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a b s t r a c t

For every k ≥ 0, we define Gk as the class of graphs with tree-
depth at most k, i.e. the class containing every graph G admitting a
valid colouring ρ : V (G) → {1, . . . , k} such that every (x, y)-path
between two verticeswhereρ(x) = ρ(y) contains a vertex zwhere
ρ(z) > ρ(x). In this paper, we study the set of graphs not belonging
inGk that areminimalwith respect to theminor/subgraph/induced
subgraph relation (obstructions ofGk). We determine these sets for
k ≤ 3 for each relation and prove a structural lemma for creating
obstructions from simpler ones. As a consequence, we obtain a
precise characterization of all acyclic obstructions of Gk and we
prove that there are exactly 1

22
2k−1

−k(1+22k−1
−k). Finally,weprove

that each obstruction of Gk has at most 22k−1
vertices.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The graph parameter of tree-depth (also known as the vertex ranking problem [1], or the ordered
colouring problem [5]) has received much attention, mostly because of the theory of graph classes of
bounded expansion, developed by Nešetřil and Ossona de Mendez in [8,11,9,10,7]. Furthermore, the
tree-depth of a graph is equivalent to the minimum-height of an elimination tree of a graph [2,3,8]
(this measure is of importance for the parallel Cholesky factorization of matrices [6]).

The tree-depth of a graph G is defined as the minimum k for which there is a valid colouring
ρ : V (G) → {1, . . . , k} such that every (x, y)-path between two vertices where ρ(x) = ρ(y) contains
a vertex z where ρ(z) > ρ(x). Given a non-negative integer k, we define Gk as the class of all graphs
with tree-depth at most k.
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We say that a graphH is aminor of a graph G ifH can be obtained from a subgraph of G by applying
edge contractions. We use the notation obs≤(Gk) for the set of minor-minimal graphs not in Gk. If
instead of the minor relation, we consider the subgraph or the induced subgraph relation, we define
the sets obs⊆(Gk) and obs⊑(Gk) respectively.

In this paper, we examine the sets obs≤(Gk), obs⊆(Gk), and obs⊑(Gk). From the Robertson and
Seymour theorem [13], it follows that obs≤(Gk) is finite for each k ≥ 0. The finiteness of obs⊆(Gk)
follows from [8]. Also, it is easy to verify that obs⊑(Gk) is finite (see Observation 4).

Our first result is an upper bound of 22k−1
to the order of the graphs in obs⊑(Gk) for k ≥ 0. This

bound also holds for obs⊆(Gk) and obs≤(Gk) as obs≤(Gk) ⊆ obs⊆(Gk) ⊆ obs⊑(Gk) (Observation 3).
Our next result is a structural lemma that constructs newobstructions from simpler ones. This permits
us to identify, for each k ≥ 0, all acyclic obstructions and prove that are exactly 1

22
2k−1

−k(1+ 22k−1
−k)

for all relations. So far, such a parameterized set of acyclic obstructions is known only for classes
of bounded pathwidth [15] and variations of it such as search number [12], proper-pathwidth [15],
linear-width [16] (see [14] for similar results on graphs with bounded feedback vertex set number).
However, this is the first time where an exact enumeration of parameterized obstructions is derived.
Our final result is the identification of the sets obs≤(Gk), obs⊆(Gk), and obs⊑(Gk) for k ≤ 3. For k = 3,
these sets have 12, 14, and 29 graphs respectively.

2. Preliminaries

In this paper, we consider simple graphs without loops and parallel edges. We denote by Pn the
path that has n vertices and length n−1 and by C(G) the connected components of a graph G. We say
that two graphs G1,G2 are hom-equivalent if G1 is homomorphic to G2 and G2 is homomorphic to G1.
Moreover, an automorphism f of a graph is called involution if and only if f ◦ f = id.

For a graph H , we say that it is
• an induced subgraph of a graph G, denoted byH ⊑ G, if it can be obtained from G by applying vertex

deletions
• a subgraph of a graph G, denoted byH ⊆ G, if it can be obtained from G by applying edge and vertex

deletions
• a minor of a graph G, denoted by H ≤ G, if it can be obtained from G by applying edge and vertex

deletions and edge contractions, where, to contract an edge e = {x, y} of a graph G is to remove it
and then replace its ends by a single vertex incident to all the edges which were incident to either
x or y without allowing parallel edges.

A graph G admits a k-vertex ranking if there exists a valid colouring ρ : V (G) → {1, . . . , k}
such that every (x, y)-path between two vertices, where ρ(x) = ρ(y) contains a vertex z where
ρ(z) > ρ(x). The tree-depth of a graph G, td(G), is defined as the minimum k such that G admits a
k-vertex ranking [8]. Moreover, we give the following (equivalent) definition for the tree-depth of a
connected graph G.

td(G) =


1 if |V (G)| = 1
1 + min

v∈V (G)
td(G \ v) if |V (G)| > 1.

