
A Simple and Fast Approach for Solving

Problems on Planar Graphs!

Fedor V. Fomin1 and Dimitrios M. Thilikos2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway, fomin@ii.uib.no
2 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,
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Abstract. It is well known that the celebrated Lipton-Tarjan planar separation the-

orem, in a combination with a divide-and-conquer strategy leads to many complexity

results for planar graph problems. For example, by using this approach, many planar

graph problems can be solved in time 2O(
√

n), where n is the number of vertices. How-

ever, the constants hidden in big-Oh, usually are too large to claim the algorithms to be

practical even on graphs of moderate size. This paper aims to overcome this problem by

introducing a new algorithm design paradigm for solving problems on planar graphs.

The paradigm is so simple that it can be explained in any textbook on graph algorithms:

Compute tree or branch decomposition of a planar graph and do dynamic programming.

Surprisingly such a simple approach provides faster algorithms for many problems. For

example, Independent Set on planar graphs can be solved in time O(23.182
√

nn+n4)

and Dominating Set in time O(25.043
√

nn+n4). Moreover, a significantly broader class

of problems can be attacked by this method. Thus with our approach, Longest cycle

on planar graphs is solvable in time O(22.29
√

n(ln n+0.94)n5/4 + n4) and Bisection is

solvable in time O(23.182
√

nn + n4). The proof of these results is motivated by a recent

combinatorial result stating that branch-width of a planar graph is at most 2.122
√

n.

In addition, we observe how a similar approach can be used for solving different fixed

parameter problems on planar graphs. We prove that our method provides the best

so far exponential speed-up for fundamental problems on planar graphs like Vertex

Cover, (Weighted) Dominating Set, and many others.

1 Introduction

The design of (exponential) algorithms that are significantly faster than exhaus-

tive search is one of the basic approaches of coping with NP-hardness [18]. Nice

examples of fast exponential algorithms are Eppstein’s graph coloring algorithm

[17] and the algorithm for 3-SAT [12]. For a good overview of the field see the

recent survey written by Gerhard Woeginger [34].
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It is well known that by making use of the well-known approach of Lipton

& Tarjan, [27] based on the celebrated planar separator theorem [26], one can

obtain algorithms with time complexity cO(
√

n) for many problems on planar

graphs. However, the constants “hidden” in O(
√

n) can be crucial for practi-

cal implementations. During the last few years a lot of work has been done

to compute and to improve the “hidden” constants [3, 4]. In this paper we pro-

pose a general approach for obtaining sub-exponential time exact algorithms for

many problems on planar graphs. Our approach is based on dynamic program-

ming for graphs of bounded branch-width (tree-width). Combining the best,

so far, upper bound for the branch-width of planar graphs with this simple

approach, one can obtain exponential speed-up for many known algorithms for

many different planar graph problems. Independent Set, Dominating Set,

MIN-Bisection, Longest Cycle (Path) on planar graphs are just a few

examples of such problems.

Another field for taking advantage of the current bounds on treewidth and

branch-width of planar graphs is the design of parameterized algorithms. The

last ten years were the evidence of rapid development of a new branch of com-

putational complexity: Parameterized Complexity. (See the book of Downey &

Fellows [16].) Roughly speaking, a parameterized problem with parameter k

is fixed parameter tractable if it admits a solving algorithm with running time

f(k)|I|β. (Here f is a function depending only on k, |I| is the length of the non

parameterized part of the input and β is a constant.) Typically, f(k) = ck is an

exponential function for some constant k. During the last two years much at-

tention was paid to the construction of parameterized algorithms with running

time where f(k) = c
√

k for different problems on planar graphs. The first paper

on the subject was the paper by Alber et al. [1] describing an algorithm with

running time O(46
√

34kn) (which is approximately O(270
√

kn)) for the Planar

Dominating Set problem. Different fixed parameter algorithms for solving

problems on planar and related graphs are discussed in [4, 25]. We observe that

our technique can serve also as a simple unified approach for solving many

parameterized problems on planar graphs in subexponential time. Again, our

approach is based on combinatorial bounds on planar branch-width and tree-

width and provides a better running time for such basic parameterized problems

like Vertex Cover, Dominating Set and many others.

