
Fast FPT-algorithms for cleaning grids∗

Josep Diaz Dimitrios M. Thilikos

Abstract

We consider the problem that given a graph G and a parameter k asks whether the
edit distance of G and a rectangular grid is at most k. We examine the general case
where the edit operation are vertex/edge removals and additions. If the dimensions
of the grid are given in advance, then we give a parameterized algorithm that runs in
2O(log k·k) +O(n3) steps. In the case where the dimensions of the grid are not given
we give a parameterized algorithm that runs in 2O(log k·k) +O(k log k ·n3) steps. We
insist on parameterized algorithms with running times where the relation between
the polynomial and the non-polynomial part is additive. For this, our algorithm
design is based on the technique of kernelization. In particular we prove that for
each version of the above problem there exists a kernel of size O(k4).

1 Introduction

An interesting problem with many applications in Computer Science is the problem of

measuring the degree of similarity of two graphs G and H, where by degree of similarity

is consider to be the minimum number of edit operations (insert, delete, and modify)

needed to transform one graph into the other. This measure of similarity between

graphs is also denoted as the edit distance by analogy with the related problem on

strings. A particularly important application has been the recognition of objects and

shapes, where the objects are represented by special type of labelled trees and use the

operations, deletion, insertion and relabelling of nodes. The problem is NP-Complete

in general graphs and can be computed by dynamic programming in polynomial time

(see for ex. [10]). Further work has been done of computing the edit distance of more

involve weighted trees, called shock trees, using and extended sets of operations: slice

of edges, contract of edges, deform of edges, (see for ex. [8])

In this paper, we consider decision problems associated with the editing distance

between G and H when H is a grid of size p × q (we call such grid (p, q)-grid and we

denote it as Hp,q). An edit operation on a graph G can be either the removal or the

insertion of either an edge or a vertex. We represent these operations by the members

∗Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Campus
Nord – Edifici Ω, c/Jordi Girona Salgado 1-3, E-08034, Barcelona, Spain. This research was supported by
the spanish CICYT project TIN-2004-07925 (GRAMMARS). The first author was partially supported by
the Distinció per a la Promoció de la Recerca de la GC, 2002. Emails: {diaz,sedthilk}@lsi.upc.edu

1

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός
23rd International Symposium on Theoretical Aspects of Computer Science, STACS 2005, Lecture Notes in Computer Science, Springer Verlag, Vol. 3884, pp. 361–371, 2005.

of the set U = {e-out, e-in, v-out, v-in}. Given E ⊆ U , we denote E-dist(G,H) as the

edit distance of G and H with respect to E , which is the minimum number of operations

in the set E that when applied to G can transform it to H.

Our study adopts the point of view of parameterized complexity introduced by

Downey and Fellows (see [2]). We consider parameterizations of hard problems, i.e.

problems whose input contains some (in general small) parameter k and a some main

part. A parameterized problem belongs in the class FPT if it can be solved by an algo-

rithm of time complexity g(k) · nO(1) where g is a super-polynomial function of k and n

is the size of the problem (we call such an algorithm FPT-algorithm). A popular tech-

nique on the design of parameterized algorithms is kernelization. Briefly, this technique,

consists in finding a polynomial time reduction of a parameterized problem to itself in

a way that the sizes of the instances of the new problem, we call it kernel depend only

on the parameter k. The function that bounds the size of the main part of the re-

duced problem determines the size of the kernel and is usually of polynomial (on k) size.

Clearly, a parameterized problem admits a reduction to a problem kernel, then it is in

FPT because any brute force algorithm can solve the reduced problem in time that does

not depend on the main part of the original problem. Notice also that this technique

provides FPT-algorithms of time complexity g(k)+nO(1) where the non-polynomial part

g(k) is just additive to the overall complexity.

The first result of this paper is the classification in FPT of the following problem by

giving a kernel of size O(k4) or O(k3) depending on the size of the grid we are looking

for (see Section 3)

k-Almost grid

Input: A graph G, two positive integers p, q, a non-negative integer k, and a set E ⊆ U .

Parameter: A non-negative integer k.

Question: Can G be transformed to a (p, q)-grid after at most k edit operations from

E?