If follows from that, for any non-negative integer n, td(Pn) = ⌈log2(n + 1)⌉ (see [8]). For every
non-negative integer k, we denote by Gk the class of graphs with tree-depth at most k, i.e. Gk = {G |

td(G) ≤ k}. It is known from [1,8] that, if H is a minor of G, then td(H) ≤ td(G). A direct consequence
is that for any non-negative integer k,Gk is minor-closed. For every R ∈ {⊑,⊆,≤}, we denote by
obsR(Gk) the set of graphs with tree-depth strictly bigger than k that are minimal with respect to the
relation R.

Lemma 1 ([8]). Let k ≥ 1 be an integer. Then, the class Gk includes a finite subset Ĝk such that, for every
graph G ∈ Gk, there exists Ĝ ∈ Ĝk which is hom-equivalent to G and isomorphic to an induced subgraph
of G.

By Lemma 1, a tower function bound can be derived for the order of the forbidden subgraphs.
However, as we prove in the next section, a direct argument shows a much better bound.
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3. Upper bound on the order of obstructions for Gk

Observation 1. For any graph G, td(G) = max{td(C) | C ∈ C(G)}.

Observation 2. For every k ≥ 0, all graphs in obs⊑(Gk), obs⊆(Gk) and obs≤(Gk) are connected.
Proof. Follows directly from Observation 1. �

Observation 3. For every non-negative integer k, obs≤(Gk) ⊆ obs⊆(Gk) ⊆ obs⊑(Gk).

Observation 4. Let G be a graph such that G ∈ obs⊑(Gk), for some integer k. Then there exists G′
∈

obs⊆(Gk) such that V (G) = V (G′) and E(G′) ⊆ E(G).
Proof. Let G be a counterexample of minimal size. Then there exists an edge e such that G′

= G \ e
also belongs to obs⊑(Gk) and V (G) = V (G′) and E(G′) ⊆ E(G). �

Theorem 1. For any integer k > 0, if G is a graph with td(G) > k, then G contains a connected subgraph
H with td(H) > k and |V (H)| ≤ 22k−1

.
Proof. We may assume that G is connected, otherwise from Observation 1, we focus on the
component of G that determines its tree-depth. Also, without loss of generality, td(G) = k + 1. We
prove the statement by induction:

If td(G) = 2, then G contains at least one edge, and we may set H = K2. If td(G) = 3, then G is not
a star forest, i.e., it contains P4 or K3 as a subgraph.

Now, suppose that td(G) = k + 1 for k ≥ 3, and assume that the statement holds for all smaller
values of tree-depth. If G contains P2k as a subgraph, then we may set H = P2k . Otherwise, each two
vertices in G are connected by a path of length at most 2k

− 2.
Since td(G) > k − 1, by induction hypothesis, G contains a subgraph H0 with td(H0) ≥ k and

m ≤ 22k−2
vertices v1, . . . , vm. For each i = 1, . . . ,m, the graph G \ vi has tree-depth greater than

k − 1, hence G \ vi contains a subgraph Hi with at most 22k−2
vertices and tree-depth at least k.

If there exists i such that V (H0) ∩ V (Hi) = ∅, then we let H consist of H0,Hi and the shortest path
that connects them. For every vertex v of H , the graphH \v contains H0 or Hi as a subgraph, hence the
tree-depth of H \ v is at least k and td(H) > k. Also, |V (H)| ≤ 22k−2

+1
+ 2k

− 3 ≤ 22k−1
(for k ≥ 3).

On the other hand, if all the graphsHi intersectH0, thenwe setH = H0∪H1∪· · ·∪Hm. Since all the
graphsHi are connected, the graphH is connected as well, and it has atmostm+m(22k−2

−1) ≤ 22k−1

vertices. Similar to the previous case, the graphs H \ vi contain Hi as a subgraph (for i = 1, . . . ,m),
and the graph H \ v for v different from v1, . . . , vm contains H0 as a subgraph, hence td(H) > k. �

From Theorem 1 and Observations 3 and 4, we obtain the following corollary,

Corollary 1. All graphs in obs⊑(Gk) (and therefore, also in obs⊆(Gk) and obs≤(Gk)) have at most 22k−1

vertices.

4. A structural lemma for the obstructions of tree-depth

In this section, we prove a lemma for tree-depth that permits us to build obstructions from simpler
ones. We first consider the following observations.

