x0))(x)) 

21. A.x0(KISS*(j, Xo) 1\ LOVE*(j, Xo))(m) V 
3x(Vy(QUEEN(y) ~X= y) 

1\ A.x 0(KISS*(j, X0 ) 1\ LOVE*(j, X0))(x)) 
22. = (KISS*(j, m) 1\ LOVE*(j, m)) V 3x(Vy(QUEEN(y) ~ 

X = y) 1\ KISS*(j, X) 1\ LOVE*(j, X)) 

Tla 
Tlb 
T7 
Tla 
T7 

Tl1 
NCl 
NC2 
Tlb 

T2 
A.-conv. 
v A-elim. 

A.-conv. 

Tlb 
Tla 
T4 

Tl3 
A.-conv. 

T8,0 

A.-conv. 

A.-conv. 

In this way we obtain a reading in which the sentence can be true in a situation 

where there is no queen, that is, in that situation in which it is true that John 

kisses and loves Mary. 
The reading which asserts the existence of the queen can be obtained by 

analyzing the sentence syntactically as shown in figure (b): 
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b, 

John kisses Mary or the queen and loves her, S, S8, 2 

John kisses Mary or him2 and loves her, S, S8, 0 

~ 
the queen, T, S4 

I 
John kiss him0 and love him0 , S, S2 

~ 
queen, CN Mary or IH-~T, S 13 

~1.. 
_../" ~ 

Mary, T fl-1-m;,, T 

kL 
John, T kiss him0 and love him0, IV, Sll 

~ 
kiss him0, IV, S7 love him0, IV, S7 

·~~ 
kiss, TV he0, T love, TV he0, T 

The translation of analysis tree (b) is: 

1. John kisses him0 and loves him0 ~ • • • 

= KISS*(j, X0 ) 1\ LOVE*(j, x 0 ) 

2. Mary f- A.XV X(m) 
3. he 2 f- A.XVX(x 2 ) 

4. F9(Mary, he 2 ) f- A.X(A.XVX(m)(X) v A.XVX(x
2
))(X)) 

5. = A.X(VX(m) v VX(x2)) 

6. F1,0(Mary or he 2 , John kisses him 0 and loves him0 ) f­
A.X(V X(m) v v X(x2))( AA.x 0 (KISS*(j, Xo) 1\ 

LOVE*(j, X0))) 

7. = VAA_x 0(KISS*(j, x 0) 1\ LOVE*(j, X0))(m) V 

V AA_x 0 (KISS*(j, Xo) 1\ LOVE*(J, Xo))(X 2) 

8. = Ax0 (KISS*(j, Xo) 1\ LOVE*(j, X0))(m) V 
Ax0(KISS*(j, X0 ) 1\ LOVE*(j, x 0))(x 2) 

9. = (KISS*(j, m) 1\ LOVE*(j, m)) V (KISS*(j, x2 ) 1\ 

LOVE*(j, x2)) 

10. queen~ QUEEN 

11. F3(queen) !---? A.X3x(Vy(QUEEN(y) ~ x = y) 1\ vx(x)) 
12. F1,2(the queen, John kisses Mary or him 2 

and loves him) A.X3x(Vy(QUEEN(y) ~ x = y) 1\ 

VX(x))(AA_xz((KISS*(j, m) 1\ LOVE*(j, m)) V 
(KISS*(j, x2) 1\ LOVE*(j, X2)))) 

13. = 3x(Vy(QUEEN(y) ~X= y) 1\ VAA_x 2((KISS*(j, m) 1\ 

LOVE*(j, m)) V (KISS*(j, x2) 1\ LOVE*(j, x2 )))(x)) 
14. = 3x(Vy(QUEEN(y) ~X= y) 1\ A.x2((KISS*(j, m) 1\ 

LOVE*(j, m)) V (KISS*(j, X2 ) 1\ LOVE*(j, x2)))(x)) 
15. = 3x(Vy(QUEEN(y) ~X = y) 1\ ((KISS*(j, m) 1\ 

LOVE*(j, m)) V (KISS*(j, X) 1\ LOVE*(j, x))) 

see (1)-(13) 
above 

Tlb 
Tlb 
Tl3 
A.-conv. 

T8, 0 

A.-conv. 

A.-conv. 

Tla 
T4 

T8,2 

A.-conv. 

A.-conv. 
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Exercise 8 

(a) The sentence John asserts that Elsie tries to find a unicorn contains two 
intensional expressions: assert and try to find. The term a unicorn can 
have narrow or wide scope with respect to both expressions. This results 
in three readings which can be paraphrased as follows: 
(i) There is a unicorn and John asserts that Elsie tries to find it. 
(ii) John asserts that there is a unicorn and that Elsie tries to find it. 
(iii) John asserts that Elsie tries to find a unicorn. 

The third reading, in which a unicorn has narrow scope with respect to 
both assert and try to find, is the result of constructing the tree directly, as 
shown in figure (a): 

a. John asserts that Elsie tries to find a unicorn, S, S2 

~ 
John, T assert that Elsie tries to find a unicorn, IV, S 15 

~ 
assert that, IV /S Elsie tries to find a unicorn, S, S2 

~ 
Elsie, T try to find a unicorn, IV, S 16 

~ 
try to, IV /IV find a unicorn, IV, S7 

~ 
find, TV 

Translation: 
] . unicorn ~ UNICORN 

2. F4 (unicorn) ~ .\X3x(UNICORN(x) 1\ VX(x)) 

3. find ~ FIND 

4. F6(find, a unicorn)~ FIND(A.\X3x(UNICORN(X) 
1\ VX(x))) 

5. try to ~ TRY 

6. F12(try to, find a unicorn) ~ 
TRY(f'1lml(A.\X3x(UNICORN(X) 1\ VX(x)))) 

7. Elsie~ .\fVf(e) 

8. F1(Elsie, try to find a unicorn) f--7 .\XVX(e) 
(/\TRY( /\FIND( A.\X3x(UNICORN(x) 1\ v X(x))))) 

9. = V/\TRY(/\FIND(A.\X3x(UNICORN(X) 1\ 

VX(x))))(e) 

10. = TRY(/\FIND(A.\X3x(UNICORN(X) 1\ VX(x))))(e) 