Notice that the non-parameterized version of k-Almost Grid is NP-complete, as the

problem with q = 1 and with E consisting only in the erasing a vertex operation, is

equivalent to the Longest Path problem, i.e. the problem of given a graph G and

a constant k ≥ 0 decide if G contains a simple path of length at least k (we just set

k ← |V (G)| − k). Therefore, our parameterization also includes the “dual” parameter-

ization of the Longest Path, in the sense that now the parameter is not the length

of the path but the number of vertices in G that are absent in such a path. The “pri-

mal” parameterization of the Longest Path problem was known to be in FTP1 [6, 1].

1In an abuse of notation, we indistinctly refer to FPT problem or to problem in the FPT class

2

However, no result was known, so far, for he dual parameteriztion of Longest Path.

In Section 4 we consider the following more general problem:

k-Almost some Grid

Input: A graph G and a set E ⊆ U .

Parameter: A non-negative integer k.

Question: Decide if there exist some pair p, q such that G-dist(G,Hp,q) ≤ k.

Clearly, the above problem can be solved applying the algorithm for k-Almost Grid

for all possible values of p and q. This implies an algorithm of time complexity

O(log n(g(k) + nO(1))). In Section 4, we explain how to avoid this O(log n) overhead

and prove that there exists also a time O(g(k) + nO(1)) algorithm for the k-Almost

some Grid problem. That way, both of our algorithms can be seen as pre-processing

algorithms that reduce the size of the problem input to a function depending only on

the parameter k and not on the main part of the problem.

A different but somehow related sets of problems, which have received plenty of

attention is the following: Given a graph G and a property Π, decide what is the

minimum number of edges (nodes) that must be removed to obtain a subgraph of G

with property Π. In general all these problems are NP-complete [9, 4, 7]. Some of those

problems have been studied from the parameterized point of view [5], however, all these

problems have the characteristic that the property Π must be an hereditary property.

We stress that the k-Almost Grid and k-Almost any Grid problems completely

different nature, as the property of containing a grid is not hereditary.

2 Definitions and basic results

All graphs we consider are undirected, loop-less and without multiple edges. Define

the neighbourhood of a vertex v ∈ V (G) as NG(v) = {u ∈ V (G) | (u, v) ∈ E(G)}. Let

∆(G) = max{|NG(v)| | v ∈ V (G)} (i.e. ∆(G) is the maximum degree of a vertex in a

graph).

We call (p, q)-grid any graph Hp,q that is isomorphic to a graph with vertex set

{0, . . . , p − 1}× {0, . . . , q − 1} and edge set

{{(i, j), (k, l)} | (i, j), (k, l) ∈ V (H) and |i − k| + |j − l| = 1}.

The r-border of Hs,r is defined as

B(r)(Hs,r) = ((i, 0), (i, r − 1) | i = 1, . . . , r − 1).

We call a vertex (edge) of Hs,r internal if it is not in (none of its endpoints is in)

B(r)(Hs,r).

3

Figure 1: A graph G where dist(G,H15,15) ≤ 13 with a (6, 15)-band J in it and the
result of a 3-contraction of J in G.

All the algorithms and results in this paper will be for the general case where E = U .

The other cases are straightforward simplifications of our results2. Subsequently, we will

also drop the E part in the E-dist(G,H) notation. If dist(G,H) ≤ k we will denote as

Vdead/Edead the vertices/edge that should be removed and Vadd/Eadd the vertices/edges

that should be added towards transforming G to H. Without loss of generality, we

assume that the transformation procedure gives priority first to vertex removals then to

edge removals, then to vertex insertions, and finally to edge insertions. We also use the

notation k1 = |Vdead|, k2 = |Edead|, K3 = |Vadd| and k4 = |Eadd|. Finally, we observe

that k1 + k2 + k3 + k4 ≤ k.

We say that a graph G contains an r-band J of width s if the following three conditions

are satisfied:

a) G contains Hs,r as induced subgraph.

b) There is no edge {x, y} ∈ E(G) such that x ∈ V (G) − V (H) and y ∈ V (H) −

B(r)(J).

If G is a graph and Hp,q is a (p, q)-band in G where p ≥ 3 and q ≥ 1, the result of the

c-contraction of Hp,q in G where 0 ≤ c ≤ p − 3, is the graph obtained if we contract

in G all the edges of Hp,q that are in the set {{(i,m), (i + 1,m)} | 2 ≤ i ≤ c + 1, 1 ≤

m ≤ q}. To denote the result of the operation we just described, we use the notation

contract(G,Hp,q, c). Notice that routine contract(G,Hp,q, c) runs O(cq) in steps. For an

example of a c-contraction, see Figure 1.