The aim of this paper is to show that such a simple approach, combined with

the recent upper bound on the branch-width of planar graphs, guarantees better
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time bounds. More precisely, we use the recent upper bounds to the branch-

width and the tree-width of planar graphs proved in [19]. Both these parameters

where introduced (and served) as basic tools by Robertson and Seymour in

their Graph Minors series of papers. Tree-width and branch-width are related

parameters (See Theorem 1) and can be considered as measures of the “global

connectivity” of a graph. Moreover, they appear to be of a major importance

in algorithmic design as many NP-hard problems admit polynomial or even

linear time solutions when their inputs are restricted to graphs of bounded

tree-width or branch-width. This motivated the search for graphs where these

parameters are relatively small. In this direction, Alon, Seymour & Thomas

proved in [6] that given a minor closed graph class G, any n-vertex graph G in

G has tree-width/branch-width O(
√

n). As a consequence of this, any n-vertex

planar graph G has tree-width/branch-width ≤ 14.697
√

n.

In [19], it is shown that every n-vertex planar graph G has branch-width

≤ 2.122
√

n and tree-width ≤ 3.182
√

n. To our knowledge, this is the best known

upper bound for the value of these parameters on planar graphs. Any possible

improvement of this bound will imply further acceleration of the algorithms

described in this paper.

The paper is organised as follows: In Section 2, we give an overview of

method and our results and provide some comparison with previous ones. In

Section 3, we give some basic definitions and present the combinatorial bounds

on treewidth and branchwidth, while in Section 4, we discuss their applications

on the design of fast (subexponential) exact and parameterized algortihms.

2 Previous results and our contribution

Lipton & Tarjan [27] were first to observe the existence of time 2O(
√

n)nO(1) algo-

rithms for several problems on planar graphs. However the constants hidden in

big-Oh of the exponent make these algorithms unpractical. Later, a lot of work

was done on computing and reducing these constants. The best known so far

results can be found in [4], where generalizations and complicated improvement

of Lipton-Tarjan (together with kernel reduction techniques) are used to obtain

subexponential parameterized algorithms.

Thus, for example, the approach suggested in [4] provides an O(29.07
√

nn ln n)

algorithm for Independent Set and an O(218.61
√

nn lnn) algorithm for Dom-

inating Set.
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Here we suggest a unified approach based on branch decompositions (see

Section 3 for the definitions). Our algorithm is simple and is performed in two

steps: First we compute the branch decomposition of the planar graph of the

input and then do dynamic programming on graphs of bounded branch-width.

Optimal branch decomposition of a planar graph can be constructed in polyno-

mial time by using the algorithm due to Seymour & Thomas (Sections 7 and

9 in [32]). (See also the results of Hicks [23] on implementations of Seymour

& Thomas algorithm.) For graphs with n vertices this algorithm can be imple-

mented in O(n4) steps. And what is important for practical applications, there

is no large hidden constants in the running time of this algorithm. As for the

second stage, well known dynamic programming algorithms on tree decompo-

sitions can be easily translated to branch decompositions. Using the current

upper bounds for branch-width we prove that our approach provides more effi-

cient solutions for many well known problems on planar graphs.

The following table summarize some known and new results on some prob-

lems on planar graphs (for more problems see Section 4).