II. = TRY(e, /\FIND(A.\X3x(UNICORN(X) 1\ VX(x)))) 

a unicorn, T, S5 

I 
unicorn, CN 

Tla 
T5 
Tla 

T7 
Tla 

Tl6 
Tlb 

T2 

.\-conv. 
v A-elim. 
NC1 

Solwions to Selected exercises 323 

12. = TRY(C, A.\yFJND(y, A.\X3x(UNICORN(X) 1\ 

VX(x)))) 

13. = TRY(e, A.\y(V A.\X3x(UNICORN(X) 1\ 

VX(x))(A.\z FIND*(y, z)))) 

14. = TRY(e, A.\y.\X3x(UNICORN(X) 1\ 

VX(x))(A.\z FIND*(y, z))) 

15. = TRY(e, A.\y3x(UNICORN(X) 1\ 

v A.\z FIND*(y, z)(x))) 

16. = TRY(e, A.\y3x(UNICORN(X) 1\ 

.\z FIND*(y, z)(x))) 

17. = TRY(e, A.\y3x(UNICORN(X) 1\ FIND*(y, X))) 
18. assert that ~ ASSERT 

19. F11 (assertthat, Elsie tries to find a unicorn)~ 
ASSERT( 1\TRY(e, 1\ .\y3x(UNICORN(X) 1\ 

FIND*(y, X)))) 
20. John ~ .\XVX(j) 

21. F1 (John, assert that Elsie tries to find a unicorn) f--7 
.\XVX(j) (1\ASSERT(/\TRY(e, A.\y3x(UNICORN(X) 
1\ FIND*(y, X))))) 

22. = v /\ASSERT( 1\TRY(e, A.\y3x(UNICORN(X) 1\ 

FIND*(y, x))))(j) 

23. = ASSERT(/\TRY(e, A.\y3x(UNICORN(X) 1\ 

FIND*(y, x))))(j) 

24. = ASSERT(j, 1\TRY(e, A.\y3x(UNICORN(X) 1\ 

FIND*(y, x)))) 

NCI, .\-abstr. 

Theorem I 

v 1\-elim. 

.\-conv. 

v A-elim. 
.\-conv. 
Tla 

Tl5 
Tlb 

T2 

.\-conv. 

NCl 

In the second reading a unicorn has narrow scope with respect to assert, 
but wide scope over try to find. Of course this reading is obtained by using 
the quantification rule, as shown in figure (b): 

b. John asserts that Elsie tries to find a unicorn, S, S2 

~ 
John, T assert that Elsie tries to find a unicorn, IV, S 15 

~ 
assert that, IV/S Elsie tries to find a unicorn, S, S8, 0 

~ 
a unicorn, T, S5 Elsie tries to find him

0
, S, S2 

I~ 
unicorn, CN Elsie, T try to find him

0
, IV, S 16 

~ 
try to, IV /IV find him0 , IV, S7 

~ 
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Omitting the. steps resulting in the translation of Elsie tries to find him o, 

which are completely analogous to l-17 in the translation of (a), we ob­

tain the translation of figure (b) as follows: 
I. F

1
(Elsie, try to find him 0 ) f---7- TRY(e, AA_y FIND*(y, Xo)) 

2. unicorn f---7- UNICORN 
3. F

4
(unicorn) f---7- A.X3x(UNICORN(x) 1\ VX(x)) 

4. F
7

•
0
(a unicorn, Elsie tries to find him 0) f---7- A.X3x(UNI­

CORN(X) 1\ VX(x)) (AA_x 0 TRY(e, AA_y FIND*(y, Xo))) 

5. = 3x(UNICORN(x) 1\ 

V AA_x
0 

TRY(e, AA_y FIND*(y, X0))(x)) 

6. = 3x(UNICORN(X) 1\ Axo TRY(e, AA_y FIND*(y, X0))(x)) 

7. = 3x(UNICORN(x) 1\ TRY(e, AA_y FIND*(y, X))) 

8. assert that ;..-;. ASSERT 
9. F

11 
(assert that, Elsie tries to find a unicorn) ;..-;. 

ASSERT( A3x(UNICORN(X) 1\ TRY(e, AA_y FIND*(y, X)))) 

10. John t--;. A.XVX(j) 
II. F

1 
(John, assert that Elsie tries to find a unicorn) ;..-;. 

A_XVX(j) (/\ASSERT(A3x(UNICORN(X) 1\ 

TRY(e, /\A_y FIND*(y, X))))) 
12. = V/\ASSERT(A3x(UNICORN(X) 1\ 

TRY(e, AA_y FIND*(y, X))))(j) 

13. = ASSERT(A3x(UNICORN(X) 1\ 

TRY(e, AA_y FIND*(y, X))))(j) 

14. = ASSERT(j, A3x(UNICORN(X) 1\ 

TRY(e, AA_y FIND*(y, X)))) 

see above 

Tla 
T5 

T8, 0 

A.-conv. 
v A-elim. 

A.-conv. 

Tla 

Tl5 
Tlb 

T2 

A.-conv. 

v A-elim. 

NCI 

Finally, in the third reading, a unicorn has wide scope over both assert 
and try to find. This reading can also be obtained with the help of the 

quantification rule, as shown in figure (c): 

c. John asserts that Elsie tries to find a unicorn, S, S8, 0 

~ 
John asserts that Elsie tries to find him 0 , S, S2 

~ 
unicorn, CN John T assert that Elsie tries to find him0 , IV, S 15 

·~ 

a unicorn, T, SS 

l 

assert that, IV /S Elsie tries to find him 0 , S, S2 

~ 
Elsie, T try to find him 0 , IV, S 16 

~ 
try to, IV/i~S7 

finn TV he ... T 
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Again omitting the steps leading to the translation of John asserts that 
Elsie tries to find him 0 , because it is completely analogous to the transla­

tion of tree (a) with he 0 in the place of a unicorn, we obtain the translation 

of tree (c) as follows: 

1. John asserts that Elsie tries to find him0 ;..-;. 

ASSERT(j, 1\TRY(e, AA_y FIND*(y, x 0))) 

