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Abstract. A constraint network is arc consistent if any value of any of its variables is compatible with at
least one value of any other variable. The Arc Consistency Problem (ACP) consists in filtering out values of
the variables of a given network to obtain one that is arc consistent, without eliminating any solution. ACP is
known to be inherently sequential, or P-complete, so in this paper we examine some weaker versions of it and
their parallel complexity. We propose several natural approximation schemes for ACP and show that they are also
P-complete. In an attempt to overcome these negative results, we turn our attention to the problem of filtering
out values from the variables so that each value in the resulting network is compatible with at least one value of
not necessarily all, but a constant fraction of the other variables. We call such a network partially arc consistent.
We give a parallel algorithm that, for any constraint network, outputs a partially arc consistent subnetwork of it in
sublinear (O(

√
n log n)) parallel time using O(n2) processors. This is the first (to our knowledge) sublinear-time

parallel algorithm with polynomially many processors that guarantees that in the resulting network every value is
compatible with at least one value in at least a constant fraction of the remaining variables. Finally, we generalize
the notion of partiality to the k-consistency problem.

Keywords: constraint satisfaction problem, arc consistency, local consistency, approximation schemes, partial
arc consistency, P-completeness, parallel algorithms

1. Introduction

A constraint network comprises of n variables, a domain of permissible values for each of
the variables, and a set of constraint relations, each binding the values of a collection of
the variables. The Constraint Satisfaction Problem (CSP) is the problem of determining
the n-tuples of values from the domains that are compatible with all constraints. This is
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a fundamental problem in Artificial Intelligence (an interesting special case of it is scene
labeling, a preprocessing stage of object recognition). For a review of recent results see
[6], [21], [23]. CSP is, in general, intractable. Many NP-complete problems such as graph
colouring, 3-SAT, can be directly expressed in terms of CSP. There is an extensive literature
on special cases of CSP that can be solved efficiently sequentially, or even by fast parallel
algorithms (see, e.g., [3], [8], [12], [19], [26]).
A constraint network is called arc consistent if any value from any domain is compatible

with at least one value of any other variable. Discrete relaxation is the process of removing
values from the domains of the variables until the network is transformed to an arc consistent
one, but in a way that no n-tuple of values that satisfies all constraints is eliminated. In
other words, discrete relaxation solves the Arc Consistency Problem (ACP). It removes
local inconsistencies and so it reduces the search space. Therefore, a network that has been
transformed to an arc consistent one is expected to be easier to handle from the point of
view of obtaining a solution for the corresponding CSP.
There are many efficient sequential implementations of discrete relaxation (see [22]; see

also [15] for an overview and recent results and see [7] for interesting experimental results).
Parallel algorithms for the arc consistency problem have been studied in [5], [24]. However,
in general, the problem is inherently sequential, i.e. it is P-complete [17]. In Section 4 we
prove a stronger version of this result. There are also interesting results on identifying cases
where an exponential parallel speedup is possible (see [18]).
In this paper, in order to overcome the inherent sequentiality of the problem, we introduce

and investigate the parallel complexity of partial solutions for ACP.We justify this approach
by defining several natural approximation schemes to the problem of arc consistency, and
showing them to be P-complete. We also extend the notion of partiality to cover the case
of the more general k-consistency.
An α-partial solution of ACP is one where every value of any variable is compatible

with values of at least α(n − 1) of the other variables (0 < α ≤ 1). Let " be the
maximum degree in the graph of constraints, and q be the maximum number of values
for a variable. Usually, q is a small constant. For example, in many applications of
CSP in Computer Vision, q is no more than 3 or 4 (see [25]; see [9] for some recent
results). Also, in the majority of cases, " is a constant factor of the number of variables.
We show that, for any α < 1 − q

q+1
"
n−1 , there is a parallel algorithm that runs in time

O(
√nq log (nq)) and produces an α-partial solution for ACP that contains the actual ACP

solution.
Our algorithm operates as follows: For as long as there are more than √nq values that

cannot be part of the ACP solution (i.e. they are compatible with values of less than n − 1
variables), the algorithm removes them in parallel steps. The target is to capture the steps of
the original discrete relaxation that offer sufficiently high degree of parallelism. Afterwards,
the algorithm removes values that are compatible with less than α(n − 1) variables. A
combinatorial lemma ensures that these stepswill not bemore than O(

√nq). The algorithm
requires O(n2q2) processors on the Concurrent-Read Exclusive-Write (CREW) shared-
memory parallel machine model (PRAM).
Notice that a partial solution for ACP is, in itself, a removal of some local inconsistencies.

To our knowledge, this is the first sublinear-time parallel algorithm that achieves a nontrivial
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degree of elimination of local inconsistencies, using polynomially many processors (see [5]
for results with exponentially many processors).
We next examine several approximation schemes to ACP. These approximations are

all proved to be P-complete. To begin with, let D be the disjoint union of all domains
of a network, DAC be the disjoint union of all domains after the application of discrete
relaxation, and RAC = D − DAC. Our first approximation scheme asks to determine, for a
given ε ∈ (0, 1], a set D′ such that DAC ⊆ D′ ⊆ D and ε|D′| ≤| DAC|. We prove that, unless
P=NC, no such set D′ can be found by a parallel algorithm in NC (for the class NC see [16]).
We show the same for the approximation scheme that, given an α ∈ (0, 1], asks for a set
R′ such that R′ ⊆ RAC and α|RAC| ≤| R′|. The last approximation scheme we introduce is
related to the degree of incompatibility that a value must exhibit in order to be removed by
a relaxation-type algorithm. We define the elimination degree of d as the least k such that,
when we remove values not supported by more than k variables, d is not removed and no
domain is emptied (see next sections for formal definitions). We show that approximating
this parameter within any approximation factor, is P-complete. Our conclusion is that
looking for partial solutions, and not for approximation schemes, seems to be the correct
way to obtain sublinear-time parallel algorithms that approach the solution of ACP.
To this extent, in the last section of the paper, we generalize our partiality results to the

case of k-consistency, a generalized form of arc consistency, as well as for the case of strong
k-consistency. A constraint network is k-consistent if for any (k − 1)-tuple of compatible
values for k−1 variables and for any kth variable, there exists a value for it that is compatible
with the (k−1)-tuple. A networkwhich is i-consistent for all i = 2, . . . , k, is called strongly
k-consistent (see [6], [21]). k-consistency can be achieved in time O(nkqk) [4].
For k-consistency, we extend the notion of partiality as follows: a network is α-partially

k-consistent if any (k − 1)-tuple of compatible values can be extended with a compatible
value from the domain of not necessarily all, but at least α(n − k + 1) other variables.
If a network has the α-partial k-consistency property for all i = 2, . . . , k, then we call it
α-partially strongly k-consistent. We give a parallel algorithm for the CREW PRAM that,
in time O((nq)

k−1
2 log(nq)) and using O(nkqk) processors, outputs an α-partially strongly

k-consistent subnetwork of any given constraint network that contains the solution of the
strong k-consistency problem.