Known results New results

Planar Independent Set O(29.07
√

nn ln n) [4] O(23.182
√

nn + n4)

Planar Dominating Set O(218.61
√

nn lnn) [4] O(25.043
√

nn + n4)

Planar (k, r)-center O((2r + 1)3.182
√

nn + n4)

Planar Longest Cycle O(24.58
√

n( 1

2
ln

√

n+0.47)n5/4 + n4)

Planar Longest Path O(24.58
√

n( 1

2
ln

√

n+0.47)n5/4 + n4)

Planar Bisection O(23.182
√

nn + n4)

Planar Weighted Dominating Set O(26.37
√

nn + n4)

Planar Perfect Code O(26.37
√

nn + n4)

Planar Red Blue Dominating Set O(26.37
√

nn + n4)

Planar H-coloring O(2log h·2.12
√

nhn3/2 + n4)

Planar Kernel O(23.37
√

nn2 + n4)

Planar H-covering O(29.55
√

nhn + n4)

Similar approach works well also for parameterized problems. The next table
summarizes results on the most fundamental fixed parameter problems on pla-
nar graphs. (See [3] for an overview of the results on this subject.) We include
the result from [20] because it is based on the main combinatorial result of this
paper and is obtained by similar approach.

Known results New results

Planar k-Vertex Cover O(24
√

3kn) [3] O(24.5
√

kk + k4 + kn)

Planar k-Dominating Set O(227
√

kn) [25] O(215.13
√

kk + k4 + n3)[20]

Planar k-Independent Set O(24
√

6kn) [3] O(k4 + 24
√

4.5kk + n)

Thus our approach provides exponential speedup for the main basic param-

eterized problems. Our method is quite universal and can be implemented to
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obtain an exponential speed-up for many known algorithms for different prob-

lems with fixed parameters. Mention just a few parameterized versions of the

following problems: Independent Dominating Set, Perfect Dominating

Set, Perfect Code, Weighted Dominating Set, Total Dominating

Set, Edge Dominating Set, Face Cover, Vertex Feedback Set, Min-

imum Maximal Matching, Clique Transversal Set, Disjoint Cycles,

and Digraph Kernel. Another advantage of our results is that they apply

not only on planar graphs but on different generalizations of planar graphs, e.g.

K3,3-minor-free or K5-minor-free graphs.

3 Definitions and preliminary results

All graphs in this paper are undirected, loop-less and, unless otherwise men-

tioned, they may have multiple edges.

3.1 Tree-width

The notion of treewidth was introduced in [28] by Roberton and Seymour and,

along with branchwidth, served as a basic tool in their Graph Minors series.

A tree decomposition of a graph G is a pair ({Xi | i ∈ V (T )}, T ), where

{Xi | i ∈ V (T )} is a collection of subsets of V (G) and T is a tree, such that

(1)
⋃

i∈V (T ) Xi = V (G),

(2) for each edge {v, w} ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and

(3) for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T.

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T )(|Xi|−
1). The tree-width of a graph G, tw(G), is the minimum width over all tree

decompositions of G.

3.2 Branch-width

Branchwidth was introduced in [29] as a parameter alternative to treewidth.

A branch decomposition of a graph (or a hyper-graph) G is a pair (T, τ),

where T is a tree with vertices of degree 1 or 3 and τ is a bijection from the

set of leaves of T to E(G). The order of an edge e in T is the number of

vertices v ∈ V (G) such that there are leaves t1, t2 in T in different components

of T (V (T ), E(T ) − e) with τ(t1) and τ(t2) both containing v as an endpoint.
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The width of (T, τ) is the maximum order over all edges of T , and the branch-

width of G, bw(G), is the minimum width over all branch decompositions of G.

(In case where |E(G)| ≤ 1, we define the branch-width to be 0; if |E(G)| = 0,

then G has no branch decomposition; if |E(G)| = 1, then G has a branch

decomposition consisting of a tree with one vertex – the width of this branch

decomposition is considered to be 0).

It is easy to see that if H is a subgraph of G then bw(H) ≤ bw(G). The

following result is due to Robertson & Seymour [(5.1) in [29]].

Theorem 1 ([29]). For any connected graph G where |E(G)| ≥ 3, bw(G) ≤
tw(G) + 1 ≤ 3

2bw(G).

From Theorem 1, any upper bound on tree-width implies an upper bound

on branch-width and vice versa. The proof of the following theorem is long and

complicated. Currently it is available as technical report [19] and we shall pub-

lish it separately in a mathematical journal. The proof of the theorem makes

strong use of deep “dual” and “min-max” theorems from Graph Minors se-

ries papers of Robertson & Seymour, in particular it is based on the relations

between slopes and majorities defined in [32, 30] and [7] respectively.