2. unicorn j--;> UNICORN 

3. F4(unicorn) ;..-;. A.X3x(UNICORN(x) 1\ VX(x)) 

4. F7•0(a unicorn, John asserts that Elsie tries to find him 0 ) 

f---7- AX3x(UNICORN(x) 1\ v X (x)) 

(/\AX0ASSERT(j, /\TRY (e, AA_yFIND*(y, x 0)))) 

5. = 3x(UNICORN(x) 1\ 

VAA_x 0ASSERT(j, 1\TRY(e, AA_y FIND*(y, X0 )))(x)) 

6. = 3x(UNICORN(X) 1\ 

Ax 0ASSERT(j, 1\TRY(e, AA_y FIND*(y, x 0)))(x)) 

7. = 3x(UNICORN(X) 1\ 

ASSERT(j, 1\TRY(e, AA_y FIND*(y, x)))) 

(b) S21: Ify E F{1v111v>tT and a E PT, then F16(y, a) E .f1v111v 
and F16(y, a) = ya. 
T21: If y E P0v111v)tT and a E PT andy f---7- y' and a f---7 a', 
then F;6(y, a);..-;. y'(Aa'). 

see above 

Tla 
T5 

T 8, 0 

A.-conv. 

A.-conv. 

(c) The analysis tree in figure (d) represents the direct construction. 

d. John walks in a garden, S, S2 

~ 
John, T walk in a garden, IV, S 19 

~ 
in a garden, IV//IV, S21 walk, IV 

~ 
in, (IV/JIV)/T a garden, T, SS 

I 
garden, CN 

The translation of analysis tree (d) is: 

1 . garden H GARDEN 

2. Figarden) ;..-;. A.X3x(GARDEN(x) 1\ VX(x)) 

3. in j--;> IN 

4. F16(in, a garden) f---7 IN(AA.X3x(GARDEN(x) 1\ VX(x))) 

5. walk j--;> WALK 

6. F15(in a garden, walk) f---7-
IN(AAX3x(GARDEN(x) 1\ VX(x)))(/\WALK) 

7. John t--;. A.XV X(j) 

8. F1(John, walk in a garden) f---7 A.XVX(j) 

Tla 
T5 
Tla 
T21 
Tla 

Tl9 
Tlb 
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9. = VArN(A,.\.X3x(GARDEN(x) 1\ VX(x)))(AwALK)(j) 
10. = IN(A.\.X3x(GARDEN(x) 1\ VX(x)))(AWALK)(j) 

A.-conv. 
VA_eiim. 

This translation expresses that there is a three-place relationship IN be­
tween the second-order property expressed by a garden, the property of 
walking, and the individual John. This leaves the existence of gardens in­
determinate, which is not in accordance with the meaning of the sentence 
under analysis. The indirect construction given in figure (e) results in a 
translation from which the existence of gardens can be inferred. 

e. John walks in a garden, S, S8, 0 

~ 
a garden, T, S5 John walks in him 0 , S, S2 

I~ 
garden, CN John, T walk in him 0 , IV, S 19 

~ 
in him 0 , IV//IV, S2I walk, IV 

~ 
in, (IV//IV)/T 

The translation of (e) is as follows: 
I. John walks in him0 ~ IN(A;\XVX(x0 ))(/\WALK)(j) 
2. garden ~ GARDEN 
3. F4(garden) ~ A.X3x(GARDEN(x) 1\ VX(x)) 
4. F7.0(a garden, John walks in him0 ) ~ 

A.X3x(GARDEN(x) 1\ v X(x)) 
( AA.x0IN( /\;\XV X(x0))( /\WALK)(j)) 

5. = 3x(GARDEN(x) 1\ VAA.x0IN(AA.XVX(x0)) 

( /\WALK)(j)(x)) 
6. = 3x(GARDEN(x) 1\ A.x0IN( /\;\XV X(x0)) 

see above 
Tla 
T5 

T 8, 0 

A.-conv. 

( /\WALK)(j)(x)) v 1\-elim. 
7. = 3x(GARDEN(X) 1\ IN(/\;\XVX(x))(/\WALK)(j)) ;\-conv. 

(d) The sentence John walks in a garden is not ambiguous: in denotes a rela­
tion between an entity, a property, and an entity. The following meaning 
postulate accounts for this: 

3D\f.XVX\fx0(IN(X)(X)(x) ......, v X( AA.yD(y)(X)(x))) 
Dis a variable of type (e, ((s, (e, t)), (e, t))), the type of three-place rela­
tions between entities, properties of entities, and entities. With the help of 
the following notational convention, we also obtain a notation for the three­
place relation whose existence is guaranteed by this meaning postulate: 

IN*= dcf A.y.\.XA.x IN(/\,.\_fVY(y))(X)(x) 

Solutions to Selected Exercises 327 

The following theorem is valid because of the meaning postulate and the 
notational convention: 

\f.XVX\fxD(rN(X)(X)(x)......, VX(AA.y IN*(y)(X)(x))) 
The result of the direct construction of John walks in a garden can now be 
reduced with the help of this theorem: 
10. IN(AA.X3x(GARDEN(x) 1\ VX(x)))(AwALK)(j) see above 
11. = V A.\.X3x(GARDEN(X) 1\ V X(x))( A,.\y IN*(y) 

(/\WALK)(j)) Theorem 1 
12. = .\.X3x(GARDEN(X) 1\ VX(x))(A;\y IN*(y) 

( /\WALK)(j)) V 1\-elim. 
13. = 3x (GARDEN( X) 1\ V 1\;\y IN*(y)( /\WALK)(j)(x)) .\.-conv. 
14. = 3x (GARDEN(X) 1\ .\.y IN*(y)( /\WALK)(j)(x)) V 1\-elim. 
15. = 3x (GARDEN(X) 1\ IN*(X)(/\WALK)(j)) A-COnV. 
The result of the indirect construction can be reduced to 15 as well. We 
need only the notational convention to effect this. 