2. Definitions and Preliminaries

A binary constraint network consists of a set of variables X1, . . . , Xn , a set of variable
domains D1, . . . , Dn , and a set of binary constraints C. For i = 1, . . . , n, Di is the set of
permissible values for variable Xi . A constraint Ri j ∈ C is a subset of Di × Dj (i )= j).
A value di of Xi is compatible with a value dj of Xj (i )= j) iff there is no Ri j ∈ C
such that (di , dj ) )∈ Ri j . For a given constraint network N with variables X1, . . . , Xn ,
domains D1, . . . , Dn , and set of constraints C, a domain-reduced subnetwork of N is any
constraint network N ′ with the same variables, domains D′

1 ⊆ D1, . . . , D′
n ⊆ Dn , and set

of constraints C ′ containing exactly the restrictions of the elements of C to the corresponding
domains.
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The Constraint Satisfaction Problem (CSP), for a given constraint network, asks for all
the n-tuples (d1, . . . , dn) of values such that di ∈ Di , i = 1, . . . , n, and for every Ri j ∈ C,
(di , dj ) is in Ri j . Such an n-tuple is called a solution of the CSP. The decision version of
the CSP is to determine if any solution exists.
Given an instance $ of the CSP with n variables, its constraint graph (we denote this

graph by G$ or just G when no confusion may arise) has n vertices which correspond to
the variables of$ and it contains an edge {vi , vj } iff the corresponding variables are bound
by a constraint.
In this paper we use another graph representation of a CSP instance$, which we call the

compatibility graph. Let q denote the maximum number of values that can be assigned to a
variable, i.e. q = max{|Di |, i = 1, . . . , n}. The compatibility graphC$ (or justC , when no
confusion may arise) of$ is an n-partite graph. The i th part of C$ corresponds to variable
Xi of$ and it has exactly |Di | vertices, one for each value of Xi . In the compatibility graph
C$, two vertices u and v are connected by an edge iff the corresponding values di ∈ Di and
dj ∈ Dj are compatible. We denote by N the total number of vertices of C$, i.e. N = |D|
where D =

⋃
i=1,...,n Di (note that N ≤ nq). In other words, N is equal to the total

number of values in the constraint network (values in the domains of different variables are
considered to be different). An n-tuple (d1, . . . , dn) is a solution of$ iff the set of vertices
that correspond to the values in the n-tuple induces a subgraph of C$ which is an n-clique.
Therefore, the problem of finding all the solutions of a CSP instance, or of determining
whether any solution at all exists, can be reduced to the problem of identifying all n-cliques
of its compatibility graph, or of determining whether at least one such clique exists.
In order to avoid confusion, the following point should be clarified: whenever two vari-

ables Xi and Xj of a constraint network are not bound by a constraint, i.e. the corresponding
vertices are not adjacent in G$, then the vertices of the part in C$ that corresponds to Xi
are adjacent to all the vertices of the part of C$ that corresponds to Xj . However, if we
are given a compatibility graph C$ and all the pairs of vertices from two of its parts are
adjacent, then we do not consider that the corresponding to the variables vertices in G$

are adjacent. That is, we do not assume that the variables are bound by a constraint that
simply allows any combination of value assignments to the variables. In this way, given a
constraint graph C , there is a unique compatibility graph G associated with C .
A constraint network N is arc consistent if the following holds: for any variable Xi , for

any value di ∈ Di , and for any other variable Xj , there exists at least one value assignment
dj ∈ Dj such that di is compatible with dj . The Arc Consistency Problem (ACP) is the
problem of finding a maximal (with respect to the domains) arc consistent domain-reduced
subnetworkNAC ofN . Also,NAC is unique, for if there was another maximal arc consistent
subnetwork N ′

AC of N with domains A′
1, . . . , A′

n , then the domain-reduced subnetwork of
N with domains A1 ∪ A′

1, . . . , An ∪ A′
n would also be arc consistent, a contradiction to the

maximality of NAC and N ′
AC. We call NAC the solution of ACP.

In terms of the compatibility graph C , ACP is formulated as follows: Find the maximal
(with respect to the set of vertices) induced subgraph CAC of C such that any vertex in any
of its parts is connected with vertices in the n − 1 other parts.
All values di ∈ Di , i = 1, . . . , n, which participate in some solution of the CSP belong

to the domain Ai of the ACP solution. Since CSP is an NP-complete problem, a common
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approach for solving it involves a preprocessing step to make the network arc consistent and
reduce the size of the variable domains, before employing exhaustive search to determine the
actual solutions. Arc consistency is achieved by the procedure known as discrete relaxation.
The algorithm is the following:

Algorithm: discrete relaxation
Input: A constraint network N
Output: NAC

1. begin
2. while ∃Xi and di ∈ Di : ∃ j )= i : di is incompatible with all dj ∈ Dj
3. do Di ← Di − {di } od
4. end

The algorithm removes these values, if any, that are incompatible with all the values in
the domain of at least one variable, until no such values exist. Discrete relaxation runs
in optimal O(eq2) time [2], where e is the number of constraints and q is the maximum
number of values in the domain of a variable. Also, several parallel implementations of
the discrete relaxation for the PRAMmodel of computation are described in [24]. The best
of these algorithms, PAC-4, executes in O(nq) time using O(n2q2) processors. A work
optimal parallel algorithm for the CRCW PRAM model that enforcess arc-consistency in
O(nq) time using O(nq) processors, is described in [18].

3. Partial Arc Consistency

In this section we introduce the notion of partiality in arc consistency, and give a sublinear-
time parallel algorithm that finds partial solutions to ACP (for other relevant combinatorial
problems that admit partial solutions see [20]).
A constraint network N is α-partially arc consistent if no variable domain is empty and

any value of a variable is compatible with values of at least a constant fraction of the other
variables, i.e. with values of α(n − 1) other variables (0 < α ≤ 1). The α-partial arc
consistency problem is the problem of finding a maximal (with respect to the domains)
α-partially arc consistent domain-reduced subnetwork N AC,α of N . When α = 1, this
problem is the same as the original ACP. In a way similar to the case of NAC, one can see
that N AC,α is unique.
For any value d in a constraint network, the support-degree of d is the number of variables

in the network that contain a value compatible with d. In the compatibility graph C , the
support-degree of a vertex v in C is the number of parts in C that contain vertices adjacent
to v.
In terms of the compatibility graphC , the α-partial arc consistency problem is formulated

as follows: Find the maximal (with respect to the set of vertices) induced subgraph CAC,α of
C such that any vertex has support-degree at least α(n − 1) and no part is empty, i.e. each
part has at least one vertex. Such a graph is called α-partially arc consistent.
In this paper we introduce a modified version of the discrete relaxation algorithm, which

we call α-discrete relaxation, that solves the α-partial arc consistency problem. We will
present the algorithm in terms of the compatibility graph. Given a real value α, 0 < α ≤ 1
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and a compatibility graph C , the α-discrete relaxation algorithm is the following:

Algorithm: α-discrete relaxation
Input: An n-partite compatibility graph C = (V, E)

Output: CAC,α

1. begin
2. while ∃v ∈ V : support-degree(v) < α(n − 1)
3. do
4. V ← V − {v}
5. if an empty part appears in C
6. then terminate and return the empty graph
7. od
8. end

