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GRAPH SEARCHING IN A CRIME WAVE∗

DAVID RICHERBY† AND DIMITRIOS M. THILIKOS‡

Abstract. We define helicopter cops and robber games with multiple robbers, extending previous
research, which considered only the pursuit of a single robber. Our model is defined for robbers that
are visible (their position in the graph is known to the cops) and active (they can move at any
point in the game) but is easily adapted to other variants of the single-robber game that have been
considered in the literature. We show that the game with many robbers is nonmonotone: that is, fewer
cops are needed if the robbers are allowed to reoccupy positions that were previously unavailable to
them. As the moves of the cops depend on the position of the visible robbers, strategies for such
games should be interactive, but the game becomes, in a sense, less interactive as the initial number
of robbers increases. We prove that the main parameter emerging from the game, which we denote
mvams(G, r), captures a hierarchy of parameters between proper pathwidth and proper treewidth,
and we completely characterize it for trees, extending analogous existing characterizations of the
pathwidth of trees. Moreover, we prove an upper bound for mvams(G, r) on general graphs and
show that this bound is reached by an infinite class of graphs. On the other hand, if we consider
the robbers to be invisible and lazy, the resulting parameters collapse in all cases to either proper
pathwidth or proper treewidth, giving a further case where the classical equivalence between visible,
active robbers and invisible, lazy robbers does not hold.
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1. Introduction. During recent decades, the problem of searching a graph has
attracted much attention not only because of its purely graph-theoretic interest but
also for its numerous applications in modeling problems in communication networks
(for related surveys, see [1, 2]). In general, graph searching problems are described
in terms of a game played between a team of cops and a robber, whom the cops
attempt to capture by moving systematically through the graph. We wish to know the
minimum number of cops required to catch the robber, subject to various constraints
on their behavior and that of the robber. Several versions of the game have been
examined, differing, for example, in whether the cops know the position of the robber,
whether the robber can move at will or only when disturbed by a cop, and how the
cops can move through the graph.

One of the main models of graph searching, known as the helicopter cops and
robber game, was introduced by Seymour and Thomas [11]. In this model, the robber
occupies a vertex of a graph and is active in the sense that he may move at every
round of the game along any path of any length whose vertices are not guarded by
the cops. On the other hand, the cops are not constrained to stay within the graph
and can be placed on or removed from vertices of the graph, as if flying by helicopter.
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A crucial feature of this game is that the robber is visible: the cops have complete
knowledge of his current position. Victory for the cops is declared when a cop lands on
the vertex occupied by the robber and the robber cannot make any move to escape.
Since the cops base their moves on the current position of the robber, the strategy they
use is interactive. In [11], Seymour and Thomas proved that the minimum number
of cops guaranteed to be able to win the game is one greater than the treewidth
of the graph on which it is played. The proof of this result includes a proof of the
monotonicity of the game, i.e., that the cops do not become weaker when their moves
are restricted to those that monotonically decrease the portion of the graph available
to the robber.

Variants of the above game were considered in [6], where now the robber is a lazy
fugitive who moves only when a cop lands on the vertex he occupies. However, to
compensate, the robber is now invisible: his position is unknown to the cops. Notice
that in this game, the cops’ strategy is predetermined and can be given in advance.
Games defined with this characteristic are described as fugitive games in order to
stress the invisibility of the robber. This second version is equivalent to the Seymour–
Thomas game in the sense that, for any graph, the two games require the same number
of cops [6]. It follows easily from [6] (see also [3]) that, when the fugitive is active and
invisible, the number of cops required to ensure his capture is one greater than the
pathwidth of the graph—another graph parameter of equal importance to treewidth.

This paper intends to examine, and also unify, the above models under the natural
extension where the graph contains many robbers rather than just one. This is the first
time that multiple robbers have been considered in graph searching, and we believe
that our results will motivate such a study for other models as well.

We describe our model for graph searching using the most general setting of mixed
searching, proposed by Bienstock and Seymour [3] and also examined in [12, 13, 14,
15]. In this model, each move of the cops consists either of a placement or removal (as
before) or of sliding a cop along an edge of the graph. This may reduce by one the
number of cops required to search a graph, but, as observed in [3], the version without
sliding can be reduced to a mixed search by replacing each edge in the graph with two
parallel edges (or a triangle involving a new vertex). Moreover, apart from being more
general, including sliding in our model makes the presentation of our results cleaner.

It is not obvious how to generalize the concept of monotonicity to the setting
with many robbers. Now, each robber has his own individual free space, leading to
the question of whether monotonicity should be defined individually or collectively.
We give three natural definitions and show them to be equivalent.

Monotonicity is crucial in the multiple-robber case. If we do not require mono-
tonicity, we can catch any number r of visible, active robbers one at a time by re-
peating the strategy to catch a single robber, without requiring any additional cops.
However, when we restrict our attention to monotone strategies, the number of cops
required, which we denote mvams(G, r) (for monotone, visible, active, mixed search
number against r robbers), can be greater than the nonmonotone case and depends on
the number of robbers. In particular, mvams(G, 1) is just the mixed search number
for a single visible active robber. This, in turn, is equal to the parameter of proper
treewidth defined in [5,12]. On the other hand, if n is the number of vertices in G, then
mvams(G, n) is equal to the mixed search number for a single invisible active rob-
ber which, in turn, corresponds to the parameter of proper pathwidth defined in [14].
Moreover, we show that mvams(G, r) can, for appropriate values of r, take all inter-
mediate values between proper treewidth and proper pathwidth. As our main result,
we give the exact value of mvams(G, r) on trees and an upper bound for general
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graphs:

mvams(T, r) = min {ppw(T ), !log r"+ 1} (for any tree T ),
mvams(G, r) ≤ min {ppw(G),ptw(G) · (!log r"+ 1)} (for any graph G),

where ppw(G) and ptw(G) denote, respectively, the proper pathwidth and proper
treewidth of the graph G.

Our result for trees is based on a complete characterization of mvams(T, r) on
trees and extends the analogous characterizations for pathwidth and proper pathwidth
given in [13] and [7], respectively.

Our results can be seen as showing that the number of robbers tunes the amount
of interactivity in search strategies, spanning all intermediate levels from pathwidth
(fully predetermined) to treewidth (fully interactive). A rather different way of defin-
ing this tuning was given by Fomin, Fraigniaud, and Nisse, who considered a single
active robber but restricted the number of rounds at which the cops can ask for the
robber’s position [8].

A natural question is whether the same variation of values can be achieved in the
setting of invisible but lazy fugitives defined in [6], given that a single invisible lazy
fugitive is equivalent to a single visible active robber. However, in the case of multiple
robbers, being lazy and invisible is not the same as being active and invisible. Here, we
can define laziness as meaning either that a robber may move only when the cops land
on his vertex or that all robbers may move together when a cop lands on any single
robber. For either definition of laziness, with or without monotonicity, the hierarchy
collapses, and, in a graph of order n, any number of robbers is equivalent to either a
single robber or n robbers. Thus, the multiple-robber setting is degenerate for games
with predetermined strategies, which supports our decision to consider the interactive
strategies generated by the visible, active setting. Note that this is not the first case
where invisibility cannot be exchanged for laziness: Hunter and Kreutzer have shown
that the symmetry breaks, even for one robber, when the games are defined on directed
graphs [10].