Observation 5. Let G be a connected graph such that td(G) = k and ρ : V (G) → [k] a k-vertex ranking
of G. Then |ρ−1(k)| = 1.
Proof. If v1 and v2 are two (non-adjacent) vertices in ρ−1(k), then there exists a path with
end-vertices v1, v2. Observe that, all internal vertices of this path have colour smaller than k, a
contradiction. �

Observation 6. If G ∈ obs⊑(Gk) (or obs⊆(Gk) or obs≤(Gk)), then for every v ∈ V (G) there exists a
(k + 1)-vertex ranking ρ such that ρ(v) = k + 1.
Proof. As G ∈ obs⊑(Gk) (or obs⊆(Gk) or obs≤(Gk)), G \ v admits a k-vertex ranking ρ. Then
ρ ∪ (v, k + 1) is the required (k + 1)-vertex ranking of G. �
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Let G1 and G2 be two disjoint graphs and let vi ∈ V (Gi), for i = 1, 2. We define j(G1,G2, v1, v2) =

(V (G1) ∪ V (G2), E(G1) ∪ E(G2) ∪ {{v1, v2}}).

Observation 7. Let G1 and G2 be disjoint graphs where td(G1) ≤ k and td(G2) ≤ k. Let vi ∈ V (Gi), i =

1, 2. Then the graph G = j(G1,G2, v1, v2) has tree-depth at most k + 1.

Proof. Let ρi be a k-vertex ranking of Gi, i = 1, 2. Then ρ = ρ1 ∪ ρ2 \ {(v1, ρ1(v1))} ∪ {(v1, k + 1)}
is a (k + 1)-vertex ranking of G. �

Observation 8. Let G1 and G2 be disjoint, connected graphs such that td(G1) ≥ k and td(G2) ≥ k. Let
vi ∈ V (Gi), i = 1, 2. Then the graph G = j(G1,G2, v1, v2) has tree-depth at least k + 1.

Proof. Assume, on the contrary, that there exists a k-vertex ranking ρ : V (G) → [k]. Note that
ρ−1(k) ≠ ∅, otherwise td(G) < k contradicting the fact that td(G1) ≥ k. Combining this fact with
Observation 5, G has a unique vertex v where ρ(v) = k. W.l.o.g. we assume that v ∈ V (G1). Then the
restriction of ρ to G2 gives a (k − 1)-vertex ranking of it, a contradiction. �

Lemma 2. Let k be a positive integer and let R ∈ {⊑,⊆,≤}. Let G1 and G2 be disjoint graphs such that
G1,G2 ∈ obsR(Gk−1) and let v1 ∈ V (G1), v2 ∈ V (G2). Then j(G1,G2, v1, v2) ∈ obsR(Gk).

Proof. Let G1 and G2 be such that G1,G2 ∈ obsR(Gk−1) and let vi ∈ V (Gi), i = 1, 2. We set
G = j(G1,G2, v1, v2). We first prove that td(G) = k + 1. Indeed, Observation 7 yields td(G) ≤ k + 1
and Observation 8 yields td(G) ≥ k + 1.

Now, we have to prove that if G′ is the result of the removal or the contraction of some edge e in G,
then td(G′) ≤ k (this also covers the case of a vertex removal as, from Observation 1, G is connected
and thus the removal of a vertex implies the removal of at least one edge).

First, we examine the case where e = {v1, v2}. If G′
= G \ e, then from Observation 1, td(G) =

max{td(G1), td(G2)} ≤ k. If G′
= G/e, then from Observation 6, there exists a k-vertex ranking ρi

of Gi such that ρi(vi) = k, i = 1, 2. Then if vnew is the result of the contraction of e, we have that
ρ : V (G′) → [k] where

ρ(x) =


ρ1(x) if x ∈ V (G1) \ {v1}
ρ2(x) if x ∈ V (G2) \ {v2}
k if x = vnew

is a k-vertex ranking of G′, therefore td(G′) ≤ k.
Finally, we examine the case where e is an edge of G1 or G2. Without loss of generality, we assume

that e1 ∈ E(G1). Because G1 ∈ obs⊆(Gk−1), there exists a (k − 1)-vertex ranking ρ ′

1 of G1 \ e (and
G1/e). By Observation 6, since G2 ∈ obs⊆(Gk−1), there exists a k-vertex ranking ρ2 of G2 such that
ρ2(v2) = k. It is easy to see that ρ ′

1 ∪ρ2 is a k-vertex ranking of G′, thus td(G′) ≤ k and this completes
the proof of the lemma. �

5. Acyclic obstructions for tree-depth

For every integer k ≥ 0, we recursively define the class Tk as follows. Let T0 = {K1} and for every
k ≥ 1, we set

Tk = {j(G1,G2, v1, v2) | G1,G2 ∈ Tk−1, vi ∈ V (Gi), i = 1, 2}.
The above definition permits us to state Lemma 2 as follows.

Observation 9. For every integer k ≥ 0 and every R ∈ {⊑,⊆,≤}, Tk ⊆ obsR(Gk).

