
Runge–Kutta pairs of orders 5(4) satisfying only the
first column simplifying assumption.

Ch. Tsitourasa

aTEI of Chalkis, Dept. of Applied Sciences, GR34400, Psahna, Greece

Abstract

Among the most popular methods for the solution of the Initial Value Problem
are the Runge–Kutta pairs of orders 5 and 4. These methods can be derived
solving a system of nonlinear equations for its coefficients. For achieving this,
we usually admit various simplifying assumptions. The most common of them
are the so called row simplifying assumptions. Here we negligible them and
present an algorithm for the construction of Runge–Kutta pairs of orders 5 and
4 based only in the first column simplifying assumption. The result is a pair
that outperforms other known pairs in the bibliography when tested to standard
set of problems of DETEST. A cost free fourth order formula is also derived for
handling dense output.

Keywords: Runge–Kutta; Truncation Error; Non Linear Algebraic Systems;
Free Parameters; Dense Output.
2000 MSC: 65L05, 65L06

1. Introduction

We consider the numerical solution of the non-stiff initial value problem,

y′ = f(x, y), y(x0) = y0 ∈ R
m, x ∈ [x0, xf] (1)

where the function f : R × R
m → R

m is assumed to be as smooth as necessary.
Traditionally, explicit embedded Runge-Kutta methods produce an approxima-
tion to the solution of (1) only at the end of each step.

The general s−stage embedded Runge-Kutta pair of orders p(p − 1), for
the approximate solution of the problem (1) can be defined by the following
Butcher scheme [2, 3]

c A
b

b̂

Email address: tsitoura@teihal.gr (Ch. Tsitouras)
URL: http://users.ntua.gr/tsitoura/ (Ch. Tsitouras)

Preprint submitted to Elsevier June 1, 2011

where A ∈ R
s×s, is strictly lower triangular, bT , b̂T , c ∈ R

s with

c = A · e, e = [1, 1, · · · , 1]T ∈ R
s.

The vectors b̂, b define the coefficients of the (p − 1)−th and p−th order ap-
proximations respectively.

Starting with a given value y(x0) = y0, this method produces approximations
at the mesh points x0 < x1 < x2 < · · · < xf . Throughout this paper, we assume
that local extrapolation is applied, hence the integration is advanced using the
p−th order approximation. For estimating the error, two approximations are
evaluated at each step xn to xn+1 = xn + hn. These are:

ŷn+1 = yn + hn

s∑
j=1

b̂jfj and yn+1 = yn + hn

s∑
j=1

bjfj ,

where

fi = f(xn + cihn, yn + hn

i−1∑
j=1

aijfj), i = 1, 2, · · · , s.

The local error estimate En = ‖yn − ŷn‖ of the (p − 1)−th order Runge-
Kutta pair is used for the automatic selection of the step size. Given a Tolerance
TOL > En, the algorithm

hn+1 = 0.9 · hn · (TOL

En
)

1
p

furnishes the next step length. In case TOL < En then we reject the current
step and try again with the left side of above formula being hn.

In case that cs = 1, as,j = bj for j = 1, 2, · · · , s − 1 and bs = 0 �= b̂s then
the First Stage of each step is the same As the Last one of the previous stage.
This device was possibly first used in [6, pg. 22] and it is called FSAL. The pair
shares effectively only s − 1 stages per step then.

Let yn(x) be the solution of the local initial value problem

y′(x) = f(x, yn(x)), x ≥ xn, yn(xn) = yn

Then En+1 is an estimate of the error in the local solution yn(x) at x = xn+1.
The local truncation error tn+1 associated with the higher order method is

tn+1 = yn+1 − yn(xn + hn) =
∞∑

q=1

hq
n

λq∑
i=1

TqiPqi = hp+1
n Φ(xn, yn) + O(hp+1

n)

where
Tqi = Qqi − ξqi/q!

with Qqi algebraic functions of A, b, c and ξqi positive integers. Pqi are
differentials of f evaluated at (xn, yn) and Tqi = 0 for q = 1, 2, · · · , p and

2

i = 1, 2, · · · , λq. λq is the number of elementary differentials for each order and
coincides with the number of rooted trees of order q. It is known that

λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 9, λ6 = 20, λ7 = 48 · · · , etc [1].