The remainder of the present paper is organized as follows. Our graph searching
model is defined in detail in section 2. In section 3, we show the equivalence of three
reasonable definitions of monotonicity and explore the role of monotonicity in the
game. To relate our hierarchy of parameters to the well-known parameters of proper
pathwidth and proper treewidth, we make a brief detour through the theory of games
with an invisible robber in section 4, where we also show that the case of multiple in-
visible robbers collapses to already-studied cases. In section 5, we give upper bounds
for the number of cops required to catch r robbers in trees and in general graphs,
and, in section 6, we show that the upper bound for trees is, in fact, an exact char-
acterization of the number of cops needed. We also show that the upper bound for
general graphs is reached by an infinite class of graphs. Several consequences and open
problems emerging from our results are presented in section 7.

2. The searching model. All graphs considered in this paper are finite, simple,
and, unless otherwise stated, undirected.

In a helicopter search game with many visible robbers, the opponents are a group
of k cops and a group of r robbers, who occupy vertices of the graph. The goal of
the cops is to capture all of the robbers. At all times, the cops and robbers have full
information about each other’s location and may use this information to decide their
next move. Initially, there are no cops in the graph, but, at all times, any robber who
has not been captured is on some vertex.
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A play of the game consists of a sequence of rounds, with each round consisting
of three parts, as follows.

Announcement. The cops announce their intended move to the robbers. One cop
moves in each round, by one of the following operations.

• Placement of a cop on a vertex v, not currently occupied by a cop. The move
is denoted by place(v).

• Removal of a cop from an occupied vertex v, denoted by remove(v).
• Sliding of a cop from the one endpoint u of an edge {u, v} to the other, which

is initially not occupied by a cop. The move is denoted by slide(u → v).

Avoidance. Each robber who has not yet been captured can move with infinite
speed to any vertex reachable from his current position by a path not blocked by cops,
as long as this vertex will not be occupied by a cop once the cops’ current move has
been realized. The robbers are “active” in the sense that any robber may move in the
graph at any move of the game, as long as he has an unblocked path to move along.

If the announced move is a placement to or removal from some vertex, that vertex
is not considered to be blocked for the purposes of the robbers’ movement in the round.
If the announced move is slide(u → v), the edge uv is considered to be blocked for
this round but the vertices u and v are not.

Realization. The cops carry out the announced action.
A robber is captured if the cops announce that they will move (by placement or

sliding) to the vertex he occupies and there is no way for him to move to another
vertex.

To formalize the game, we will use a string R ∈ (V (G) ∪ {∗})r to denote the
positions of the r robbers in the graph. In particular, the ith character of R is either
the vertex occupied by the ith robber or “∗” in the case that the ith robber has been
captured. We write V (R) for the set of characters in R, other than ∗. Since, at any
time, there is at most one cop on any vertex, we may represent the position of the
cops as a set S ∈ V (G)[≤k].

A play of the game on a graph is an infinite sequence of positions

P = S0,R0, S1,R1, . . . ,

where, for each i, the transition from having the cops at Si and robbers at Ri to the
cops at Si+1 and robbers at Ri+1 is a valid move of the game, as described above.
Specifically, the sequence S0, S1, . . . has the properties that

• S0 = ∅;
• S1 = {v} for some vertex v—the first move is place(v); and
• for consecutive sets Si and Si+1, one of the following holds:

– Si+1 − Si = {v}—the move is place(v),
– Si − Si+1 = {v}—the move is remove(v),
– Si+1*Si = {u, v} ∈ E(G)—the move is slide(u → v), where Si−Si+1 =

{u} and Si+1 − Si = {v}.

We call such a sequence of cop positions consistent.
Given two consecutive sets Si and Si+1 of a consistent sequence, we say that a

path P of G is (Si, Si+1)-avoiding if its internal vertices avoid Si∩Si+1, its last vertex
is not in Si+1, and, in the case that |e| = 2, its edges avoid the edge e = Si+1*Si.
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Given that the location of the robbers at the ith step is Ri = [a1 . . . ar], we define
the set of free locations for the jth robber after step i as F j

i+1 = ∅ if aj = ∗ and,
otherwise,

F j
i+1 =

{
y ∈ V (G) − Si+1 | G contains an (Si, Si+1)-avoiding (aj , y)-path

}
.

As a response to the ith move of the cops, the robbers can choose their new location
to be any string Ri+1 = [a′

1 . . . a′
r] such that for j ∈ {1, . . . , r}, a′

j = ∗ if F j
i+1 = ∅ and

a′
j ∈ F j

i+1 otherwise. (In particular, note that, if aj = ∗, then a′
j = ∗ also.)

We set F0 = V (G), and for i ≥ 1, we define Fi =
⋃

j∈{1,...,r} F j
i . We say that the

sequence F0, F1, . . . is the sequence of free positions for the robbers. If, for every i ≥ 0,
Fi+1 ⊆ Fi, we say that P is a monotone play. (Other definitions of monotonicity are
considered in section 3 and shown to be equivalent to this definition in the sense that
they lead to the same graph parameter.)

A play P = S0,R0, S1,R1, . . . is winning (for the cops) if V (Ri) = ∅ for some
i ≥ 0; that is, all the robbers are eventually captured. The essential part of a winning
play is the subsequence S0,R0, . . . , S!,R!, where ! is minimal such that V (R!) = ∅.

According to our description of the game, any move of the cops may depend on
the current position of the cops and robbers in the graph. A search strategy of cost k
against r robbers or, more succinctly, a (k, r)-strategy is a function

µ : V (G)[≤k] × (V (G) ∪ {∗})r → V (G)[≤k],

whose inputs are the position S of the cops and the positions R of the robbers and
whose output is S′, the new position of the cops, such that, for all S and R, the sets S
and S′ obey the restrictions given in the definition of consistency for sequences. That
is, there is a single move which transforms the cop position S to S′.

Note that, when we define strategies, we will not define the action of the cops in
positions that can never occur when the strategy is executed. Thus, we give only a
partial function. Formally, the strategy is any total extension of this partial function,
assigning arbitrary moves to the cops in situations that do not occur in any play in
which the cops follow the given partial strategy.

A play with respect to a (k, r)-strategy µ, or a µ-play, is any play S0,R0, S1,R1, . . .
where Si+1 = µ(Si,Ri) for all i ≥ 0. A strategy µ is said to be monotone if all µ-plays
are monotone and winning if all µ-plays are winning.

We define the nonmonotone and monotone visible active mixed search number,
respectively, of a graph G as follows:

vams(G, r) = min
{
k | there is a winning (k, r)-strategy on G

}
,

mvams(G, r) = min
{
k | there is a monotone winning (k, r)-strategy on G

}
.

To describe a search strategy as even a partial function is often rather cumber-
some. Instead, we will frequently describe a search strategy as a search program Π
that makes move decisions depending only on the current position of the cops and
robbers, without reference to previous positions in the search. Thus, we can extract a
strategy from a search program and vice versa. We call a search program monotone or
winning if the corresponding search function is. The program receives the information
on the positions of the robbers by calling a routine robbers positions().