7. = 3x(GARDEN(x) 1\ IN(A;\XVX(x))(/\WALK)(j)(X)) 
8. = 3x(GARDEN(X) 1\ IN*(X)(/\WALK)(j)) 

Chapter 7 

Exercise I 

(i) {X /j E X}; 

see above 
NC 

(ii) {X 12 ~ card(X n [N])} (to which we might add a condition that card(X 
n [N]) not exceed a contextually specified number ('relatively 
few N')); 

(iii) {X 10 i= X n [N] i= X}; 
(iv) {X I X n [N] = 0}, with the presupposition that card([N]) = 2; 
(v) {X I card(X n [N]) is finite}. 

Exercise 2 

(a) (i), (ii), and (v) are upward monotonic; the others are not. 
(b) Since [NP] is nonempty and [P] = E, it follows that there is an X S'Ich that 

X E [NP] and X ~ [P]. Hence, [P] E [NP], if NP is upward monotonic. 
That this property is not a sufficient condition for upward monotonicity 

is demonstrated by, for example, all or noN, which satisfies this condi­
tion yet is not upward monotonic. 

Exercise 4 

Assume that Q satisfies definition I, and choose X and Y such that X n Y E 
Q. Since X n Y <;;;X and X n Y ~ Y, it follows by definition 1 that X E Q 
andY E Q, which means that Q satisfies definition 3. 
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Assume that Q satisfies definition 3 and choose X and Y such that X ~ Y 
and X E Q. If X~ Y, then X n Y = X, and hence Y E Q by definition 3; so 
Q satisfies definition l. 

Exercise 6 

If [boy]M is a singleton, [exactly one boy]M is upward monotonic; and if 
[boy]M = 0, [exactly one boy]M i~ downward monotonic. 

Exercise 7 

Consider the following examples: 
(i) John and no woman walked rapidly '* John and no woman walked. 
(ii) John and no woman walked'* John and no woman walked rapidly. 

The first example shows that John and no woman is not upward monotonic; 
the second one shows that it isn't downward monotonic either. 

More formally, choose a model M and sets X, Y, and Z such that X E 
[John and no woman]M, Y =X- {j}, andZ =XU {v}, with v E [woman]M. 
We know that [John and no woman] = {X I j E X & X n [woman] = 0}. 
Now we have Y ~ X andY E [John and no woman]; hence John and no 
woman is not downward monotonic. Also, we have Z :2 X and Z E [John and 
no woman]; hence John and no woman is not upward monotonic. 

Exercise IO 
First we consider negation, which we define as follows: 

•D = {(X,Y)i(X,Y) ED} 

For arbitrary X andY we have: (X, Y) E •D iff (by definition of•D) (X, Y) 
E D iff (by conservativity of D) (X, X n Y) ED iff (by definition of•D) (X, 
X n Y) E•D. 

Next, conjunction, which is defined as: 

D 1 1\ D2 = D1 n D2 ={(X, Y)i(X, Y) E D1 & (X, Y) E Dz} 

It follows that: (X, Y) E D 1 1\ D2 iff (by definition of D 1 1\ D 2) (X, Y) E D 1 
""""$( and (X, Y) E D2 iff (by conservativity of D 1 "j'l. D 2 ) (X, X n Y) ED 1 and (X, 

X n Y) E D2 iff (by definition of D1 1\ D2) (X, X n Y) E D1 1\ D2 • 

Finally, restriction: 

DA(X, Y) = D(X n A, Y) 

So (X, Y) E D A iff (by definition of D A) (X n A, Y) E D iff (by conser­
vativity of D) (X n A, X n A n Y) E D iff (X n A, X n A n X n Y) E D 
iff(l,y conservativity of D) (X n A, X n Y) E D iff (by definition of D A) (X, 
x n Y) E DA. 
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Exercise II 

All but one has the same meaning as exactly one not, which in its tum can be 
viewed as the conjunction at least one not and at most one not. Both at least 
one and at most one being monotonic determiners, it suffices to show that this 
type of negation turns a monotonic determiner into a monotonic one. The 
definition is as follows: 

D•* = {(X, Y) I (X, E - Y) E D} 

It can be proven that this negation reverses monotonicity: Dis mon I (mon t ) 
iffD•* is mont (mon I). We show that ifD is mont, then D•* is mon I. 
Suppose D is mon t . Choose X, Y, and Z such that (X, E - Y) E D andY ~ 
Z. The first guarantees, by the definition of D•*, that (X, Y) E D•*. The 
second implies that E - Z ~ E - Y, whence, by the downward monotonicity 
ofD, (X, E- Z) ED. By definition ofD•* again, we have (X, Z) E D•*, 
which shows that D• * is mon I . The other cases are similar. 

That an even number of is not a conjunction of monotonic determiners can 
be shown as follows. In view of fact 6, it is sufficient to show that this deter­
miner is not continuous. Construct Mas follows: EM= {I, 2, 3, 4}, [N]M = 
{I, 2, 3, 4}, [V1]M ={I, 2}, [Vz]M ={I, 2, 3} and [V3]M = {l, 2, 3, 4}. Then 
we have: [an even number ofN V1]M = [an even number ofN V3]M = 1, but 
[an even number ofN V2]M = 0, even though [VJM ~ [Y2]M ~ [Y3]M. 

Exercise I4 

(a) 
X 

boy(x) 

GJ 
(b) 
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(c) 
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X y 

x =John 
y =Mary 

I x loves y 

I y hates x 

y loves x 

x hates y 

Note that in order to get a correct representation for the meaning of this se­
quence of sentences, the reference markers x and y and the conditions x = 
John and y = Mary have to be placed in the main DRS and not in the anteced­
ents of the first sentence. Otherwise they could not bind the occurrences of x 
and y in the second conditional. This is the general way that DRT deals with 
proper names: they always introduce new markers in the main DRS. 

Exercise 15 

The DRS construction rule for NPs with the determiner exactly one reads as 
follows: (i) add a new referrence marker x to the DRS; (ii) if a is the CN of the 
NP, then add a condition a(x) to the DRS; (iii) replace the subject NP of 
the sentence with the reference marker x; (iv) add a condition consisting of 
two sub-DRSs connected by---> to the DRS; (v) repeat steps (i)-(iii) in the box 
on the left with a new marker y; (vi) add a condition y = x to the box on the 
right. 

