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valid colouring p : V(G) — {1, ..., k} such that every (x, y)-path
between two vertices where p(x) = p(y) contains a vertex z where
p(z) > p(x).Inthis paper, we study the set of graphs not belonging
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prove that there are exactly %ZZH —k(14-22"'=¥)_Finally, we prove

that each obstruction of g, has at most 22" vertices.
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1. Introduction

The graph parameter of tree-depth (also known as the vertex ranking problem [1], or the ordered
colouring problem [5]) has received much attention, mostly because of the theory of graph classes of
bounded expansion, developed by NeSetfil and Ossona de Mendez in [8,11,9,10,7]. Furthermore, the
tree-depth of a graph is equivalent to the minimum-height of an elimination tree of a graph [2,3,8]
(this measure is of importance for the parallel Cholesky factorization of matrices [6]).

The tree-depth of a graph G is defined as the minimum k for which there is a valid colouring
p:V(G) — {1,...,k}suchthatevery (x, y)-path between two vertices where p(x) = p(y) contains
a vertex z where p(z) > p(x). Given a non-negative integer k, we define G as the class of all graphs
with tree-depth at most k.
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We say that a graph H is a minor of a graph G if H can be obtained from a subgraph of G by applying
edge contractions. We use the notation obs-(g) for the set of minor-minimal graphs not in §y. If
instead of the minor relation, we consider the subgraph or the induced subgraph relation, we define
the sets obsc (%) and obsc (G) respectively.

In this paper, we examine the sets obs-(G), obsc ($r), and obsc (Gy). From the Robertson and
Seymour theorem [13], it follows that obs<(§,) is finite for each k > 0. The finiteness of obsc (4«)
follows from [8]. Also, it is easy to verify that obsc (Gy) is finite (see Observation 4).

Our first result is an upper bound of 22" to the order of the graphs in obsc (§) for k > 0. This
bound also holds for obsc (k) and obs<(4y) as obs<(§x) € obsc(4x) € obsc(4k) (Observation 3).
Our next result is a structural lemma that constructs new obstructions from simpler ones. This permits
us to identify, for each k > 0, all acyclic obstructions and prove that are exactly %ZZH"‘(] + ZZH"‘)
for all relations. So far, such a parameterized set of acyclic obstructions is known only for classes
of bounded pathwidth [15] and variations of it such as search number [12], proper-pathwidth [15],
linear-width [16] (see [14] for similar results on graphs with bounded feedback vertex set number).
However, this is the first time where an exact enumeration of parameterized obstructions is derived.
Our final result is the identification of the sets obs~ (G«), obsc ($«), and obsc (Gy) fork < 3.Fork = 3,
these sets have 12, 14, and 29 graphs respectively.

2. Preliminaries

In this paper, we consider simple graphs without loops and parallel edges. We denote by P, the
path that has n vertices and length n — 1 and by € (G) the connected components of a graph G. We say
that two graphs Gy, G, are hom-equivalent if G is homomorphic to G, and G, is homomorphic to G;.
Moreover, an automorphism f of a graph is called involution if and only if f o f = id.

For a graph H, we say that it is

e aninduced subgraph of a graph G, denoted by H C G, if it can be obtained from G by applying vertex
deletions

e asubgraph of a graph G, denoted by H C G, if it can be obtained from G by applying edge and vertex
deletions

e a minor of a graph G, denoted by H < G, if it can be obtained from G by applying edge and vertex
deletions and edge contractions, where, to contract an edge e = {x, y} of a graph G is to remove it
and then replace its ends by a single vertex incident to all the edges which were incident to either

x or y without allowing parallel edges.

A graph G admits a k-vertex ranking if there exists a valid colouring p : V(G) — {1,...,k}
such that every (x, y)-path between two vertices, where p(x) = p(y) contains a vertex z where
p(z) > p(x). The tree-depth of a graph G, td(G), is defined as the minimum k such that G admits a
k-vertex ranking [8]. Moreover, we give the following (equivalent) definition for the tree-depth of a
connected graph G.

if V(G| =1
td(G) = 1+ n}/l(n td(G\v) if|V(G)| > 1.
ve

If follows from that, for any non-negative integer n, td(P,) = [log,(n 4+ 1)] (see [8]). For every
non-negative integer k, we denote by g, the class of graphs with tree-depth at most k, i.e. 4, = {G |
td(G) < k}.Itis known from [1,8] that, if H is a minor of G, then td(H) < td(G). A direct consequence
is that for any non-negative integer k, § is minor-closed. For every R € {C, C, <}, we denote by
obsg (4) the set of graphs with tree-depth strictly bigger than k that are minimal with respect to the
relation R.