The set T (q) = {Tq1, Tq2, · · · , Tq,λq
} is formed by the q−th order trunca-

tion error coefficients. It is usual practice a (q − 1)−th order method to have
minimized

‖T (q)‖2 =

√√√√ λq∑
j=1

T 2
qj .

2. Derivation of RK pairs of orders 5(4)

The construction of an effectively 6−stages FSAL Runge-Kutta pair of orders
5(4) requires the solution of a nonlinear system of 25 order conditions. λ1 +
· · · + λ5 = 17 equations for the higher order formula and λ1 + · · · + λ4 = 8
equations for the lower order formula. There are 28 unknowns. Namely c2 − c6,
b1 − b6, b̂1 − b̂7, a32, a42, a43, a52, a53, a54 and a62 − a65.

We proceed setting c6 = 1 and an arbitrary value for b̂7. Then the only
assumption we make is

b · (A + C − Is) = 0 ∈ R
1×s (2)

with C =diag(c) and Is ∈ R
s×s the identity matrix. This is the minimal set of

simplifying assumptions for pairs of orders 5(4). It is worth mentioning that in
the family of methods introduced here

A · c �= c2

2
, and b2 �= 0,

contrary to the common practice of every 5(4) pair appeared until now [4, 6, 7].
Expression c2 is to be understood as component–wise multiplication c ∗ c.

The implicit algorithm that derives a pair of the new family follows. A
different approach was given in [12].

The algorithm producing the coefficients of the new pair
Set c6 = 1 and get an arbitrary b̂7 �= 0. Select free parameters c2, c3, c4 and

b2 �= 0. Then

1. Solve b·e = 1, b·c = 1
2 , b·c2 = 1

3 , b·c3 = 1
4 , b·c4 = 1

5 for b1, b3, b4, b5 and b6.

2. Solve b̂ · e = 1, b̂ · c = 1
2 , b̂ · c2 = 1

3 , b̂ · c3 = 1
4 for b̂1, b̂3, b̂4, and b̂5.

3. Solve b · (A + C − Is) = 0 for a62, · · · , a65.

4. Solve b · A3c = 1
120 , b · A2 · c2 = 1

60 , b · C2Ac = 1
10 , b · ACAc = 1

40 , for
a52, a53, a54 and a43. Adjust the values of a62, a63 and a64

3

5. Solve b̂ · A2c = 1
24 , b̂ · Ac2 = 1

12 , b̂ · Ac = 1
6 for b̂2, b̂6 and a42. Adjust the

values of a52, a53, a43 and a62, a63, a64. Reevaluate all b̂’s.

6. Solve b̂ · CAc = 1
8 for c5. Reevaluate a52, a53, a54, a43, b̂5, b̂6 and a42.

Adjust all b’s.

7. Solve b · (Ac)2 = 1
20 for a32. Compute the final values of the coefficients.

8. Compute explicitly a21, a31, a41, a51, a61 from A · e = c

The equations 1 − 6 can be solved linearly to the coefficients. The seventh
equation is a rational function over a32. The numerator of that function is a
polynomial of sixth degree and may have some real solutions for a32. It was not
proven theoretically but almost 2000 random runs over accepted regions for the
coefficients gave always some real roots.

In case that we choose b2 = 0 as input then the equations in steps 6 and 7
become:

b̂ · CAc − 1/8 = p(a32) · q1(a32, c5) and b · (Ac)2 − 1/20 = p(a32) · q2(a32, c5).