As an example we give program 1, a monotone winning search program for one
cop against one robber in a tree T . Notice that, at each step, the robber must choose
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Search program 1. Π(T, 1) to capture one robber in a tree T .

place(v) where v is any vertex of T .
Let R← robbers positions().
Let T ′ ← T .
While V (R) 0= ∅,

Let T ′ be the connected component of T − v containing V (R)
and let w be the (unique) vertex of T ′ adjacent to v.

slide(v → w).
Let v ← w.
Let R← robbers positions().

remove(v).

his position in the connected component T ′ where he resides, excluding the vertex w
that is the target of the cop’s move. At each round, the set of free positions of the
robber becomes strictly smaller, ensuring both monotonicity and the eventual capture
of the robber.

We may also represent a winning (k, r)-strategy µ as a finite tree. Let Tµ be the
least labeled, rooted, directed tree with the following properties. (By “least,” we mean
that no proper subtree of Tµ can be labeled to meet our requirements. Note that there
may be more than one vertex or edge with any given label and that, when we speak
of a path in Tµ, we mean a maximal directed path from the root to a leaf. We could
also represent nonwinning strategies as infinite trees in a similar way, but we need
only representations of winning strategies.)

• Every edge is directed away from the root.
• Every vertex is labeled with a set S ∈ V (G)[≤k], and every edge is labeled

with a string R ∈ (V (G) ∪ {∗})r.
• The essential part of every µ-play in G labels some path in Tµ.

Notice that, according to the above, the root of Tµ is labeled by the empty set,
corresponding to the position of the cops at the beginning of any µ-play.

Our manipulation of tree representations of strategies will often lead us to con-
struct trees that do not represent strategies because they are defective in some way.
Allowing such trees makes several of our proofs more straightforward. Here, we de-
scribe the defects that may arise and show how to repair them.

Nondeterminism. A vertex v labeled S might have distinct outgoing edges vv′ and
vv′′ with the same label R but with v′ and v′′ having labels S′ and S′′ (where S′ and
S′′ are not necessarily distinct). Thus, with the cops in position S and the robbers at
R, the cops can win by moving to either S′ or S′′. Hence, we may delete the subtree
rooted at v′′.

Null moves. A vertex v labeled S might have a child v′ also labeled S. This
corresponds to the cops deciding to do nothing for a move. Since the robbers may
move anywhere in their free space, allowing them to make two consecutive moves
while the cops stay still gives them no extra power. Hence, we may delete the vertex
v′ and, for every child w of v′, where the edge v′w is labeled R, add an edge vw, also
labeled R.

Inconsistency. There may be distinct vertices v and w, both labeled S, with
outgoing edges vv′ and ww′, respectively, that have the same label R but with v′ and
w′ having distinct labels S′ and S′′, respectively. As in the case of nondeterminism,
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this means that the cops have a choice of ways to win from the position (S,R). We
may replace the subtree rooted at w′ with a copy of the subtree rooted at v′.

Repeated application of these operations will yield a tree that properly corre-
sponds to a winning strategy. Further, the resulting strategy uses no more cops than
were deployed in the original defective tree and is monotone if and only if every play
in the defective tree was monotone.

Note, in particular, that the discussion above of inconsistent trees justifies our
decision to define strategies as functions:

µ : V (G)[≤k] × (V (G) ∪ {∗})r → V (G)[≤k].

Such strategies are known as positional or memoryless strategies: they determine the
move of the cops solely from the current position in the game. One could define a
general strategy to be a function that chooses the moves based on the full history of
the game, i.e., a function

M :
(
V (G)[≤k] × (V (G) ∪ {∗})r

)[<ω] → V (G)[≤k].

The tree associated with such a strategy may be inconsistent: for example, the move
made in a position with two cops on the graph may depend on which of the cops was
last to move. However, given the tree associated with a general winning strategy M ,
we can produce a winning strategy µ that uses the same number of cops and that is
monotone if M is. We summarize the above observations with the following.

Proposition 1. There is a winning (k, r)-strategy µ for a graph G if and only
if there is a winning general (k, r)-strategy M for G. Further, µ may be chosen to be
monotone if M is monotone.

In program 1, the moves of the cops depend only on the knowledge of which
component of the tree contains the robber and not on the precise vertex he occupies.
With an eye to the situation with more than one robber, we can say that the move
of the cops from position S depends only on the knowledge of how many robbers are
in each component of T − S.

In fact, the cops do not lose any strength if their information is restricted in this
way. For this, given an S ∈ V (G)[≤k] and R,R′ ∈ (V (G)∪{∗})r, we say that R ≡S R′

if every component of G − S that contains m robbers in R also contains m robbers
in R′ (where G − S is the graph that results from deleting the vertices in S from
G). Notice that ≡S is an equivalence relation. We call a (k, r)-strategy smooth if, for
every R,R′ ∈ (V (G) ∪ {∗})r where R ≡S R′, we have µ(S,R) = µ(S,R′). That is,
the cops’ moves depend only on the number of robbers in each component of G − S
and not on their locations within these components.

Lemma 2. There is a winning (k, r)-strategy in G if and only if there is a smooth
winning (k, r)-strategy in G.

Proof. Let µ be a winning (k, r)-strategy in G. For each S ∈ V (G)[≤k], let AS

be the set of ≡S-equivalence classes of robber positions. For each A ∈ AS we select
an arbitrary representative RA,S. Now, define a strategy µ′ by putting µ′(S,R) =
µ(S,RA,S) whenever R ≡S RA,S.

It is clear that µ′ is smooth; it remains to show that it is winning. Let P ′ =
S′

0,R′
0, S

′
1,R′

1, . . . be any µ′-play. From the definition of µ′, there is a µ-play P =
S′

0,R0, S′
1,R1, . . . such that, for all i ≥ 0, Ri ≡Si R′

i. Since the possible moves of
each robber depend on his free space and not on his precise position in the graph, any
move by the cops that captures a robber in P must also capture a robber in P ′. P is
a winning play, so P ′, and hence µ′, must also be winning.
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Note that the strategies referred to when considering smoothness are not neces-
sarily monotone but that, in the above proof, µ′ is monotone if µ is.

Finally, in this section, we show that the parameters we have defined are closed
under taking minors. Recall that G is a minor of H (written G ! H) if G can
be constructed from H by a sequence of vertex deletions, edge deletions, and edge
contractions, where an edge contraction is the deletion of two adjacent vertices u and
v in H , followed by the addition of a new vertex w adjacent to all former neighbors
of the deleted vertices.

Proposition 3. If G ! H, then, for any r, mvams(G, r) ≤mvams(H, r).
Proof. Let µ be a smooth, monotone, winning (k, r)-strategy for H , and let Tµ be

the tree representing µ. We may assume that G is formed from H by deleting a single
isolated vertex or deleting or contracting a single edge, since deletion of a nonisolated
vertex may be achieved by first deleting all its edges.

Suppose G = H − v for some x ∈ V (H). Since x is isolated in H , any move of
the cops involving x must be either a placement or a removal. Let T ′

µ be the tree
that results from deleting x from every vertex label in Tµ and replacing x with ∗ in
every edge label. Clearly, T ′

µ is a (possibly defective) tree corresponding to a monotone
(k, r)-strategy for G.

