
Journal of Computer and System Sciences 75 (2009) 231–244

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Derivation of algorithms for cutwidth and related graph layout
parameters!

Hans L. Bodlaender a,1, Michael R. Fellows b,2, Dimitrios M. Thilikos c,∗,1,3,4

a Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
b Office of DVC (Research), University of Newcastle, Callaghan, NSW 2308, Australia
c Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784 Athens, Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 June 2005
Received in revised form 23 October 2008
Available online 6 November 2008

Keywords:
Parameterized algorithms
Layout parameters
Cutwidth
Pathwidth
Modified cutwidth
Finite state automata

In this paper, we investigate algorithms for some related graph parameters. Each of these
asks for a linear ordering of the vertices of the graph (or can be formulated as such),
and constructive linear time algorithms for the fixed parameter versions of the problems
have been published for several of these. Examples are cutwidth, pathwidth, and directed
or weighted variants of these. However, these algorithms have complicated technical
details. This paper attempts to present ideas in these algorithms in a different more
easily accessible manner, by showing that the algorithms can be obtained by a stepwise
modification of a trivial hypothetical non-deterministic algorithm. The methodology is
applied to rederive known results for the cutwidth and the pathwidth problem, and obtain
new results for several variants of these problems, like directed and weighted variants of
cutwidth and modified cutwidth.

 2008 Elsevier Inc. All rights reserved.

1. Introduction

The notion of pathwidth (and the related notion of treewidth) has been applied successfully for constructing algorithms
for several problems. One such application area is for problems where linear orderings of the vertices of a given graph are to
be found, with a specific parameter of the ordering to be optimised. In this paper, we are interested in a number of related
notions which appear to allow the same algorithmic approach for solving them. The central problem in the exposition is the
cutwidth problem (see Section 2 for the definition). While cutwidth is an NP-complete problem [18], we are interested
in the fixed parameter variant of it: for fixed k, we ask for an algorithm that given a graph G , decides if the cutwidth of G
is at most k, and if so, gives a linear ordering of G with cutwidth at most k. This fixed parameter variant of the problem
is known to be linear time solvable (with the constant factor depending exponentially on k) [10,15,21]. Such a linear time
algorithm can be of the following form: first a path decomposition of bounded pathwidth is found (if the pathwidth of G is
more than k, we know that the cutwidth of G is more than k), and then a dynamic programming algorithm is run that uses

! A preliminary version of this paper appeared in [H.L. Bodlaender, M.R. Fellows, D.M. Thilikos, Starting with nondeterminism: The systematic derivation
of linear-time graph layout algorithms, in: B. Rovan, P. Vojtáš (Eds.), Proceedings 28th International Symposium on Mathematical Foundations of Computer
Science, MFCS’03, in: Lecture Notes in Comput. Sci., vol. 2747, Springer-Verlag, Berlin, 2003, pp. 239–284. [7]].

* Corresponding author.
E-mail addresses: hansb@cs.uu.nl (H.L. Bodlaender), michael.fellows@newcastle.edu.au (M.R. Fellows), sedthilk@math.uoa.gr (D.M. Thilikos).

1 Supported by EC contract IST-1999-14186: Project ALCOM–FT (Algorithms and Complexity – Future Technologies).
2 Supported by the Australian Research Council, Centre of Excellence in Bioinformatics.
3 Supported by the Spanish CICYT project TIC2000-1970-CE and the Ministry of Education and Culture of Spain (Resolución 31/7/00 – BOE 16/8/00).
4 Supported by the Project “Kapodistrias” (A! 02839/28.07.2008) of the National and Kapodistrian University of Athens.

0022-0000/$ – see front matter 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2008.10.003

http://dx.doi.org/10.1016/j.jcss.2008.10.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:hansb@cs.uu.nl
mailto:michael.fellows@newcastle.edu.au
mailto:sedthilk@math.uoa.gr

232 H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244

Fig. 1. Two edges cross vertex v; three edges cross gap 7.

this path decomposition. Unfortunately, the technical details of this dynamic programming algorithm are rather detailed and
complex. Other problems that have a similar algorithmic solution are the pathwidth problem itself (see [3,8]), and variants
on weighted or directed graphs, including directed vertex separation number [2]. See also [1,20].

In this paper, we attempt to present the central ideas in these algorithms in a different, more easily accessible manner,
by showing that the algorithms can be obtained by a stepwise modification of a trivial hypothetical non-deterministic
algorithm. Thus, while our resulting algorithms will not be much different from solutions given in the literature, the reader
may understand the underlying principles and the correctness of the algorithms much easier.

In addition, we use the methodology for deriving a few new results: we give constructively for each fixed k, linear time
algorithms, that, given a graph G , or directed acyclic graph G , decides for some parameters related to cutwidth (e.g., ‘directed
modified cutwidth,’ or weighted variants) is at most k, and if so, gives the corresponding linear ordering or topological
sort of G . Ingredients of the techniques displayed in this paper appeared in the early 1990s independently in work of
Abrahamson and Fellows [1], Lagergren and Arnborg [16], and Bodlaender and Kloks [8]. In [6], a relation between decision
and construction versions of algorithms running on path decomposition with an eye to finite state automata was established.
More background and more references can be found in [11].

2. Definitions

In this section, we give a number of definitions, used in this paper. The notion of pathwidth was introduced by Robertson
and Seymour [19].

Definition 1. A path decomposition of a graph G = (V , E) is a sequence of subsets of vertices (X1, X2, . . . , Xr), such that

• ⋃
1!i!r Xi = V ;

• for all edges {v, w} ∈ E , there exists an i, 1 ! i ! r, with v ∈ Xi and w ∈ Xi ;
• for all i, j,k ∈ I: if i ! j ! k, then Xi ∩ Xk ⊆ X j .

The width of a path decomposition (X1, X2, . . . , Xr) is max1!i!r |Xi|−1. The pathwidth of a graph G is the minimum width
over all possible path decompositions of G .

For directed graphs, these definitions are trivially modified. The definition of a path decomposition of a directed graph
G = (V , A) only differs in the second condition: now, we require that for every arc (v, w) ∈ A, there is an i, 1 ! i ! r, with
v, w ∈ Xi . Width and pathwidth are now as for undirected graphs. I.e., the pathwidth of a directed graph G equals the
pathwidth of the undirected graph obtained from G by ignoring directions of edges.

Definition 2. A linear ordering of a graph G = (V , E) is a bijective function f : V → {1,2, . . . , |V |}. An edge {v, w} ∈ E is said
to cross vertex x ∈ V in linear ordering f , if f (v) < f (x) < f (w). Edge {v, w} ∈ E is said to cross gap i, if f (v) ! i < f (w).

For an example of the notion of crossing, see Fig. 1.

Definition 3. Let G = (V , E) be a graph, and let f : V → {1,2, . . . ,n} be a linear ordering of G , n = |V |.