Using this construction rule the sequence of sentences (96) results in the 
following DRS: 

X 

boy(x) 
x walks in the park 

[] y 

boy(y) 
y walks in the park 

whistle(x) 
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Exercise 16 

(a) ({x}, {BOY(x), (({y}, {girl(y)})---> (0, {LOVE(x, y)}))}) 
(b) (0, {(({x}, {BOY(x)})---> 

(0, {(({y}, {GIRL(y)})---> (0, {LOVE(x, y)}))}))}) 
(c) ({x, y}, {x =JOHN, y =MARY, ((0, {LOVE(X, y)})---> 

(0, {LOVE(y, x)})), ((0, {HATE(y, x)})---> 
(0, {HATE(X, y)}))}) 

(d) ({x}, {BOY(X), WALK IN THE PARK(X), 
(({y}, {BOY(y), WALK IN THE PARK(y)})---> 
(0, {y = x})), WHISTLE(x)}) 
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If we use our abreviatory notational conventions, (a)-( d) can be written as: 
(a) ({x}, {BOY(x), C({y}, GIRL(y))---> LOVE(x, y))}) 
(b) ({x}, BOY(X))---> (({y}, GIRL(y))---> LOVE(X, y)) 
(c) ({x, y}, {x =JOHN, y =MARY, (LOVE(X, y)---> 

LOVE(y, X)), (HATE(y, X) ---> HATE(X, y))}) 
(d) ({x}, {BOY(X), WALK IN THE PARK(X), 

(({y}, {BOY(y), WALK IN THE PARK(y)})---> y =X), WHISTLE(x)}) 

Exercise 18 

(143) ({x}, {MAN(x)})---> {WALK IN THE PARK(X), WHISTLE(X)} 

(144) ({x}, {MAN(x)})---> {>WALK IN THE PARK(X), HOM,E(x)} 

(145) ({x}, {PLAYER(x)})---> 
({y}, {PAWN(y), CHOOSE(X, y), PUT ON SQUARE ONE(X, y)}) 

(146) ({x}, {CLIENT(X), ENTER(X)})---> {TREAT POLITELY(YOU, X), 
OFFER COFFEE(YOU, x), ASK TO WAIT(YOU, x)} 

Exercise 19 

A DRS, a predicate-logical formula, and a DPL formula which correctly rep­
resent the meaning of (96) are (a), (b), and (c), respectively, (we avoid the use 
of material equivalence in (b) to make comparison easier): 
(a) ({x}, {BOY(x), WALK IN THE PARK(X), 

(({y}, {BOY(y), WALK IN TilE PARK(y)}) -> 

(0, {y = x})), WHISTLE(x)}) 
(b) 3x(BOY(X) 1\ WALK IN THE PARK(X) 1\ 

'lfy((BOY(y) 1\ WALK IN THE PARK(y)) ---> y = x) 1\ WHISTLE(x)) 
(c) 3x(BOY(X) 1\ WALK IN THE PARK(X) 1\ 

'lfy((BOY(y) 1\ WALK IN THE PARK(y)) ---> y = x)) 1\ WHISTLE(X) 

It is only in DPL formula (c) that the translation of the first sentence of (96) 
appears as a subformula in the translation of the sequence of sentences. In 
both DRS (a) and predicate-logical formula (b), the translation of the second 
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sentence has to be brought under the scope of the quantifier {x} or 3x, respec­
tively, to get correct semantic results. So the DPL formula is the only com­
positional translation of the three; the DRS and the translation in predicate 
logic are equally noncompositional. Note that in the semantics of DPL, (b) 
and (c) are equivalent. 

Exercise 20 

Under the interpretation of disjunction given in definition 4, an existential 
quantifier 3x in the first disjunct cannot bind free occurrences of x in the sec­
ond disjunct (nor the other way around). Further, if we continue a disjunction 
¢ v lfJ with a new conjunct: (¢ v l/J) 1\ x, an existential quantifier 3x in cf> or 
lfi cannot bind occurrences of x in x. 

Under the proposed alternative definition of disjunction, it is still not pos­
sible for a quantifier in the first disjunct to bind variables in the second (nor 
vice versa). So this alternative interpretation of disjunction can be of no help 
in accounting for the anaphoric relations in the problematic donkey disjunc­
tions (148) and (149) discussed in §7.4.4. 

By the way, these examples are of the form •3xcf>(x) v lfi(x). Since nega­
tion blocks binding of variables outside the scope of the negation by quan­
tifiers inside the scope of that negation, no alternative definition of disjunction 
alone could help to account for the anaphoric relations in 'these examples. 
What would also be needed is an alternative definition of negation. 

But the proposed alternative interpretation of disjunction differs from the 
original one in another respect. According to the alternative definition, it is 
possible for a quantifier 3x in either of the disjuncts ¢ or lfJ to bind free occur­
rences of x in X in the conjunction (c/> v l/J) 1\ X· In fact, (cp v l/1) 1\ X is 
strongly equivalent to (cf> 1\ x) v (l/1 1\ x), in the sense that they have the same 
embedding conditions. So if each of the disjuncts 1> and lfJ contains an occur­
rence of the same quantifier 3x, both occurrences will bind free occurrences 
of x in x simultaneously. (3xcf> v 3xlfi) 1\ x is equivalent to (3xcf> 1\ X) v 
(3xlfi 1\ X), and hence to 3x(cp 1\ X) v 3x(l/J 1\ x). 

Therefore we can use the alternative notion of disjunction to account for the 
anaphoric relations in a sequence of sentences like: 

A professor or an assistant professor will attend the meeting. He will 
report to the faculty. 

In the translations of the two indefinite terms a professor and an assistant 
professor, we should then use the same quantifier 3x, and the pronoun in the 
second sentence should be translated by the variable x. 

Exercise 21 

In DPL there is a unique smallest subset of {3, V, •, 1\, v, ->}in terms of 
which the remaining logical constants can be defined. As is explained in the 
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text, Vxcf> can be defined as • 3x•cf>, but 3xcf> cannot be defined as •Vx•cf>. 
3xcf> and •Vx•cf> are not strongly equivalent in DPL. They do not have the 
same embedding conditions, though they do have the same truth conditions. 