It is easy to see that our algorithm outputs CAC,α . Notice that CAC,α contains CAC as a
subgraph. Also notice that if during the α-discrete relaxation a part is emptied, then the
ACP has the empty solution.
The algorithm α-discrete relaxation has a parallel version which we call parallel α-

discrete relaxation. In this version, on each step of the while loop the identification and
the elimination of the vertices to be removed is done in parallel in O(log(nq)) time using
O(n2q2) processors on the CREWPRAM. Therefore, the α-partial arc consistency problem
can be solved in O(nq log(nq)) parallel time using O(n2q2) processors on the CREW
PRAM.
A key observation regarding partial arc consistency is the following: Themaximality of an

α-partially arc consistent subgraph ofC is not crucial, as long as this subgraph containsCAC.
It turns out that we can do better than computing CAC,α . That is, given a constraint network
N , its constraint graph C and its compatibility graph G, and for any α < 1− q

q+1
"
n−1 , we

can compute in sublinear parallel time an α-partially arc consistent subgraph of CAC,α that
contains CAC. In the above, " = "(G) is the maximum degree in the constraint graph G.
The algorithm is strongly basedon the following lemma. This lemmaensures the existence

of a partially consistent subgraph of C whenever C is sufficiently dense.

Lemma 1 Let N be a constraint network with n variables each one having at most q
values. Let G,C be its constraint and compatibility graph respectively, " the maximum
degree of G, and l the smallest possible support-degree of any value in N (observe that
l = n − 1 − "). Also let l2 < l1 ≤ " be two integers such that l2 < l1

1+q . If C contains
at most m vertices with support-degree less than l + l1, then, if we apply ( l+l2n−1 )-discrete
relaxation on C, either no more than m(l1−l2)

l1−l2(1+q)
vertices will be removed, or all the vertices

of some part will be removed.

Proof: From the definition of the compatibility graph, any vertex v in C is adjacent to at
least one vertex of at least l parts, i.e. v has support-degree at least l. Therefore, applying
an ( l ′

n−1 )-discrete relaxation has no effect on the graph C , for l
′ ≤ l. Let us consider the

application of an ( l+l2n−1 )-discrete relaxation on C for l2 ≥ 0, and suppose that no part is
emptied. Suppose, also, that we are given another positive integer l1 such that l2 < l1 (we
will discover later the exact relation between l1 and l2). The application of an ( l+l2n−1 )-discrete
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relaxation onC removes a set R of vertices inC , which can be partitioned into the following
sets:

• The set R1: all vertices that initially (in C) have support-degree less than l + l2.

• The set R2: all vertices that initially have support-degree no less than l + l2 but less
than l + l1.

• The set R3: all vertices that initially have support-degree at least l + l1.

We will determine an upper bound to the size of R, which, in turn, will enable us to bound
the number of steps required by the ( l+l2n−1 )-discrete relaxation. We will count the number of
elements in R indirectly, by considering the set ER of edges that are removed as a result of
the removal of the vertices. In what follows, we define as var(v) the vertex of the constraint
graph corresponding to the part ofC that contains v. A crucial observation resulting fromour
assumption that no part in C is emptied, is that for any vertex v in C , v can have its support-
degree reduced only as a result of the removal of a vertex v′ such that var(v) and var(v′)
are adjacent in the constraint graph G. We call such a vertex v′ a direct neighbour of v.
Let v be a vertex in R3. Since the vertices in R3 have initially support-degree at least

l+l1, and we apply an ( l+l2n−1 )-discrete relaxation with l2 < l1, vmust have lost at least l1−l2
of its direct neighbours in C by the time it is removed. Therefore, at least |R3|(l1 − l2)
edges must have been removed as a result of the removal of the vertices in R3, i.e.:

|R3|(l1 − l2) ≤ |ER| (1)

Let v be a vertex in R. Then v cannot be adjacent to more than ql2 direct neighbours
in C by the time it is removed. At worst, all these direct neighbours will be subsequently
removed. Therefore |ER| ≤| R|ql2, i.e. at most |R|ql2 edges are removed in all. From our
assumption that at most m vertices in C have support-degree less than l + l1, it follows that
|R1| + |R2| ≤ m. Since R = R1 ∪ R2 ∪ R3, we get that |R| ≤ m + |R3|. Thus:

ER ≤ |R|ql2 ≤ (m + |R3|)ql2 (2)

From 1 and 2:

(l1 − l2)|R3| ≤ (m + |R3|)ql2 ⇒
(l1 − l2(q + 1))|R3| ≤ ql2m ⇒

|R3| ≤ ql2m
l1 − l2(q + 1)

Since |R| ≤ (m + |R3|), it follows that:

|R| ≤ m + ql2m
l1 − l2(q + 1)

⇒

|R| ≤ m
l1 − l2

l1 − l2(q + 1)

Now, we can see that l1 and l2 must be chosen so that l2 < l1
q+1 .
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The lemma implies that if the the number of vertices in C that have low degree is suffi-
ciently small, i.e.C is sufficiently dense, then we can find a bound on the number of vertices
that will be removed by the α-discrete relaxation. This, in turn, suggests the following idea:
as long as the number of vertices with support-degree is above a threshold, remove them
in parallel. When their number (the value m in Lemma 1) falls below this threshold, apply
parallel α-discrete relaxation. If we arrange things so that the threshold is sufficiently low,
then, from Lemma 1, the application of the parallel α-discrete relaxation (for an appropriate
value of α, of course) will remove a bounded number of vertices, thus its worst case running
time will be bounded by the same bound. All these considerations are formalized by the
following theorem:

Theorem 1 Let N be a constraint network with n variables each one having at most q
values. Let also G,C be its constraint and compatibility graph respectively. If G has
maximum degree ", then for any α < 1 − q

q+1
"
n−1 , there exists a parallel algorithm that

returns a subgraph of CAC,α which contains CAC and where any vertex has support-degree
at least α(n − 1). This algorithm executes in O(

√nq log(nq)) time and uses O(n2q2)
processors on the CREW PRAM.

Proof: We present the algorithm in terms of the compatibility graph:

Algorithm: fast α-discrete relaxation
Input: An n-partite compatibility graph C = (V, E)

Output: An α-partially arc consistent subgraph C ′ of CAC,α that
contains CAC, where α < 1− q

q+1
"
n−1

1. begin
2. N ← |V |
3. while ∃ V ′ ⊆ V :(|V ′| ≥

√
N ) ∧ (∀v ∈ V ′ : support-degree(v) < n − 1)

4. do
5. for each v ∈ V ′ in parallel
6. do V ← V − {v} od
7. if an empty part appears in C
9. then terminate and return the empty graph
10. od
11. run parallel α-discrete relaxation
12. end

It is easy to see that each vertex in the subgraph the algorithm outputs has support-degree
no less than α(n − 1).
For the time and processor bounds, we observe that the identification of each set V ′ can

be performed in O(log N ) parallel time, using O(N 2) processors on a CREW PRAM. In
each such step, the algorithm removes (in constant time) at least

√
N vertices inside the

parallel for-loop. Therefore, the while-loop has at most
√
N iterations. Also, after the

removal of V ′, checking whether any part of C is empty requires O(log N ) parallel time.
Summing up, the algorithm exits the while-loop in time O(

√
N log N ). Also, after the end

of the while loop, there are less than
√
N vertices in V that have support-degree less than
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n − 1. Then, by Lemma 1 and since l2 + l = α(n − 1) ⇒ l2 = α(n − 1) − l we get that
α-discrete relaxation will remove no more than

√
N

l1 − (α(n − 1) + l)
l1 − (q + 1)(a(n − 1) − l)

(3)

vertices.
However, if we wish Lemma 1 to apply, we must obey the inequality l2 < l1

q+1 and, thus,
confine α to the following range:

l1 > (q + 1)l2 ⇒

l1 > (q + 1)(α(n − 1) − l) ⇒
...