1. For 1 ! i ! n, we denote the number of edges that crosses gap i as n f (i) = |{{v, w} ∈ E | f (v) ! i < f (w)}|.
2. The cutwidth of f is max1!i!n n f (i).
3. For 1 ! i ! n, we denote the number of edges that cross vertex f −1(i) by m f (i) = |{(u, v) ∈ E | f (u) < i < f (v)}|.
4. The modified cutwidth of f is max1!i!n m f (i).
5. The vertex separation number of f is max1!i!n|{u ∈ V | ∃v ∈ V : (u, v) ∈ E ∧ f (v) " i ∧ f (u) < i}|.

The cutwidth, modified cutwidth, vertex separation number of a graph G is the minimum cutwidth, modified cutwidth,
vertex separation number over all possible linear orderings of G .

In Fig. 1, we have n f (f (v)) = 2 (two edges cross v), and m f (7) = 3 (three edges cross gap 7). The cutwidth of the given
ordering is three, and the modified cutwidth of this ordering is two.

H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244 233

Fig. 2. The ⊕ operation.

The pathwidth of a graph is at most its cutwidth, and at most one larger than its modified cutwidth. The vertex separa-
tion number of a graph equals its pathwidth [14]. See [4] for an overview of related notions and results.

In this paper, we will also consider a linear ordering of G = (V , E) as a string in V ∗ , i.e., a string where every element
of V appears exactly once. We say that a string t can be obtained by inserting a symbol v into a string s, if s can be written
as s = s1s2, and t can be written as t = t1vt2, with s1, s2 substrings of s and t1, t2 substrings of t . The use of such strings
will be clarified in Section 3.

We say a path decomposition (X1, . . . , Xr) is nice, if |X1| = 1, and for all i, 1 < i ! r, there is a v such that Xi = Xi−1∪{v}
(i is called an introduce node, inserting v), or Xi = Xi−1 − {v} (i is called a forget node).

It is not hard to see (see e.g. [4]), that a path decomposition of width k can be transformed to a nice path decomposition
of width k in linear time.

A terminal graph is a triple (V , E, X), with (V , E) a graph, and X an ordered set of distinguished vertices from V , called
the terminals. A terminal graph with k terminals is also called a k-terminal graph. Given two k-terminal graphs G and H ,
G ⊕ H is defined as the graph, obtained by taking the disjoint union of G and H , then identifying the ith terminal of G with
the ith terminal of H for all i, 1 ! i ! k, and then dropping parallel edges. See Fig. 2.

Suppose we have a path decomposition (X1, . . . , Xr) of G = (V , E). To each i, 1 ! i ! r, we can associate the terminal
graph Gi = (Vi, Ei, Xi), with Vi =

⋃
1! j!i X j , and Ei = |{{v, w} ∈ E | v, w ∈ Vi}.

If we have a nice path decomposition (X1, . . . , Xr) of G = (V , E), then we can easily build a k + 1-coloring " : V →
{1, . . . ,k + 1} of G , such that for all v, w ∈ V , if there is an i with v, w ∈ Xi , then "(v) += "(w). (Go through the path
decomposition from left to right, and at each introduce node i, color the inserted vertex v ∈ Xi − Xi−1 different from the
other vertices in Xi .) For each v , we call "(v) the label of v .

We now introduce a notation for the possible operations, that given a graph Gi−1, build the next graph Gi . If i is an
introduce node, suppose the inserted vertex v ∈ Xi − Xi−1 has label l′ , and S ⊆ {1, . . . ,k+ 1} −{ l′} is the set of the labels of
those vertices in Xi−1 = Xi − {v} that are adjacent to v . Now, we can write an introduce operation as I(r, S), meaning an
insertion of a new terminal that has number r ∈ {1, . . . ,k + 1}, with this terminal adjacent to the terminals with numbers
in S ⊂ {1, . . . ,k + 1}. (Note that the introduce operation should fulfill certain criteria; e.g., we may not insert a vertex with
a number already given to another present terminal, and for all s ∈ S , there must be a number with that terminal.)

The forget operation can be written as F (r), meaning that the terminal with number r becomes a non-terminal. We
denote the terminal with number r as tr .

Let Σ be a finite alphabet. Σ∗ is the set of all (possibly empty) strings with symbols in Σ . The concatenation of strings
s and t is denoted st . A string s ∈ Σ∗ is a substring of a string t ∈ Σ∗ , if there are t′, t′′ ∈ Σ∗ , with t = t′st′′ . A string s is a
subsequence of a string t = t1t2 . . . tr ∈ Σ∗ , if there are indices 1 ! α(1) < α(2) < · · · < α(q) ! r with s = tα(1) · · · tα(q) .

Let Σ , Σ0 be finite alphabets, and let s be a string in (Σ ∪ Σ0)
∗ . The string s|Σ is the maximal subsequence of s that

belongs to Σ∗ , i.e., s|Σ is obtained from s by removing all symbols in Σ0.
If f1 is a linear order of G = (VG , EG), G is a subgraph of H = (VH , EH), and f is a linear order of H , we say that f

extends f1, if f −1
1 (1), f −1

1 (2), . . . , f −1
1 (|VG |) is a subsequence of f −1(1), f −1(2), . . . , f −1(|VH |), i.e., f can be obtained from

f1 by inserting the vertices of VH − VG . Equivalently, we have for all v, w ∈ VG : f (v) < f (w) ⇔ f1(v) < f1(w).
To a sequence of vertices v1, . . . , vn (or a linear order f), we associate the set of n + 1 gaps: a gap is the location

between two successive vertices, or the location before the first, or after the last vertex.
For a linear order f of G = (V , E) and a subset W ⊆ V , we consider the linear order f |W of G[W], where for all

v, w ∈ W , f (v) < f (w), if and only if f |W (v) < f |W (w), i.e., f |W is obtained in the natural way from f by dropping all
vertices not in W from the sequence. For v, w ∈ V , we write f [v, w] as the sequence f |W with W = {x | f (v) ! f (x) !
f (w)}, i.e., we take the substring that starts at v and ends at w .

We assume that the reader is familiar with the classic notions of deterministic and non-deterministic automata, and the
following result:

Theorem 4. For every non-deterministic finite automaton A, there is a deterministic finite state automaton B that accepts the same
set of strings.

We will use the acronyms NDFSA and DFSA for non-deterministic finite state automaton and deterministic finite state
automaton.

234 H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244

3. An algorithm for cutwidth

We first present our ideas in detail for the notion of cutwidth. In later sections, we will show how the same ideas can
be applied to other problems. We will derive the following result, already shown in [21].

Theorem 5. For each k, there is a linear time algorithm that, given a graph G, decides if the cutwidth of G is at most k, and if so, finds
a linear ordering of G with cutwidth at most k.

We will derive the algorithm by first giving a naive non-deterministic algorithm for the problem, and then modifying it
step by step, until we have the desired algorithm.

In all cases, we start with finding a nice path decomposition of G of width at most k. If such a path decomposition does
not exist, then we know that the cutwidth of G is more than k, and we can stop.

3.1. A non-deterministic algorithm

Consider the following non-deterministic algorithm that finds a linear order of G . The algorithm builds the order by
inserting the vertices one by one, i.e., in each step we have a linear order of a subgraph of G .