Similarly, it is possible to define cf> v lfi as-, (•cf> 1\ •l/1) and to define cf>----? 
l/1 as • ( 1> 1\ •l/J). But it is not possible to define cf> 1\ lfi as -, ( •1> v •l/1) or as 
•(cf>----? •l/J). These three formulas have the same truth conditions but not the 
same embedding conditions. (By the way, the same holds for cf> and ••cf>.) 

So the only possible minimal subset of the total set of logical constants {3, 
V, • , 1\ , v , ----?} is the set {3 , --, , 1\}. 

Exercise 22 

(i) 3xFx Ffo a Fx 3xFx Ffo a 3yFy 
3xFx Ffo b Fx 3xFx I= b 3yFy 
3xFx I= c Fx 3xFx I= c 3yFy 

(ii) 1> I= c l/1 iff I= c 1> -> l/1 
This does not hold for the notions I= a and I= b· Notion I= c allows for 
quantifiers in the premise to bind variables in the conclusion, in the 
same way as a quantifier in the antecedent of an implication can bind 
variables in the consequent. As a notion of entailment, I= c makes it pos­
sible to account for anaphoric relations in natural language argumenta­
tions such as: All human beings are mortal. Socrates is a human being. 
So he is mortal. 

(iii) Unlike I= a and I= b, the entailment relation I= c is neither reflexive nor 
transitive. A counterexample to reflexivity: Fx 1\ 3xGx Ffo c Fx 1\ 

3xGx. While the occurrence of x in Fx in the premise is free, its occur­
rence in the conclusion is bound by the quantifier in the premise. A 
counterexample to transitivity: although it holds that 3xFx I= c 3yFy and 
that 3yFy I= c Fy, it does not hold that 3xFx I= c Fy. 
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2. Intensional Propositional Logic 

Two excellent textbooks on modal propositional logic are Hughes and Cresswell 
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1970a, 1973; Cresswell 1973; Geach 1972; Bartsch and Vennemann 1972; and Bartsch 
1976b. See also §7 .3 for references to more recent literature. 

5. The Intensional Theory of Types 

An extensive logical study of the intensional theory of types and of two-sorted tyr e 
theory is Gallin 1975. Sec also Janssen 1986. 

For the theory of questions used in §5.5 see Groenendijk and Stokhof 1982, 1984, 
1988b. 

6. Montague Grammar 

The last section of this chapter contains references to introductory texts and to other 
literature. See also the references in chapter 7. 

The ideas of Tarski referred to in §6.1.2 can be found in Tarski 1935, 1944. For 
Kripke's theory, see Kripke 1975; for Gupta's alternative, see Gupta 1982. Both are 
reprinted, along with other relevant papers, in Martin 1984. See also Barwise and 
Etchemendy 1987. 

7. Recent Developments 

See the references given in the text. One important and influential development not 
treated in chapter 7 is that of 'situation semantics'. See Barwise and Perry 1983 and 
the special issue of Linguistics and Philosophy, 8 (1985). 
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ambiguity: de dicto/de re, 147, 170; deriva­

tional, 147f.; scope, 165, 170; structural, 
147 

analogists, 3 
analysis: structural, 148; syntactic, 148; tree, 

155 
anaphora, 221 
anaphoric relation, 266ff. 
anomalists, 3 
anti-persistent, 243 
any, 224 
argument lowering, 260 
argument schema, xv 
Aristotle's Sea Battle argument, 32 
article. See determiner 
assignment, 65 
at least, 243, 249 
at most, 242 
autonomy of syntax, 141, 215 
axiom, 28 
axiom scheme, 29 

Barcan formula, 61, 63, 66 
basic: expression, !51; rule, 153; type, 79 
be, 187ff. 
Bedeutung (Frege), 7; ungerade, 12 
behavioristic theories of meaning, 2 
believe, 16, 27, 45, 73 
bidirectional categorial grammar, 93ff. 
bound occurrence of a variable, xiv 

box, 272 
bracket, I 04 
branching time, 25, 4lf. 

can, 19 
cap, 120-28 
Cartesian product, xv 
CAT, 151, 205 
categorematic introduction, 114, 155, 163, 

195 
categorial syntax, 150 
category: basic, 92, 150, 205; derived, 92, 

150 
category change rule, 258 
certainly, 19 
characteristic function, 83f. 
characterization of frames, 25 
CN, 151, 205, 226 
composition of predicates, 105 
compositionality, 12, 214, 265; of meaning, 

5, 140; of translation, 112 
CON, 80, 119 
concatenation, 92f., 150f. 
conceptualism, 3 
condition in a DRS, 274, 278 
conjunction, xiv, 101, 106 
conjunction reduction, 224 
conjunction rule, 191f. 
connected relation, 35 
connectives, 'strong' and 'weak' interpreta-

tion of, 56 
conservativity, 245, 263 
constant, individual, xiv 
constituent: discontinuous, 98; intransitive 

verbal, 151; transitive verbal, 152 
constraint, 226, 240, 245 
construction: direct way of, 181, 202; indirect 

way of, 181 
context, 14, 16f.; conceived as moments of 

time, 16; hyperintensional, 73; intensional, 
157; of use. 67: onaaue. 45:"transnar,nt Ll.<; 
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context dependence, 13, 16 
context-free grammar, 95, 99, 150 
contingent, I 9 
continuous determiner, 250 
contradiction, xv, 109 
conventionalism, 2 
conversion. See A-conversion 
coordination, 259 
copula, 187 
coreference, I 93, 202 
correspondence theories of meaning, Iff. 
counterexample, 25 
counterfactual, I 0, 52 
counterpart relation, 72 
cup, 120-28 

DRS, 272; condition, 274, 278; construction 
rule, 272; subordination between, 276; 
truth of, 275; verifying embedding, 275 