Lemma 1 ([8]). Let k > 1 be an mteger Then, the class Gy includes a finite subset 9k such that, for every
graph G € Gy, there exists Ge gk which is hom-equivalent to G and isomorphic to an induced subgraph
of G.

By Lemma 1, a tower function bound can be derived for the order of the forbidden subgraphs.
However, as we prove in the next section, a direct argument shows a much better bound.
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3. Upper bound on the order of obstructions for &

Observation 1. For any graph G, td(G) = max{td(C) | C € C(G)}.

Observation 2. For every k > 0, all graphs in obsc (§), obsc (4x) and obs<(§) are connected.
Proof. Follows directly from Observation 1. 0O

Observation 3. For every non-negative integer k, obs<($x) € obsc(%x) < obsc(G).

Observation 4. Let G be a graph such that G € obsc (), for some integer k. Then there exists G’ €
obsc () such that V(G) = V(G') and E(G') C E(G).

Proof. Let G be a counterexample of minimal size. Then there exists an edge e such that ' = G\ e
also belongs to obsc () and V(G) = V(G') and E(G') C E(G). O

Theorem 1. For any integer k > 0, if Gis a graph with td(G) > k, then G contains a connected subgraph
H withtd(H) > kand |V(H)| < 22",

Proof. We may assume that G is connected, otherwise from Observation 1, we focus on the
component of G that determines its tree-depth. Also, without loss of generality, td(G) = k + 1. We
prove the statement by induction:

If td(G) = 2, then G contains at least one edge, and we may set H = K. If td(G) = 3, then G is not
a star forest, i.e., it contains P4 or K3 as a subgraph.

Now, suppose that td(G) = k + 1 for k > 3, and assume that the statement holds for all smaller
values of tree-depth. If G contains P,k as a subgraph, then we may set H = P,«. Otherwise, each two
vertices in G are connected by a path of length at most 2% — 2.

Since td(G) > k — 1, by induction hypothesis, G contains a subgraph Hy with td(Hy) > k and
m < 227% vertices V1,...,Un. Foreachi = 1,..., m, the graph G \ v; has tree-depth greater than
k — 1, hence G \ v; contains a subgraph H; with at most 22" vertices and tree-depth at least k.

If there exists i such that V (Ho) N V(H;) = @, then we let H consist of Hy, H; and the shortest path
that connects them. For every vertex v of H, the graph H \ v contains Hy or H; as a subgraph, hence the
tree-depth of H \ v is at least k and td(H) > k. Also, |V (H)| < 22 °+1 + 2k — 3 < 227" (for k > 3).

On the other hand, if all the graphs H; intersect Hy, then we set H = HyUH{ U- - - UH,,. Since all the
graphs H; are connected, the graph H is connected as well, and it has at most m+ m(22k_2 -1 < 22!
vertices. Similar to the previous case, the graphs H \ v; contain H; as a subgraph (fori = 1, ..., m),
and the graph H \ v for v different from vy, ..., vy, contains Hy as a subgraph, hence td(H) > k. O

From Theorem 1 and Observations 3 and 4, we obtain the following corollary,

Corollary 1. All graphs in obsc ($) (and therefore, also in obsc ($x) and obs<($)) have at most 22!
vertices.

4. A structural lemma for the obstructions of tree-depth

In this section, we prove a lemma for tree-depth that permits us to build obstructions from simpler
ones. We first consider the following observations.

Observation 5. Let G be a connected graph such that td(G) = kand p : V(G) — [k] a k-vertex ranking
of G.Then |p~' (k)| = 1.

Proof. If v; and v, are two (non-adjacent) vertices in p~!(k), then there exists a path with
end-vertices v, v,. Observe that, all internal vertices of this path have colour smaller than k, a
contradiction. O

Observation 6. If G € obsc(Gk) (or obsc(Gk) or obs<(4y)), then for every v € V(G) there exists a
(k 4+ 1)-vertex ranking p such that p(v) = k + 1.