Lemma 1 Let G be a graph containing a (3+ c, q)-band H3+c,q for some c > k
q , and let

G′ = contract(G,Hp,q, c). Then dist(G,Hp,q) ≤ k iff dist(G′,Hp−c) ≤ k.

Proof: !

2Our results also hold for more general sets of operations given that they locally change the structure
of the input graph.

4

We call an edge of a graph q-extreme if q > 1 and both its endpoints have degree 3

or p = 1 and both its endpoints have degree 2. For the set of q-extreme edges of a graph

G we use the notation E(q)
ext(G).

find-edge-max-band(G, q, e)

Input: A graph G, a positive integer q and a q-extreme edge e of G.

Output: Return a maximal length (3 + c, q)-band H3+c,q where c ≥ 0 and e is also an

extreme edge of H. If such a (3 + c, q)-band does not exists, then return “NO”.

1 let e = {y1,0, z1,0} and set L ← {y1,0}, R ← {z1,0}, i ← 2

2 while i ≤ q and there are vertices yi,0 and zi,0

such that {yi,0, yi,0}, {zi,0, zi,0}, {yi,0, zi,0} ⊆ E(G)

(d(yi,,0) = d(zi,0) = 4 and i < q) or (d(yi,0) = d(zi,0) = 3 and i = q)

or (d(yi,0) = d(zi,0) = 1 and q = 1),

and N(yi,0) ∩ (L ∪ R − {yi,0} = N(zi,0) ∩ (L ∪ R − {zi,0} = ∅, do

set L ← L ∪ {yi,0}, R ← R ∪ {zi,0}, and i ← i + 1,

3 if i = q + 1, then do

begin

set r ← 1,

for i = 1, . . . , q, let {zi,r} = N(zi,r−1) − R

while N(zi,r) ∩ (L ∪ R) = {zi,r−1}, ∀1≤i<j≤q {zi,r, zj,r} ∈ E(G) ⇔ j = i + 1,

and ∀1≤i≤q (d(zi,r) = 4 and 1 < i < q) or ((d(zi,r) = 3 and i ∈ {1, q})

or ((d(zi,r) = 2 and q = 1), do

R ← R ∪ {z1,r, . . . , zq,r}; r ← r + 1; for i = 1, . . . , q, {zi,r} ← N(zi,r−1) − R

if N(zi,r) ∩ R = {zi,r−1} and ∀1≤i<j≤q {zi,r, zj,z} ∈ E(G) ⇔ j = i + 1, then

R ← R ∪ {z1,r, . . . , zq,r}, otherwise r ← r − 1

set l ← 1,

for i = 1, . . . , q, let {yi,l} = N(yi,l−1) − L

while N(yi,l) ∩ (L ∪ R) = {yi,l−1}, ∀1≤i<j≤q {yi,l, yj,l} ∈ E(G) ⇔ j = i + 1,

and ∀1≤i≤q (d(yi,l) = 4 and 1 < i < q) or ((d(yi,l) = 3 and i ∈ {1, q}), do

L ← L ∪ {y1,l, . . . , yq,l}; l ← l + 1; for i = 1, . . . , q, {yi,l} ← N(yi,l−1) − L

if N(yi,l) ∩ L = {yi,l−1} and ∀1≤i<j≤q {yi,l, yj,l} ∈ E(G) ⇔ j = i + 1, then

L ← L ∪ {y1,l, . . . , yq,l}, otherwise l ← l − 1

if r + l > 0 then return G[R ∪ L]

end

4 return “NO”.

Lemma 2 The algorithm find-edge-max-band(G, q, e) is correct. If the answer is “NO”
the algorithm finishes in O(q) steps. If the answer is a vertex set with (3 + c)q vertices,
then the algorithm finishes in O(qc) steps.

5

Proof: !

Lemma 3 If G is a graph where ∆(G) ≤ d and dist(G,Hp,q) ≤ k where p ≥ q, then G
contains at most (p − 2) + (q − 2) + 2dk q-extremal edges.

Proof: Suppose that G contains more than (p − 2) + (q − 2) + 2dk q-extremal edges.