DRT, 264-97; and compositionality, 285-96 
decreasing domains, 63, 65 
de dicto/de re, I 70, I 96, 202 
definite description, xv, 49f., 158, 173, 230 
definition, recursive, xiv 
deitic pronoun, 67 
density, 36 
deontic logic, 16 
derivability: axiomatic, xv; syntactic, xv 
derivational ambiguity, 147f. 
derivational history, I 84 
derived category, 92, !50 
derived type, 79 
DET, 226 
determiner, 226ff.; antipersistent, 243; con­

servative, 245, 263; continuous, 250; 
having extension, 250; having variety, 250; 
homogeneity of, 255; intensional, 247; 
logical, 229, 25Iff.; persistent, 242; pos­
sessive, 252; quantitative, 251; simple, 
246; uniformity of, 255 

direct interpretation, 230 
discontinuous constituent, 98 
discourse, 264ff. 
discourse, referent, 269 
discourse representation structure, 272 
discrete time, 36 
disjunction, xiv 
disjunction rule, 19If. 
domain, 4; of expressions of type a, 84 
domain function, 53f. 
domains of NP's: increasing, 57, 62; decreas­

ing, 63, 65 

donkey-sentence, 270ff. 
double indexing, 70 
downward monotonic, 234 
dual of a quantifier, 238 
dynamic predicate logic, 292 

earlier than relation, 33f. 
elimination: A v, 128 
empty set, xv 
epistemic: alternative, 16; modality, 30 
equivalence, xiv; logical, xv; material, xiv: 

strong, 95; weak, 95 
equivalence relation, 29 
essentialism, 47 
every, I 13f., 164, 179, 227f. 
exactly, 115, 239, 243, 250, 268 
existence predicate, 63f. 
existential: quantifier, xiv, 89; reading, 185 
expression, intensionally closed, 130, 137 
extension, 14, 123, 132f. 
extensional verb, 189 
extensional logical systems, 5, 145 
extensionality, principle of, 5, 133 

Fiirbung (Frege), 7 
first order predicate logic, 76 
flexible categorial grammar, 257-64 
formula: of predicate logic, xiv; proposi-

tional, xiv 
frame, 22; irreflexive, 25; reflexive, 25; tran-

sitive, 26 
freeforx, 110 
free occurrence of a variable, xiv, I 09 
Frege's principle, 140. See also 

compositionality 
function, characteristic, 83f. 
functional abstraction, I 05 
functional application, 79, 104, 153, 263 
functor category, 151 
future tense, 32, 39f. 

Geach's rule, 258f. 
Gedanke, 10 
generalized quantifiers, 223-57 
global constraint, 245 
grammar: context-free, 95, 99; generalized 

phrase structure, 100, 220; generative, 92, 
99, 141, 144, 214; universal, 225 

grammatical form, 214-20 

hen, 151, 180 
hearer, 67 

higher order quantification, 89 
hyperintensional context, 73 

I, 67ff. 
idea (Vorstellung), 8 
identity, 57, I 87, 263 
identity relation, I 0 I 
implication, xiv; material, xiv, 20; strict, 20 
implicational logic, 260 
increasing domains requirement, 57, 62 
index, 67 
indirect speech, 45 
indiscernibility of identicals, 5 
individual, 49 
individual concept, 14, 49, 59, 68, 203-14 
individual constant, xiv 
infinitival complement, 195 
initial baptism, 53 
integer, 36 
intensional, 14; context, !57; determiner, 

247; operator, 131; semantics, 14; types, 
119, 126, 263; verb, 165 

intensional construction, 7 
intensionally closed expression, 130, 137 
intensional v~rb, 45, 186 
interpretation function, xv 
interpretation of natural language: direct, 148, 

230; indirect, 148 
intersection, xv 
intransitive verb phrase, 151, 205, 226 
introduction of an individual, 269 
irreflexive relation, 25, 34 
IV, !51, 205, 226 

K (minimal modal propositional logic), 29 
know, 45 
Kraft (Frege), 7 
Kripke model, 18 

A-abstraction, I 04, I I I, 263 
A-conversion, 109-12, 13lff. 
A -operator, I 02-8 
Lambek calculus, 260 
Leibniz's law, 5 
lexical element, 151 
lexical meaning, 173 
lexicon, 150 
linear order, 36 
live on, 246 
logic: deontic, 16; epistemic, 16; many­

valued, 56; minimal, 29; modal proposi­
tional, 16-32; propositional tense, 32-44; 
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second order, 76; second order predicate, 
103, 159 

logical equivalence, xv 
logical form, 214-20 
logically necessary, 29 
lookfor, 45 

many, 115, 239, 243, 246 
many-valued logic, 56 
material implication, 20 
meaning: and reference, 7; and sense, 7f.; 

compositionality of, 5, !40 
'meaning is use' theory, 2 
meaning postulate(s), 17lff.; MPI, 173; MP2, 

175, 213; MP3, 190; MP4, 190; MP5, 197; 
MP6, 199; MP7, 201; MP8, 210; MP9, 
212; MPIO, 212 

meaning theories: behavioristic, 2; correspon­
dence, Iff.; meaning is use, 2; referential, 
4ff. 

mental representation, 145 
mentalism, 141, 145 
metalanguage, 142 
minimal modal logic (K), 29 
Misleading Form Thesis, 214 
model: for intensional propositional logic, 18; 

for intensional type theory, 122; for modal 
predicate logic, 53; for modal propositional 
logic, 22; for theory of types, 85f. 

modal operators, stacked, 21 
modal propositional logic, 16-32 
modality: athletic, 30; de dicto/de re, 45; 

epistemic, 30 
moments of time, 16,67 
monotonical decrease. See downward 

monotonic 
monotonical increase. See upward monotonic 
monotonicity, 232ff., 262; constraint, 240; 

downward, 234; upward, 232 
Montague rule, 259f. 
morning star/evening star paradox, 6, 9 
most, 115 

N, 226 
NP, 226 
narrow scope, 179 
natural deductior., 28 
naturalism, 2 
naturalism-conventionalism, 2 
necessary, 19, 200, 208 
necessary: logical, 17, 29; physical, 17 
negation, xiv, 257 
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negation of quantifiers: external, 236; inter-
nal, 236 

negation rule, I9If. 
negative polarity, 224 
nominalization, 259 
notational conventions: NCI, 167; NC2, 176, 

213; NC3, 21 I 
now, 37f, 69f. 

object language, 142 
obligatory, 16, 20 
one, 115, 179; at least, 243; exactly, 115, 