Proof. As G € obsc(Gk) (or obsc(gk) or obs<(4x)), G \ v admits a k-vertex ranking p. Then
p U (v, k+ 1) is the required (k + 1)-vertex ranking of G. O
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Let G, and G, be two disjoint graphs and let v; € V(G;), fori = 1, 2. We define j(G1, G,, vy, v2) =
(V(G1) UV (Gy), E(G1) UE(Gy) U {{v1, va}}).

Observation 7. Let G, and G, be disjoint graphs where td(G,) < kand td(G,) < k. Let v; € V(G;), i =
1, 2. Then the graph G = j(G1, G,, v1, v2) has tree-depth at most k + 1.

Proof. Let p; be a k-vertex ranking of G;, i = 1, 2. Then p = p; U p3 \ {(v1, p1(v1))} U {(v1, k + 1)}
isa (k + 1)-vertex ranking of G. O

Observation 8. Let G; and G, be disjoint, connected graphs such that td(G;) > k and td(G;) > k. Let
v; € V(G;), i = 1, 2. Then the graph G = j(G4, G, v1, vy) has tree-depth at least k + 1.

Proof. Assume, on the contrary, that there exists a k-vertex ranking p : V(G) — [k]. Note that
p~1(k) # 0, otherwise td(G) < k contradicting the fact that td(G;) > k. Combining this fact with
Observation 5, G has a unique vertex v where p(v) = k. W.L.o.g. we assume that v € V(G;). Then the
restriction of p to G, gives a (k — 1)-vertex ranking of it, a contradiction. O

Lemma 2. Let k be a positive integer and let R € {C, C, <}. Let G, and G, be disjoint graphs such that
G], Gz € ObSR(g,k_l) and let V1 € V(Gl), Uy € V(Gz) Thenj(Gl, Gz, V1, Uz) € ObSR(g,k).

Proof. Let G; and G, be such that G, G, € obsg(4r_1) and let v; € V(G), i = 1,2. We set
G = j(G1, Gy, v1, v2). We first prove that td(G) = k + 1. Indeed, Observation 7 yields td(G) < k + 1
and Observation 8 yields td(G) > k + 1.

Now, we have to prove that if G’ is the result of the removal or the contraction of some edge e in G,
then td(G') < k (this also covers the case of a vertex removal as, from Observation 1, G is connected
and thus the removal of a vertex implies the removal of at least one edge).

First, we examine the case where e = {vy, v,}. If G = G\ e, then from Observation 1, td(G) =
max{td(G;), td(G,)} < k. If G = G/e, then from Observation 6, there exists a k-vertex ranking p;
of G; such that p;(v;) = k, i = 1, 2. Then if v,y is the result of the contraction of e, we have that
p : V(G) — [k] where

p1(x) ifx € V(G1) \ {v1}
px) = {Pz(x) ifx € V(G) \ {v2}
k if X = vpew

is a k-vertex ranking of G', therefore td(G') < k.

Finally, we examine the case where e is an edge of G; or G,. Without loss of generality, we assume
that e; € E(Gy). Because G; € obsc (1), there exists a (k — 1)-vertex ranking p; of G; \ e (and
Gy /e). By Observation 6, since G, € obsc($—1), there exists a k-vertex ranking p, of G, such that
p2(v2) = k.Itis easy to see that p} U p; is a k-vertex ranking of G, thus td(G") < k and this completes
the proof of the lemma. O

5. Acyclic obstructions for tree-depth
For every integer k > 0, we recursively define the class 7} as follows. Let 7o = {K;} and for every
k > 1, we set
T = {i(G1, G2, v1, v2) | G1, G2 € Timq, v € V(Gy), i=1,2}.
The above definition permits us to state Lemma 2 as follows.

Observation 9. For every integer k > O and every R € {C, C, <}, 7x C obsg(G).

Lemma 3. For any positive integer k, if G € Ty, then for any vertex v € V (G) there exists a leaf u # v of
G such that the tree created from G \ u by adding a leaf adjacent to v also belongs to 7.