Notice first that the removal of the vertices in Vdead can decrease the size of this set by

at most 2dk1. Then the removal of the edges of Edead can further decrease it by at most

5k2. The addition of Vadd does not decrease this number and finally, the addition of

Eadd can decrease it by 2k4. As k1 + k2 + k4 ≤ k, we have that H will have more than

(p− 2) + (q + 2) extremal edges, a contradiction as H contains exactly (p− 2) + (q − 2)

q-extremal edges. !

find-max-band(G, q, c)

Input: A graph G, and two positive integers q, c

Output: Return a maximal length (3 + c′, q)-band H3+c,q where c′ ≥ c. If such a

(3 + c′, q)-band does not exists, then return “NO”.

1 Let E′ ← E(q)
ext(G)

2 for while E′ .= ∅ do

begin

let e be an edge in E′.

if find-edge-max-band(G, q, e) = H3+c′,q then

if c′ ≥ c, then return H3+c′,q, otherwise,

set E′ ← E′ − E∗ where E∗ are the q-internal extreme edges ofH3+c′,q,

otherwise set E′ ← E′ − {e}

end

3 return “NO”

Lemma 4 Algorithm find-edge-max-band(G, q) is correct. In case of negative answer it
runs in O(q|Eq

ext(G)|) steps. In case of a positive answer it runs in O(qc|Eq
ext|) steps.

Proof: !

Suppose that G can be transformed to H after a sequence of edit operations. We

call a vertex v ∈ G safe if is not removed by a vertex removal operation in this sequence.

If a vertex of G is not live then we call it dead. We also say that an safe vertex v is a

dirty vertex if some of the edit operations alters the set of edges incident to v in G (i.e.

either adds or removes some edge incident to v). If a safe vertex is not dirty, when we

6

call it clean. Finally, we call a vertex of H that is not a vertex of G (i.e. was introduced

during some vertex insertion operation) new. Clearly, if dist(G,H) ≤ k, then there

are at most k new vertices in H and at most k dead vertices in G and this implies the

following lemma.

Lemma 5 Let G and H be two graphs where dist(G,H) ≤ k and such that the trans-
formation of G to H involves k1 vertex removals and k2 vertex additions. Then,
|V (H)|− k2 ≤ |V (G)| ≤ |V (H)| + k1.

Proof: !

Lemma 6 Let G be a graph such that dist(G,Hp,q) ≤ k. Supose also that G does not
contain any (3 + c, q)-band where q · c > k and Hp,q contains ≤ d dirty vertices. Then
p ≤ (/k

q 0 + 3)(d + k + 1).

Proof: Assume that Hp,q contains d dirty vertices and at most k3 = |Vin| new vertices.

Let l = /k
q 0. Notice that Hp,q contains p− (l+3)− 1 distinct (but possibly overlapping)

(l + 3, q)-bands. We denote this collection as B. A new vertex can be in columns at

most l + 3 members of B and a dirty vertex can be in columns of at most l + 1 members

of B. If H contains a member of B that does not contain columns with new vertices

or interior columns with dirty vertices, then p − (l + 3) + 1 − k3(l + 3) − d(l + 1) > 0.

Therefore p ≤ l + 2 + k3(l + 3) + d(l + 1) ≤ l + 2 + k(l + 3) + d(l + 1). !

Lemma 7 Let G be a graph with a vertex v of degree more than k + 4 in G and let
Hp,q be a grid. Then any way to transform G to Hp,q should involve the operation of the
removal of v. In particular, dist(G,Hp,q) ≤ k iff dist(G[V (G) − v],H) ≤ k − 1.

Proof: !

Lemma 8 Let G be a graph where ∆(G) ≤ b and let H be some grid. If dist(G,H) ≤ k
then H will contain at most max{b, 2} · k dirty vertices.

Proof: If v is a dirty vertex of H this means that it is either adjacent to a vertex in

Vdead or is incident to an edge in Eadd ∪ Edead. Notice that each vertex in Xdead is

can be adjacent to at most b dirty vertices of H. Also an edge in Edead ∪ Edead can be

incident to at most two dirty vertices of H. Therefore, each edit operation creates at

most max{2, b} dirty vertices and the result follows. !