Theorem 2. For any planar graph G, bw(G) ≤
√

4.5|V (G)| ≤ 2.122
√

|V (G)|.

Corollary 1. For any planar graph G, tw(G) ≤ 3
2

√

4.5|V (G)| ≤ 3.182
√

|V (G)|.

4 Algorithmic consequences

In this section we discuss the applications of Theorem 2 and Collorary 1 for

different problems on planar graphs.

4.1 Subexponential exact algorithms

The following simple theorem is the source for obtaining subexponential algo-

rithms for many graph problems.

Theorem 3. Let Π be an optimization problem that is solvable on graphs of

branch-width ≤ $ in time f($)g(n), provided that a branch decomposition of

width at most $ is given. Then on planar graphs problem Π is solvable in time

O(f(2.122
√

n)g(n) + n4)
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Proof. First we compute an optimal branch decomposition of planar graph. To

compute an optimal branch decomposition of a planar graph one can use the

algorithm due to Seymour & Thomas (Sections 7 and 9 in [32]). (See also the

results of Hicks [23] on implementations of Seymour & Thomas algorithm.)

This algorithm can be implemented in O(n4) steps. Then Theorem 2 implies

the proof. &'

In what follows, whenever we say that a problem is solvable for graphs of

branch/treewidth bounded by some constant we will directly assume that the

input should be accompanied by the corresponding branch/tree decomposition.

Corollary 2. Let Π be an optimization problem that is solvable on graphs of

branch-width/tree-width ≤ $ in time 2o("2)poly(n, $). Then on planar graphs prob-

lem Π is solvable in subexponential time (in 2o(n) steps).

In spite of its simplicity, Theorem 3 provides a general framework for ob-

taining subexponential algorithms for a broad range of problems. And the only

thing one needs to estimate the running time of the algorithm is how fast a

problem can be solved on graphs of bounded branch-width/tree-width1. But

really surprising is that such a trivial approach provides better time estimation

than many, complicated to analyze, algorithms based on separator theorems.

Let us give just few examples.

Independent Set: The Independent Set problem asks, given a graph G

and a non-negative integer k, whether G has an independent set, i.e. a subset

S of V (G) of size at most k where no edge of G has two vertices of S as an

endpoint. It is well known that on graphs of tree-width $ Independent Set

can be solved in time O(2"n) and hence on graphs of branch-width ≤ $ it can be

solved in time O(2(3/2)"n). Thus by Theorem 3 we obtain that Independent

Set on planar graphs is solvable in O(23.182
√

nn + n4).

Dominating Set and variants: The Dominating Set problem asks, given

a graph G and a non-negative integer k, whether V (G) has a subset S of size at

most k where any vertex in V (G) − S is adjacent to some verttex in S. Dom-

inating Set on graphs of branch-width ≤ $ is solvable is time O(23log43·"m)

[13]. Thus on planar graphs, Dominating set is solvable in O(25.043
√

nn+n4).

1 Any algorithm solving a problem on graphs of tree-width ≤ ! in time f(!)g(n) can be translated

to an algorithm for graphs of branch-width ≤ ! with running time O(f(3/2!)g(n) + m) where m

is the number of edges of the input graph.
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Several variants of the Dominating Set problem can be defined if we

additionally demand S to satisfy some additional property Π . Some examples

of this type of problems, which are mentioned in [5], are the Independent

Dominating Set problem (S is an independent set), the Total Dominating

Set problem (any vertex of V is adjacent to some vertex in S), the Perfect

Dominating Set problem (each vertex of G is adjacent to exactly one vertex

in S), the Perfect Independent Dominating Set problem also known as

the Perfect Code problem, and the Total Perfect Dominating Set

problem.