Suppose G = H−e for some edge e = xy ∈ E(H). The only alterations we need to
make to Tµ are to deal with slides along the now-deleted edge. Suppose v ∈ V (Tµ) is
labeled S and sends an edge labeled R1 to vertex v1, labeled S′, such that S*S′ = e.
Let R1, . . . ,R! enumerate the ≡S-equivalence class of R1. By smoothness, v also has
children v2, . . . , v! such that the edge vvi is labeled Ri and vi is labeled S′ for each
i ∈ {2, . . . , !}. We may assume, without loss of generality, that x ∈ S, i.e., that the
slide is from x to y. By monotonicity, the only neighbor of x in H that can be in the
robbers’ free space is y. Therefore, in G, no neighbor of x is in the robbers’ free space,
and we can replace the slide x → y with a removal from x followed by a placement
to y. For each i ∈ {1, . . . , !}, add a new vertex wi, labeled S − x, and an edge vwi,
labeled Ri. For each j ∈ {1, . . . , !}, make a copy of the subtree of Tµ rooted at vj ,
and add an edge labeled Rj from wi to the root of the jth copy.

Finally, suppose G is the result of contracting the edge xy in H to give a new
vertex which we denote vxy. To construct a (possibly defective) strategy tree for G,
it suffices to substitute vxy for both x and y in all vertex and edge labels in Tµ. A
robber on vxy in G can reach any vertex reachable by a robber on x or y in H . The
effect for the cops is as follows:

• place(x) becomes a null move if there was already a cop on y and, if not,
becomes place(vxy);

• slide(x→ y) becomes a null move;
• for z 0= y, slide(x → z) becomes place(z) if there is a cop on y and, if not,

becomes slide(vxy → z);
• for z 0= y, slide(z → x) becomes remove(z) if there is a cop on y and, if not,

becomes slide(z → vxy);
• remove(x) becomes a null move if there is a cop on y and, if not, becomes

remove(vxy).

The cases for moves involving y are symmetric.

3. Variants of monotonicity. In the previous section, we defined the concept
of monotonicity for plays and strategies. These definitions are natural extensions of
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the case with only one robber but are not the only ones. In this section, we consider
two further natural definitions of monotonicity, which turn out to be equivalent to
our first definition, and we begin an investigation of the cost of monotonicity.

Let P = S0,R0, S1,R1, . . . be a µ-play. We say that P is pointwise monotone if,
for each j ∈ {1, . . . , r} and each i ≥ 0, F j

i+1 ⊆ F j
i ; i.e., no single robber’s set of free

positions ever increases. Also, we say that P is cop-monotone if, for each v ∈ V (G),
the set

sP(v) = {i | v ∈ Si and V (Ri) 0= ∅}

is an interval of N—that is, once the cops have left a vertex, they never return to
it as long as there are robbers in the graph. Observe that any cop-monotone µ-play
must be a winning µ-play because plays are infinite and G is not, so the cops must
eventually revisit a vertex if the robbers live forever. We say that a (k, r)-strategy µ
is monotone according to one of the above definitions if all µ-plays are.

Lemma 4. Let G be a graph, and let k and r be positive integers. The following
are equivalent:

1. there is a monotone winning (k, r)-strategy in G;
2. there is a pointwise-monotone winning (k, r)-strategy in G;
3. there is a cop-monotone (k, r)-strategy in G.

Proof. (2)⇒ (1) follows trivially from the definitions.
(3)⇒ (2). Let µ be a cop-monotone strategy, and suppose that, for some µ-play

P = S0,R0, S1,R1, . . . , there is a step, say, from Si to Si+1, where the free space of
the jth robber (1 ≤ j ≤ r) increases, i.e., that F j

i+1 ⊃ F j
i . It follows that there must

have been a cop removed or slid from some vertex v ∈ ∂G(F j
i ), the set of vertices in

V (G) − F j
i that are adjacent to at least one vertex in F j

i . There is a µ-play P ′ that
follows P until Si+1 and in which the jth robber moves to the newly vacated vertex
v and stays there at all subsequent moves. But now, this robber cannot be caught
unless v is revisited, contradicting the assumed cop-monotonicity of µ.

For (1)⇒ (3), the idea is that the cops never need to visit a vertex that is not in the
robbers’ free space because such a move can never decrease the free space. Therefore,
the move does not contribute to the capture of the robbers and can safely be omitted.
Thus, every move made by the cops may be assumed to be a removal, a placement, or a
slide into the robbers’ free space and, since the free space is monotonically decreasing,
each such move must be the first time the target vertex has been visited.

Formally, let µ be a monotone winning strategy which we may assume, by Lemma
2, to be smooth. Let E be the set of the essential parts of all µ-plays. For any µ-play
P ∈ E , let c(P) be the number of vertices revisited by the cops (i.e., the number of
vertices v for which sP(v) is not an interval), and let c(µ) =

∑
P∈E c(P). c(µ) is well

defined, as E is finite; further, c(µ) = 0 if and only if µ is cop-monotone.
Suppose µ is not cop-monotone. We construct a (k, r)-strategy µ′ with c(µ′) <

c(µ). Repeated applications of this transformation will yield the desired cop-monotone
strategy.

Let P = S0,R0, S1,R1, . . . be a non–cop-monotone µ-play, and let vi+1 be a
vertex that is revisited for the first time in the step from Si to Si+1. This means that
Si+1 − Si = {vi+1}—the move is a placement or a slide. Let H be the union of the
connected components of G−Si that intersect V (Ri), and let S∗ = ∂GH . Notice that
S∗ ⊆ Si since, otherwise, P is not monotone.
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We cannot have vi+1 ∈ V (H) since, by monotonicity, none of the vertices in H
has yet been visited. We cannot have vi+1 ∈ S∗ as there are already cops on every
vertex of S∗, so these vertices cannot be the target of a placement or a slide. Further,
if the move is a slide, from the single vertex vi ∈ Si − Si+1, then vi /∈ S∗: suppose
vi ∈ S∗; since vi+1 /∈ H , vi becomes part of the robbers’ free space, contradicting the
monotonicity of µ.

Let T0 = Si and, for j ≥ 0, let Tj+1 = µ(Tj ,Ri). Let h be minimal such that
Th+1 ∩ V (H) 0= ∅. Thus, T1 = Si+1 and Th is the first move at which the cops will
play into the robbers’ free space if the robbers stand still. Notice that, in any µ-
play that includes the position Si,Ri, the positions T1, . . . , Th will follow because, by
smoothness, the moves of the cops depend only on the free space of the robbers, which
does not change during the quoted sequence (indeed, this remains true if we replace
Ri with any R ≡Si Ri). As before, the monotonicity of µ implies that S∗ ⊆ Tj for
j ∈ {0, . . . , h}.

We now define µ′. The idea is to replace the sequence T0, . . . , Th with a new
sequence of moves that performs the least number of removals and placements to
move the cops from T0 to Th but omits the move to vi+1. Since none of these moves is
in H , the robbers’ free space remains the same and monotonicity is preserved. Toward
this end, let T0 − Th = {x1, . . . , xp} and Th − T0 − {vi+1} = {y1, . . . , yq}. For any
R ≡Si Ri, set

µ′(T0,R) = T0 − {x1},
µ′(T0 − {x1},R) = T0 − {x1, x2}

...
µ′(T0 − {x1, . . . , xp−1},R) = T0 − {x1, . . . , xp} .

Writing T ′ for T0 − {x1, . . . , xp}, set

µ′(T ′,R) = T ′ ∪ {y1},
µ′(T ′ ∪ {y1},R) = T ′ ∪ {y1, y2}

...
µ′(T ′ ∪ {y1, . . . , yq−1},R) = T ′ ∪ {y1, . . . , yq} .

