
Monotonicity and Inert Fugitive Search

Games

Yannis C. Stamatiou 1

Department of Computer Engineering and Informatics,
Patras University, Rio, 265 00 Patras, Greece. e-mail: stamatiu@ceid.upatras.gr

Dimitrios M. Thilikos 2

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya, Campus Nord – Mòdul C5, Desp. 211b, c/Jordi Girona Salgado, 1-3.

E-08034, Barcelona, Spain. email: sedthilk@lsi.upc.es

Abstract

In general, graph search can be described in terms of a sequence of searchers’ moves
on a graph, able to capture a fugitive resorting on its vertices/edges. Several varia-
tions of graph search have been introduced, differing on the abilities of the fugitive
as well as of the search. In this paper, we examine the case where the fugitive is
inert, i.e., it moves only whenever the search is about to capture it. Mainly, there
are two variants for “clearing” an edge during a search: when a sliding of a searcher
occurs along the edge or when both its endpoints are simultaneously occupied by
searchers. These variants define the inert edge search and the inert node search re-
spectively. A third search variant, the inert mixed search, is defined when both ways
of clearing an edge are possible. As we show, inert search and inert mixed search are
equivalent (surprisingly, this is not the case if we discard the inertness property).
Moreover, we prove that, in any case, by restricting the searches to only those that
always reduce further the fugitive’s possible resorts, does not give any advantage
to the fugitive (this monotonicity property is usually expressed as: “recontamina-
tion does not help”). So far, the only monotonicity result on inert search concerns
inert node search and our results yield a much simpler proof of that result as well.
Furthermore, we define a new graph-theoretic parameter, the proper-treewidth, in
analogy to the parameter proper-pathwidth, and prove it equivalent to the inert
mixed search game. Last, we prove that proper-treewidth, in turn, is equivalent to
a known graph theoretic parameter related to treewidth.

Preprint submitted to Elsevier Preprint 20 December 2007

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός
6th Twente Workshop on Graphs and Combinatorial Optimization CTW 1999, University of
Twente, Enschede, 1999. Εμφανίστηκε στο: Electronic Notes on Discrete Mathematics, H.J. Broersma, U. Faigle, C. Hoede, and J.L. Hurink (eds.), Vol. 3, Elsevier Science Publishers, April 2000.

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός

1 Introduction

We consider loopless, undirected connected graphs that may have multiple
edges. On an informal level, we intend to capture a fugitive that resides on
the vertices or edges of a graph. For the purposes of our game, it is convenient
to view the graph as a model representing a system of tunnels where a fugitive
hides. A search is a sequence of searchers’ moves that can be of the following
three types:

(i) Removal of a searcher from vertex v.
(ii) Placement of a searcher on vertex u.
(iii) Sliding of a searcher that currently resides on v along an edge {v, u} (after
this move, the searcher is supposed to reside on vertex u).

We consider the fugitive to be inert: it moves only when the search is about
to capture it and this can happen when it currently resides on some vertex v
and the next step of the search involves a move of type (ii) or (iii) that will
have as a result the placement of a searcher on v. Moreover, the fugitive is
fast: whenever it moves, it can go to any unguarded vertex moving along any
unguarded path. We also assume that the fugitive is invisible: the search is
given in advance and no further knowledge based on the moves of the fugitive
can be exploited. Finally, the fugitive is omniscient: it has complete knowledge
of our search and whenever it moves, it always chooses the most advantageous
position for it.

After each step of the search, we call the locations where the fugitive could
resort contaminated, otherwise we call them clear. (A location can be a vertex
or an edge.) Initially, only the fugitive resides on the graph and all the locations
of the graph are contaminated. After each move, new locations are declared
clear and it is possible that locations that have already been cleared, to be
recontaminated. Certainly, a vertex is declared clear whenever a searcher is
placed on it. On the other side, there are two possible ways for an edge to be
declared clear:

A: if both its endpoints are occupied by a searcher or

1 The research of the first author was performed while he was visiting the School of
Computer Science of Carleton University, and was supported by the Greek Ministry
of National Economy through a NATO scholarship for conducting postdoctoral
studies (contract number 106384/∆OO 1222/2-7-98).
2 The research of the second author was partially supported by the Natural Sciences
and Engineering Research Council of Canada (while he was visiting the Department
of Computer Science of the University of Waterloo, Waterloo, Canada) and by
the Ministry of Education and Culture of Spain – Grant no MEC-DGES SB97
0K148809.