α < 1− 1
n − 1

(" − l1
q + 1

)

Observe that the biggerα is, the better the partial solutionweget. It is clear that the allowed
range forα is increased as l1 is increased. Therefore, wemust set l1 to themaximumpossible
value. Since l1 + l signifies support-degree, the following must hold:

l1 + l ≤ n − 1 ⇒

l1 + n − 1− " ≤ n − 1 ⇒ l1 ≤ "

By setting l1 = " we get the maximum possible range for α and, from Equation 3, we
conclude that α-discrete relaxation will remove no more than

√
N

1− α

(1− α)(1+ q) − q "
n−1

vertices. This number, for the range of α stated above, is O(
√
N ). Thus, parallel α-

discrete relaxation will execute in O(
√
N log N ) parallel time, using O(N 2) processors on

the CREW PRAM. It follows that fast α-discrete relaxation executes in O(
√
N log N ) time

using O(N 2) processors. Since N ≤ nq, we have the required time and processor bounds
for α-partial AC.

4. Parallel Intractability Results

In this section, we first give a P-completeness result concerning ACP. Subsequently, we
present several natural approximation schemes for ACP, which we prove to be P-complete.
As mentioned in the introduction, Kasif [17] proved that the arc consistency problem

is P-complete, in the sense that given a constraint network N , it is P-complete to decide
whether a given value for a variable belongs in the corresponding domain ofNAC. Here, we
prove the following stronger result (the proof of all the Theorems of this section are given
in the Appendix):



260 N. D. DENDRIS ET AL.

Theorem 2 It is P-complete to decide whether discrete relaxation in a networkN removes
a specific value of one of its variables, or if it empties the domains of all of its variables,
even if the constraint graph of N is planar and has maximum degree 3.

Wewill now examine two domain approximation schemes. LetN be a constraint network
with n variables and variable domains D1, . . . , Dn . Let also A1, . . . , An denote the domains
in NAC. If D =

⋃
i {Di , i = 1, . . . , n}, DAC =

⋃
i {Ai , i = 1, . . . , n}, and RAC = D − DAC,

then the following hold:

Theorem 3 For a given constraint network N , and for any ε ∈ (0, 1], it is P-complete to
find a set D′ such that DAC ⊆ D′ ⊆ D and ε|D′| ≤| DAC|.

Theorem 4 For a given constraint network N , and for any ε ∈ (0, 1], it is P-complete to
find a set R′ such that R′ ⊆ RAC and ε|RAC| ≤| R′|.

We now define the elimination degree of value d of N to be the least integer h such that
a ( n−hn−1 )-discrete relaxation does not remove d. We denote this quantity by elimin(d,N ).
It is easy to see that:

support(d,N ) + elimin(d,N ) = n

It follows that it is P-complete tofind the value of elimin(d,N ). Since the computation of the
elimination degree of d is aminimization problem, we consider the following approximation
for it: given a constant factor λ ≥ 1, find an integer elimin(d,N )approx such that:

λ · elimin(d,N ) ≥ elimin(d,N )approx ≥ elimin(d,N )

Theorem 5 It is P-complete to approximate elimin(d,N ) by any factor λ ≥ 1.

5. Extensions for Arbitrary Degree of Consistency

We will now extend our results to the case of k-consistency, both for CSPs with binary
constraints, and for constraint networks where the relations are not necessarily binary.
In the latter case, a constraint network consists of a set of variables X1, . . . , Xn , a set
of variable domains D1, . . . , Dn , and a set of constraints C. Let I = {1, . . . , n} and
Ir = {i1, . . . , ir } ⊆ I such that j < j ′ ⇒ i j < i j ′ . A constraint RIr ∈ C of arity r is
a subset of Di1 × · · · × Dir . The arity of N is equal to the maximum arity among its
constraints. Also, a set of value assignments {di1 , . . . , dir } where dij ∈ Xij , j = 1, . . . , r ,
is compatible iff there is no RIr ∈ C such that (di1 , . . . , dir ) )∈ RIr .
The Constraint Satisfaction Problem (CSP) for the general case, asks for all the n-

tuples (d1, . . . , dn) of values such that di ∈ Di , i = 1, . . . , n, and for every RIr ∈ C,
(di1 , . . . , dir ) ∈ RIr . Such an n-tuple is called a solution of the CSP.
Similarly with the notion of the constraint graph, for a CSP instance$with n variables, its

constraint hypergraph G$ has n vertices corresponding to the variables of$. G$ contains
a hyperedge iff the variables that correspond to the vertices of the hyperedge are bound by
a constraint. Also, the compatibility hypergraph C$ of $ has exactly one vertex for each
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value in the domain of each variable. A set of vertices {vi1 , . . . , vir }, vi j ∈ Vij , j = 1, . . . , r ,
is a hyperedge in C$ iff the set of values that corresponds to {vi1 , . . . , vir } is compatible.
An n-tuple (d1, . . . , dn) of values is a solution of $ iff any subset of the corresponding
vertex set of C$ that has cardinality ≥ 2 is a hyperedge.
A constraint network N is k-consistent if the following holds: for any set of value

assignments {di1 , . . . , dik−1} such that every subset of it is compatible, and for any i )∈
{i1, . . . , ik−1}, there exists a value assignment di ∈ Di such that every subset of {di1 , . . . ,
dik−1} ∪{ di } is compatible. The k-consistency problem is the problem of finding a maximal
(with respect to the domains) k-consistent subnetworkNk ofN . It is easy to see thatNk is
unique. We call Nk the solution of k-consistency.
A constraint networkN is strongly k-consistent if it is i-consistent for any i, i = 2, . . . , k.

The strong k-consistency problem is the problem of finding a maximal (with respect to the
domains) strongly k-consistent subnetwork N S

k of N .
A hyperedge {vi1 , . . . , vir }, r ≥ 2, of a compatibility hypergraph C is a hyperclique iff

any subset of {vi1 , . . . , vir } is a hyperedge. We call such a hyperclique an r-hyperclique;
also, any vertex v in C is considered to be an 1-hyperclique. The support-degree of an
r -hyperclique {vi1 , . . . , vir } is the number of parts not in {Vi1 , . . . , Vir } that contain a vertex
v such that {vi1 , . . . , vir , v} is an (r + 1)-hyperclique.
In terms of the compatibility hypergraph, the k-consistency problem is formulated as

follows: Find its maximal (with respect to the set of vertices) induced subhypergraph Ck
in which any (k − 1)-hyperclique has support-degree equal to n − k + 1 (we call such a
hypergraph k-consistent). The strong k-consistency problem is the problem of finding a
maximal (with respect to the set of vertices) induced subhypergraph C S

k that is i-consistent
for all i, i = 2, . . . , k.
k-consistency is achieved by the procedure called k-relaxation. The optimal serial im-

plementation of it executes in O(nkqk) time (see [4]). We will now describe a variation of
it in terms of the compatibility hypergraph.