Note that T ′ ∪ {y1, . . . , yq} = Th − {vi+1}, and observe that the placements and
removals defined above do not involve placement to the vertex vi+1. Also, any vertex
that is revisited in the new chain of moves would have been revisited anyway if the
old chain of moves had been made. However, so far, the new chain does not revisit
vi+1, which was revisited in the old chain. To guarantee that vi+1 is not revisited in
any future sequence of moves, we set µ′(S − {vi+1},R) = µ(S,R) − {vi+1} for any
S ⊆ V (H) ∪ Th and any R where V (R) ⊆ V (H). Otherwise, put µ′(S,R) = µ(S,R).
We now have c(µ′) < c(µ), as required.

We have shown the natural definitions of monotonicity to be equivalent, but is
monotonicity important? Suppose we have r robbers in a tree T . We can modify
program 1 so that, instead of letting T ′ be any component containing a robber, we set
T ′ to be the component containing the ith robber, where i is minimal among those
robbers who have not yet been caught; see program 2. This gives a program that
catches the first robber (and any other robbers foolish enough to follow him), then
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Search program 2. Π(T, r) to capture r robbers in a tree T .

place(v), where v is any vertex of T .
Let R = [u1 . . . ur]← robbers positions().
Let T ′ ← T .
While V (R) ∩ V (T ′) 0= ∅,

Let i be minimal such that ui 0= ∗.
Let T ′ be the connected component of T − v containing ui,

and let w be the (unique) vertex of T ′ adjacent to v.
slide(v → w).
Let v ← w.
Let R← robbers positions().

remove(v).

the second, and so on. There are two things to notice about this program: first, it is
not monotone; second, it is winning against any number of robbers, without needing
any more cops.

The same technique can be applied to transform any search program for one
robber (on an arbitrary collection of graphs) into a nonmonotone program for any
number of robbers. On the other hand, it is clear that monotonically searching for
r > 1 robbers requires at least as many cops as does monotonically searching for a
single robber. We summarize these observations in the following lemma.

Lemma 5. For any graph G and positive integer r,

vams(G, r) = vams(G, 1),
mvams(G, r) ≥mvams(G, 1) .

Thus, allowing nonmonotone strategies may make it easier to search for many
robbers. This raises the question of what the cost of requiring monotonicity is when
facing a crime wave. Given a graph G and r ≥ 1, what is the ratio below?

mvams(G, r)
mvams(G, 1)

.

In sections 5 and 6, we give a full answer for trees and an upper bound for general
graphs. We postpone this until we have established some necessary results in the next
section.

4. Invisible robbers. In this section we give brief descriptions of two game
variants where the robbers are invisible and the cops must, therefore, determine their
moves without reference to the robbers’ position. In one of the variants we consider,
the robber is active; in the other, he is lazy. Recall that an active robber can move
at each round of the game, but a lazy robber may move only when a cop moves onto
the vertex he occupies.

In both cases, as the robbers are now invisible, the game is no longer interactive
and the cops’ moves may be given in advance as a “predetermined” strategy. Thus,
we define a k-strategy for k cops to be any consistent sequence S = S0, S1, . . . of sets
in V (G)[≤k].
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Given such a strategy, we define the free space of an invisible, active robber to be
the sequence

F0 = V (G),
Fi+1 = {y ∈ V (G) − Si+1 | there is an (Si, Si+1)-avoiding

(x, y)-path for some x ∈ Fi} .

We say that S is monotone if Fi+1 ⊆ Fi for all i ≥ 0 and S is winning if Fi = ∅ for
some i ≥ 1. Since the game is not interactive, we do not explicitly define plays, which
will not feature in our analysis.

The nonmonotone and monotone invisible active mixed search number of a graph
G are defined as follows:

iams(G) = min {k | there exists a winning k-strategy on G},
miams(G) = min {k | there exists a monotone winning k-strategy on G}.

It is known that iams(G) = miams(G) [3]; that is, when searching for an in-
visible, active robber, insisting that the cops win the game monotonically does not
increase the number of cops required. We also observe that searching for an active,
invisible robber in a n-vertex graph G is equivalent to searching for n visible, ac-
tive robbers. Intuitively, an invisible robber could be anywhere within his free space,
while, with n robbers, there are plays in which every vertex of the free space really
does contain a robber.

Lemma 6. For any graph G of order n, miams(G) = mvams(G, n).
Proof. We prove first that miams(G) ≤mvams(G, n). Suppose we have a mono-

tone winning (k, n)-strategy µ for the cops. Consider a µ-play P = S0,R0, S1,R1, . . .
where, for all i ≥ 0, V (Ri) = Fi. Such a play exists, since V (R0) = F0 = V (G) and,
by definition of Fi+1, it is possible for the robbers occupying the vertices Fi to move to
the vertices in Fi+1. Notice, now, that the sequence S0, S1, . . . is a winning monotone
k-strategy against an invisible, active robber.

For the converse, let S = S0, S1, . . . be a monotone winning k-strategy against
one invisible, active robber. We define a (k, n)-strategy µ by putting µ(Si,R) = Si+1

for any i ≥ 0 and any R ∈ (V (G)∪{∗})n with V (R) ⊆ Fi+1. Any µ-play is monotone
and winning because, no matter what moves the robbers make, V (Ri) ⊆ Fi for all i
and the sequence F0, F1, . . . diminishes monotonically to the empty set.

The case of an invisible, lazy robber is similar to the active case but with the
difference that now, if the cops are at S and the robber at vertex v, then, when the
cops move to S′, the robber must stay at v unless v ∈ S′, in which case he can move
along any (S, S′)-avoiding path in the graph, as before. Thus, the robber moves only
when a cop lands on his vertex.

We define free space, k-strategies, monotonicity, and winning against a lazy, invis-
ible robber in the same way as in the active case and write milms(G) and ilms(G) for
the corresponding monotone and nonmonotone, invisible, lazy, mixed search number,
respectively.

Lemma 7. For any graph G, milms(G) = mvams(G, 1).
Proof. We prove first that milms(G) ≤mvams(G, 1). Suppose we have a mono-

tone winning (k, 1)-strategy µ for G, and let E be the set of the essential parts of all
µ-plays. We can construct a monotone winning k-strategy against one invisible, lazy
robber by taking an arbitrary concatenation of all of the sequences in E .
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We now show that mvams(G, 1) ≤ milms(G). Let S = S0, S1, . . . be a mono-
tone winning k-strategy against one invisible, lazy robber. We will describe a search
program against a visible, active robber. The first move is to place a cop on the vertex
in S1. Suppose that, at some stage, the cops occupy the vertices of some set S (not
necessarily a set in S). Let H be the connected component of G−S that contains the
robber, and let S∗ = ∂GH .

Now, let i be minimal such that Si contains a vertex in H . We remove any cops
that may be in S−Si−1 and then play the move m that transforms Si−1 to Si which,
by definition of i, is not a removal. It is clear that we can play this move if it is a
placement. If it is a slide, it must, by construction, be from a vertex in S∗. S must
contain S∗ by definition and, since S is a monotone strategy, Si−1 must also contain
S∗: m is the first attack on H and the robber would be able to escape from that
component if its boundary were not guarded.

This establishes that we have a monotone strategy. To see that it is winning,
observe that, at each step, the robber’s free space is decreased by at least one vertex
(the target of m) so must, eventually, become empty.