Thus we have the option to evaluate a32 from polynomial p(a32) and satisfy
both equations. c5 remains free after using this alternative. Observe that the
choice b2 = 0 and p(a32) �= 0 give pairs with A · c �= c2

2 .
A Mathematica [14] implementation of the above algorithm requires reeval-

uation of the coefficients and the order conditions in every step of the algorithm
above. In a small computer it needs about 2−3 seconds to derive the coefficients.

3. The new Runge–Kutta pair

At first we tried to solve all the required 25 equations using the Mathematica
function NMinimize. The Differential Evolution technique [9] implemented in
Mathematica was applied as option. We found hundreds of solutions, all of
them satisfying at least the equations (2) or A · c = c2

2 . We avoided the latter
as assumption and proceeded using the algorithm given in the previous section
which uses (2) as simplification. Again the function NMinimize was used with
the same option and as objective function ‖T (6)‖2 evaluated with the coefficients
given from the given algorithm.

We got various interesting pairs and among the best is the one presented in
Table– 1. This method shares a rather large value of b2 and it is clearly not
included in any family of solutions appeared in the relevant literature until now.
The Norm of the principal truncation error is ‖T (6)‖2 ≈ 1.38 · 10−4 while the
corresponding value for the Dormand and Prince pair is ‖T (6)‖2 ≈ 3.99 · 10−4

[4].

4

Table 1: The coefficients of the new pair.

c2 = 0.161 c3 = 0.327
c4 = 0.9 c5 = 0.9800255409045097
c6 = c7 = 1 b1 = 0.09646076681806523
b2 = 0.01 b3 = 0.4798896504144996
b4 = 1.379008574103742 b5 = −3.290069515436081
b6 = 2.324710524099774 b̂1 = 0.001780011052226
b̂2 = 0.000816434459657 b̂3 = −0.007880878010262
b̂4 = 0.144711007173263 b̂5 = −0.582357165452555
b̂6 = 0.458082105929187 b̂7 = 1

66 , b7 = 0
a32 = 0.3354806554923570 a42 = −6.359448489975075
a52 = −11.74888356406283 a43 = 4.362295432869581
a53 = 7.495539342889836 a54 = −0.09249506636175525
a62 = −12.92096931784711 a63 = 8.159367898576159
a64 = −0.07158497328140100 a65 = −0.02826905039406838
ai1 = ci −

∑j=i−1
j=2 aij , i ≥ 2 a7i = bi, i = 1, 2, · · · , 6

4. Dence output

For a costless fourth order approximation at intermediate points y(xn + thn)
we use the same stages fj , 1 ≤ j ≤ 7 and combine them to the formula:

y(xn + thn) + O(h5) = ỹn+t = yn + hn

7∑
j=1

b̃j(t)fj ,

where b̃j(t) are polynomials in t of fourth degree. These polynomials form the
vector b̃ which satisfies the eight order conditions [11]:

b̃(t)e = t, b̃(t)c = t2

2 , 1
2 b̃(t)c 2 = t3

6 , b̃(t)Ac = t3

6 ,

1
6 b̃(t)c3 = t4

24 , 1
2 b̃(t)Ac 2 = t4

24 , b̃(t) (c ∗ (Ac)) = t4

8 , b̃(t)A 2c = t4

24 .

These equations are linear in b̃ and can be solved simultaneously leaving one
polynomial as free parameter. This polynomial (say b̃7) has 5 coefficients. Only
two of them are needed for satisfying C0 continuity. For this property we ask:

b̃i(0) = 0, i = 1, 2, · · · , 7, and b̃i(1) = bi, i = 1, 2, · · · , 7

Then we proceed determining another two coefficients of the free polynomial
for C1 continuity. It holds

db̃1 (t)
dt

|t=0 = 1,
db̃i (t)

dt
|t=0 = 0, i = 2, 3, · · · , 7

db̃7 (t)
dt

|t=1 = 1,
db̃i (t)

dt
|t=1 = 0,

5

Finally one coefficient remains for minimizing the truncation error coeffi-
cients of fifth order. Since these terms depend on t, we integrate the Euclidean
norm of them in the interval [0, 1]

t=1∫
t=0

‖T̃ (5)‖2dt =

t=1∫
t=0

(√
T̃ 2

5,1 (t) + T̃ 2
5,2 (t) + · · · T̃ 2

5,9 (t)
)

dt

The resulting interpolant is:
b̃1 = −1.0530884977290216t(t−1.3299890189751412)