Algorithm: k-relaxation
Input: An n-partite compatibility hypergraph C = (V, E)

Output: Ck
1. begin
2. while ∃ a hyperclique e :(|e| = k − 1)∧ (support-degree(e) < n − k + 1)
3. do
4. E ′ ← {e′ : e′ is a hyperclique with |e′| ≤ k and e ⊆ e′}
5. E ← E − E ′

6. od
7. end

Theorem 6 Let N be constraint network with n variables, each one having at most q
values. Let also k ≤ n be a (constant) positive integer. Then k-relaxation can be executed
serially in O(nkqk) time and in parallel in O(nk−1qk−1 log(nq)) time on the CREW PRAM
using O(nkqk) processors.
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Proof: For i ≤ n, there are O(niqi ) hypercliques of size i in C . Therefore, C has
O(nk−1qk−1) (k − 1)-hypercliques, that can be identified in time O(nk−1qk−1). Let e be
one of the (k − 1)-hypercliques of C . Then, there are at most q(n − k + 1) hyperedges
with k vertices that contain e. We can find the support-degree of e by checking each one of
them. If the support-degree of e is< n−k+1, then there are at most q(n−k) hypercliques
that contain it, and are removed along with e. Thus, the serial complexity of k-relaxation
is O(nkqk). For the parallel complexity, each of the O(nk−1qk−1) (k − 1)-hypercliques
of C can be identified in constant time O(k) using O(2k−1) processors. For each such
hyperclique e, we can check whether there are any hyperedges of size k in C that contain it
in time O(log(nq)) using O(q(n−k+1)) processors. If the support degree of e is less than
n− k+1, then we can remove the corresponding k-hypercliques, that are at most q(n− k),
in time O(1) using 2k−1+q(n−k) processors. From the above, it follows that k-relaxation
can be executed in O(nk−1qk−1 log(nq)) parallel time on the CREWPRAMusing O(nkqk)
processors.

The processor bound stated in Theorem 6 is indeed high and the resulting algorithm is
far from being cost optimal, since k-consistency can be achieved in O(nkqk) optimal serial
time. We believe that finding a cost optimal parallel algorithm that enforces k-concistency
for any k is a non-trivial task and could constitute an interesting research problem on its
own. Also, in all the theorems we state and prove in this section, there is some space for
improvements on the processor bounds without affecting the asymptotic time complexity
usingBrent’s scheduling technique, where a given set of processors shares the computational
load previously allocated to a bigger number of processors, according to a suitably defined
load sharing scheme.
Let us now extend the notion of partiality for any degree of consistency, and for constraint

networks of any arity. A constraint network N is α-partially k-consistent if the following
holds: for any set of values {di1 , . . . , dik−1}, such that every subset of it is compatible, there
are at least α(n − k + 1) domains not in {Di1 , . . . , Dik−1} that contain at least one value
d such that every subset of {di1 , . . . , dik−1} ∪{ d} is compatible, and each variable has at
least one value compatible with other values in N . The α-partial k-consistency problem
is the problem of finding a maximal (with respect to the domains) α-partially k-consistent
subnetwork Nk,α of N .
LetC be a compatibility hypergraphwithn parts. A part ofC whose vertices do not belong

to any k-hyperclique is called a k-empty part. In terms of the compatibility hypergraph, the
α-partial k-consistency problem is formulated as follows: Find the maximal (with respect
to the set of vertices) induced subhypergraph Ck,α of C such that any (k − 1)-hyperclique
has support-degree≥ α(n− k+1) and no part of it is k-empty. Such a hypergraph is called
α-partially k-consistent. Also, the α-partial strong k-consistency problem is the problem
of finding a maximal (with respect to the set of vertices) induced subhypergraph C S

k,α of C
that is α-partially i-consistent for any i, i = 2, . . . , k, and any hyperedge e in C S

k,α of size
at most k is a hyperclique. Notice that by restricting our attention to C S

k,α , we do not lose
any solution of the original CSP.
In order to solve the α-partial strong k-consistency problem, we introduce a modified

version of the k-relaxation algorithm, called strong (α, k)-relaxation. Given a constant
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α ∈ (0, 1] and a hypergraph C as input, the algorithm is the following:
Algorithm: strong (α, k)-relaxation
Input: An n-partite compatibility hypergraph C
Output: C S

k,α
1. begin
2. while ∃ a hyperedge e : (|e| ≤ k) ∧ (e is not a hyperclique)
3. do E ← E − {e} od
4. while ∃ a hyperclique e :(|e| = k − 1)∧

(support-degree(e) < α(n − k + 1))
5. do
6. E ′ ← {e′ : e′ is a hyperclique with |e′| ≤ k and e ⊆ e′}
7. E ← E − E ′

8. if a k-empty part appears in C
9. then terminate and return the empty hypergraph
10. od
11. for i = k − 1 downto 2
12. do
13. E ′ ←{e :(e is an (i − 1)-hyperclique)∧

(support-degree(e) ≤ α(n − i + 1))}
14. E ← E − E ′

15. if an i-empty part appears in C
16. then terminate and return the empty hypergraph
17. od
18. end
The first while-loop is a preprocessing stage that ensures that all hyperedges are hyper-

cliques. This property guarantees that, during the execution of the rest of the algorithm,
no hyperedge which is not a hyperclique appears. Also, the second while-loop is a variant
of the k-consistency algorithm that outputs an α-partially k-consistent hypergraph. This
hypergraph is subsequently transformed by the for-loop into a strongly consistent one. It
is interesting to observe that in order to obtain strong consistency (i.e. i-consistency for
i < k), the for-loop executes only the first parallel step of the variant of i-relaxation.
In fact, we prove the following:

Theorem 7 Algorithm strong (α, k)-relaxation solves the problem of α-partial strong k-
consistency and can be implemented to execute in O(nkqk) serial time and in parallel in
O((nq)k−1 log(nq)) time using O(nkqk) processors on the CREW PRAM.