We define the proper pathwidth of a graph G to be ppw(G), the least k for which
G ! Kk × P for some path P . (That is, G ! G′ for the graph G′ formed from P
by replacing the vertices with disjoint copies of Kk and adding a matching between
the vertices of cliques corresponding to vertices adjacent in P .) Similarly, define the
proper treewidth of a graph G as ptw(G), the least k for which G ! Kk × T for some
tree T . It can be shown that miams(G) = ppw(G) and milms(G) = ptw(G) (see,
e.g., [9, 12]).

Corollary 8. For any graph G and any positive integer r,

ptw(G) ≤mvams(G, r) ≤ ppw(G).

Proof. The proof is immediate from Lemmas 6 and 7 and the observation that,
for any graph G of order n and any r > n, mvams(G, r) = mvams(G, n), since the
robbers can never occupy more than n distinct vertices.

We could also consider multiple invisible robbers. We will not define the relevant
games formally, but the informal remarks that follow should convince the reader that
it would not be worth the effort to do so.

In the case of invisible, active robbers, it is clear that miams(G, r) = miams(G)
for any r ≥ 1; essentially, no graph parameter defined through mixed search can
ever be bigger than proper pathwidth. For invisible, lazy robbers, we must consider
the conditions under which the robbers may move. The simplest scenario is that
each robber may move only when a cop lands on the vertex he occupies. Define
the nonmonotone and monotone, invisible, lazy mixed search number of a graph G
to be, respectively, ilms(G, r) and milms(G, r), the least k such that there is a
winning (respectively, monotone winning) k-strategy against r invisible, lazy robbers.
In this case, it is not hard to see that ilms(G, r) = ilms(G, 1) (because, as usual,
we can iterate the strategy for one robber to catch r robbers) and milms(G, r) =
milms(G, 1) (the strategy used to prove Lemma 7 works as well for r ≥ 1 lazy
robbers as for one).

On the other hand, suppose that, when a cop lands on a vertex occupied by any
robber, this fact is communicated to all the robbers, who may all move. Define the
nonmonotone and monotone, invisible, communicating, lazy mixed search numbers of
a graph G to be, respectively, iclms(G, r) and miclms(G, r), the least k such that
there is a winning (respectively, monotone winning) k-strategy against r invisible,
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Search program 3. Π(T, v, r) to capture r robbers in a tree T monotonically.

place(v)
Let R← robbers positions().
While V (R) 0= ∅,

Let T1, . . . , T! be the connected components of T − v
containing at least one and at most ! r

2" robbers.
For i ∈ {1, . . . , !},

Choose any vertex vi ∈ V (Ti).
Let ri be the number of robbers in Ti.
Call Π(Ti, vi, ri).

Let R← robbers positions().
if V (R) ∩ V (T ) 0= ∅ (i.e., robbers remain in T ), then

Let T ′ be the unique connected component of T − v where
V (R) ⊆ V (T ′), and let w be the vertex of T ′

adjacent to v in T .
slide(v → w).
Let v ← w and let T ← T ′.

remove(v).

communicating, lazy robbers. We still have iclms(G, r) = ilms(G) and, with just
one robber, of course, miclms(G, 1) = milms(G) = ptw(G) since a single robber
has nobody to communicate with. However, for any r ≥ 2, having r invisible, com-
municating, lazy robbers is as bad as having an active, invisible robber: essentially,
whenever the cops move to a vertex in the robbers’ free space, they may disturb a
robber, and, if they do, all the robbers may move. Thus, after any move, the cops
must ensure that the entire boundary of the robbers’ free space is guarded, just as in
the active, invisible case. Hence, for r ≥ 2, miclms(G, r) = miams(G) = ppw(G).
We summarize these observations in the following theorem.

Theorem 9. For any graph G and any integers r ≥ 1 and s ≥ 2,

ilms(G, r) = iclms(G, r) = ilms(G),
milms(G, r) = miclms(G, 1) = milms(G) = ptw(G),

miclms(G, s) = miams(G, r) = miams(G) = ppw(G) .

We also note that it is believed but not yet proven1 that ilms(G) = milms(G).

5. Upper bounds. In this section, we demonstrate upper bounds for the value
of mvams(G, r) for trees, in particular, and for all graphs.

Lemma 10. If T is a tree, then mvams(T, r) ≤ !log r"+ 1.
Proof. Let Π(T, r) be the search program that calls program 3 with v assigned to

be any vertex of T .
We must prove that Π(T, r) is winning and monotone and uses at most !log r"+1

cops. For this we use induction on the logarithm of the number of robbers. For the
base case, notice that Π(T, r) degenerates to program 1 when r = 1, as the program
operates exclusively in the single component of T − v containing 4 r

25 = 1 robber.

1A flawed proof appeared in [12].
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Suppose that Π(T, ! r
2") defines a winning, monotone (q, ! r

2")-strategy, where q =
!log r

2"+1 = !log r". We now show that Π(T, r) defines a winning, monotone (q+1, r)-
strategy.

Before each slide move to w, each component of T−v except for the one containing
w contained at most ! r

2" robbers and has, by the inductive hypothesis, already been
searched monotonically. Therefore, after each slide move, the free positions of the
robbers have been updated from V (T ) to V (T ′), where V (T ′) ⊂ V (T ). As the free
positions for the robbers diminish, the program is monotone; and, as they diminish
properly, the program is winning.

By the inductive hypothesis, each call to Π(Ti, vi, ri) requires q cops. Meanwhile,
there is only one additional cop in T (the cop on v), so Π(T, r) uses q + 1 cops, as
required.

The following upper bound on mvams(T, r) is immediate from the previous
lemma and Corollary 8.

Corollary 11. For any tree T and for any positive integer r,

mvams(T, r) ≤ min {ppw(G), !log r"+ 1} .

Our bound for trees leads to a bound for general graphs, obtained by considering
tree decompositions.

Theorem 12. For any graph G and any positive integer r,

mvams(G, r) ≤ min {ppw(G),ptw(G) · (!log r"+ 1)} .

Proof. Let q = !log r"+ 1.
By Corollary 8, it is enough to show that mvams(G, r) ≤ ptw(G) · q. Assuming

that ptw(G) ≤ k, we have G ! G′ = Kk × T for some tree T . We assume that the
vertices of the clique in G′ corresponding to the vertex v ∈ T are K(v) = {v1, . . . , vk}
and, for every edge uv ∈ T , the corresponding edges in G′ are u1v1, . . . , ukvk. For
each S ⊆ V (T ), let K(S) =

⋃
v∈S K(v).

By Lemma 10, mvams(T, r) ≤ q, so there is a monotone winning (q, r)-strategy
µ for T . We use µ to construct a monotone, winning (kq, r)-strategy µ′ for G′. The
idea is that we simulate a single cop on v ∈ T with k cops, one on each vertex of
K(v) ⊆ G′. Each placement, removal and slide is replaced by the equivalent operation
on each of these k cops in turn.

Formally, let S ∈ V (T )[≤q], let R ∈ (V (T ) ∪ {∗})r, and let S′ = µ(S,R). There
are three cases, depending on the type of the move from S to S′.

Placement. Let {v} = S′−S. For any j ∈ {1, . . . , k}, let Sj = K(S)∪{v1, . . . , vj−1}.
For any R′ with V (R′) ⊆ K(V (R))− {v1, . . . , vj−1}, we set µ′(Sj ,R′) = Sj ∪ {vj}.