Lemma 3. For any positive integer k, if G ∈ Tk, then for any vertex v ∈ V (G) there exists a leaf u ≠ v of
G such that the tree created from G \ u by adding a leaf adjacent to v also belongs to Tk.

Proof. Assume that this holds for any tree in Tk−1, k ≥ 2. Let G1,G2 ∈ Tk−1 and vi ∈ V (Gi), i = 1, 2
such thatG = j(G1,G2, v1, v2). Consider an arbitrary vertex v ∈ V (G), and let us show that there exists
a leaf u of G that we can move to v while preserving membership in Tk. Without loss of generality, we
may assume that v ∈ V (G1). By the induction hypothesis, there exists a vertex u′

∈ V (G1) such that
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the tree created from G1 \u′ by adding a leaf adjacent to v is also in Tk−1. If u′
≠ v1, wemay set u = u′.

Otherwise, let u′′ be the leaf of G2 that can be moved to v2. In this case, we can set u = u′′: Moving the
leaf u′′ to v has the same result as moving it to v2, moving the leaf u′ to v, and replacing the edge e by
an edge between u′′ and the vertex of G1 that used to be adjacent to u′. �

In Lemma 2, we described a procedure that for any non-negative integer k constructs graphs
G ∈ obs⊑(Gk+1) from disjoint graphs G1,G2 ∈ obs⊑(Gk) (adding an edge that connects a vertex
v1 of G1 and a vertex v2 of G2). With the following lemma, we fully characterize and construct all the
acyclic graphs in obs⊑(Gk+1) for every non-negative integer k.

Lemma 4. Let G be a tree in obs⊑(Gk) for k ≥ 1. Then there exists an edge e ∈ E(G) such that if
{G1,G2} = C(G \ {e}) then G1,G2 ∈ obs⊑(Gk−1).

Proof. Weexamine the non-trivial case, where k ≥ 2 assuming that the statement holds for all acyclic
obstructions of smaller tree-depth. From Observation 7, we obtain that for each edge e = {v1, v2} ∈

E(G), at least one of the connected componentsG1,G2 ofG\e has tree-depth at least k. We claim thatG
contains at least one edge e = {v1, v2} such that both connected components of G \ e have tree-depth
k. Suppose that this is not correct. Then we can direct each edge e = {v1, v2} of E(G) such that its tail
belongs to the connected component of G \ e that has tree-depth<k. We denote this directed tree by
T̃ , as k ≥ 2, T̃ contains internal vertices. Moreover, all edges of T̃ that are incident to a leaf are directed
away from it. It follows that T̃ contains an internal vertex v of out-degree 0. This means that each, say
Gi, connected component of G \ v has a (k − 1)-vertex ranking ρi. Then ρ = {(v, k)} ∪


i=1,...,m ρi is

a k-vertex ranking of G, a contradiction and this completes the proof of the claim.
Now, let Gi be the connected component of G \ e that contains vi, i = 1, 2. If one, say G1, is not in

obs⊑(Gk−1) then it contains an induced subgraph G′

1 such that G′

1 ∈ obs⊑(Gk−1). Additionally, there
is a unique path P in G that connects G′

1 with G2. Observe that, since G ∈ obs⊑(Gk−1),G is exactly the
union of G′

1,G2 and P . We need to show that P has no inner vertices. Suppose that this is not the case,
and letw be the inner vertex of P adjacent to a vertex v ∈ V (G1). By the induction hypothesis, G′

1 and
G2 satisfy the conditions of Lemma 3, thus G1 contains a leaf u such that the graph obtained from G1
by moving the leaf u to v belongs to obs⊑(Gk−1). This implies that we may remove the vertex u from
G and considerw to be its replacement. The created graph is a proper induced subgraph of G and has
tree-depth k + 1, a contradiction. This completes the proof of the lemma. �

Now, observe that the following is a direct consequence of Lemmata 2 and 4.

Theorem 2. Let k be a non-negative integer. Then Tk is the set of all acyclic graphs in obs⊑(Gk).

Corollary 2. For every non-negative integer k, Tk is the set of all acyclic graphs in obs⊆(Gk) (or in
obs≤(Gk)).

Proof. Follows directly from Observations 3 and 9. �

6. Lower bound on the number of obstructions for Gk

In this section, we prove that |Tk| =
1
22

2k−1
−k(1 + 22k−1

−k), k ≥ 1. This gives a lower
bound on |obs≤(Gk)|, k ≥ 2. As we shall see later we can identify the elements of the sets
obs⊆(Gi), obs≤(Gi), obs⊑(Gi) for i = 0, 1, 2, 3.

For a tree G ∈ Tk such that G = j(G1,G2, v1, v2), we call v1v2 themiddle edge of G.

Observation 10. If k is a non-negative integer, then every graph in Tk has exactly 2k vertices. This implies
that the middle edge of a graph G ∈ Tk is unique.

Also, consider the following.