Proof: For the serial complexity of the algorithm, the observations of the proof of Theo-
rem 6 apply here as well. However, we have also to take into account the additional cost of
testing for the existence of i-empty parts, for 1 < i ≤ k − 1. This can be done as follows:
During the identification of each of the O(nkqk) hypercliques of C of size at most k, we
increase k counters for each vertex v of C . The i th counter of v stores the number of the
i-hypercliques that contain v. Now, whenever an i-hyperclique is removed, the value held
in the i-th counter of each of its vertices is decreased by 1. An i-empty part appears if any
counter reaches 0. This completes the proof of the serial complexity of the algorithm.
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For the parallel complexity of the algorithm, and in away similar to the proof ofTheorem6,
we observe that there are O(nkqk) hyperedges of size at most k. We can check whether
any of these hyperedges is a hyperclique or not in O(2k) time. Also, it is obvious that the
second while-loop is similar to the while-loop of the k-relaxation algorithm, and thus it has
the same time and processor requirements. As for the identification of a k-empty part, it is
easy to see that it can be accomplished in O(log(nq)) time using O(nkqk) processors.
In the same way, we can see that for each i ≤ k − 1, the steps that are executed during

each iteration of the third while-loop, for each i ≤ k − 1, can be executed in O(i log(nq))

time using O(niqi ) processors on the CREW PRAM. This completes the proof of the time
and processor complexity bounds of the algorithm.
To prove the correctness of the algorithm, letCk denote the hypergraph that results after the

execution of the two while-loops. Obviously, Ck is an α-partially k-consistent hypergraph.
Therefore, it suffices to prove that after the execution of the for-loop on Ck , the resulting
hypergraph is strongly k-consistent. We need the following lemma:

Lemma 2 If the hypergraph C is α-partially r-consistent, for r = i, . . . , k, then after the
end of the (k − i + 1)th execution of the for-loop, the resulting hypergraph Ci−1 is an
α-partially r-consistent hypergraph for r = i − 1, . . . , k.

Proof: We denote by Ei−2 the set of the hypercliques inCi that have exactly i−2 vertices.
Let Eincl

i−2 = {e ∈ Ei−2: ∃e′ ∈ E(Ci ): |e′| = i − 1 and e ⊂ e′}. That is, we define the set
Eincl
i−2 to be the set of these hypercliques e in Ei−2 that are contained in some hyperclique
with size equal to the size of e plus one. Finally, we define Esimpl

i−2 = Ei−2 − Eincl
i−2 .

We first observe that for each (i − 1)-hyperclique in Ci , and since it was not removed
during any previous step, its support-degree in Ci is at least equal to α(n − i + 1). Let
now e be a hyperclique in Ei−2. If there exists an (i − 1)-hyperclique e′ in Ci such that e′

contains the vertices of e, then, from the last observation, we get that in Ci :

support-degree(e) ≥ 1+ α(n − i + 1) ≥ α(n − i + 2) (4)

Additionally, since no (i−2)-hyperclique e ∈ Esimpl
i−2 is contained in some bigger (i−1)-

hyperclique, we get that in Ci :

support-degree(e) = 0 (5)

Equations 4 and 5 imply that the (k − i + 1)th iteration of the for-loop will remove exactly
these hyperedges of Ci that belong in Esimpl

i−2 . Now, since all the hyperedges with at least
i − 1 vertices are still hypercliques, all the r -hypercliques, where r = i − 2, . . . , k − 1,
of Ci−1 have support-deegree ≥ α(n − r). Thus, after the (k − i + 1)th iteration of the
for-loop, the resulting hypergraph Ci−1 is also α-partially r -consistent for r = i − 1.

Applying inductively Lemma 2 for the k − 2 iterations of the for-loop, we conclude that
the subgraph the algorithm returns is α-partially strongly k-consistent.

Before giving a faster algorithm for achieving strong partial local consistency, we present
a generalization of Lemma 1.
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Lemma 3 Let C be the compatibility graph of a constraint network N . Let q be the
biggest cardinality of any part of C, Z be the number of hyperedges of C that have k − 1
vertices, and l1, l2 ≤ n − k + 1 be two integers such that l2 < l1

1+q . If C contains at most
m hypercliques with support-degree less than l1, then C contains a hypergraph C ′ with at
least Z − m(l1−l2)

l1−l2(1+q)
(k − 1)-hypercliques each having support-degree at least l2.

Proof: The proof is similar to the proof of Lemma 1. We execute Steps 1–10 of strong
(α, k)-relaxation, for α = ( l2

n−k+1 ), onC , and letC
′ be the resulting hypergraph. We denote

by R the set of (k − 1)-hypercliques of C that are removed. Also, R′ ⊆ R denotes the set
of hypercliques in R with support-degree ≥ l1 in C . Finally, we denote by ER the set of
k-hypercliques that contain two hypercliques e and e′ such that e′ ∈ R′, e ∈ R and e )= e′.
We first observe that the set R can be partitioned into two parts:

• The hypercliques that initially had support-degree ≥ l1, i.e. the hypercliques in R′.

• The hypercliques that initially had support-degree < l1. From the hypothesis, these
hypercliques are at most m.

It follows that:

|R| ≤ m + |R′| (6)

Let e be a hyperclique in R′ that is removed at some step s. This hyperclique had initially
support-degree at least l1 inC . Observe that applying Steps 1–10 of strong (α, k)-relaxation
for α = ( l2

n−k+1 ) on C , removes hypercliques with support-degree less than l2. Therefore,
the number of k-hypercliques that contain the vertices in e and were removed at some step
before the step s, is at least l1 − l2. Let ek be one of these k-hypercliques. This hyperclique
must have been removed from C during some step before step s. However, the removal of
ek was the result of the removal of exactly one (k − 1)-hyperclique e′ that is a subset of ek ,
i.e. an e′ ∈ R. Since e is removed at step s, e′ cannot be e. But, then, each of the l1 − l2
hypercliques with k vertices that correspond to the k-hypercliques is contained in ER .
Moreover, let e and e′ be two (k − 1)-hypercliques that are removed at different steps.

We observe that the k-hypercliques that are removed as a result of removing e, are different
from those that are removed as a result of removing e′. Therefore:

(l1 − l2)|R′| < |ER| (7)

Consider now a (k − 1)-hyperclique e that is removed at some step s. Obviously, the
number of k-hypercliques that contain the vertices of e as well as those of some other
(k − 1)-hyperclique e′ )= e in R′ that are removed after step s, is at most ql2. Therefore,
|ER| ≤ ql2|R|, and, using Equation 6, we conclude that:

|ER| ≤ ql2(m + |R′|) (8)

From 7 and 8 we have the following:

(l1 − l2)|R′| < ql2(m + |R′|) ⇒

|R′| <
ql2m

l1 − l2(q + 1)
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Using 6, we get that

|R| < m + ql2m
l1 − l2(q + 1)

⇒

|R| < m
l1 − l2

l1 − l2(q + 1)

therefore, C ′ has at least Z − m(l1−l2)
l1−l2(1+q)

(k− 1)-hypercliques each having support-degree at
least l2.

We will now present a faster parallel algorithm that, given a compatibility hypergraph C
with n parts each having at most q vertices, and a positive value α < 1/(q + 1), outputs a
subhypergraph of C S

k,α that contains C S
k and is α-partially strongly k-consistent.

Algorithm: fast strong (α, k)-relaxation
Input: An n-partite compatibility hypergraph C
Output: An α-partially strongly k-consistent subhypergraph of C S

α,k
that contains C S

k , where α < 1
q+1

1. begin
2. H ← {e : e is a hyperclique of C and |e| = k − 1}
3. while ∃H ′ ⊆ H :(|H ′| > (nq)

k−1
2 )∧

(∀e ∈ H ′ : support-degree(e) < n − k + 1)
4. do
5. in parallel remove from C all hypercliques e ∈ H ′

6. H ← H − H ′

7. if a k-empty part appears
8. then terminate and return the empty graph
9. od
10. run strong (α, k)-relaxation
11. end

Theorem 8 For any α < 1/(1+ q), the above algorithm returns an α-partially strong k-
consistent subhypergraph of C S

α,k which contains C S
k . The algorithm runs in

O((nq)
k−1
2 log(nq)) time using O(nkqk) processors on the CREW PRAM.