Removal. Let {v} = S−S′. For any j ∈ {1, . . . , k}, let Sj = K(S)−{v1, . . . , vj−1}.
For any R′ with V (R′) ⊆ K(V (R)) ∪ {v1, . . . , vj−1}, we set µ′(Sj ,R′) = Sj − {vj}.

Sliding. Let {v} = S − S′ and {w} = S′ − S. For any j ∈ {1, . . . , k}, let Sj =(
K(S) − {v1, . . . , vj−1}

)
∪ {w1, . . . , wj−1}. For any R′ with V (R′) ⊆

(
K(V (R)) ∪

{v1, . . . , vj−1}
)
− {w1, . . . , wj−1}, we set µ′(Sj ,R′) = (Sj − {vj}) ∪ {wj}.

Notice that the fact that µ is winning and monotone implies the same for µ′.
Moreover, in each µ′-play any set S ∈ V (T )[≤q] corresponds to a sequence of k sets in
V (G′)[≤kq]. Therefore, mvams(G′, r) ≤ kq and thus mvams(G, r) ≤ kq, by Proposi-
tion 3.
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6. Lower bounds. We now give lower bounds for mvams(T, r) for trees T . We
introduce a general form of graph composition and analyze the search numbers of
graphs formed by such compositions. We define the composition for general graphs,
though our main use of the construction will be for trees.

We say that graphs G0, . . . , G3 are k-connectable if
• for 0 ≤ i ≤ 3, Gi is k-connected;
• G1, G2, and G3 are pairwise disjoint;
• for 1 ≤ i ≤ 3, |Ui| = k, where Ui = V (G0) ∩ V (Gi); and
• for 1 ≤ i < j ≤ 3 and h ∈ {1, 2, 3}− {i, j}, G0 − Uh contains a set Pij of k

pairwise vertex-disjoint paths from Ui to Uj .
Note that the k-connectedness of G0 already implies the existence in that graph of
a set of k pairwise vertex-disjoint paths from Ui to Uj, but these do not necessarily
avoid Uh.

Let G be a graph, with x ∈ V (G) and U ⊆ V (G) − {x}. An (x, U)-fan is a set
of paths in G, one from x to each vertex in U, where the paths are pairwise disjoint,
except for the common endpoint x.

Lemma 13. Let G0, . . . , G3 be k-connectable. Then G = G0 ∪ · · · ∪ G3 is k-
connected.

Proof. It suffices to show that, for any u, v ∈ V (G), G contains k independent
(u, v)-paths. If u, v ∈ V (Gi) for some i, then the result follows immediately from the
k-connectedness of Gi. So, suppose that there are i < j such that u ∈ V (Gi)−V (Gj)
and v ∈ V (Gj)− V (Gj). There are two cases.

If i = 0, then, by [4, Theorem 2.6], G0 contains a (u, Uj) fan and Gj contains a
(v, Uj) fan. Since V (G0)∩ V (Gj) = Uj , these fans are disjoint, except for the vertices
in Uj . Their union is, therefore, a set of k independent (u, v)-paths in G.

If i > 0 then, as above, Gi contains a (u, Ui)-fan and Gj contains a (u, Uj)-fan
and these fans are disjoint. The union of the two fans and the paths Pij is a set of k
independent (u, v)-paths in G.

The following is the key technical result of this section.
Lemma 14. Let G0, . . . , G3 be k-connectable, with mvams(Gi, ! r

2") ≥ q for each
i, and let G = G0 ∪ · · · ∪G3. Then mvams(G, r) ≥ q + k.

Proof. Suppose, toward a contradiction, that mvams(G, r) < q + k, and let µ
be a smooth, monotone, winning (q + k − 1, r)-strategy for G. By Lemma 13, G
is k-connected. Hence, whenever there are robbers in the graph and the position
of the cops is S, with |S| < k, the robbers’ free space is the whole of G − S. Let
P = S0,R0, S1,R1, . . . be a play, and let α be minimal such that

• the free space of some robber in Rα does not include the whole of V (Gi)−Sα

for some i ≥ 1, or
• |V (Gi) ∩ Sα| ≥ k for some i ≥ 1.

α is well defined because µ is winning. We may assume that the robbers, who are
aware of the cops’ strategy µ, arrange to maximize α. By smoothness, the cops make
the same moves in all plays up to (and including) the αth move, as long as the robbers
behave as we have described.

As argued above, |Sα| ≥ k; otherwise, the free space of every robber is just
V (G) − Sα and no Gi contains k cops. We may assume, without loss of generality,
that |V (G1)∩Sα| < k and |V (G2)∩Sα| < k. (If necessary, rename the parts to achieve
this.) Let S′

α = Sα − (V (G1) ∩ V (G2)). By construction, |S′
α| ≥ k.

At the point when the cops make move α, the free space of every robber includes
all of V (G1)−Sα−1 and all of V (G2)−Sα−1. Therefore, we may assume that Rα has
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4 r
25 robbers in G1 and ! r

2" robbers in G2. We will show that the assumption that µ
is monotone and winning contradicts the hypothesis that mvams(G1, ! r

2") ≥ q and
mvams(G2, ! r

2") ≥ q.
Let Tµ be the labeled tree representing the strategy µ. We may delete from Tµ any

subtree whose root has an incoming edge labeled R for some R containing more than
4 r

25 robbers in G1 or more than ! r
2" robbers in G2. This restriction on the robbers’

position can only make the game easier for the cops.
First, let T1 be the tree formed from Tµ by deleting every vertex outside V (G1)

from every vertex label and replacing every vertex outside V (G1) with ∗ in every edge
label. These deletions from the labels may result in two adjacent vertices u and v
having identical labels (because the corresponding move in Tµ was outside G1) and
two edges from the same vertex having identical labels (because a move within G1 in
Tµ depended on the positions of robbers outside G1). As such, T1 is nondeterministic,
in the sense discussed in section 2.

Call the subtree of T1 rooted at vertex x bad if either the label of x is a set of size at
least q or there is some R such that, whenever the edge (x, y) is labeled R, the subtree
rooted at y is bad. Call a subtree good if it is not bad. We claim that T1 is, itself,
bad. Suppose not. Delete all bad subtrees from T1 to give T ′

1. Because every vertex
of the resulting tree has at least one child for each possible R, T ′

1 defines a winning
(q − 1, 4 r

25)-strategy for G1, contradicting the hypothesis that mvams(G1, 4 r
25) ≥

mvams(G1, ! r
2") ≥ q. (In fact, the strategy defined by T ′

1 may be nondeterministic,
but we may take an arbitrary deterministic restriction.)

Now, let T ∗
1 be the tree that results from deleting all good subtrees from T1. T ∗

1

is a tree of all plays where the robbers force there to be q cops in G1 and can be seen
as a certificate of the fact that no monotone winning (q + k− 1, r)-strategy for G can
induce a monotone winning (q − 1, 4 r

25)-strategy for G1.
Let T be the subtree of Tµ consisting of those vertices in T ∗

1 , and let T2 be the
tree made from T by deleting every vertex outside V (G2) from every vertex label
and replacing every vertex outside V (G2) with ∗ in every edge label. T2 defines a
nondeterministic strategy for G2 in the same sense that T1 does for G1. Because T1

is a strategy for G1, it includes responses for every possible position R of the robbers
within that subgraph. In turn, every position of robbers in G whose restriction to
G1 is R will produce the same response within T ′

1: in particular, then, T2 contains a
vertex corresponding to this position.