Proof. Assume that this holds for any tree in 7;_1, k > 2. Let G1, G, € Ty_1andv; € V(G;), i=1,2
suchthat G = j(G4, G3, v1, v2).Consider an arbitrary vertex v € V(G), and let us show that there exists
aleaf u of G that we can move to v while preserving membership in 7. Without loss of generality, we
may assume that v € V(G,). By the induction hypothesis, there exists a vertex v’ € V(G;) such that



Z. Dvorik et al. / European Journal of Combinatorics 33 (2012) 969-979 973

the tree created from G, \ v’ by adding a leaf adjacent to v is also in T;_1. If v’ # v, we may setu = u'.
Otherwise, let u” be the leaf of G, that can be moved to v,. In this case, we can set u = u”: Moving the
leaf u” to v has the same result as moving it to v, moving the leaf v’ to v, and replacing the edge e by
an edge between u” and the vertex of G; that used to be adjacent tou’. O

In Lemma 2, we described a procedure that for any non-negative integer k constructs graphs
G € obsc($k+1) from disjoint graphs G1, G, € obsc () (adding an edge that connects a vertex
vy of G; and a vertex v, of G,). With the following lemma, we fully characterize and construct all the
acyclic graphs in obsc ($+1) for every non-negative integer k.

Lemma 4. Let G be a tree in obsc(§y) for k > 1. Then there exists an edge e € E(G) such that if
{G], Gz} = @(G \ {e}) then G], Gz (S ObSE(g,k_]).

Proof. We examine the non-trivial case, where k > 2 assuming that the statement holds for all acyclic
obstructions of smaller tree-depth. From Observation 7, we obtain that for each edge e = {vq, 13} €
E(G), at least one of the connected components G1, G, of G\ e has tree-depth at least k. We claim that G
contains at least one edge e = {vq, v,} such that both connected components of G \ e have tree-depth
k. Suppose that this is not correct. Then we can direct each edge e = {v1, v,} of E(G) such that its tail
belongs to the connected component of G \ e that has tree-depth <k. We denote this directed tree by
T, ask > 2, T contains internal vertices. Moreover, all edges of T that are incident to a leaf are directed
away from it. It follows that T contains an internal vertex v of out-degree 0. This means that each, say
G;, connected component of G \ v has a (k — 1)-vertex ranking p;. Then p = {(v, )} U U=, pi S
a k-vertex ranking of G, a contradiction and this completes the proof of the claim.

Now, let G; be the connected component of G \ e that contains v;, i = 1, 2. If one, say Gy, is not in
obsc (§«—1) then it contains an induced subgraph G| such that G} € obsc(4«-1). Additionally, there
is a unique path P in G that connects G with G,. Observe that, since G € obsc (4x—1), G is exactly the
union of G}, G, and P. We need to show that P has no inner vertices. Suppose that this is not the case,
and let w be the inner vertex of P adjacent to a vertex v € V(G;). By the induction hypothesis, G} and
G, satisfy the conditions of Lemma 3, thus G; contains a leaf u such that the graph obtained from G,
by moving the leaf u to v belongs to obsc(§—1). This implies that we may remove the vertex u from
G and consider w to be its replacement. The created graph is a proper induced subgraph of G and has
tree-depth k + 1, a contradiction. This completes the proof of the lemma. O

Now, observe that the following is a direct consequence of Lemmata 2 and 4.
Theorem 2. Let k be a non-negative integer. Then 7} is the set of all acyclic graphs in obsc ().

Corollary 2. For every non-negative integer k, 7y is the set of all acyclic graphs in obsc (%) (or in
obs- (§x))-

Proof. Follows directly from Observations 3and 9. O
6. Lower bound on the number of obstructions for G

In this section, we prove that |7;| = %221{71"‘(1 + 22"k k > 1. This gives a lower
bound on |obs<($r)|, k > 2. As we shall see later we can identify the elements of the sets
obsc(4i), obs<(4i), obsc(4;) fori =0, 1, 2, 3.

For a tree G € 7}, such that G = j(G1, G,, vq, v2), we call v{v, the middle edge of G.

Observation 10. If k is a non-negative integer, then every graph in 7 has exactly 2¥ vertices. This implies
that the middle edge of a graph G € T} is unique.

Also, consider the following.
Observation 11. Let T, T? be two trees and ' = {v’l vi} € E(T'), i = 1,2.If ¢ is an isomorphism

from T to T? such that ¢(v]) = v?, i = 1,2 and T/ is the connected component of T/ \ € that contains
v, i=1,2, j= 1,2 then¢ = {(x,y) € ¢ | x € V(T)} is an isomorphism from T to T, i = 1, 2.