3 Looking for a given grid Hp,q

In this section, we show that the k-Almost grid problem is in FPT. The next lemma

introduces the function f to bound the size of the kernel.

7

Lemma 9 Let G be a graph where dist(G,Hp,q) ≤ k. suppose also that ∆(G) ≤ b and
that G does not contain any (3 + c, q)-band where c > k/q or any (3 + c, p)-band where
c > k/p. Then |V (G)| ≤ f(k, b, p, q) where

f(k, b, p, q) =

k + k2 if p ≤ k and q ≤ k
k + 5k(b · k + k + 1) if min{p, q} ≤ k < max{p, q}
k + 16(b · k + k + 1)2 if p > k and q > k

Proof: From Lemma 5 we get that |V (G)| ≤ p ·q+k. From Lemma 8, the dirty vertices

of H will be at most b · k. From Lemma 6 we get that p ≤ (/k
q 0 + 3)(b · k + k + 1)

and q ≤ (/k
q 0 + 3)(b · k + k + 1). If p ≤ k and q ≤ k then clearly |V (G) ≤ k + k2.

If q ≤ k then p ≤ (/k
q 0 + 3)(b · k + k + 1) ≤ (k

q + 4)(b · k + k + 1) and therefore

|V (G)| ≤ k+p·q ≤ k+q(k
q +4)(b·k+k+1) ≤ k+5k(b·k+k+1). The symmetric analysis

works when p ≤ k. If now p, q > k then /k
q 0 = /k

p0 = 1 and therefore p, q ≤ 4(b·k+k+1).

We conclude that |V (G)| ≤ k + 16(b · k + k + 1)2. !

Kernel-for-Check-Grid(G, p, q, k)

Input: A graph G, two positive integers p, q, and a non-negative integer k

Output: Either returns “NO”, meaning that that dist(G,Hp,q) > k, or returns a

graph G′ and a triple p′, q′, k′ such that dist(G,Hp,q) ≤ k iff dist(G′,Hp′,q′) ≤ k′.

0. Set k′ = k, G′ = G, p′ = p and q′ = q.

1. As long as G′ has a vertex of degree ≥ k′ + 4 remove it from G′ and set k′ ← k′ − 1.

If after the end of this proccess k′ < 0 then return “NO”.

2. Apply any of the following procedures as long as this is possible:

• As long as find-max-band(G′, q′, /k′

q′ 0+1) = H3+c,q′ , then G′ = contract(G′,H3+c,q′, c)

and set p′ ← p′ − c.

• As long as find-max-band(G′, p′, /k′

p′ 0+1) = H3+c,p′, then G′ = contract(G′,H3+c,p′, c)

and set q′ ← q′ − c.

3 If |V (G′)| > f(k′, k + 4, p′, q′) then return “NO”.

4. return G′, p′, q′, k′.

Theorem 1 Algorithm Kernel-for-Check-Grid(G, p, q, k) is correct and if it outputs the
graph G′ then |V (G′)| ≤ f(k, k + 4, p, q). Moreover, it runs in O(pq(p + q + k2)) steps.

Proof: Step 1 is justified by Lemma 7. Notice that before the algorithm enters Step 2,

∆(G) ≤ k + 4. Step 2 creates equivalent instances of the problem because of Lemma 1.

From Lemma 4, Each time a contraction of step 2 is applied, the corresponding q-

band (p-band) requires O(q′c(p′ + q′ + k′2)) (O(p′c(p′ + q′ + k′2))) steps. As the the

sum of the lengths of the bands cannot exceed q(p) we obtain that step 2 requires, in

total, O(pq(p+q+k′2)) steps. Moreover, before the check of Step 3, all the conditions of

8

Lemma 9 are satisfied and therefore, if the algorithm returns G′, p′, q′, k′, then |V (G′)| ≤

f(k′, k + 4, p′, q′) ≤ f(k, k + 4, p, q). !

Check-Grid(G, p, q, k)

Input: A graph G, two positive integers p, q, and a non-negative integer k

Output: Either returns “NO”, meaning that that dist(G,Hp,q) > k, or

returns a sequence of at most k operations that transforms G to Hp,q.