Observation 11. Let T 1, T 2 be two trees and ei = {vi1, v
i
2} ∈ E(T i), i = 1, 2. If φ is an isomorphism

from T 1 to T 2 such that φ(v1i ) = v2i , i = 1, 2 and T j
i is the connected component of T j

\ ej that contains
v
j
i, i = 1, 2, j = 1, 2, then φi = {(x, y) ∈ φ | x ∈ V (T 1

i )} is an isomorphism from T 1
i to T 2

i , i = 1, 2.
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We use notation Aut(G) for the automorphism group of a graph G. Observation 11 easily implies
the following.

Observation 12. Let T be a tree and e = {v1, v2} ∈ E(T ). If φ ∈ Aut(T ) satisfies φ(vi) = v3−i, i = 1, 2
and Ti is the connected component of T \ e that contains vi, i = 1, 2, then φ′

= {(x, y) ∈ φ | x ∈ V (T1)}
is an isomorphism from T1 to T2.

Observation 13. Let G1,G2 be disjoint graphs such that G1,G2 ∈ Tk, k ≥ 1 and vi ∈ V (Gi), i = 1, 2. If
φ ∈ Aut(G), where G = j(G1,G2, v1, v2), then φ(e) = e.

Proof. Follows directly from Observation 10. �

Lemma 5. Let G ∈ Tk for k ≥ 1, e = {v1, v2} ∈ E(G) the middle edge and φ ∈ Aut(G). If there exists
v ∈ V (G) such that φ(v) = v, then φ(vi) = vi, i = 1, 2.

Proof. We examine the non-trivial case where k ≥ 2. Suppose, in contrary, that φ(vi) = v3−i, i =

1, 2. We denote by G1,G2 the connected components of G \ e where, w.l.o.g, v, v1 ∈ V (G1). By
Observation 12, φ′

= {(v1, v2) ∈ φ | v1 ∈ V (G1)} is an isomorphism of G1 to G2, a contradiction
since φ′(v) = φ(v) = v. �

Now, we proceed to the proof of the following.

Lemma 6. Let k be a non-negative integer. For any G ∈ Tk and φ ∈ Aut(G), if there exists v ∈ V (G) such
that φ(v) = v then φ = id.

Proof. We use induction on k. For k = 0 the claim is trivial. Now, assume that the claim holds for
k = n ≥ 0. Let k = n + 1. We denote by e = {v1, v2} ∈ E(G) the middle edge and by G1,G2 the
connected components of G \ e, where vi ∈ V (Gi), i = 1, 2. Since φ ∈ Aut(G), by Lemma 5, it follows
that φ(vi) = vi, i = 1, 2. Hence φ is an isomorphism from G \ e to G \ e. From Observation 11,
φi = {(v, u) ∈ φ | v ∈ V (Gi)} ∈ Aut(Gi), i = 1, 2. Observe that φi(vi) = φ(vi) = vi, i = 1, 2.
Since Gi ∈ Tn, i = 1, 2, by the induction hypothesis, φi, i = 1, 2 is the trivial automorphism of Gi.
Therefore, φ = id. �

Let G be a graph and v ∈ V (G). We denote by trG(v) the orbit of the automorphism group of G that
contains v, i.e. trG(v) = {u ∈ V (G) | ∃φ ∈ Aut(G) such that φ(u) = v}.

Lemma 7. Let G1,G2 be disjoint graphs such that G1,G2 ∈ Tk, v2, v
′

2 ∈ V (G2) such that v2 ∈ trG2(v
′

2)
and v1 ∈ V (G1). Then G = j(G1,G2, v1, v2) and G′

= j(G1,G2, v1, v
′

2) are isomorphic.

Proof. Let id ∈ Aut(G1) and φ ∈ Aut(G2), such that φ(v2) = v′

2. Then id∪ φ is an isomorphism from
G to G′. �

Lemma 8. Let G1,G2 be disjoint graphs such that G1,G2 ∈ Tk, v2, v
′

2 ∈ V (G2) such that v2 ∉ trG2(v
′

2)
and v1 ∈ V (G1). Then G = j(G1,G2, v1, v2) and G′

= j(G1,G2, v1, v
′

2) are not isomorphic.