974 Z. Dvoridk et al. / European Journal of Combinatorics 33 (2012) 969-979

We use notation Aut(G) for the automorphism group of a graph G. Observation 11 easily implies
the following.

Observation 12. Let T be a tree and e = {v1, vy} € E(T).If ¢ € Aut(T) satisfies p(v;) = v3_j, i=1,2
and T; is the connected component of T \ e that contains v;, i = 1, 2, then¢’ = {(x,y) € ¢ | x € V(T1)}
is an isomorphism from Ty to T,.

Observation 13. Let Gy, G, be disjoint graphs such that Gy, G, € T, k> 1andv; € V(G;), i =1, 2. If
¢ € Aut(G), where G = j(Gy, Gy, v1, V2), then ¢p(e) = e.

Proof. Follows directly from Observation 10. O

Lemmab5. Let G € 7 for k > 1,e = {v1, v2} € E(G) the middle edge and ¢ € Aut(G). If there exists
v € V(G) such that ¢(v) = v, thenp(v;)) = v;, i =1, 2.

Proof. We examine the non-trivial case where k > 2. Suppose, in contrary, that ¢(v;) = vs_4, i =
1, 2. We denote by G1, G, the connected components of G \ e where, w.lo.g, v, v; € V(G;). By
Observation 12, ¢’ = {(vy,v2) € ¢ | v; € V(Gy)} is an isomorphism of G; to G,, a contradiction
since ¢’ (v) = ¢p(v) =v. O

Now, we proceed to the proof of the following.

Lemma 6. Let k be a non-negative integer. For any G € 7} and ¢ € Aut(G), if there exists v € V(G) such
that ¢(v) = v then ¢ = id.

Proof. We use induction on k. For k = 0 the claim is trivial. Now, assume that the claim holds for
k=n > 0.Letk = n+ 1. We denote by e = {vy, v;} € E(G) the middle edge and by Gy, G, the
connected components of G \ e, where v; € V(G;), i = 1, 2. Since ¢ € Aut(G), by Lemma 5, it follows

that ¢(v;i) = v;, i = 1,2. Hence ¢ is an isomorphism from G \ e to G \ e. From Observation 11,
¢i = {(U,u) € ¢ | vV € V(Gi)} € Aut(Gi), i = 1, 2. Observe that ¢,’(U,’) = ¢(‘U,‘) = v, i = 1, 2.
Since G; € T, i = 1, 2, by the induction hypothesis, ¢;, i = 1, 2 is the trivial automorphism of G;.

Therefore, ¢ = id. O

Let G be a graph and v € V(G). We denote by trs(v) the orbit of the automorphism group of G that
contains v, i.e. trg(v) = {u € V(G) | 3¢ € Aut(G) such that ¢(u) = v}.

Lemma 7. Let Gy, G, be disjoint graphs such that G, G; € T, v, vy € V(Gy) such that v, € trg, (v5)
and vy € V(Gy). Then G = j(Gy, Gy, v1, v2) and G’ = j(Gy, Gy, vq, v}) are isomorphic.

Proof. Letid € Aut(G;) and ¢ € Aut(G,), such that ¢(v;) = v5. Thenid U ¢ is an isomorphism from
GtoG. O

Lemma 8. Let Gy, G; be disjoint graphs such that Gy, G, € T, vz, vy, € V(Gy) such that v, & trg, (v5)
and vy € V(Gy). Then G = j(G1, Gy, v1, v2) and G’ = j(Gy, Gz, v1, v5) are not isomorphic.

Proof. Assume, on the contrary, that ¢ is an isomorphism from G to G'. Observation 13 implies that
either ¢(v1) = vy and ¢(vy) = vj or ¢(v1) = v} and P (v;) = vq. We first exclude the case where
¢(v1) = vy and ¢(vy) = vj. Indeed, by Observation 11, ¢' = {(x,y) € ¢ | x € V(G;)} € Aut(G,)
and moreover ¢'(v2) = ¢(v,) = vj, a contradiction since v, ¢ trg, (v5). Therefore, p(vi) = v}
and ¢(v,) = vq. By Observation 11, ¢; = {(x,¥) € ¢ | x € V(G;)} is an isomorphism from G; to
Gs_i, i=1,2.Then ¢y = ¢ o ¢, € Aut(Gy) and ¥ (v2) = $1(h2(v2)) = P1(d(v2)) = P1(v1) = V5. It
follows that v, € trg, (v}), a contradiction. O

Given a graph G. We say that G is asymmetric if it has a trivial automorphism group. Moreover, we
say that a graph G is 2-asymmetric if its only non-trivial automorphism is an involution without fixed
points.