Another variant is the Weighted Dominating Set problem in which we

have a graph G = (V, E) together with an integer weight function w : V → N

with w(v) > 0 for all v ∈ V . The weight of a vertex set S ⊆ V is defined as

w(S) =
∑

v∈D w(v). The Weighted Dominating Set problem asks, given a

weigthed graph G and a non-negative integer k, whether G has a dominating

set S where w(S) ≤ k.

The Red-Blue Dominating Set problem has as instances bipartite graphs

where the bipartition is given by Vred ∪ Vblue and a non-negative integer k. The

question of the problem is whether there is a subset S of Vred of size at most k

such that every vertex of Vblue is adjacent to at least one vertex of S.

By [5], the Independent Dominating Set, the Perfect Dominat-

ing Set, the Perfect Code, the Weighted Dominating Set, and the

Red-Blue Dominating Set problems can be solved in time O(4kn). Also,

the Total Dominating Set, and the Total Perfect Dominating Set,

problems can be solved in time O(5kn) [5]. Thus by Theorem 3 we obtain that

the Independent Dominating Set, the Perfect Dominating Set, the

Perfect Code, the Weighted Dominating Set and the Red Blue Dom-

inating Set problems can be solved in time O(26.37
√

nn+n4) for planar graphs,

and that the Total Dominating Set and the Total Perfect Dominat-

ing Set problems can be solved in time O(27.4
√

nn + n4) for planar graphs.

Longest Cycles and Paths: The Longest Path and the Longest Cycle

problems asks, given a graph G and a non-negative integer k, whether G has

a path (resp. cycle) of length ≥ k. According to [8] the Longest cycle and

the Longest path problems can be solved in time O($!2"n). Combining this

with Theorem 3, we obtain an O(22.29
√

n(ln n+0.94)n5/4 + n4) algorithm for these

problem on planar graphs2.

2 The calculation of the exponent in this algorithm makes use of Stirling’s formula.
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Min-bisection: The MIN-Bisection problem asks, given a graph G and a

non-negative integer k, whether there is a partition of V into two sets V1 and

V2 where ||V1|− |V2|| ≤ 1 and such that the number of edges with endpoints in

both V1 and V2 is at most k. From [24] , MIN-Bisection is solvable in O(2"n)

on graphs. From Theorem 3 the planar version of the problem can be solved in

time O(23.182
√

nn + n4).

Kernels in digraphs: A set S of vertices in a digraph D is a kernel if S

is independent and every vertex in V (D) − S has an out-neighbor in S. The

Kernel problem asks, given a graph G and a non-negative integer k, whether

G has a kernel of size ≤ k. In [21], Gutin et al. gave a time O(4"n) algorithm for

finding a kernel of size k in a digraph whose underlying3 graph has treewidth

at most $ This, along with Theorem 3, implies that Kernel is solvable in time

O(26.37
√

nn + n4).

H-coloring: Let H be a graph with h vertices. The H-coloring problem

asks, given a graph G, whether there exists a homomorphism from G to H ,

i.e. a mapping σ : V (G) → V (H) such that for any edge {v, u} ∈ E(G),

{σ(v), σ(u)} is also an edge of H . In [15] is given an algorithm that, given a

tree decomposition of G of width at most $, solves the H-coloring problem

in time O(h"+1$n). From Theorem 3, the planar version of the H-coloring

problem can be solved in time O(2log h·2.12
√

nhn3/2 + n4).

H-cover: Let H be a graph with h vertices. The H-coloring problem asks,

given a graph G, whether there exists a homomorphism σ from G to H that,

when restricted to the closed neighbourhood NG[v] of an arbitrary vertex v of

G, is an isomorphism to NH [σ(v)]. By [33], the H-cover problem is solvable in

time O(n23"h). From Theorem 3, the planar version of the H-cover problem

can be solved in time O(29.546
√

nhn + n4).

r-center: The r-Center problem is a natural generalization of Dominating

Set. We define the r-neighborhood of a set S ⊆ V (G), denoted by N r
G(S), to be

the set of vertices of G at distance at most r from at least one vertex of S. The

r-Center problem asks, given a graph G and a non-negative integer k, whether

there exists a set S of vertices (we call them centers) of size at most k such that

N r
G(S) = V (G). the r-Center problem is solvable in time O((2r + 1)

3
2 ·"m) on

graphs of branch-width ≤ $ [13]. Combining this with Theorem 3, we obtain an

O((2r + 1)3.182
√

nn + n4) algorithm for the planar version of the problem.