Proof: It is easy to see that the hypergraph the algorithm outputs is α-partially strongly
k-consistent and contains C S

k as a subgraph.
Also, each iteration of the for-loop can be executed in O(log(nq)) time using O(nkqk)

processors on the CREWPRAM. During each such iteration, the algorithm removes at least
(nq)

k−1
2 hypercliques of k−1 vertices. Therefore, at most (nq)

k−1
2 iterations of the for-loop

are executed.
Now, from Lemma 3, since there are less than (nq)

k−1
2 hypercliques with support-degree

< n − k + 1, the strong (α, k)-relaxation will remove at most (nq)
k−1
2 1−α
1−α−qα

hyperedges
with k − 1 vertices. Thus, it will be executed in O((nq)

k−1
2 log(nq)) time using O(nkqk)

processors on the CREW PRAM, and the proof is completed.
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6. Conclusion

Using as a departure point the fact that ACP is a P-complete problem, in conjunction with
some implementations that indicate that solving ACP in parallel seems to require time
linear in the number of variables using polynomially many processors, we examined some
weaker versions of ACP and their complexity. We proposed several natural approximation
schemes for ACP and showed them to be also P-complete. We managed to break the
linearity barrier, by defining the concept of a partial solution, for both arc consistency and
k-consistency, at the expense of allowing values that may be incompatible with every value
in some fraction of the remaining variables. The fact that we managed to obtain sublinear
parallel execution time only by defining a local consistency concept as weak as α-partial k-
consistency, suggests that if we want to remove some non-trivial number of inconsistencies
fast in parallel, we should concentrate on finding partial solutions, rather than approximate
ones, even at the cost of allowing some inconsistencies.
However, there may be applications where partial solutions can be useful. For example,

in overconstrained networks where a solution that satisfies all the given constraints may
not exist, finding fast (in sublinear time) a partial solution may help to effect a good re-
duction on the search space. This further suggests an experimental line of research, where
various classes of constraint networks can be subjected to algorithms enforcing α-partial
k-consistency in order to test their effectiveness in eliminating sufficiently many inconsis-
tencies.
The passage from approximation schemes to partial solutions is not a smooth one and it

is an indication that in order to reach good parallel time bounds we have to lower somehow
our demands, as far as the quality of the solution is concerned.

Erratum

An earlier version of the paper that appeared in [10] contained an erroneous proof to a
theorem that appeared as Theorem 6 in that paper. Also, the same theorem was contained
as Theorem 5 in [11].

Appendix

Proof of Theorem 2: We first present a logarithmic space reduction from the Planar
Circuit Value Problem (PCVP) to the problem of deciding whether a specific value of a
variable of a constraint networkN belongs to the solution of the ACP, when the constraint
graphG ofN is planarwithmaximumdegree 3. Briefly, PCVP consists in decidingwhether
a given boolean circuit, whose graph representation is planar, evaluates to 1 under a specific
input value assignment. PCVP was proved to be P-complete [14]. We easily see that a gate
of fan-out r may be replaced by a gate of fan-out 2, the outputs of which are directed to
a binary tree of AND gates, of height ≤ log r . Thus, we can convert a circuit of gates of
arbitrary fan-out to an equivalent circuit of gates of fan-out 2. Therefore, the Planar Circuit
Value Problem with gates of fan-out 2 (PCVP2) is also P-complete. We will use PCVP2
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Figure 1. (a) The AND gadget, (b) the OR gadget, (c) the 0-input, (d) the 1-input, (e) the NOT gadget, and (f) the
output gadget.

in order to present the reduction. For convenience, we will use the compatibility graph
representation of constraint networks.
LetW be a circuit and x1, . . . , xk an input assignment toW . We will construct a compat-

ibility graph C which has a vertex v with the following property: v belongs to the solution
of the ACP if and only if the output of W is 1. Our reduction uses the gadgets shown in
Figure 1. Each gadget that corresponds to an input gate, an output gate or a NOT gate,
consists of two parts in C : Vinp, called the input part and Vout, called the output part. Also,
each gadget that corresponds to an AND or an OR gate consists of 6 parts in C : V a

inp and
V b
inp (called the input parts), V a

out and V b
out (called the output parts), and parts Vk and Ve. Each

input or output part has two vertices: vertex 0 and vertex 1. The vertex for which we ask
whether it belongs to the ACP solution or not, is the 1-vertex of the part Vout of the gadget
that corresponds to the output gate of W .
For each edge (w, w′) inW , the output part of the gadget that corresponds to gatew is the

same as the input part of the gadget that corresponds to gate w′. Also, for any two parts V1
and V2 such that there is no edge from a vertex in V1 to a vertex in V2, we add to C all edges
(v, v′), where v ∈ V1 and v′ ∈ V2. We call such edges full edges, in constrast with the edges
that are parts of the gadgets which we call constraining edges. Observe that if there are no
constraining edges between two parts in the compatibility graph C , the constraint graph G
has no edge between the vertices corresponding to the parts. Thus, by the construction of
the gadgets, and since W is planar, G is also planar with maximum degree 3.
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Figure 2. The gadget for deciding the emptiness of the ACP solution.

To prove the correctness of the reduction, observe that if the inputs of an AND gate are
not both 1, then discrete relaxation will remove in the corresponding gadget the 1-vertices
from parts V a

out and V b
out but not the 0-vertices. Similarly, if the inputs of an OR gate are not

both 0, then discrete relaxation will remove in the corresponding gadget the 1-vertices of
parts V a

out and V b
out. Finally, in a gadget that corresponds to a NOT gate, discrete relaxation

will remove the 1-vertices of Vout iff the input to the gate is 1. It follows that the execution
of discrete relaxation in C simulates the computation of the value of all the gates of the
circuit W . Thus, in part Vout of the output of W , the 1-vertex will survive iff the value of W
is 1.
Now in order to prove that it is also P-complete to decide whether the graph is emptied,

we construct a new graph C ′, by adding to C two new parts Va and Vb. Each one of them
has two vertices, namely a1, a2 and b1, b2 respectively. We connect any vertex of Va with
any vertex of any other part but Vb and the part Vout of the output of W . Similarly, any
vertex of Vb is connected to all other vertices except to the ones in parts Va and Vout. Finally,
we add the edges shown in Figure 2. It is now easy to verify that if discrete relaxation
in graph C removes the 1-vertex from Vout, then it deletes all the vertices of graph C ′ and
vice versa.

Proof of Theorem3: If such a set D′ could be found inNC for some ε < 1, then ε|D′| ≥ 1
implies that |DAC| ≥ 1, i.e. discrete relaxation in N does not empty any domain. Also, if
ε|D′| < 1, then |D′| < 21/ε3, that is, D′ contains a constant number O(1/ε) of values.
Thus, using discrete relaxation on the restriction of N to D′, we can conpute in constant
time DAC, and find in NC if discrete relaxation in N empties any domain. This, however,
contradicts Theorem 2.