1. for any set Vdead ⊆ V (G) of at most k vertices do

if |E(G[V (G) − Vdead])| ≤ 2pq − p − q + k then

for any set Edead of at most k − |Vdead| edges of E(G[Vdead]) do

for any i = 0, . . . , k − |Vdead|− |Edead| do

begin

let G∗ be the graph obtained from G after the

removal of the vertices in Vdead and the

edges in Edead and the addition of a set Vadd of i new vertices.

let S be the set of vertices in G∗ with degree less than 4.

if |S| ≤ 2p + 2q − 4 + 2k then do

for any Eadd ∈ S × S where |Eadd| ≤ k − |Vdead|− |Edead|− |Vadd| do

if (V (G∗), E(G∗) ∪ Eadd) is isomorphic to Hp,q then return

a sequence containing the sequence of operations

defined by the sets Vdead, Edead, Vadd, and Eadd

end

2. return “NO”

Theorem 2 Algorithm Check-Grid(G, p, q, k) is correct and runs in O(16k · (2n+3k)2k)
steps.

Proof: we recall the notation k1 = |Vdead, k2 = |Edead|, K3 = |Vadd| and k4 = |Eadd|.

The first “for” of the algorithm guesses the set of vertices Vdead that should be removed

while transforming G to Hp,q. Clearly, there are
(

n
k

)

= O(nk1) ways to make this guess.

From Lemma 5 these guesses are at most (pq + k1)k1. If this is a correct guess, then

the remaining graph will be a subgraph of Hp,q with at most k edges more. As Hp,q

has (p − 1)q + (q − 1)p edges, then G[V (G) − Vdead] will have at most 2pq − p − q + k2

edges and the filter of the algorithm before the second “for” is correct. The second

“for” guesses the set Edead of edges that should be removed and there are at most
(2pq−p−q+k2

k2

)

≤ (2pq + k2)k2 ways to make such a guess. Then comes the turn to guess

9

the set of vertices Vadd that should be added towards constructing Hp,q. As we cannot

add more than k3 vertices, the third “for” makes at most k3 calls one for each possible

quantity of vertices in Vadd. Notice that if all the guesses done so far are correct, G∗ is a

subgraph of Hp,q with ≤ k4 edges less than Hp,q. As Hp,q has 2(p−1)+2(q−1) vertices of

degree less than 4 V (G∗) should contain a subset S of at most 2p+2q−4+2k4 vertices of

degree less than 4 (an missing edge can harm the degree of at most 2 vertices). Clearly,

the edges to add in G∗ towards constructing Hp,q will have endpoints in S and therefore

each choice of an edge to add will be done by a set of
(2p+2q−4+2k4

2

)

≤ 4(p + q + k4)2

candidate edges. As there are at most k4 guesses of edges to be done in the fourth “for”

we finally have at most
(4(p+q+k4)2

k4

)

≤ (4(p + q + k4))2k4 edge sets to guess. After than,

we can verify whether the resulting graph is isomorphic to Hp,q, which can be done in

O(pq) steps. Resuming, the total running time is O((pq + k1)k1 · (2pq + k2)k2 · k3 · (4(p +

q + k4))2k4 · pq) = O(16k · (p + q + k)2k). As p + q ≤ 2pq, using Lemma 5 we observe

that (p + q + k) ≤ 2pq + k ≤ 2(pq − k) + 3k ≤ 2n + 3k and we have the required time

bound. !

Almost-grid(G, p, q, k)

Input: A graph G, two positive integers p, q, and a non-negative integer k

Output: Either returns “NO”, meaning that that dist(G,Hp,q) > k, or

returns a sequence of at most k operations that transforms G to Hp,q.

1. If Kernel-for-Check-Grid(G, p, q, k) = (G′, p′, q′, k′) then return Check-Grid(G, p, q, k)

2. return “NO”

Theorem 3 Algortihm Almost-grid(G, p, q, k) solves the k-Almost-Grid problem in
2O(k log k) + O(n3) steps.

Proof: The algorithm we first calls the algorithm Kernel-for-Check-Grid(G, p, q, k) that

gives some answer in O(pq(p + q + k2)) = O(n3) steps. If the answer is “NO” then

returns that dist(G,Hp,q) > k. If the algorithm returns (G′, p′, q′, k′) then solve k-

Almost-Grid with input G′, p′, q′, k′ using brute force and return the corresponding

answer. From Theorem 1 we have that |V (G′)| ≤ k + 16(k2 + 5k + 1)2 = O(k4). From

Theorem 2, Check-Grid(G, p, q, k) requires (O(k))8k steps. !