Using the hypothesis that mvams(G2, ! r
2") ≥ q and the same argument as for

G1, we see that T2 is also bad. Again, define T ∗
2 by deleting all good subtrees from

T2. By construction, any path in T ∗
2 corresponds to a path in T ∗

1 and a path in Tµ.
Choose any such path, and let P = S0,R0, S1,R2, . . . be the corresponding µ-play.
For i ∈ {1, 2}, let P i = Si

0,Ri
0, S

i
1,Ri

2, . . . be the labels of the corresponding path in
T ∗

i . Note that S1
j ∪ S2

j ⊆ Sj and V (R1
j) ∪ V (R2

j) ⊆ V (Rj) for all j ≥ 0.
For i ∈ {1, 2}, let ci be minimal such that V (Ri

ci
) = ∅. Since no move of the

cops can simultaneously capture robbers in both G1 and G2, we must have c1 0= c2.
Without loss of generality, we may assume c1 < c2. Let h be minimal such that
|S1

h| ≥ q. Since µ is a (q + k − 1, r)-strategy, we must have |S2
h| < k, and, further,

at least one of the cops originally placed on v ∈ S′
α must have been removed. This

contradicts the monotonicity of µ because, after move α of the game, no robber in G2

could reach vertex v, but now they all can.
A 3-star composition of disjoint, connected graphs G1, G2, and G3 is any graph

Y(G1, G2, G3) formed by adding a new vertex v to G1 ∪G2 ∪G3 and adding one edge
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from v to each of the three component graphs. Observe that the 3-star composition
of G1, G2, and G3 is a special case of the graphs K1,3, G1, G2, and G3 being 1-
connectable. Hence, the following is an immediate corollary of Lemma 14.

Corollary 15. Let G = Y(G1, G2, G3), where, for each i ∈ {1, 2, 3}, it holds
that mvams(Gi, ! r

2") ≥ q. Then, mvams(G, r) > q.
We are now ready to show that the upper bound of Corollary 11 is, in fact, an

exact characterization of mvams(T, r) for all trees T and natural numbers r.
Theorem 16. For any tree T and r ≥ 1,

mvams(T, r) = min {ppw(T ), !log r"+ 1} .

Proof. By Corollary 11, it suffices to show that mvams(T, r) ≥ min {ppw(T ),
!log r" + 1}. For this, we use induction on q = !log r" + 1. For the base case, q =
1, program 1 shows that mvams(T, r) = 1 = q. Suppose the result holds for all
values smaller than q, and let T be a tree. If ppw(T ) = 1, then T is a path and
mvams(T, r) = 1 for any r, as required. Otherwise, it is known from [14] that we
can write T = Y(T1, T2, T3), where, for each i, ppw(Ti) = ppw(T ) − 1. By the
inductive hypothesis, mvams(Ti, ! r

2") ≥ min {ppw(T ) − 1, q − 1}. By Corollary 15,
mvams(T, r) ≥ min {ppw(T )− 1, q − 1} + 1 = min {ppw(T ), q}, as required.

We do not have a lower bound for mvams(G, r) for general graphs. However, we
are able to demonstrate that the upper bound of Theorem 12 is reached by an infinite
class of graphs. Toward this end, define the parameterized graph class Ow recursively
as follows: O0 = {K1}, and G ∈ Ow+1 if and only if G is a 3-star composition of three
graphs in Ow. From [13], Ow contains all minor-minimal trees with proper pathwidth
at least w. Define

Ok
w = {T ×Kk : T ∈ Ow} .

It follows from Lemma 14 that the upper bound of Theorem 12 is tight as the bound is
attained by all graphs in Ok

w. Further, because the graphs in Ok
w are minor-minimal,

the bound of Theorem 12 is attained by all products of trees and cliques.
We have remarked that k-composition is a generalization of 3-star composition.

Finally, we show that the above results on proper pathwidth of 3-star compositions
of graphs can be strengthened to k-compositions.

Corollary 17. Let G0, . . . , G3 be k-connectable graphs, each of proper pathwidth
at least w, and let G = G0 ∪ · · · ∪G3. Then, ppw(G) ≥ w + k.

Proof. Let n = |V (G)|.

ppw(G) = mvams(G, 2n) (Corollary 8)
≥ min

0≤i≤3
mvams(Gi, n) + k (Lemma 14)

= min
0≤i≤3

ppw(Gi) + k (Corollary 8)

≥ w + k .

7. Conclusions and open problems. We have presented our results in the
setting of mixed search (i.e., searching with placement, removal, and sliding of cops).
For node search (searching with only placement and removal of cops), we can similarly
define parameters vans(G) and mvans(G, r) for the general and monotone node
search numbers for r visible, active robbers. Similarly, we can adapt all definitions
of mixed-search parameters given in this paper to their node search counterparts.
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The difference between mixed search and node search is not very great: node search
can be reduced to mixed search, and the node search number is either equal to the
corresponding mixed search number or one greater, depending on the graph.

We could, in principle, rewrite the present paper in terms of node search. Writing
pw(G) and tw(G) for the well-known parameters of pathwidth and treewidth, it can
be shown, using the results in [6, 11], that, for a graph of order n, vians(G, 1) =
tw(G) + 1 and vians(G, n) = pw(G) + 1. For completeness, we restate our core
results for this setting:

mvans(T, r) = min {pw(T ), !log r"+ 1} + 1 (for any tree T ),
mvans(G, r) ≤ min {pw(G) + 1, (tw(G) + 1) · (!log r"+ 1)} (for any graph G).

Moreover, the framework of this paper can be applied to the other classical search
variant, edge search. As this version can also be reduced to mixed searching (see,
e.g., [3, 12]), we make no further comments in this direction.

The problem settled in this paper can be stated in the following way: given a graph
G, what is the maximum number of visible, active robbers that can be captured by
k cops? According to our results, this number is unbounded if k ≥ ppw(G). In the
case that k < ppw(G), the maximum number of robbers that can be caught in a tree
is 2k−1, and, for general graphs, it is at least 2k/ptw(G)−1. This interpretation of our
results may be useful for estimating how many sweeps of a graph a small number of
cops needs to catch a large number of robbers.

We identify three main open problems on the study of graph searching for many
robbers. The first is to find good lower bounds for mvams(G, r) in terms of G and
r, for general graphs, corresponding to the bounds for trees found in this paper. We
believe that this is a hard task as such a study appears to require the identification
of obstructions for mvams(G, r) for all values of r.

Another open problem is to find graph decompositions corresponding to the game,
tuning between (proper) tree decompositions (the case for one robber) and (proper)
path decompositions (one robber per vertex). It is unclear what form such a family
of decompositions would take.

Finally, it would be interesting to know whether there is any relation between
our results and the search game defined by Fomin, Fraigniaud, and Nisse [8]. That
game has only one robber but tunes between pathwidth and treewidth by limiting
the number of rounds at which the cops may ask for the position of the robber.
This provides an alternative way of tuning the interactivity of the game: it is fully
interactive if the cops may ask for the robber’s position at every move and fully
predetermined if they may never ask for his position. Correspondingly, our game is
fully interactive with a single robber and fully predetermined with a robber for each
vertex of the graph.
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