Proof of Theorem 4: Suppose that for some ε < 1 there exists an NC algorithm Aapprox

that finds such a set R′. We apply algorithm Aapprox to N , and obtain a set |R′|. If |R′| > 1,
then we remove in parallel the values in R′, always checking if any domain is emptied, and
apply again Aapprox. We continue this loop until |R′| ≤ 1. Since each application of Aapprox

removes at least a fraction ε of the values that discrete relaxation removes (i.e. of the values
in RAC), and |RAC| ≤ nq, the loop iterates at most log(nq) times. Upon exiting the loop,
since |R′| ≤ 1, the network contains at most 1/ε values not inNAC. These can be removed,
by applying discrete relaxation in parallel, in constant time. In this way, we can compute
NAC in NC, a contradiction unless P=NC.
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Proof of Theorem 5: For a positive integer r ≤ n − 1, we call r-elimination the ( r
n−1 )-

discrete relaxation on the compatibility graph.
We will work with an equivalent problem in the compatibility graph C ofN . Thus, for a

given vertex v of C , we define elimin(v,C) to be the least h such that a (n−h)-elimination
does not remove v and does not empty any part of C . Obviously, if value d corresponds
to vertex v, then elimin(d,N ) = elimin(v,C). In this way, we are interested in finding a
value elimin(v,C)approx such that:

λ · elimin(v,C) ≥ elimin(v,C)approx ≥ elimin(v,C)

Our proof uses a reduction from the problem of the Propositional Horn Satisfiability
(PHSP).Theproblem is defined for sets ofpropositionalHorn clauses, where a propositional
Horn clause is either:

• a propositional atom of the form Q, which is called an assertion,

• a formula of the form P ← P1, . . . , Pi , which is called an implication,

• or a propositional negative atom of the form ¬P , which is called a goal.

An atom P appearing in a set S of propositional Horn clauses is solvable iff P appears in an
assertion, or there is an implication P ← P1, . . . , Pi and all of P1, . . . , Pi are solvable in at
least one of the implications or assertions of S. In PHSP, we are given a set of propositional
Horn clauses which contain only a single goal (such a set of clauses is called a propositional
logic program), and we are asked to determine whether the atom that appears in the goal is
solvable (in which case the program is unsatisfiable) or not.
PHSP is P-complete, even if we restrict ourselves to logic programs with implications that

have at most two atoms in the right handside of the formula. For a more detailed description
of the problem, see [17].
We now present a construction that, given arbitrary integersm > l, for any given instance

P of the PHSP with at most two atoms in the right handside of any implication, produces
a compatibility graph C with a vertex f ′ that corresponds to the goal of the PHSP and has
the following properties:

The goal of P is solvable ⇒ elimin( f ′,C) = m + 1 (9)

The goal of P is not solvable ⇒ elimin( f ′,C) = l + 1 (10)

Our construction uses a collection of gadgets which are shown in Figure 3. The basic idea
of the construction is the following: for each atom R that appears in a formula of P , we
construct m parts of vertices. Each such part contains two vertices, t and f . The intuition
behind the two-vertex parts is that if, during some elimination procedure in C , vertex f
is removed from all the parts corresponding to R, then this implies that R is solvable.
Moreover, we choose vertex f ′ to be any vertex f of an arbitrary part of the m parts that
are constructed for the goal Q of P .
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Figure 3. The gadgets (a) for the assertion R (b) for implications R ← S and R ← T , with only one atom on the
right handside, (c) for implication R ← S, T , with two atoms on the right handside, and (d) for the goal Q.

In the sequel, and for notational convenience, we will say that a vertex v of an n-partite
graph has lack of support equal to an integer i when there are exactly i parts of the graph
with no vertex connected to v.
For any assertion R, our construction (see Figure 3.a) introduces m additional dummy

parts. These parts have only one vertex d, and are connected which the t vertices in
the m parts of R, but not to the f vertices. Thus, for any atom that is solvable by an
assertion, the f vertices of the parts that correspond to it have in C lack of support equal
to m.
For any implication of the form R ← S, our construction (see Figure 3.b) ensures that

the f vertices of the parts corresponding to R are connected only with the f vertices of
the parts corresponding to S. Again, the t vertices of R are connected to all vertices of S.
Thus, if the f vertices are removed from the parts corresponding to S, the f vertices of R
obtain lack of support equal to m.
For any implication of the form R ← S, T , our construction (see Figure 3.a) introduces

an intermediate level of m parts with three vertices, namely t, fS and fT . Whenever the f
vertices of the parts corresponding to both S and T are removed, then in each three-vertex
part both fS and fT have lack of support equal to m; if fS and fT are removed from the
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graph, then the f vertices of the parts corresponding to R are also left with lack of support
equal to m.
We also add a set a set of l dummy parts with only one vertex d each. Each vertex d is

connected to the t vertices of the parts corresponding to the goal Q of P (see Figure 3.b).
In this way, the f vertices of the parts corresponding to Q have in C lack of support equal
to l. Therefore, elimin( f ′,C) ≥ l + 1.
If for two parts V1 and V2 of C the gadgets do not indicate any connection among their

vertices, we connect V1 and V2 with the complete bipartite graph. Thus, the t vertices,
the d vertices corresponding to the assertions, and the d vertices corresponding to the
dummy parts, are connected pairwise. Hence, no part remains empty when performing any
elimination of the vertices of C .
Let n denote the total number of parts in C . It is clear that the (n − 1− m)-elimination

will not remove from C any f vertices of the parts corresponding to solvable atoms, but the
(n−m)-elimination will remove all such f vertices. Thus, if the goal Q is solvable, then f ′

is not removed by the (n−1−m)-elimination, but it is removed by the (n−m)-elimination,
so in this case elimin( f ′,C) = m+1. Suppose now, that Q is not solvable. The f vertices
of the parts corresponding to Q have in C , because of the dummy parts, lack of support
equal to l < m. In this way a (n − 1 − l)-elimination will not remove the f vertices of
the parts corresponding to Q, but a (n − l)-elimination will remove them, so in this case
elimin( f ′,C) = l + 1. This proves the properties of Equations 9 and 10.
Suppose now, towards a contradiction, that we can approximate elimin(v,C) in NC by

a factor λ > 1. Then, we construct the graph C for integers m and l such that m+1
l+1 > λ,

and compute elimin( f ′,C)approx. If elimin( f ′,C)approx ≥ m + 1, and since m+1
l+1 > λ, we

get that m+1
l+1 · elimin( f ′,C) > elimin( f ′,C)approx. Thus, if elimin( f ′,C) = l + 1, then

m + 1 > elimin( f ′,C)approx, a contradiction. Therefore, elimin( f ′,C) = m + 1 and, by
Equation 9, the PHSP goal is solvable.
If, on the other hand, elimin( f ′,C)approx < m+1 then elimin( f ′,C) cannot bem+1, since

we would also have that elimin( f ′,C)approx ≥ m+1, a contradiction. Thus, elimin( f ′,C) =
l + 1 and, by Equation 10, the PHSP goal is unsolvable.
In this way, it is possible to decide in NC the satisfiablity of PHSP, which is a contradiction

unless P=NC.
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