4 Looking for any grid

For α,β, γ ∈ N, we define prods(α,β, γ) = {(p, q) ⊆ N2 | p ≤ α and γ − β ≤ p · q ≤

γ + β}.

10

Clearly, to solve the k-Almost some Grid problem it is enough to apply Check-

Grid(G, p, q, k) for all (p, q) ∈ A(n, k) =
⋃

n−k≤i≤n+k prods(i, n, k). Clearly, |A(n, k) ≤

2k2 log(k + n). Therefore, k-Almost some Grid can be solved after O(k2 log(n +

k)) calls of Almost-grid(G, p, q, k) which gives a running time of O(log n)(2O(k log k)) +

O(k2n3 log n) steps. We call this algorithm check-all-cases(G, k). We stress that there

are cases where |A(n, k)| ≥ 1
2 log n and therefore, that way, we may not avoid the

“log n”-overhead. In what remains we will explain an alternative approach that gives

running times of the same type as the case of k-Almost Grid.

We call r-band collection C of a graph G a collection of |C| r-bands in G of widths

s1, . . . , s|C| where no pair of them have common interior vertices. The width of such a

collection is equal to
∑

i=1,...,|C|(si − 2).

find-max-band-collection(G, r,w)

Input: A graph G and two positive integers r and w

Output: Return “YES” if G contains an r-band collection of width ≥ w; otherwise,

return “NO”.

1 Let Eext be the set of extremal edges of G, t ← 0

2 while Eext .= ∅ and t < w do

begin

t ← 0

Let e be an edge in Eext

set E′ ← Eext

while find-edge-max-band(G, r, e) = H3+c,r do

begin

set E′ ← E′ − E∗ where E∗ are the extreme edges of H3+c,r

set t ← t + c + 1

let e be an edge in E′

end

set Eext ← Eext − {e}

end

3 if t ≥ w then return “’YES”, otherwise return “NO”.

Lemma 10 The algorithm find-max-band-collection(G, r,w) is correct and runs in
O(rw|Eext(G)| + n) steps.

Proof: !

11

We first need some conditions on when it is possible to make an estimation of the

dimensions of a grid.

Lemma 11 Let G be a graph where ∆(G) ≤ b and let Hp,q be a grid where dist(G,H) ≤
k. Then If G does not contain any q-band collection of width > k then |V (H)| ≤
(b · k + 2)2.

Proof: Hp,q contains a single element q-band collection CH of width p − 2. We apply

back the ≤ k operations that transformed G to H. If we remove an edge in Yin, in the

worst case, its endpoints may belong in neighboring columns of CH and this can remove

at most 2 units from the width of CH . If we add back an edge in Yout, in the worst case,

its endpoints may belong in different columns of CH and this can remove at most 4 units

from the width of CH . If finally we add back a vertex in Xout, in the worst case, all its

neighbours will belong into different columns and this may reduce the width of CH by

≤ ∆(G) ≤ b. Resuming, we have that G contains a q band collection of width at least

p − 2 − ein − eout − b · xout ≥ p − 2 − b · k which implies that p ≤ b · k + 2. Working

symmetrically, we also conclude that q ≤ b · k + 2 and the result follows. !

Lemma 12 Let G be a graph where ∆(G) ≤ b and let H be a grid where dist(G,H) ≤
k. Then if G contains an r-band collection of width > 3k then H = Hs,r for some
s ∈ [n−k

r , n+k
r]. Moreover at most two such r-band collections exist and for each r, s

will be unique when r > 2k.

Proof: Let C be the interior columns in such a collection of bands. We will apply the

edit operations that transform G to H. The removal of a vertex in Xout can reduce

the width of C by at most 3. The removal of an edge in Yout can reduce the width

of C by at most 3. The addition of an edge in Yin can reduce the width of C by at

most 2. Therefore, in the worst case, H still contains a collection of bands of width

3k + 1 − 3k > 1. So, there exist at least one r-band of width at least 1 in H and this

means that H = Hs,r for some s ≥ 1.

Suppose now that there are three integers r1 < r2 < r3 and that G contains an

ri-band collection of width > 3k, for i = 1, 2, 3. Let also Ii,= 1, 2, 3 be the interior

columns of each of these band collections. Clearly, for any i < j, Ii ∩ Ij .= ∅. According

to the previous analysis, after the edit operations, three, different, size ri-bands of width

al least 1 will survive which is impossible to exist in a rectangular grid.