(
t2 − 1.4364028541716351t + 0.7139816917074209

)
b̃2 = 0.1017t2

(
t2 − 2.1966568338249754t + 1.2949852507374631

)
b̃3 = 2.490627285651252793t2

(
t2 − 2.38535645472061657t + 1.57803468208092486

)
b̃4 = −16.54810288924490272(t − 1.21712927295533244)(t − 0.61620406037800089)t2

b̃5 = 47.37952196281928122(t − 1.203071208372362603)(t − 0.658047292653547382)t2

b̃6 = −34.87065786149660974(t − 1.2)(t − 0.666666666666666667)t2

b̃7 = 2.5(t − 1)(t − 0.6)t2

We observed that
max

t
‖T̃ (5)‖2 ≈ 7.78 · 10−4

for t ≈ 0.285 and ‖T̃ (5)‖2 is kept for every t ∈ [0, 1] well under the corresponding
value of the underlying 4−th order method, ‖T̂ (5)‖2 ≈ 1.75 · 10−3

5. Numerical Results

We run the Runge–Kutta pair for the 25 DETEST [5] non–stiff problems
and for tolerances 10−3, 10−4, · · · , 10−7. For stringent tolerances it is preferred
to use higher order pairs. DETEST was implemented through MATLAB2009a
on a Pentium IV computer running Windows XP at 3.4GHz. For comparison
purposes the DP5(4) pair [4] was also run for the same tolerances. We present
the results in Table–2.

These results were developed according to the guidelines given in [10, 13].
Briefly, let us assume that the global error achieved at all grid points over the
integration interval satisfies the relation ge = C · TOLE and that its value is
known for several tolerances. The values of E and C can easily be found in
the sense of a least squares approximation. These values are then used, with
linear interpolation, in order to estimate the number of derivative evaluations
required to achieve a prescribed ge. We present the efficiency gains of DP5(4) in
relation to the new one, for the respective problems and the expected accuracies,
counted in units of 10%, in Table 2. The numbers in these tables are the ratios
in function evaluations cost of the two pairs being tested. The larger value is
always being divided by the smaller value and the efficiency gain is formed by
subtracting 1 from this ratio. Subsequently the result is multiplied by 10 and
rounded to the nearest integer. Positive numbers mean that the first of the
two pairs is superior. Zero entries indicate a difference less than ±5%. Unity
entries indicate differences between 5 − 15% and so on. The final row gives the

6

Table 2: Efficiency gains of NEW5(4) relative to DP5(4), for the range of tolerances 10−3,
· · · , 10−7.

g.e. A1A2A3A4A5 B1B2B3B4B5 C1C2C3C4C5 D1D2D3D4D5 E1E2E3E4E5

−1 1 1 2 1 0
−2 −1 1 1 0 1 0 −1 0 1
−3 0 0 1 0 0 0 1 1 0 0 −1 1 0 2
−4 1 1 0 2 0 1 0 1 0 1 1 0 3 1 2 1 0 −1 1 0 2
−5 1 1 −1 2 0 3 1 1 0 3 1 0 1 2 1 2 1 2 1 4
−6 1 1 −1 2 1 1 1 1 0 1 2 3 1 3
−7 1 1 1 2 2 1 1
10% 1 1 0 2 0 1 1 1 0 1 1 0 3 1 2 1 0 0 0 0 2 0 2 1 3

mean value of efficiency gain for each tolerance and problem. The final row’s
first number is the average efficiency gain for all problems. Empty places in the
tables are due to the unavailability of data for the respective tolerances. See [8]
for more details.