1. Start with an empty sequence.
2. Now, go through the nice path decomposition from left to right. If we deal with the ith node of the path decomposition,

then:
(a) If the ith node is an introduce node of vertex v , then we insert v non-deterministically at some gap in the sequence

such that the resulting sequence has cutwidth at most k. (If there is no such gap, the algorithm halts and rejects.)
(b) If the ith node is a forget node of vertex v , then we do nothing.

3. If all nodes of the path decompositions have been handled, then we output the resulting linear order.

Clearly, this trivial non-deterministic algorithm solves the cutwidth problem. Of course, we must do more in order to
turn this algorithm into an efficient deterministic one.

3.2. A non-deterministic algorithm that counts edges

To determine whether a vertex can be inserted at some place in the sequence without violating the cutwidth condition,
the algorithm above needs to consult the graph G . Instead, we can keep the information about the number of edges that
cross gaps in the sequence. Now, we use sequences in N(V ,N)∗ , i.e., sequences that have alternatively an integer in N, and
a vertex in V , starting and ending with an integer. The following algorithm does not need to look at G; only when a vertex
is inserted, it has to be known to what other vertices it is adjacent. The sequence gives the permutation (ordering) of the
vertices, and in addition, between every two vertices the number of edges that cross that position; i.e., if we have sequence
n f
0 , v1,n

f
1 , v2, . . . ,n

f
n−1, vn,n

f
n , where f is the linear order that is built by the algorithm. In addition, we maintain that each

vertex appears at most once in the sequence, and if we have dealt with node i, then each vertex in V i appears exactly once
in the sequence. In the remainder, we will often drop the superscript f .

We use the same algorithm as in the previous paragraph, but now start with the sequence 0, and we have to detail how
an insertion of a vertex v takes place now. This still is fairly obvious:

1. Non-deterministically, a number n j in the sequence is chosen.
2. n j is replaced by n j, v,n j .
3. For every terminal x with {v, x} ∈ E , add one to every number in the sequence between x and v (regardless of the

mutual order of v and x).
4. If we obtain a number that is k + 1 or larger, we halt and reject.

3.3. A non-deterministic decision algorithm

Suppose now for a moment, that we only want to output whether the cutwidth is at most k, without having to output
a corresponding linear ordering. Then, the following version of the algorithm actually also works fine.

In this case, we can actually forget the names of vertices, denoting terminals with their number (i.e., as tr for 1 ! r !
k + 1), and denoting non-terminal vertex as a non-labelled vertex, denoted as −. Thus, for L = {−, t1, . . . , tk}, we have
sequences in {0,1, . . . ,k}, (L, {0,1, . . . ,k})∗ .

1. Start with the sequence 0.
2. Now, go through the nice path decomposition from left to right. If we deal with the ith node of the path decomposition,

then:

H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244 235

Fig. 3. A graphical depiction of the change going from f ′ to f ′′ .

(a) If the ith node is an introduce node of the form I(r, S), then we insert tr non-deterministically at some gap in the
sequence such that the resulting sequence has cutwidth at most k. (If there is no such gap, the algorithm halts and
rejects.)

(b) If the ith node is a forget node of the form F (r), then we replace tr in the sequence by a symbol −.
3. If all nodes of the path decompositions have been handled, then we output yes.

When inserting tr , we again choose a number n j , replace it by n j , tr , n j , and then for all s ∈ S , we add one to each
number in the sequence that is between ts and tr . If any such number would become larger than k, then the cutwidth of
the sequence would be more than k, so such an insertion cannot be chosen by the non-deterministic algorithm.

Note that at this point, we used the structure of path decomposition, and the fact that each set Xi contains at most k+1
vertices.

3.4. A non-deterministic algorithm that also can construct the sequence

If we let in the above algorithm, alongside with building the sequence, also record in which gap the new vertex was
inserted (in a data structure, separate from the sequence), then the non-deterministic algorithm also can construct the
sequence after one has been found. In particular, we can maintain a list that denotes in which gap each vertex is inserted;
in step 2(a) of the algorithm of Section 3.3, the gap where the vertex is inserted is put on the list; upon termination, the
linear ordering corresponding to this run of the algorithm can be constructed directly (in linear time) from this list.

3.5. A non-deterministic finite state automaton

In this step, we use the crucial observation that turns the method into a linear time algorithm.
First, we give an example. Suppose we have a substring 3 − 5 − 7 in the sequence. Then one can note that when the

non-deterministic algorithm succeeds in completing the sequence, it can also do so by not inserting any vertex on the gap
of the 5: everything it inserts there can also be inserted at the 3. Thus, the 5 can be actually be forgotten from the sequence.
This will be proved in a more general form below.

Lemma 6. Let Gi = (Vi, Ei, X), i = 1,2, be r-terminal graphs. Let f be a linear order of G1 = (V1, E1, X) of cutwidth at most k, and
let f ′ be a linear order of G1 ⊕ G2 of cutwidth at most k such that f ′ extends f . Suppose we have for 1 ! j1 < j2 ! |V1|:

• X ∩ { f −1(j1 + 1), f −1(j1 + 2), . . . , f −1(j2 − 1), f −1(j2)} = ∅;
• n f (j1) = min j1! j! j2 n

f (j);
• n f (j2) = max j1! j! j2 n

f (j).

Let f ′′ be the linear order of G1 ⊕ G2 that is obtained from f ′ by replacing the substring f ′[f −1(j1), f −1(j2)] by the substring
f −1(j1) · (f ′[f −1(j1), f −1(j2)])|V2−X · f ′[f −1(j1 + 1), f −1(j2)]. Then the cutwidth of f ′′ is at most k.

Proof. The change in the linear ordering is graphically depicted in Fig. 3.
First, we note that for each gap that is not within the replaced substring, the set and hence the number of edges that

cross that gap stays the same, so this number is at most k. The same is true for the gap directly after f −1(j1), and the gap
directly before f −1(j2).

Consider now a gap in the sequence of f ′′ that is directly after some vertex v ′ ∈ V2 (depicted by an ‘open’ circle in Fig. 3).
We compare the number of edges crossing this gap by the number of edges crossing the gap after v ′ in the sequence f ′ .
See Fig. 4. We consider three types of edges:

236 H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244

Fig. 4. Illustration with the proof of Lemma 6.

• Edges between vertices in V2. As the mutual ordering of the vertices in V2 has not changed, the same edges between
vertices in V2 cross the gap in both gaps.

• Edges between a vertex v1 ∈ V1 and a vertex v2 ∈ V2. In this case, we must have, by definition of ⊕, that v1 ∈ X ⊆ V2
or vw ∈ X ⊆ V1, and hence this edge either is of the first or third type of edge considered here.