Notice now that s · r = n − xout + xin. Let δ = |xout − xin|. We obtain that

s · r ∈ [n − δ, n + δ] which implies that s ∈ [n−k
r , n+k

r], as δ ≤ k. If now the interval

[n−k
r , n+k

r] contains two integers, then n+k
r − n−k

r ≥ 1 which implies that r ≤ 2k. !

12

Check-some-Grid(G, k)

Input: A graph Gand a non-negative integer k

Output: The answer to the k-Almost-some-Grid problem with instance G and parameter k.

1. As long as G has a vertex of degree ≥ k + 4 remove it from G and

set k ← k − 1. If after the end of this proccess k < 0 then return “NO”.

2. R ← ∅

3. for i = 1, . . . , n, if find-max-band-collection(G, i, 3k + 1) =“YES”, then set R ← R ∪ {i}

4. If |R| = 0 then if V (G) > k + ((k + 4)k + 2)2 then return “NO”, otherwise, goto Step 7

5. For any r ∈ R,

If r > 2k, then

begin

If N ∩ [n−k
r , n+k

r] = ∅, then return “NO”, otherwise,

return Almost-Grid(G, r, s, k) where {s} = N ∩ [n−k
r , n+k

r].

end

otherwise, for (i, j) ∈ prods(2k, n, k),

begin

If Almost-Grid(G, i, j, k) = YES, then return Almost-Grid(G, i, j, k).

end

6. Return “NO”.

7. check-all-cases(G, k).

Theorem 4 Algorithm Check-some-Grid(G, k) is correct and the k-Almost-any-Grid

problem is in FPT and can be solved in time 2O(k log k) + O(k log k · n3).

Proof: Step 1 is justified by Lemma 7 and we may assume that before the algorithm

enters Step 2, ∆(G) ≤ k + 4. Steps 2–4 are based on Lemma 11. Step 3 involves

O(n) calls of find-max-band-collection(G, i, 3k + 1) which requires O(kn2) steps because

of Lemma 10. Theorefore, Step 3 requires O(kn3) steps. Finally the loop in Step 5 is

correct because of Lemma 12. Note that the first loop in step 5 is applied at most 2

times and that |prods(2k, n, k)| = O(k · log k). Therefore, step 5 runs in 2O(k log k) +

O(k log k · n3) steps. As we noticed in the begining of this section check-all-cases(G, k)

requires O(log n′)(2O(k log k) + O(log n′ · n′3k2)) steps where n′ is the number of vertices

of G in step 7 where n′ ≤ O(k4) and this means that step 7 requires 2O(k log k) steps. !

References

[1] N, Alon, R. Yuster and U. Zwick. Color-Coding. Journal of the ACM, 42(4),

844–856, 1995.

13

[2] G. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[3] H. Kaplan, R. Shamir and R. Tarjan.. Tractability of parameterized completion

problems on chordal, strongly chordal and proper interval graphs. SIAM Journal

of Computing, 28, 1906–1922, 1999.

[4] J. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties

is NP-Complete. Journal Comput. and Systems Sci. 20(2), 219–230, 1980.

[5] Leizhen Cai. Fixed-Parameter Tractability of Graph Modification Problems for

Hereditary Properties. Information Processing Letters, 58(4)171–176, 1996

[6] B. Monien. How to find paths efficiently. Annals of Discrete Mathematics, 25,

239–254, 1985.

[7] A. Natanzon, R. Shamir and R. Sharan. Complexity classification of some edge

modification problems. Discrete Applied Mathematics, 113(1), 109–128, 2001.

[8] T. Sebastian, P. Klein, and B. Kimia. Recognition of shapes by editing their shock

graphs. IEEE Transactions on Pattern Matching and Machine Intelligence, 26,

550–571, 2004.

[9] M. Yannakakis. Node and Edge Deletion NP-complete problems. ACM Symposium

on Theory of Computing (STOC), 253–264, 1978.

[10] K. Zhang and D. Sasha. Simple fast algorithms for the editing distance between

trees and related problems. SIAM Journal on Computing 18, 1245–1262, 1989.

14