239 
only, 239, 246 
opaque context, 45ff. 
operator, 16; modal, 2lff.; tense, 32ff.; 

unary, 16 
order, linear, 36 
ordered n-tuple, xv 

paradox(es), 6, 9, 20, 78f., 142 
partiality of interpretation, 56 
past tense, 32, 39f. 
persistence, 242 
personal pronoun, 67 
physical necessity, 17 
picture theory of meaning, 4 
Polish notation, 101 
Plato's beard, 51 
Platonism, 3 
point: of event, 39; of reference, 39; of 

speech, 39 
possible, 18 
possible individuals, !85 
possible world, 22, 134 
power set, xv, 84 
pragmatics, 73 
predicate adverbials, 77, 200 
predicate: existence, 63f.; reflexive, 103; sec-

ond order, I 03 
preposition, 78 
present perfect tense, 40 
principle of semantic compositionality, 5, 12 
problem of transworld identity, 52, 71 
pronoun: anaphoric, 184, 221; deictic, 67; 

personal, 67; reflexive, 180 
proper name, 8, 49f., 158, 173, 206, 238, 

263, 273 
property, 47, 121 
proposition, 14, 121 
propositional attitude, 45 
propositional formula, xiv 

quantification: interative, 292; vacuous, 181 
quantified term, 154, !59 
quantifier: existential, xiv; universal, xiv 
quantifying into, 180, 193, 20If., 267,271 
quantitative determiner, 251 

rational number, 36 
reading: specific, 185; non-specific, 185 
realism, 3 
recursive, xiv; definition, xiv 
reduction, A.. See A.-conversion 
reduction step, I I 0 
reference, 7, 144; indirect, 12; marker, 273; 

multiple, 14, 144; self-, 143 
reflexive predicate, 103, 107 
relation: irreflexive, 25, 34; reflexive, 24; 

connected, 35; symmetric, 26; transitive, 
26,35 

relative adjective, 77, I 99 
relative clause, 195 
rigid designator, 10, 49f., 73, 173, 184 
rule of quantification, 178-87 
Russell paradox, 78f. 

S, 151 
S5, 29f. 
scope, xiv 
scope ambiguity, 165, 170 
Sea Battle argument, 32 
second order: logic, 76; predicate, 103, 159 
seek, 157, 165f, 197 
self-reference, I 43 
semantic automaton, 255 
semantic paradoxes, 142 
semantic universal, 226, 239f. 
semantic closure, 142 
semantics: extensionalist, 145; intensional, 

14, 145; lexical, 172 
sense, 7f. 
sentence: conjunction, 191; semantics, 172 
sentential complement, 195 
set abstractor, I 05 
similarity relation, 43 
simple past tense, 32, 39f. 
Sinn (Frege), 7, I 18 
situation semantics, I 44 
some, 115, 229, 243, 251 
sometimes, 40 
speaker, 67 
specific reading, I 85 
square of opposition, 238 
stacked modal operators, 21 

strict implication, 20 
'strong' interpretation of the connectives, 56 
structural ambiguity, 147 
structure, 22 
surface stmcture, 214 
symmetry, 26 
syncategorematic introduction, 101, !55 
synonymy, 145 
syntactic operation: F" 153; FrF5 , 154; F6, 

166; F1.n• 180, 202; F8 , 191; F9 , 192; F10, 

194; Fu, 195; F12 •• , 199; F13 , 200 
syntactic rules, 92; S I, !53; S2, !53; S3-S6, 

154; S7, 166; S8, n, 180; S9, 191; 
SIO-SI3, 192; Sl4, 194; SI5, 195; Sl6, 
196; SI7, 198; S!8, n, 199; SI9, 200; S20, 
200;S20,n,202 

syntactic variable, 15 I 
syntax: autonomy of, 141, 215; bidirectional, 

93ff.; categorial, 150; context-free, 95, 99; 
unidirectional, 93ff., I 5 I 

T2, 133f. 
tautology, xv 
tense (of a verb), 33, 39f. 
tense and modality, 40f. 
tense logic, 32-44 
tense operator, 32 
term, !52f. 
text, 264 
the, 164 
there insertion, 224f. 
time axis, 33ff.; branched, 35 
transformational-generative grammar, 92, 99 
transitive verb phrase, 152 
transitive verb, 165 
transitivity, 26, 35 
translation: compositionality of, I I 2; func­

tionf, 156, 206; function g. 158, 207 
translation rules: Tl(a), 158, 207; Tl(a'), 190; 

Tl(b), 162, 207; Tl(c), 188, 208; TI(c'), 
I 65; T2, 163; T3-T6, I 60, 207; T3', 165; 
D, 167; T8, n, 181, 208; T9, 191; TIO­
TI3, 192; TI4, 194; TIS, 195; Tl6, 197; 
T17, 198; TI8, n, 199; T19, 200; T20, 
200; T20, n, 202 

translation tree, 163 

Index 

transparent context, 45 
transworld identity problem, 52, 71 
tree of numbers, 251 f. 
true, in a model, xv 
truth, 144 
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truth definition, 4; for intensional type theory, 
123; for modal predicate logic, 54, 60, 64; 
for modal propositional logic, 23; for the­
ory of types, 86, I 05 

truth of a discourse, 265 
truth of a DRS in a model, 275 
truth predicate, 142 
try. 197 
TV, 152,226 
two-sorted type theory, 133-38 
type, 79f., I 19, 126; basic, 79, 100; derived, 

79; intensional, 119, 126; two-sorted, 
132-38 

unidirectional categorial grammar, 93ff., 151 
union of sets, xv 
universal, 225, 246; grammar, 225; quan­

tifier, xiv, 89; validity, xv 
upward monotonic, 232 

validity, xv; in a model, 24; on a frame, 25; 
syntactic, 28; universal, xv 

valuation, xv 
VAR, 80, 119 
variable, xiv 
variable: free, 110; syntactic, !51 
variety, 249 

verb: extensional, 189; intransitive, 151, 205, 
226; transitive, 152, 226 

verb phrase: intransitive, 15 I, 205, 226; tran-
sitive, 152, 226 

verifying embedding of a DRS, 275 
vocabulary, 80 
Vorstellung (Frege), 8 
VP, 226 

WE, 80,119 
weak equivalence, 95 
wide scope, 179 
word order, 98 
word semantics, I 72 
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