The coefficient b̂7 does not affect ‖T (6)‖2. It was chosen so comparable global
errors were achieved by both methods for the same tolerances. Thus Table–2 is
as full as possible. We finally observe that the new method is in average 10%
more efficient than Dormand–Prince 5(4) for the DETEST problems. It is a
remarkable improvement over pairs of same orders and origin.

6. Appendix

The Mathematica code for the algorithm described in section–2. We insert
three distinct c2, c3, c4 and an arbitrary b2 as input with c2c3c4 �= 0. The
package returns the sets of coefficients depending on the number of real roots
of the equation b · (Ac)2 = 1/20 with respect to a32. i.e. two, four or six sets of
coefficients.

BeginPackage["csa‘"];

Clear["csa‘*"]

TEST::usage = " TEST[x1,x2,x3,x4] of a RK5(4) with b.(a+c-i)=0 "

Begin["‘Private‘"];

Clear["csa‘Private‘*"];

TEST[cc2_?NumericQ, cc3_?NumericQ, cc4_?NumericQ, bc2_?NumericQ] :=

Module[{a32, a42, a43, a52, a53, a54, a62, a63, a64, a65, bb1, bb2,

bb3, bb4, bb5, bb6, bb7, b1, b2, b3, b4, b5, b6, c2, c3, c4, c5, so,

so1, a, b, bb, c, ba, equ, eequ, temp, j1},

c2 = Rationalize[cc2, 10^-6]; c3 = Rationalize[cc3, 10^-6];

c4 = Rationalize[cc4, 10^-6];b2 = Rationalize[bc2, 10^-6];

equ = {-(1/120) + b.a.a.a.c, -(1/60) + b.a.a.c^2, -(1/40) + b.a.(c*a.c),

-(1/20) + b.a.c^3, -(1/30) + b.(c*a.a.c), -(1/15) + b.(c*a.c^2),

7

-(1/20) + b.(a.c)^2, -(1/10) + b.(c^2*a.c), -(1/5) + b.c^4,

-(1/24) + b.a.a.c, -(1/12) + b.a.c^2, -(1/8) + b.(c*a.c),

-(1/4) + b.c^3, -(1/6) + b.a.c, -(1/3) + b.c^2, -(1/2) + b.c,

-1 + b.{1, 1, 1, 1, 1, 1, 1}};

eequ = {-(1/24) + bb.a.a.c, -(1/12) + bb.a.c^2, -(1/8) + bb.(c*a.c),

-(1/4) + bb.c^3, -(1/6) + bb.a.c, -(1/3) + bb.c^2, -(1/2) + bb.c,

-1 + bb.{1, 1, 1, 1, 1, 1, 1}};

c = {0, c2, c3, c4, c5, 1, 1};

b = {b1, b2, b3, b4, b5, b6, 0};

bb = {bb1, bb2, bb3, bb4, bb5, bb6, 1/40};

a = {{0, 0, 0, 0, 0, 0, 0},

{c2, 0, 0, 0, 0, 0, 0},

{c3-a32, a32, 0, 0, 0, 0, 0},

{c4 - a42 - a43, a42, a43, 0, 0, 0, 0},

{c5 - a52 - a53 - a54, a52, a53, a54, 0, 0, 0},

{1 - a62 - a63 - a64 - a65, a62, a63, a64, a65, 0, 0}, b};

so = Solve[{equ[[17]] == 0, equ[[16]] == 0, equ[[15]] == 0,

equ[[13]] == 0, equ[[9]] == 0}, {b1, b3, b4, b5, b6}];

{b1, b3, b4, b5, b6} = Simplify[so[[1, 1 ;; 5, 2]]];

so = Solve[{eequ[[4]] == 0, eequ[[6]] == 0, eequ[[7]] == 0, eequ[[8]] == 0},

{bb1, bb3, bb4, bb5}];

{bb1, bb3, bb4, bb5} = Simplify[so[[1, 1 ;; 4, 2]]];

ba = Simplify[b.(a + DiagonalMatrix[c] - IdentityMatrix[7])];

so = Solve[{ba[[2 ;; 5]] == {0, 0, 0, 0}}, {a62, a63, a64, a65}];