Lemma 9. Let k be a non-negative integer and let G, G, be two disjoint non-isomorphic graphs such that
G1, Gy € Ty. Then the graph G = j(Gq, G3, v1, V) is asymmetric.
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Proof. Suppose that ¢ € Aut(G) and ¢ # id. From Lemma 6, ¢(v) # v for all v € V(G) and
from Observation 13, ¢(v;) = wvs3_;, i = 1,2. From Observation 12, G; is isomorphic to G,, a
contradiction. O

Lemma 10. Let k be a non-negative integer and let Gy, G, be two disjoint graphs such that G, G, € 7.
If ¢ is an isomorphism from Gy to G, and v; € V(G;), i = 1,2 such that ¢(v1) & trg,(v2), then
G = j(G1, Gy, v1, v2) is asymmetric.

Proof. Suppose that v € Aut(G) and ¥ # id. From Lemma 6, ¥/ (v) # v for all v € V(G) and from
Observation 13, ¥(v1) = v, and ¥ (v;) = vy. From Observation 12, x = {(x,y) € ¥ | x € V(Gy)}
is an isomorphism from G; to G,. Moreover, ¢ o x ~! is an automorphism of G, mapping v, to ¢(v;),
contradicting the assumption that ¢ (v1) & trg, (vy). O

Lemma 11. Let k be a non-negative integer and let Gy, G, be two disjoint graphs such that G, G, € 7.
If ¢ : V(G;) — V(Gy) is an isomorphism from G; to G, and v; € V(G;), i = 1, 2 are two vertices such
that ¢(v1) € trg, (v), then G = j(Gy, G, v1, v2) is 2-asymmetric.

Proof. Since ¢(v;) € trg,(vy), there exists an isomorphism v : V(G;) — V(Gy) such that
¥ (v1) = v,. Observe that x = v U ! is an automorphism of G, and that x is an involution without
fixed points. Consider an automorphism x’ # id of G. By Lemma 6 and Observation 13, x'(v{) = v,
and by Observation 12, x; = {(x,y) € x'|x € V(Gy)} is an isomorphism of G; and G,. Then x; o .
is an automorphism of G, that fixes v,, and by Lemma 6, x; = y. We conclude that x" = x, and thus
Aut(G) = {id, x} and G is 2-asymmetric. O

From Theorem 2 and Lemmata 9-11 it follows directly.

Observation 14. If G is a graph such that G € 7y, then G is either asymmetric or 2-asymmetric.
For every integer k > 0, we define for following partition of 7j:
A = {G € T | Aut(G) = {id}} and By = {G € T | Aut(G) # {id}}.
We denote that o, = |y, B = |Bi| and 7, = |Tk| = ax + Br. We also set y, = 2K2. A direct
consequence of Observations 10 and 14 is the following.

Observation 15. Let k > 2 be an integer. Then the automorphism group of each graph G € Ay (resp.
G € By) has exactly yj.yo (resp. Yi+1) orbits.

Observation 16. Sg = a1 = a; =0andag = B1 = p = 1.

. k k—
Theorem 3. For every integer, k > 1, 7, = 22~ @k+D 4 2271 =Gkt

Proof. First, observe that for k = 1,2 the claim holds. Let G be a graph. Recall that G € 7y iff
G = j(Gq, Gy, vy, vy) for some G; € T, and v; € V(G;), i = 1,2. Therefore, in order to count
Ty, it is sufficient to count the ways to choose Gy, G, € 71 and v; € V(G;), i = 1, 2 and not end up
with isomorphic graphs. Let G, G, be graphs such that G; € 7,1 and v; € V(G;), i = 1, 2. We define

Ay ={G | G =j(G1, Gy, v1,v2), G1 # G2, Gi € Ar—1and v; € V(Gy), i= 1,2} (1)
Az ={G| GC=j(G1, Gy, v1,02),G1 %Gy, G € Br_rand v; € V(Gy), i = 1,2} 2)
A} = (G| G=j(Gy, Gy, v1,2), G1 % Gy, Gy € A1, Gy € By_1,

and v; € V(G), i=1,2) (3)