• Edges between two vertices in V1. Some edges cross the considered gap in sequence f ′′ but not the considered gap in
f ′ (shown in bold in Fig. 4), and other edges this is just the opposite (shown as a dotted line in Fig. 4). Note that we
have exactly n f (j1) edges of this type that cross the gap in f ′′ , and n f (j) edges of this type that cross the gap in f ′ ,
for some j, j1 ! j ! j2. (In Fig. 4, the last vertex in V1 before the gap in f ′ is f −1(j1 + 1), and hence this number
is n f (j1 + 1).) As n f (j1) = min j1! j! j2 n

f (j), the number of edges of this type crossing the gap in f ′′ is at most the
number of edges of this type crossing the gap in f ′ .

We conclude that the number of edges crossing the gap after v ′ in f ′′ is at most the number of edges crossing the gap
after v ′ in f ′ , hence is at most k.

The last type of gap we consider is a gap in the sequence part f ′[f −1(j1 +1), f −1(j2)] in f ′′ , i.e., after a vertex v ′′ ∈ V1,
as illustrated in Fig. 5 (second part). This gap will be compared with the gap after f −1(j2) in f ′ . We distinguish the
following types of edges crossing the considered gap in f ′′:

• Edges between vertices in V2. Again, the same edges will cross both gaps.
• Edges between a vertex in v1 ∈ V1 and a vertex in v2 ∈ V2. Again, v1 ∈ X or v2 ∈ X , and hence each such edge is of

the first or third type of edges.
• Edges between two vertices in V1. There are n f (j2) such edges for the gap in f ′ , and n f (j) such edges for the gap in

f ′′ , for some j, j1 ! j ! j2. As we have for each such j, n f (j2) " n f (j), the number of edges of this type crossing the
gap in f ′′ is at most the number of edges of this type crossing the gap in f ′ .

We can conclude that the number of edges crossing the gap after v ′′ in f ′′ is at most this number for the sequence f ′ ,
hence again at most k. Thus, it follows that the cutwidth of f ′′ is at most k. !

A similar lemma can be proved for the case that n f (j1) = max j1! j! j2 n
f (j) and n f (j2) = min j1! j! j2 n

f (j), and all other
conditions are as in the lemma. The main reason why this lemma is interesting is the following corollary.

Corollary 7. Consider the non-deterministic decision algorithm. Suppose at some point, a sequence s1 · s2 · s3 , with s2 = n1 − n2 −
· · · − nq. s2 does not contain a character of the form tr . Suppose it holds that n1 = min{n1, . . . ,nq} and nq = max{n1, . . . ,nq}, or that
n1 = max{n1, . . . ,nq} and nq = min{n1, . . . ,nq}. Then, if there is an extension of the sequence that corresponds to a linear order of G
of cutwidth at most k, there is such an extension that does not insert any vertex on the gaps corresponding to the numbers n2, . . . ,nq−1
in substring s2 .

This gives an obvious modification to the non-deterministic algorithm: when choosing where to insert a vertex, forbid
to insert a vertex on any of the gaps n2, . . . ,nq−1, as indicated in Corollary 7. But then we may note that when we do not

H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244 237

Fig. 5. Illustration with the proof of Lemma 6.

insert at the gaps corresponding to these numbers n2, . . . ,nq−1, we can actually forget these numbers: any insertion of a
vertex that would increase the number of edges that crosses a gap corresponding to such a number also will cross the gap
with value maxn1,nq , and thus we can drop the numbers n2, . . . ,nq−1 from the sequence.

The discussion leads to observing that the following non-deterministic algorithm indeed also correctly decides whether
the cutwidth is at most k. The insertion of a vertex is still done as in Section 3.2; the main difference in the algorithm
below is in the compression operation.

1. Start with the sequence 0.
2. Now, go through the nice path decomposition from left to right. If we deal with the ith node of the path decomposition,

then:
(a) If the ith node is an introduce node of the form I(r, S), then we insert tr non-deterministically at some gap in the

sequence such that the resulting sequence has cutwidth at most k. If there is no such gap, the algorithm halts and
rejects.

(b) If the ith node is a forget node of the form F (r), then we replace tr in the sequence by a symbol −.
(c) In both cases, check if the sequence has a substring of the form n1 − n2 − · · · − nq with {n j1 ,n j2 } = {min j1! j! j2 n j,

max j1! j! j2 n j}. If so, replace the substring n1 −n2 − · · · −nq with the substring n1 −nq . Repeat this step until such
a replacement is no longer possible. (We call this a compression operation.)

3. If all nodes of the path decompositions have been handled, then we output yes.

A sequence of integers that does not have a substring of length at least three n1 . . .nq , with n1 = min1!i!q ni , and
nq = max1!i!q ni , or n1 = max1!i!q ni , and nq = min1!i!q ni is called a typical sequence. Note that every sequence formed
by the algorithm has between every two successive terminals always a typical sequence (with “−”-symbols between each
pair of successive integers). In [8, Lemma 3.5], it is shown that there are at most 8

32
2k typical sequences of the integers in

{0,1, . . . ,k}. This means that the number of possible sequences that can be formed in the algorithm actually is bounded by
a function of k (we have a constant number of terminals, and between each pair of terminals a string from some constant
size set); i.e., is bounded by a constant if we assume that k is a constant. In [21, Lemma 3.2], it is shown that this number
of sequences is at most k!(8322k)k+1.

This implies that the algorithm can actually be viewed as a NDFSA. The input to the automaton is a string that describes
the nice path decompositions; with symbols from the finite alphabet {I(r, S) | 1 ! r ! k + 1, S ⊆ {1, . . . ,k + 1}} ∪ {F (r) |
1 ! r ! k + 1}, i.e., the input string is the sequence of successive introduce and forget operations that give the nice path
decomposition. The states of the automaton are the different strings that can be formed during the process: as there is a
finite number of different such strings, the number of states is finite. The possible next states are determined by the symbol
(the type of node we deal with in the path decomposition), possibly a non-deterministic choice (where to insert the new
vertex) and the old state (the sequence to which the vertex is inserted or the sequence where the forgotten node is replaced
by an −).

We now have arrived at an algorithm that actually is just a NDFSA (in some disguise). As for every NDFSA, there is an
equivalent DFSA, and the latter one corresponds to a linear time algorithm solving the decision problem, we directly have a

238 H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244

Fig. 6. Example of part of data structure. v and z are active vertices.

Fig. 7. The data structure after insertion of a vertex y; y is assumed to be only adjacent to v and z.

proof of the existence of a linear time decision algorithm for the cutwidth −k problem, k fixed. This will be made explicit
below; we will also show how to construct the corresponding sequences.

3.6. Constructive non-deterministic finite state automaton

In this step, we give a version of the NDFSA of the previous step that also is constructive, i.e., it can construct the linear
ordering of cutwidth at most k, if it exists.

To this end, we augment the algorithm of the previous step by maintaining besides the compressed sequence, denoted
here as s, also a linear ordering of the vertices inserted so far, here denoted as π . π is implemented as a linked list, with in
addition a record for every gap that still appears in s. s is also a linked list, with separate records for the vertices appearing
in s, and the gaps (i.e., integer numbers); with for each element in the list an additional pointer to the corresponding
element in the data structure for π . An example is given in Fig. 6.