{a62, a63, a64, a65} = Simplify[so[[1, 1 ;; 4, 2]]];

so = Solve[{equ[[2]] == 0, equ[[1]] == 0, equ[[3]] == 0, equ[[8]] == 0},

{a43, a52, a53, a54}, Sort -> False];

{a43, a52, a53, a54} = Simplify[so[[1, 1 ;; 4, 2]]];

{a62, a63, a64, a65} = Simplify[{a62, a63, a64, a65}];

so = Solve[{eequ[[1]] == 0, eequ[[2]] == 0}, {bb2, bb6}, Sort->False];

{bb2, bb6} = Simplify[so[[1, 1 ;; 2, 2]]];

so=Solve[{eequ[[5]]==0},{a42}];a42=Simplify[so[[1,1,2]]];

8

{a43, a52, a53, a54, a62, a63, a64, bb1, bb3, bb4, bb5} =

Simplify[{a43, a52, a53, a54, a62, a63, a64, bb1, bb3, bb4, bb5}];

so= Solve[{eequ[[3]] == 0}, {c5}];

c5 = Simplify[so[[1, 1, 2]]];

{a52, a53, a54, a43, bb5, bb6, a42, b1, b2, b3, b4, b5, b6} =

Simplify[{a52, a53, a54, a43, bb5, bb6, a42, b1, b2, b3, b4, b5, b6}];

{bb1, bb2, bb3, bb4, bb5, bb6} = Simplify[{bb1, bb2, bb3, bb4, bb5 ,bb6}];

so = Union[Solve[{Numerator[Simplify[equ[[7]]]] == 0}, {a32}]];

temp = N[Select[so, Im[#[[1, 2]]] == 0 &],25];

Return[Table[{a, b, bb, c} /. temp[[j1]], {j1, 1, Length[temp]}]]

];

End[];

EndPackage[];

References

[1] J. C. Butcher, Coefficients for the study of Runge-Kutta integration pro-
cesses, J. Austr. Math. Soc., 3, 185-201 (1963)

[2] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput., 18, 50-64
(1964)

[3] J. C. Butcher, On Runge-Kutta processes of high order, J. Austral. Math.
Soc., 4, 179-194 (1964)

[4] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta for-
mulae, J. Comput. Appl. Math., 6, 19-26 (1980)

[5] W. H. Enright and J. D. Pryce, Two Fortran Packages for Assessing Initial
Value Methods, ACM TOMS, 13, 1-27 (1987)

[6] E. Fehlberg, Low order classical Runge-Kutta formulas with stepsize control
and their application to some heat-transfer problems, TR R-287, NASA,
(1969)

[7] S. N. Papakostas and G. Papageorgiou, A family of fifth order Runge-Kutta
pairs, Math. Comput. 65, 1165-1181 (1996).

[8] S. N. Papakostas, Ch. Tsitouras and G. Papageorgiou, A general family
of Runge-Kutta pairs of orders 6(5), SIAM J. Numer. Anal., 33, 917-926
(1996)

9

[9] K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A
practical approach to global optimization, Springer, Berlin (2005).

[10] P. W. Sharp, Numerical comparisons of some explicit Runge–Kutta pairs,
ACM TOMS, 17, 387-409 (1991)

[11] Ch. Tsitouras, Runge-Kutta interpolants for high precision computations,
Numer. Algor., 44, 291-307 (2007).

[12] Ch. Tsitouras, Runge–Kutta pairs of orders 5(4) using the minimal set of
simplifying assumptions, AIP Conference Proceedings, Volume 1168, 69-72
(2009).

[13] Ch. Tsitouras and S. N. Papakostas, Cheap error estimation for Runge–
Kutta pairs, SIAM J Sci., Comput., 20, 2067-2088 (1999).

[14] Wolfram Research, Inc., Mathematica, Version 6.0, Champaign, IL (2007).

10