Ar = (G| G=j(G1, Gy, v1,v2), G124 Gy, G € A1, and v; € V(Gy), i = 1,2,
such that ¢(vy) & trg, (v2)} (4)

Ay = {G| G =j(Gy, Gy, v1,v2), G124 Gy, G € Br_1, and v; € V(Gy), i = 1,2,
such that ¢ (vq) & tre, (v2)} (5)
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B = {G| G=j(G1, Gz, v1,12), G1 2 G2, Gi € A1, and v; € V(Gy), i = 1,2,
such that ¢(vy) € trg, (v2)} (6)

2
o"Bk

{G | G=j(G1, Gy, v1,12), G1 24 G2, Gi € By—1, and v; € V(Gy), i=1,2
such that ¢ (vy) € trg, (v2)}. (7)

By their definitions, the above sets are a partition of 7. By Lemma 9 (for Relations (1)-(3)) and
Lemma 10 (for Relations (4) and (5)), the union of the first five is a subset of ;. Moreover, by
Lemma 11 (applied to Relations (6) and (7)), the union of the last two is a subset of $B;. We conclude
that A, = Ji_; 5 4} and B, = B U B;.

From Observation 15, Lemmata 7 and 8, and Relations (1)-(7) we derive that

Qg1
A= (1) v

Br—1 2
Ap| = Vi
[ AL < 2 Vi

3
|=A’]<| = Ok—1" Vk+1 " ,Bk—l * Vi
4 Yi+1
Af = - ()

2
Yk
A = Buy - ( )
[AR] = Br—1 5
|£13| = Ok—1 " Yi+1
|£1§| = Br—1" Vk-
Therefore,
Oe— Br— k ;
o = ( ]> Vk2+1 + - sz + a1 ()/ +]> + Br—1 ()&) + k1 Br—1Vk Vit (8)
2 2 2 2
Br = a—1Vir1 + Br—1Vk- 9)
By simplifying (8),

1 1
=5 [(Ve10h_q + ¥ By + 20— 1Bee1ViVir1) — (@k—1Vis1 + Bio1vi) ] = 5 (Bt — Br) -

It follows (using Relation (9)) that,
1
=5 (Bt + Be) and B = wiBi_;-

Let 8 = 2K 1 — k and observe that B, = 2% = 22~k for every integer k > 2. Then 7, =
22-@k+1) 4 921G+ | > 3 and the theorem follows. [

7. Obstructions for 5, k <3

It is easy to prove that

e 0bs_(Go) = obsc(§0) = obsc(§o) = {Ki},
e obs_(41) = obsc(§1) = obsc(§1) = {Kz},
e 0bs_(4,) = obsc(41) = {Ks3, P4} and obsc(4,) = {Ks, P4, C4}.

Let D be the set of the graphs that appear inside the outer polygon in Fig. 1. In this section, we
prove that obsc(43) = D.
Theorem 4. For any graph G, td(G) > 3 if and only if G contains one of the graphs in D as a subgraph.

Proof. Since each graph in D is connected and has tree-depth four, it suffices to show that any
connected graph with tree-depth four contains one of them as a subgraph. Suppose for contradiction
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Fig. 1. The forbidden graphs for 5.

that this is not the case, and let G be a connected graph with tree-depth four that contains none of the
graphs in D as a subgraph. We may assume that G is minimal, i.e., td(G \ e) = 3 and td(G \ v) = 3 for
any edge e € E(G) and any vertex v € V(G). The graph G cannot contain any cycles of length greater
than four, otherwise, it would contain Cs, Cg, C7, or Pg as a subgraph.