1. Start with s to be the sequence 0, and π a list with one record; with a pointer from the record in s to the record in π .
2. Now, go through the nice path decomposition from left to right. If we deal with the ith node of the path decomposition,

then:
(a) If the ith node is an introduce node of the form I(r, S), then we insert tr non-deterministically at some gap in the

sequence such that the resulting sequence has cutwidth at most k. In addition, the data structure is used to also
insert tr in the sequence π , on ‘the same place.’ If there is no such gap, the algorithm halts and rejects.

(b) If the ith node is a forget node of the form F (r), then we replace tr in the sequence by a symbol −.
(c) In both cases, check if the sequence has a substring of the form n1 − n2 − · · · − nq with {n j1 ,n j2 } = {min j1! j! j2 n j,

max j1! j! j2 n j}. If so, replace the substring n1 −n2 − · · · −nq with the substring n1 −nq . Repeat this step until such
a replacement is no longer possible. (We call this a compression operation.)

3. If all nodes of the path decompositions have been handled, then we output π .

From Fig. 7 we see how an insertion can be done. The figure shows the fragment of the data structure after insertion of
a vertex y, where y is assumed to be adjacent to terminals v and z. By following the pointer from the gap in s in which tr
is inserted, we find the corresponding gap in π , and hence s keeps being a representation of π .

One can easily see that each node of the path decomposition can be handled with a constant number of operations, so
we still have a non-deterministic linear time algorithm. In the next section, we will turn to a deterministic algorithm, but
the construction of the linear ordering for the deterministic algorithm is there postponed to a later section (Section 3.8).

3.7. A deterministic decision algorithm

As is known for finite state automata, NDFSA’s recognize the same set of languages as DFSA’s. We can employ the
(actually simple) tabulation technique here too, and arrive at our deterministic algorithm. Thus, we take the algorithm of
Section 3.5, and make it deterministic, using this technique.

H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244 239

1. Start with a set of sequences A0 that initially contains one sequence 0.
2. Now, go through the nice path decomposition from left to right. If we deal with the ith node of the path decomposition,

then:
(a) Set Ai = ∅ and Bi = ∅.
(b) If the ith node is an introduce node of the form I(r, S), then perform the following step for every sequence s ∈ Ai−1:

For every gap in the sequence s, look to the sequence s′ obtained by inserting tr in s in that gap. If s′ has
cutwidth at most k and s′ /∈ Bi , then insert s′ in Bi .

(c) If the ith node is a forget node of the form F (r), then for every sequence s ∈ Ai−1, let s′ be the sequence obtained
by replacing tr in s by a symbol −. If s′ /∈ Bi , then insert s′ in Bi .

(d) In both cases, perform the following step for every s ∈ Bi :

Check if s has a substring of the form n1 − n2 − · · · − nq with {n j1 ,n j2 } = {min j1! j! j2 n j,max j1! j! j2 n j}. If so,
replace the substring n1 − n2 − · · · − nq with the substring n1 − nq . Repeat this step until such a replacement is
no longer possible. Let s′ be the resulting sequence. If s′ /∈ Ai , then insert s′ in Ai .

3. If all r nodes of the path decompositions have been handled, then we output yes, if and only if Ar += ∅.

What we did above is just tabulate all possible sequences the non-deterministic algorithm can attain at its steps, thus
arriving at an equivalent deterministic algorithm.

We mentioned earlier that the number of possible sequences is bounded by a function of k (k!(8322k)k+1 by [21]); thus,
if k is fixed, each set S is of constant size. Hence, the algorithm above uses linear time.

In the next final step we see how this deterministic decision algorithm can be turned into a constructive one, i.e., one
that also constructs a linear ordering of cutwidth at most k if there is one.

3.8. A deterministic decision algorithm that also can construct the sequence

To turn the deterministic decision algorithm of the previous step into a deterministic algorithm that also can construct
a linear ordering of cutwidth at most k, and still uses linear time, we employ the standard tabulation technique, often
used to turn dynamic programming decision algorithms into constructive algorithms, and the data structure for the non-
deterministic constructive algorithm. Basically, we first decide whether the cutwidth of the input graph is at most k, then
determine the sequence of choices that should be made by the non-deterministic algorithm to lead to acceptance, and then
run the ‘non-deterministic constructive algorithm,’ but with these choices.

Thus, our algorithm has three phases. The first phase is similar to the deterministic decision algorithm, but does a little
more bookkeeping. We maintain sets of triples; the first element is as in the previous algorithm, while the second is either
a sequence or the default − symbol, and the third an integer (denoting a gap where a vertex is inserted) or the default −
symbol (used in case of a forget operation). The meaning of the second element of the triple is as follows. The − symbol is
only used for the first empty sequence at the start of the algorithm. In all other cases, the second element is the sequence
before the introduce or forget operation. So, e.g., in case of a node of type I(r, S), a triple (s, s′, j) means that if we insert
tr in s′ at the jth gap, and then compress, we obtain s.

Below, we use ∗ to denote any possible value.

1. Start with a set A0 that initially contains one triple 〈0,−,−〉.
2. Now, go through the nice path decomposition from left to right. If we deal with the ith node of the path decomposition,

then:
(a) If the ith node is an introduce node of the form I(r, S), then perform the following step for every element of the

form 〈s,∗,∗〉 ∈ Ai−1:

For every gap in the sequence s, look to the sequence s′ obtained by inserting tr in s in that gap. Suppose this is
the jth gap in s. If s′ has cutwidth at most k, then insert the triple 〈s′, s, j〉 in the set Bi .

(b) If the ith node is a forget node of the form F (r), then for every element of the form 〈s,∗,∗〉 ∈ Ai−1, let s′ be the
sequence obtained by replacing tr in s by a symbol −. Insert 〈s, s′′,−〉 in Bi .

(c) In both cases, perform the following step for every 〈s, s′′, j〉 ∈ Bi :

Check if s has a substring of the form n1 − n2 − · · · − nq with {n j1 ,n j2 } = {min j1! j! j2 n j,max j1! j! j2 n j}. If so,
replace the substring n1 − n2 − · · · − nq with the substring n1 − nq . Repeat this step until such a replacement is
no longer possible. Let s′ be the resulting sequence. If there is no triple of the form 〈s′,∗,∗〉 in Ai , then insert
〈s′, s′′, j〉 in Ai .

3. If Ar = ∅, then halt: the cutwidth of G is more than k.
4. Select a triple qr = 〈sr, sr−1,α〉 from Ar .
5. For i = r − 1 downto 1 do (i.e., go through the nice path decomposition from right to left): select a triple of the form

qi = 〈si, s′,α〉 from Ai , and set s=s′ .

240 H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244

6. Set i = 0, let s = s0 be the sequence 0, and π a list with one record with a pointer from the record in s0 to the record
in π .

7. Now, go through the nice path decomposition from left to right. If we deal with the ith node of the path decomposition,
then
(a) If the ith node is an introduce node of the form I(r, S), then suppose qi = 〈si, si−1, ji〉. Then, we insert tr at gap j

in sequence s = si−1. In addition, the data structure is used to also insert tr in the sequence π , on ‘the same place.’
(b) If the ith node is a forget node of the form F (r), then we replace tr in the sequence by a symbol −.
(c) In both cases, do the compression operation. Now, s = s0.