3 The underlying graph of a digraph is the graph obtained if we replace the directed edges by simple

edges.
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More generally, it seems that almost every natural problem expressible

in MSOL is solvable in time O(c"nO(1)), O($"nO(1)) or O($!c"nO(1)), and by

Corollary 2 is solvable in subexponential time on planar graphs. Examples of

such problems solvable in O(c"nO(1)), where c is a small constant are Vertex

Feedback Set, Disjoint Cycles, Face Cover. Edge Dominating Set,

Clique Transversal, and Maximal Matching (see [10, 14] for definitions

and algorithms). For all these problems, Corollary 2 provides subexponential al-

gorithms with small hidden constants. We do not proceed to a detailed analysis

of each individual case as we believe that the examples given so far are enough

to give the main flavour of our approach.

Actually, one can further strengthen the conditions of Corollary 2 towards

extending the framework where subexponential algorithms are possible. Indeed,

it is enough to have a time (poly($, n))o("2) algorithm for the problem Π for

graphs of treewidth/branchwidth at most $. Notice that such problems are not

necessarily expressible in MSOL. We will proceed with an example related to

problems of finding optimum non-preemptive multicolorings.

Non-preemptive multicoloring: Let G be a graph and p some positive in-

teger. A non-preemptive p-multicoloring4 of G is an assignment ψ mapping

each vertex of v to some set of consecutive positive integers, each not bigger

than p, such that adjacent vertices receive non-intersecting sets. The sum of

a multicoloring ψ is equal to Σv∈V maxi∈ψ(v) i. The makespan of a multicolor-

ing ψ is equal to maxv∈V maxi∈ψ(v) i. The Minimum Span non-Preemptive

p-Multicoloring problem asks, given a graph G and a non-negative integer

k, whether G has a non-preemptive p-multicoloring with span at most k. The

Minimum Makespan non-Preemptive p-Multicoloring problem is de-

fined analogously by asking for a non-preemptive multicoloring with makespan

at most k.

According to [22], Minimum Span non-Preemptive p-Multicoloring

and Minimum Makespan non-Preemptive p-Multicoloring can be solved

in time O(n · ($p log n)"+1) for graphs with tree-width ≤ $. Therefore, both of

them can be solved in time O(pn3/2 log n · 21.15·log p log n log log n
√

n + n4) on planar

graphs.

4 The multicoloring problem has numerous aplications in job scheduling on multiprocessor sys-

tems [22], traffic intersection control [9], compiler design and VLSI routing [31].
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4.2 Algorithms for parameterized problems

Similar ideas work for parameterized problems. Let L be a parameterized prob-

lem, i.e. L consists of pairs (I, k) where k is the parameter of the problem.

Reduction to linear problem kernel is the replacement of problem inputs (I, k)

by a reduced problem with inputs (I ′, k′) (linear kernel) with constants c1, c2

such that k′ ≤ c1k, |I ′| ≤ c2k′ and (I, k) ∈ L ⇔ (I ′, k′) ∈ L. (We refer to

Downey & Fellows [16] for discussions on fixed parameter tractability and the

ways of constructing kernels.)

Theorem 4. Let L be a parameterized problem (I, k) (here I can be a graph,

hypergraph or matroid) such that

— There is a linear problem kernel computable in time Tkernel(|I|, k) with con-

stants c1, c2 and such that an optimal branch decomposition of the kernel is

computable in time Tbw(|I ′|).
— On graphs (hypergraphs, matroids) of branch-width ≤ $ and ground set of

size n the problem L can be solved in O(2c3"n), where c3 is a constant.

— bw(I ′) ≤ c4

√
k, where c4 is a constant. Then L can be solved in time

O(2c3c4
√

kk + Tbw(|I ′|) + Tkernel(|I|, k)).