Let G’ be a 2-connected subgraph of G, and suppose that |V (G')| > 5. Observe that G’ contains a
4-cycle C = vqv,v3v4. Consider a vertex vs € V(G') \ V(C). Since G is 2-connected, there exists a
path P with distinct end-vertices in C such that vs € V(P) and |V (P) N V(C)| = 2. Since G does not
contain cycles of length at least 5, P has length two and joins two opposite vertices of C, say v; and
v3. If the subgraph induced by V(C) U {vs} contains any of the edges {v,, v4}, {v2, vs} or {vg, vs}, then
G contains Cs as a subgraph, hence we may assume that this is not the case. Also, none of v,, v4 and
vs may be incident with any other vertex of G, otherwise G would contain K, }. Consider the graph H
obtained from G by removing the edge {vq, vs}. By the minimality of G, td(H) = 3. The graph H is
connected, hence H contains a vertex v such that H \ v is a star forest. If v = vy or v = v3, then G\ v is
a star forest, which is a contradiction with td(G) = 4. However, H \ v for any other vertex v contains
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P4 as a subgraph. This is a contradiction, hence we may assume that any 2-connected subgraph of G
has at most four vertices.

Now, let us consider the case where G contains a 4-cycle C = v,v,v3v4. If both edges {vq, v3} and
{v,, v4} are in G, then G contains K4 as a subgraph, thus we may assume that this is not the case. First,
suppose that {vq, v3} is an edge (thus {v,, v4} is not an edge). If v, or v, is adjacent to a vertex outside
of C, then G contains K j as a subgraph. Otherwise, consider the graph H obtained from G by removing
the edge {v4, v3}. By the minimality of G, there exists a vertex v such that H \ v is a star forest. The
vertex v must belong to C. Since G \ v is not a star forest, v # vy and v # v3, hence we may assume
that v = wv,. Since H \ v, is a star forest, v, is the only neighbour of v; and v3 in H \ v,. But then
H = C, and tree-depth of G would be only three, which is a contradiction; therefore, any 4-cycle in G
is induced.

Let C = vqvv3v4 be aninduced 4-cycle in G. Since G does not contain Kj as a subgraph, the vertices
of V(G) \ V(C) can only be adjacent to two non-adjacent vertices of C, say v, and vs. Since td(G) = 4,
we have G # C and we may assume that there exists a vertex vs € V(G) \ V(C) adjacent to v;. Let us
consider the graph H obtained from G by removing the edge v;v,4. By the minimality of G, there exists
a vertex v such that H \ v is a star forest. Since vsv{v,v3v4 is a path, v must be vy, v, or vs. If v = vy
or v = vs3, then G \ v is a star forest, hence v = v,. However, this means that G \ v, is a star forest,
which is a contradiction, thus G does not contain any 4-cycle.

Now, consider the case where G contains a triangle C = v,v,v3. The graph G cannot contain another
triangle disjoint from C, since otherwise it would contain Kng or K3K3 as a subgraph. Together with
the fact that each nontrivial 2-connected subgraph of G is a triangle, this implies that all the triangles
in G intersect in one vertex. We may assume that there is at least one vertex v4 not belonging to C
adjacent to vy, and that all triangles in G contain the vertex v;.

The vertex v is a cut-vertex in G. The graph G \ v is not a star forest, hence one of its components
contains a triangle or P,4. All triangles in G contain the vertex vy, hence one of the components of G\ v;
contains a path P of length three.

If P is disjoint with C, then G contains a subgraph K;,Pj or I<3Pj. It follows that C is the only triangle
in G and that the path P intersects C \ v;. If the degree of both v, and vj3 is greater than two, then G
contains the subgraph K2, thus we may assume that the degree of v, is two and that P = v,v3v5vg
for some vertices vs and vg. Similarly, G \ vs contains P4 as a subgraph, hence we may assume that
there is a vertex v; adjacent to v4. However, the graph G then would contain K,K3K; as a subgraph.
Therefore, G does not contain a triangle, and it must be a tree.

It is however easy to verify using Theorem 2 that the only tree-depth critical trees with tree-depth
four are Pg, P, P? and P;PZ. It follows that any graph with td(G) > 3 contains one of the graphs in D
asasubgraph. O

Corollary 3. The set obs<(43) contains exactly all the graphs depicted in the inner polygon in Fig. 1.
Proof. Follows directly from Observation 3 and the factthat (s < CGgand Cs < CG;. O

Corollary 4. The set obsc ($3) contains exactly all the graphs in Fig. 1.
Proof. Follows by inspection, using Observation 4. O
Notice that the obstructions for g, have at most 2¥ vertices for k < 3. Hence Theorem 1 is not sharp

even in this case (it only claims that the obstructions have at most 16 vertices).
We conclude with the following conjecture.

Conjecture 1. For every k > 1, the order of the graphs in obsc () is bounded by 2k,
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