8. If all nodes of the path decompositions have been handled, then we output π .

This final step consisted mainly of an implementation of the standard technique of transforming a dynamic programming
algorithm that decides upon a problem to one that also constructs the corresponding solution if it exists. The additional
work, compared with the algorithm of the previous step is clearly linear in the number of nodes of the tree decomposition.
Thus, we have obtained Theorem 5.

4. Other problems

In this section, we show that the technique can be applied to several other problems. At one hand, we give variants of
the cutwidth problem and discuss how the method of the previous section can be modified to handle these as well; at the
other hand, for some problems we give a transformation that enables to solve the problem with help of an algorithm for
another problem.

4.1. Directed cutwidth

In the directed cutwidth problem, we have a directed acyclic graph G = (V , A), and look for a topological sort (i.e.,
a linear order f such that for all arcs (v, w) ∈ A: f (v) < f (w) with minimum cutwidth, where the cutwidth is defined as
usual). One can observe that basically the same algorithm can be used for this problem as for the undirected case: when
inserting a vertex, only those insertions can be done that have no arcs directed in the wrong way. To be precise, consider
the linear orders f , f ′ and f ′′ from Lemma 6. A simple case analysis shows that if for every arc (v, w) ∈ A: f (v) < f (w)
and f ′(v) < f ′(w), then we also have that for every arc (v, w) ∈ A: f ′′(v) < f ′′(w). Hence, Corollary 7 holds also for the
directed cutwidth problem, and thus we can derive, exactly as for cutwidth the following result.

Theorem 8. For each k, there is a linear time algorithm, that given a directed acyclic graph G, decides if the directed cutwidth of G is
at most k, and if so, finds a topological sort of G with cutwidth at most k.

4.2. Mixed graphs

Also, one can solve the cutwidth problem for mixed graphs: given a mixed graph G = (V , E, A), where E is the set of
undirected arcs, and A is the set of arcs, we look for a linear order such that for every arc (v, w) ∈ A: f (v) < f (w), of
minimum cutwidth. Again, this problem can be solved with the same method.

4.3. Weighted graphs

Suppose the edges (or arcs) have (small) integer weights (in {0,1, . . . ,k}). The cutwidth is now modified accordingly, by
adding the weights of edges across cuts. When given a path decomposition of the input graph, the method described in the
previous section still works as we can again prove variants of Lemma 6 and Corollary 7 for the case of weighted graphs.
Note that now, it may be that G has pathwidth more than k, in cases where there are several edges of weight 0, and thus
we assume we are given a path decomposition of G of bounded width. (This assumption is not necessary when all weights
are at least one, as in that case, any positive instance must have bounded pathwidth.)

Theorem 9. For each fixed k, l, there exists a linear time algorithm, that given a graph G whose edges have integer weights in
{0,1, . . . ,k} with a path decomposition of G of width at most l, decides if the weighted cutwidth of G is at most k, and if so, finds
a linear ordering of G of weighted cutwidth at most k.

For the directed weighted variant of the problem, we similarly get the following result.

Theorem 10. For each fixed k, l, there exists a linear time algorithm, that given a directed acyclic graph G whose arcs have integer
weights in {0,1, . . . ,k} with a path decomposition of G of width at most l, decides if the weighted directed cutwidth of G is at most k,
and if so, finds a topological sort of G of weighted directed cutwidth at most k.

H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244 241

4.4. Pathwidth

The pathwidth problem can also be solved in this way. There are several methods to solve the pathwidth problem.
Instead of solving it directly, as is done in [8], we now instead model it as a weighted cutwidth problem on a directed
graph, showing how the pathwidth problem can be translated to weighted directed cutwidth.

However, a direct derivation of an algorithm for pathwidth, similar to our derivation of the cutwidth problem is also
possible—however, it seems that such an algorithm would be essentially the same as the algorithm obtained by the modifi-
cation given here.

Let G = (V , E) be an undirected graph. The directed weighted graph GM is defined as follows:

• GM has vertices V M = {bv | v ∈ V } ∪{ ev | v ∈ V }.
• GM has two types of arcs. For every v ∈ V , we have an arc (bv , ev) of weight 1. For every {v, w} ∈ E , we have two arcs

(bv , ew) and (bw , ev), both of weight 0.

Lemma 11. Let G be an undirected graph. Then G has pathwidth at most k, if and only if GM has weighted directed cutwidth at
most k + 1.

Proof. Suppose (X1, . . . , Xr) is a nice path decomposition of G . Now, let f be the linear order of GM , defined by f (bv) = i,
if Xi is an introduce node that introduces v , and f (ev) = i, if Xi is a forget node that forgets v .

We claim that f is a topological sort of G of cutwidth at most k+1. As for every v , the node that introduces v is before
the node that forgets v , we have that f (bv) < f (ev). Also, for every edge {v, w} ∈ E , there must be a node that contains
both v and w . Hence, we cannot forget v before w is introduced, and vice versa, so f (bv) < f (ew) and f (bw) < f (ev).

The cutwidth of f is at most k + 1. Consider an i. Consider the arcs (bv , ev) with f (bv) ! i < f (ev)—the other arcs have
zero weight. For each such arc, we have that v ∈ Xi , hence there are at |Xi| ! k + 1 such arcs.

The reverse is similar. !

Lemma 12. Let G be a graph of pathwidth at most k. Then, GM has pathwidth at most 2k + 1.

Proof. Replace in a path decomposition of G every vertex v in each bag by the vertices bv and ev . !

These two lemmas show.

Theorem 13. (See Bodlaender, Kloks [8].) For each fixed k, l, there exists a linear time algorithm, that given a graph G with a path
decomposition of G of width at most l, decides if the pathwidth of G is at most k, and if so, finds a path decomposition of G of width at
most k.

Proof. First build a path decomposition of GM of width at most 2l + 1 (see Lemma 12). Then, check if GM has weighted
directed cutwidth at most k+ 1 (see Lemma 11). This check can be done in the same way as the cutwidth problem (see the
discussions in the previous sections). !

An algorithm that does not make use anymore of the notion of cutwidth can be also derived as a final step. We will not
elaborate this, as, while the details are not difficult, they would require significant space.

This step can be used as a subroutine in the algorithm given in [5] to obtain a linear time algorithm to determine
whether the pathwidth of a graph is at most k and construct a corresponding path decomposition if it exists, for constant k.

4.5. Directed vertex separation number

The directed vertex separation number problem is the following: suppose we are given a directed acyclic graph G =
(V , A), find a topological sort of G with minimum vertex separation number, where the vertex separation number of
ordering f : V → {1, . . . , |V |} equals

max
v∈V

∣∣{w ∈ V
∣∣ f (w) < f (v) ∧ ∃{w, x} ∈ A: f (x) " f (v)

}∣∣.

Kinnersley [14] showed that for undirected graphs, the vertex separation number equals the pathwidth, hence this notion
can be seen as a directed variant of pathwidth.