Proof. The algorithm works as follows. First we compute a linear kernel in

time Tkernel(|I|, k). Then we construct a branch decomposition of the kernel in

Tbw(|I ′|) steps. The size of the kernel is at most c1c2k = O(k). The branch-width

of the kernel is at most c4

√
k and it takes O(2c3c4

√
kk+Tbw(|I ′|)+Tkernel(|I|, k))

to solve the problem. &'

Let us give some examples, where Theorem 4 provides proven better bounds

for different parameterized problems.

The Planar k-Vertex Cover problem is the task to compute, given a

planar graph G and a positive integer k, a vertex cover of size k or to report that

no such a set exists. A linear problem kernel of size 2k (with constants c1 = 1 and

c2 = 2) for the k-Vertex Cover problem (not necessary planar) was obtained

by Chen et al. [11]. The running time of the algorithm constructing a kernel of a

graph on n vertices is O(kn+k3). So in this case Tkernel(|I|, k) = O(kn+k3). It is

well known that the Vertex Cover problem on graphs on n vertices and with

bounded tree-width ≤ $ can be solved in O(2"n) time. The dynamic program-

ming algorithm for the Vertex Cover on graphs with bounded tree-width

can be easy translated to the dynamic programming algorithm for graphs with

bounded branch-width with running time O(23/2"m), where m is the number of
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edges in a graph, and we omit it here. For planar graphs 23/2"m = O(23/2"n),

thus c3 ≤ 3/2.

From the constructions used in the reduction algorithm of Chen et al. [11]

it follows that if G is a planar graph then the kernel graph is also planar.

To compute an optimal branch decomposition of a planar graph one can use

the algorithm due to Seymour & Thomas [32]. This algorithm (applied to the

kernel graph) can be implemented in O(k4) steps. The kernel graph I ′ has at

most 2k vertices. Then by Theorem 2, c4 ≤
√

4.5
√

2 = 3. Thus by making use

of Theorem 4, we conclude that Planar k-Vertex Cover can be solved in

O(k4 + 24.5
√

kk + kn).

A k-dominating set D of a graph G is a set of k vertices such that every

vertex outside D is adjacent to a vertex of D. The Planar k-Dominating

Set problem is the task to compute, given a planar graph G and a positive

integer k, a k-dominating set or to report that no such a set exists.

Alber, Fellows & Niedermeier [2] show that the Planar Dominating Set

problem admits a linear problem kernel. (The size of the kernel is 335k.) This re-

duction can be performed in O(n3) time. Dominating Set problem on graphs

of branch-width ≤ $ can be solved in O(23log43·"m) steps [20]. Thus c3 ≤ 3log43.

It is proved in [20] that for every planar graph G with dominating set k, the

branch-width of G is at most 3
√

4.5
√

k, i.e. c4 ≤ 3
√

4.5. Then by Theorem 4,

Planar Dominating set can be solved in O(215.13
√

kk + n3 + k4).

4.3 Other problems and generalizations.

Our ideas can be adapted to different problems by using the bounds and tree-

width (branch-width) based algorithms in the same fashion as it is done in [1,

3, 10, 14]. That way, our upper bound implies the construction of faster al-

gorithms for a series of problems when their inputs are restricted to planar

graphs. As a sample we mention parameterized versions of the following prob-

lems: Independent Dominating Set, Perfect Dominating Set, Per-

fect Code, Weighted Dominating Set, Total Dominating Set, Edge

Dominating Set, Face Cover, Vertex Feedback Set, Minimum Max-

imal Matching, Clique Transversal Set, Disjoint Cycles, and Di-

graph Kernel (see [1, 3, 10, 14] for the exact definitions).

Finally let us note that our upper bound for treewidth holds not only on

planar graphs but on different generalizations of planar graphs. This follows

directly from the results of [14] and implies an exponential speed-up of all the

12



aforementioned problems on certain classes of non-planar graphs such as K3,3-

minor-free or K5-minor-free graphs.
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