Proof. Assume, on the contrary, that φ is an isomorphism from G to G′. Observation 13 implies that
either φ(v1) = v1 and φ(v2) = v′

2 or φ(v1) = v′

2 and φ(v2) = v1. We first exclude the case where
φ(v1) = v1 and φ(v2) = v′

2. Indeed, by Observation 11, φ′
= {(x, y) ∈ φ | x ∈ V (G2)} ∈ Aut(G2)

and moreover φ′(v2) = φ(v2) = v′

2, a contradiction since v2 ∉ trG2(v
′

2). Therefore, φ(v1) = v′

2
and φ(v2) = v1. By Observation 11, φi = {(x, y) ∈ φ | x ∈ V (Gi)} is an isomorphism from Gi to
G3−i, i = 1, 2. Thenψ = φ1 ◦ φ2 ∈ Aut(G2) andψ(v2) = φ1(φ2(v2)) = φ1(φ(v2)) = φ1(v1) = v′

2. It
follows that v2 ∈ trG2(v

′

2), a contradiction. �

Given a graph G. We say that G is asymmetric if it has a trivial automorphism group. Moreover, we
say that a graph G is 2-asymmetric if its only non-trivial automorphism is an involution without fixed
points.

Lemma 9. Let k be a non-negative integer and let G1,G2 be two disjoint non-isomorphic graphs such that
G1,G2 ∈ Tk. Then the graph G = j(G1,G2, v1, v2) is asymmetric.
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Proof. Suppose that φ ∈ Aut(G) and φ ≠ id. From Lemma 6, φ(v) ≠ v for all v ∈ V (G) and
from Observation 13, φ(vi) = v3−i, i = 1, 2. From Observation 12, G1 is isomorphic to G2, a
contradiction. �

Lemma 10. Let k be a non-negative integer and let G1,G2 be two disjoint graphs such that G1,G2 ∈ Tk.
If φ is an isomorphism from G1 to G2 and vi ∈ V (Gi), i = 1, 2 such that φ(v1) ∉ trG2(v2), then
G = j(G1,G2, v1, v2) is asymmetric.

Proof. Suppose that ψ ∈ Aut(G) and ψ ≠ id. From Lemma 6, ψ(v) ≠ v for all v ∈ V (G) and from
Observation 13, ψ(v1) = v2 and ψ(v2) = v1. From Observation 12, χ = {(x, y) ∈ ψ | x ∈ V (G1)}
is an isomorphism from G1 to G2. Moreover, φ ◦ χ−1 is an automorphism of G2 mapping v2 to φ(v1),
contradicting the assumption that φ(v1) ∉ trG2(v2). �

Lemma 11. Let k be a non-negative integer and let G1,G2 be two disjoint graphs such that G1,G2 ∈ Tk.
If φ : V (G1) → V (G2) is an isomorphism from G1 to G2 and vi ∈ V (Gi), i = 1, 2 are two vertices such
that φ(v1) ∈ trG2(v2), then G = j(G1,G2, v1, v2) is 2-asymmetric.

Proof. Since φ(v1) ∈ trG2(v2), there exists an isomorphism ψ : V (G1) → V (G2) such that
ψ(v1) = v2. Observe that χ = ψ ∪ψ−1 is an automorphism of G, and that χ is an involution without
fixed points. Consider an automorphism χ ′

≠ id of G. By Lemma 6 and Observation 13, χ ′(v1) = v2
and by Observation 12, χ ′

1 = {(x, y) ∈ χ ′
|x ∈ V (G1)} is an isomorphism of G1 and G2. Then χ ′

1 ◦ ψ−1

is an automorphism of G2 that fixes v2, and by Lemma 6, χ ′

1 = ψ . We conclude that χ ′
= χ , and thus

Aut(G) = {id, χ} and G is 2-asymmetric. �

From Theorem 2 and Lemmata 9–11 it follows directly.

Observation 14. If G is a graph such that G ∈ Tk, then G is either asymmetric or 2-asymmetric.

For every integer k ≥ 0, we define for following partition of Tk:

Ak = {G ∈ Tk | Aut(G) = {id}} and Bk = {G ∈ Tk | Aut(G) ≠ {id}}.

We denote that αk = |Ak|, βk = |Bk| and τk = |Tk| = αk + βk. We also set γk = 2k−2. A direct
consequence of Observations 10 and 14 is the following.

Observation 15. Let k ≥ 2 be an integer. Then the automorphism group of each graph G ∈ Ak (resp.
G ∈ Bk) has exactly γk+2 (resp. γk+1) orbits.

Observation 16. β0 = α1 = α2 = 0 and α0 = β1 = β2 = 1.

Theorem 3. For every integer, k ≥ 1, τk = 22k−(2k+1)
+ 22k−1

−(k+1).