In [2], Bodlaender, Gustedt and Telle gave the result that this problem is linear time solvable. Now, we give a simpler
proof of that fact, similar to the proof of the previous section.

Actually, this can be handled almost identical to the translation of pathwidth to directed cutwidth. Let G = (V , A) be a
directed acyclic graph. The weighted directed acyclic graph GD = (V D , AD) is defined as follows:

242 H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244

• GD has vertices V D = {bv | v ∈ V } ∪{ ev | v ∈ V }.
• GD has two types of arcs. For every v ∈ V , we take an arc (bv , ev) of weight 1. For every arc (v, w) ∈ A, we take arcs

(bv ,bw) and (bw , ev) of weight 0.

Lemma 14. Let G be a directed acyclic graph. G has directed vertex separation number at most k, if and only if GD has weighted
directed cutwidth at most k + 1.

Proof. First, suppose we have a topological sort g of GD of weighted directed cutwidth at most k+1. Then, take the ordering
f of G with f (v) < f (w) ⇔ g(v) < g(w). As for every (v, w) ∈ A, (bv ,bw) ∈ AD hence bv < bw , this is a topological sort.
We claim that this sort has directed vertex separation number at most k. Consider, for a vertex v , the set J v = {w ∈ V |
f (w) < f (v) ∧ ∃(w, x) ∈ A: f (x) " f (v)}. If w ∈ J v , then bw < bv , and there is a vertex x with {w, x} ∈ A and f (v) ! f (x).
Hence, bw < bv ! bx < ew , so the arc (bw , ew) ‘crosses’ the gap after bv . As (bv , ev) also crosses this gap, there can be at
most k vertices in J v .

Now, suppose we have a topological sort f of G of directed vertex separation number at most k. Make a sort of GD in
the following way: first sort the vertices bv , v ∈ V in the same order as the corresponding vertices are ordered in f . Now,
for every vertex w ∈ V , look to the highest numbered vertex v with (v, w) ∈ A, and insert ew in the ordering after bv and
before the next vertex of the form bx . The number of arcs crossing a gap is bounded by k + 1. Consider a gap, and suppose
v is the last vertex such that bv is before this gap. Then, the gap can be crossed by arc (bv , ev), and arcs (bw , ew) with
w ∈ J v , but not by other arcs of weight one. !

Thus, this lemma shows that we can translate the directed vertex separation number problem to a directed weighted
cutwidth problem, and hence have a constructive proof of the following result.

Theorem 15. (See [2].) For each k, there is a linear time algorithm, that given a directed acyclic graph G, decides if the directed vertex
separation number of G is at most k, and if so, finds a topological sort of G with directed vertex separation number at most k.

4.6. Modified cutwidth

In [13], it is shown that the modified cutwidth problem can be transformed to the Gate Matrix Layout problem, which
on its turn can be transformed to the Pathwidth problem (see [12,17]). Below, we describe the resulting transformation from
modified cutwidth to pathwidth.

Let G = (V , E) be a graph, and k be an integer. First, we add to each vertex v ∈ V , 2k + 2 − d self loops (edges from v
to v). Let G ′ = (V , E ′) be the resulting graph with self loops. Let H = (E, F) be the edge graph of G ′ , i.e., the vertex set of
H is the edge set of G ′ , and we have for each pair e, e′ ∈ E: {e, e′} ∈ F , if and only if e += e′ and e and e′ have at least one
endpoint in common.

Lemma 16. The modified cutwidth of G is at most k, if and only if the pathwidth of H is at most 3k + 1.

Proof. Write n = |V |. Suppose we have a linear ordering f of G of modified cutwidth at most k. Take the path decompo-
sition (X1, . . . , Xn) with for all i, 1 ! i ! n, Xi the set of vertices in H representing edges in G ′ that either that f −1(i) as
an endpoint, or have endpoints f −1(j1) and f −1(j2) with j1 < i < j2 or j2 < i < j1. As there are precisely 2k + 2 edges of
the former type by construction, and at most k edges of the latter type (as f has modified cutwidth at most k), for each i,
1 ! i ! n, |Xi| ! 3k + 2.

Let (X1, . . . , Xr) be a path decomposition of H of width at most 3k + 1. For each v ∈ V , let E ′
v be the set of edges in G ′

that have v as endpoint. E ′
v forms a clique in H . By a well-known property of path decompositions, there is an iv ∈ I with

E ′
v ⊆ Xiv . If v += w , then iv += iw as |Ev ∪ Ew | " 4k+3. Let f be the linear ordering of G with for all v , w ∈ V : f (v) < f (w),

if and only if iv < iw . We claim that the modified cutwidth of f is at most k. Consider a vertex u ∈ V , and look to the
edges e = {v, w} with f (v) < f (u) < f (w). We have iv < iu < iw , and e ∈ Xiv , e ∈ Xiw , hence e ∈ Xiu . As Xiu contains 2k+2
vertices representing an edge with u as endpoint, there can be at most k edges with f (v) < f (u) < f (w). !

As the proof also shows how to translate a path decomposition of H of width at most 3k + 2 to a linear ordering of G
of modified cutwidth at most k, we have a constructive proof of the following theorem.

Theorem 17. For each k, there is a linear time algorithm, that given a graph G, decides if the modified cutwidth of G is at most k, and
if so, finds a linear ordering of G with modified cutwidth at most k.

4.7. Directed modified cutwidth

Similar to the directed cutwidth, the directed modified cutwidth of a directed acyclic graph G = (V , A) is the minimum
directed modified cutwidth of a topological sort f of G . We have the following result.

H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244 243

Theorem 18. For each k, there is a linear time algorithm, that given a directed acyclic graph G, decides if the directed modified cutwidth
of G is at most k, and if so, finds a topological sort of G with directed modified cutwidth at most k.

The result follows from a transformation from directed modified cutwidth to directed weighted cutwidth.
Let G = (V , A) be a directed acyclic graph. The weighted directed acyclic graph GQ = (V Q , AQ) is defined as follows.

• V Q = {bv | v ∈ V } ∪{ ev | v ∈ V }.
• GQ has two types of arcs. For every v ∈ V , we take an arc (bv , ev) of weight k + 1. For every arc (v, w) ∈ A, we take

an arc (ev ,bv) of weight 1.

Lemma 19. G has directed modified cutwidth at most k, if and only if GQ has weighted directed cutwidth at most 2k + 1.

Proof. Suppose f is a topological sort of G of modified cutwidth at most k. Set for all v ∈ V , g(bv) = 2 f (bv) − 1 and
g(ev) = 2 f (ev). g is a topological sort of GQ of weighted cutwidth at most 2k + 1.

Suppose g is a topological sort of GQ of weighted cutwidth at most 2k+1. For v, w ∈ V , v += w , we have [g(bv), g(ev)]∩
[g(bw), g(ew)] = ∅, as we would otherwise have a contradiction with the weighted cutwidth of g . So, for all v ∈ V , g(ev) =
g(bv) + 1, and we can set f (v) = g(ev)/2. For each arc (v, w) ∈ A, g(ev) < g(bw) < g(ew), hence f (v) < f (w), so f is
a topological sort of G . Consider a vertex u. For each arc (v, w) ∈ A with f (v) < f (u) < f (w), the arc (ev ,bw) crosses
the spot between bu and eu . As the arc (bu, eu) also crosses this spot and has weight k + 1, there can be at most k arcs
(v, w) ∈ A with f (v) < f (u) < f (w). !

Theorem 18 now follows from Lemma 19 and Theorem 10.

5. Conclusions

The techniques described here only deal with problems where a linear order has to be found, and as common charac-
teristic we have that yes-instances have bounded pathwidth. Similar algorithms are known however for graphs of bounded
treewidth (like branchwidth [9], carving width [21] and treewidth itself [8,16]—see also [22]). In order to be able to present
or extend such algorithms like we did above, additional techniques have to be added to the machinery. In particular, there
are two additional complications that must be mastered:

• The desired output of the problem has a tree structure. Basically, one should show that certain parts of the tree (tree-
decomposition or branch-decomposition) are ‘not interesting’ and can be forgotten in the decision algorithm, and that
the remainder of the tree then can be formed by gluing a constant number of paths together.

• The input has bounded treewidth, thus a nice tree decomposition can be formed. We now have, in addition to the
introduce and forget operations, a join operation, where two partial solutions of two subgraphs have to be combined,
basically by ‘interleaving’ these two.

The constant factors of the algorithms resulting from the methodology presented in this paper are very large. To improve
upon these factors, especially so that the resulting algorithms have implementations that run fast enough for moderate
values of k, is a remaining challenge (see also [20]).

References

[1] K.R. Abrahamson, M.R. Fellows, Finite automata, bounded treewidth and well-quasiordering, in: N. Robertson, P. Seymour (Eds.), Proceedings of the
AMS Summer Workshop on Graph Minors, Graph Structure Theory, in: Contemp. Math., vol. 147, Amer. Math. Soc., 1993, pp. 539–564.

[2] H. Bodlaender, J. Gustedt, J.A. Telle, Linear-time register allocation for a fixed number of registers, in: Proceedings of the Ninth Annual ACM–SIAM
Symposium on Discrete Algorithms, San Francisco, CA, 1998, ACM, New York, 1998, pp. 574–583.

[3] H.L. Bodlaender, Treewidth: Algorithmic techniques and results, in: I. Privara, P. Ruzicka (Eds.), Proceedings 22nd International Symposium on Mathe-
matical Foundations of Computer Science, MFCS’97, in: Lecture Notes in Comput. Sci., vol. 1295, Springer-Verlag, Berlin, 1997, pp. 19–36.

[4] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1–45.
[5] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (1996) 1305–1317.
[6] H.L. Bodlaender, M.R. Fellows, P.A. Evans, Finite-state computability of annotations of strings and trees, in: Proc. Conference on Pattern Matching, 1996,

pp. 384–391.
[7] H.L. Bodlaender, M.R. Fellows, D.M. Thilikos, Starting with nondeterminism: The systematic derivation of linear-time graph layout algorithms, in:

B. Rovan, P. Vojtáš (Eds.), Proceedings 28th International Symposium on Mathematical Foundations of Computer Science, MFCS’03, in: Lecture Notes in
Comput. Sci., vol. 2747, Springer-Verlag, Berlin, 2003, pp. 239–284.

[8] H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Algorithms 21 (1996) 358–402.
[9] H.L. Bodlaender, D.M. Thilikos, Constructive linear time algorithms for branchwidth, in: P. Degano, R. Gorrieri, A. Marchetti-Spaccamela (Eds.), Pro-

ceedings 24th International Colloquium on Automata, Languages, and Programming, in: Lecture Notes in Comput. Sci., vol. 1256, Springer-Verlag, 1997,
pp. 627–637.

[10] M.-H. Chen, S.-L. Lee, Linear time algorithms for the k-cutwidth problem, in: Proceedings Third International Symposium on Algorithms and Computa-
tion, ISAAC’92, in: Lecture Notes in Comput. Sci., vol. 650, Springer-Verlag, Berlin, 1992, pp. 21–30.

[11] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness I: Basic results, SIAM J. Comput. 24 (1995) 873–921.

244 H.L. Bodlaender et al. / Journal of Computer and System Sciences 75 (2009) 231–244

[12] M.R. Fellows, M.A. Langston, An analogue of the Myhill–Nerode theorem and its use in computing finite-basis characterizations, in: Proceedings of the
30th Annual Symposium on Foundations of Computer Science, 1989, pp. 520–525.

[13] M.R. Fellows, M.A. Langston, On well-partial-order theory and its application to combinatorial problems of VLSI design, SIAM J. Discrete Math. 5 (1992)
117–126.

[14] N.G. Kinnersley, The vertex separation number of a graph equals its path width, Inform. Process. Lett. 42 (1992) 345–350.
[15] N.G. Kinnersley, W.M. Kinnersley, Tree automata for cutwidth recognition, Congr. Numer. 104 (1994) 129–142.
[16] J. Lagergren, S. Arnborg, Finding minimal forbidden minors using a finite congruence, in: Proceedings of the 18th International Colloquium on Automata,

Languages and Programming, in: Lecture Notes in Comput. Sci., vol. 510, Springer-Verlag, 1991, pp. 532–543.
[17] R.H. Möhring, Graph problems related to gate matrix layout and PLA folding, in: E. Mayr, H. Noltemeier, M. Sysłoand (Eds.), Computational Graph

Theory, in: Comput. Suppl., vol. 7, Springer-Verlag, 1990, pp. 17–51.
[18] B. Monien, I.H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoret. Comput. Sci. 58 (1988) 209–229.
[19] N. Robertson, P.D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983) 39–61.
[20] M. Serna, D.M. Thilikos, Parameterized complexity for graph layout problems, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 86 (2005) 41–65.
[21] Dimitrios M. Thilikos, Maria Serna, Hans L. Bodlaender, Cutwidth. I. A linear time fixed parameter algorithm, J. Algorithms 56 (1) (2005) 1–24.
[22] Dimitrios M. Thilikos, Maria Serna, Hans L. Bodlaender, Cutwidth. II. Algorithms for partial w-trees of bounded degree, J. Algorithms 56 (1) (2005)

25–49.

	Derivation of algorithms for cutwidth and related graph layout parameters
	Introduction
	Definitions
	An algorithm for cutwidth
	A non-deterministic algorithm
	A non-deterministic algorithm that counts edges
	A non-deterministic decision algorithm
	A non-deterministic algorithm that also can construct the sequence
	A non-deterministic finite state automaton
	Constructive non-deterministic finite state automaton
	A deterministic decision algorithm
	A deterministic decision algorithm that also can construct the sequence

	Other problems
	Directed cutwidth
	Mixed graphs
	Weighted graphs
	Pathwidth
	Directed vertex separation number
	Modified cutwidth
	Directed modified cutwidth

	Conclusions
	References