Proof. First, observe that for k = 1, 2 the claim holds. Let G be a graph. Recall that G ∈ Tk iff
G = j(G1,G2, v1, v2) for some Gi ∈ Tk−1, and vi ∈ V (Gi), i = 1, 2. Therefore, in order to count
τk, it is sufficient to count the ways to choose G1,G2 ∈ Tk−1 and vi ∈ V (Gi), i = 1, 2 and not end up
with isomorphic graphs. Let G1,G2 be graphs such that Gi ∈ Tk−1 and vi ∈ V (Gi), i = 1, 2. We define

A1
k = {G | G = j(G1,G2, v1, v2),G1 ≄ G2,Gi ∈ Ak−1 and vi ∈ V (Gi), i = 1, 2} (1)

A2
k = {G | G = j(G1,G2, v1, v2),G1 ≄ G2,Gi ∈ Bk−1 and vi ∈ V (Gi), i = 1, 2} (2)

A3
k = {G | G = j(G1,G2, v1, v2),G1 ≄ G2,G1 ∈ Ak−1,G2 ∈ Bk−1,

and vi ∈ V (Gi), i = 1, 2} (3)

A4
k = {G | G = j(G1,G2, v1, v2),G1 ≃φ G2,Gi ∈ Ak−1, and vi ∈ V (Gi), i = 1, 2,

such that φ(v1) ∉ trG2(v2)} (4)

A5
k = {G | G = j(G1,G2, v1, v2),G1 ≃φ G2,Gi ∈ Bk−1, and vi ∈ V (Gi), i = 1, 2,

such that φ(v1) ∉ trG2(v2)} (5)
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B1
k = {G | G = j(G1,G2, v1, v2),G1 ≃φ G2,Gi ∈ Ak−1, and vi ∈ V (Gi), i = 1, 2,

such that φ(v1) ∈ trG2(v2)} (6)

B2
k = {G | G = j(G1,G2, v1, v2),G1 ≃φ G2,Gi ∈ Bk−1, and vi ∈ V (Gi), i = 1, 2

such that φ(v1) ∈ trG2(v2)}. (7)

By their definitions, the above sets are a partition of Tk. By Lemma 9 (for Relations (1)–(3)) and
Lemma 10 (for Relations (4) and (5)), the union of the first five is a subset of Ak. Moreover, by
Lemma 11 (applied to Relations (6) and (7)), the union of the last two is a subset of Bk. We conclude
that Ak =


i=1,...,5 Ai

k and Bk = B1
k ∪ B2

k .
From Observation 15, Lemmata 7 and 8, and Relations (1)–(7) we derive that

|A1
k | =

αk−1

2


· γ 2

k+1,

|A2
k | =


βk−1

2


· γ 2

k ,

|A3
k | = αk−1 · γk+1 · βk−1 · γk,

|A4
k | = αk−1 ·

γk+1

2


|A5

k | = βk−1 ·

γk
2


|B1

k | = αk−1 · γk+1

|B2
k | = βk−1 · γk.

Therefore,

αk =

αk−1

2


γ 2
k+1 +


βk−1

2


γ 2
k + αk−1

γk+1

2


+ βk−1

γk
2


+ αk−1βk−1γkγk+1 (8)

βk = αk−1γk+1 + βk−1γk. (9)

By simplifying (8),

αk =
1
2


γ 2
k+1α

2
k−1 + γ 2

k β
2
k−1 + 2αk−1βk−1γkγk+1


− (αk−1γk+1 + βk−1γk)


=

1
2


β2
k − βk


.

It follows (using Relation (9)) that,

τk =
1
2


β2
k + βk


and βk = γkβ

2
k−1.

Let δk = 2k−1
− k and observe that βk = 2δk = 22k−1

−k, for every integer k ≥ 2. Then τk =

22k−(2k+1)
+ 22k−1

−(k+1), k ≥ 3 and the theorem follows. �

7. Obstructions for Gk, k ≤ 3

It is easy to prove that
• obs≤(G0) = obs⊆(G0) = obs⊑(G0) = {K1},
• obs≤(G1) = obs⊆(G1) = obs⊑(G1) = {K2},
• obs≤(G2) = obs⊆(G1) = {K3, P4} and obs⊑(G2) = {K3, P4, C4}.

Let D be the set of the graphs that appear inside the outer polygon in Fig. 1. In this section, we
prove that obs⊆(G3) = D .

Theorem 4. For any graph G, td(G) > 3 if and only if G contains one of the graphs in D as a subgraph.

Proof. Since each graph in D is connected and has tree-depth four, it suffices to show that any
connected graph with tree-depth four contains one of them as a subgraph. Suppose for contradiction
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Fig. 1. The forbidden graphs for G3 .

that this is not the case, and let G be a connected graph with tree-depth four that contains none of the
graphs in D as a subgraph. Wemay assume that G is minimal, i.e., td(G \ e) = 3 and td(G \ v) = 3 for
any edge e ∈ E(G) and any vertex v ∈ V (G). The graph G cannot contain any cycles of length greater
than four, otherwise, it would contain C5, C6, C7, or P8 as a subgraph.

Let G′ be a 2-connected subgraph of G, and suppose that |V (G′)| ≥ 5. Observe that G′ contains a
4-cycle C = v1v2v3v4. Consider a vertex v5 ∈ V (G′) \ V (C). Since G′ is 2-connected, there exists a
path P with distinct end-vertices in C such that v5 ∈ V (P) and |V (P) ∩ V (C)| = 2. Since G does not
contain cycles of length at least 5, P has length two and joins two opposite vertices of C , say v1 and
v3. If the subgraph induced by V (C)∪{v5} contains any of the edges {v2, v4}, {v2, v5} or {v4, v5}, then
G contains C5 as a subgraph, hence we may assume that this is not the case. Also, none of v2, v4 and
v5 may be incident with any other vertex of G, otherwise G would contain K 2

4 . Consider the graph H
obtained from G by removing the edge {v1, v5}. By the minimality of G, td(H) = 3. The graph H is
connected, hence H contains a vertex v such that H \v is a star forest. If v = v1 or v = v3, then G\v is
a star forest, which is a contradiction with td(G) = 4. However, H \ v for any other vertex v contains
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P4 as a subgraph. This is a contradiction, hence we may assume that any 2-connected subgraph of G
has at most four vertices.

Now, let us consider the case where G contains a 4-cycle C = v1v2v3v4. If both edges {v1, v3} and
{v2, v4} are in G, then G contains K4 as a subgraph, thus we may assume that this is not the case. First,
suppose that {v1, v3} is an edge (thus {v2, v4} is not an edge). If v2 or v4 is adjacent to a vertex outside
of C , then G contains K 1

4 as a subgraph. Otherwise, consider the graph H obtained from G by removing
the edge {v1, v3}. By the minimality of G, there exists a vertex v such that H \ v is a star forest. The
vertex v must belong to C . Since G \ v is not a star forest, v ≠ v1 and v ≠ v3, hence we may assume
that v = v2. Since H \ v2 is a star forest, v4 is the only neighbour of v1 and v3 in H \ v2. But then
H = C , and tree-depth of G would be only three, which is a contradiction; therefore, any 4-cycle in G
is induced.

Let C = v1v2v3v4 be an induced 4-cycle inG. SinceG does not contain K 2
4 as a subgraph, the vertices

of V (G) \ V (C) can only be adjacent to two non-adjacent vertices of C , say v1 and v3. Since td(G) = 4,
we have G ≠ C and we may assume that there exists a vertex v5 ∈ V (G) \ V (C) adjacent to v1. Let us
consider the graph H obtained from G by removing the edge v1v4. By the minimality of G, there exists
a vertex v such that H \ v is a star forest. Since v5v1v2v3v4 is a path, v must be v1, v2 or v3. If v = v1
or v = v3, then G \ v is a star forest, hence v = v2. However, this means that G \ v1 is a star forest,
which is a contradiction, thus G does not contain any 4-cycle.

Now, consider the casewhereG contains a triangleC = v1v2v3. The graphG cannot contain another
triangle disjoint from C , since otherwise it would contain K3P1

4 or K3K3 as a subgraph. Together with
the fact that each nontrivial 2-connected subgraph of G is a triangle, this implies that all the triangles
in G intersect in one vertex. We may assume that there is at least one vertex v4 not belonging to C
adjacent to v1, and that all triangles in G contain the vertex v1.

The vertex v1 is a cut-vertex in G. The graph G \ v1 is not a star forest, hence one of its components
contains a triangle or P4. All triangles in G contain the vertex v1, hence one of the components of G\v1
contains a path P of length three.

If P is disjoint with C , then G contains a subgraph K3P1
4 or K3P2

4 . It follows that C is the only triangle
in G and that the path P intersects C \ v1. If the degree of both v2 and v3 is greater than two, then G
contains the subgraph K 3

4 , thus we may assume that the degree of v2 is two and that P = v2v3v5v6
for some vertices v5 and v6. Similarly, G \ v3 contains P4 as a subgraph, hence we may assume that
there is a vertex v7 adjacent to v4. However, the graph G then would contain K2K3K2 as a subgraph.
Therefore, G does not contain a triangle, and it must be a tree.

It is however easy to verify using Theorem 2 that the only tree-depth critical trees with tree-depth
four are P8, P1

4P
2
4 and P2

4P
2
4 . It follows that any graph with td(G) > 3 contains one of the graphs in D

as a subgraph. �

Corollary 3. The set obs≤(G3) contains exactly all the graphs depicted in the inner polygon in Fig. 1.
Proof. Follows directly from Observation 3 and the fact that C5 ≤ C6 and C5 ≤ C7. �

Corollary 4. The set obs⊑(G3) contains exactly all the graphs in Fig. 1.
Proof. Follows by inspection, using Observation 4. �

Notice that the obstructions forGk have atmost 2k vertices for k ≤ 3. Hence Theorem 1 is not sharp
even in this case (it only claims that the obstructions have at most 16 vertices).

We conclude with the following conjecture.

Conjecture 1. For every k ≥ 1, the order of the graphs in obs⊑(Gk) is bounded by 2k.
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