2

B: if a searcher slides along it, i.e., a searcher moves from one endpoint of the
edge to the other.

The object of an inert mixed search is to clear all the locations of a graph. The
inert mixed search number of an inert mixed search, is the maximum number
of searchers on the graph during any move. The inert mixed search number of
a graph G, ims(G), is the minimum inert mixed search number, over all the
possible successful inert mixed searches on it. A move causes recontamination
of a clear location, if it causes the appearance of a path without searchers con-
necting it with an already contaminated location. (Recontaminated locations
must be cleared again.) A search without recontamination is called monotone.

The inert node (edge) search, is defined similarly to the inert mixed search
with the difference that an edge can be cleared only if A (B) happens. We
define the inert node (edge) search number of a graph G analogously and we
denote it as ins(G)(ies(G)).

Obviously, the inert edge search and the inert node search are special cases
of the inert mixed search. Moreover, given an inert mixed search, we can
transform it to an inert edge search that uses the same number of searchers,
in the following way: whenever an edge is cleared because of A, we, instead,
clear it by sliding a searcher residing on one of its endpoints towards the other,
i.e. using B. The result of this action will be the same, as the fugitive is inert
and no recontamination can occur during it.

As the essential variations of the inert search are the mixed search and the
node search, we may focus our attention on clearing only the vertices of the
graph and assuming that an edge is automatically considered clear whenever
both its endpoints are clear. We can now give formal definitions of these two
versions.

Given two subsets A, B of a set V , we denote their symmetric difference as
A ! B.

An inert mixed search on a graph G is a sequence S = (S0, . . . , Sr) of sets of
vertices (Si ⊆ V (G), i = 1, . . . , r) where S0 = ∅ and for all i = 1, . . . , r either
|Si ! Si−1| = 1 or Si ! Si−1 induces a single edge in G (we exclude the case
where a multiple edge is induced).

The set of free locations for an inert mixed search is defined as follows:

• F0 = V (G).
• For i = 1, . . . , r, Fi = (Fi−1 − Si) ∪ {v ∈ V (G) − Si : there is a path from
a vertex u ∈ Fi−1 ∩ (Si − Si−1) to v whose vertices are not in Si − {u} and
whose edges are not in E(G[Si ! Si−1])}.

3

Intuitively, an inert fugitive is allowed to move only when a searcher is about
to be placed on the vertex it currently occupies. This is so, because the fugitive
can move away from a vertex u only if u ∈ Fi−1 ∩ (Si − Si−1). A search S is
a search for a vertex set V ⊆ V (G) if Fi = V (G) − V . An inert mixed search
is complete (or it is a inert mixed search on G), if it is a search for V (G).
Observe that the inert mixed search number of S is equal to max{|Si| | i =
0, . . . , r} and that ims(G) is the minimum inert mixed search number over all
the possible complete inert mixed searches on it. A search is called monotone
if ∀1≤i≤rFi ⊆ Fi−1.

If, in the above definitions, we further demand that |Si−1!Si| ≤ 1, we have the
search version for the inert node search introduced and studied in [6]. Clearly,
in this case, E(G[Si−1 ! Si]) is always empty and this expresses the fact that
sliding a searcher is no more possible. If we discard the requirement for the
fugitive to be inert, we have the classic versions of graph search, namely the
(agile) edge-, node-, and mixed- search, defining the parameters es(G), ns(G),
and ms(G) respectively (the crucial difference with our games is that the
fugitive is agile, i.e. it always moves, no matter if the search threatens it or
not). We stress that, in contrast with the inert case agile edge-search is not
equivalent to agile mixed-search.

Edge search was the search game to be defined first, introduced by Breisch [4]
and Parsons [18] (see also [16]). Node search appeared as the first variant
of edge search and was introduced by Kirousis and Papadimitriou in [14].
Finally, mixed search was introduced in [2] and [23]. It is worth mentioning
that ns(G) − 1 and ins(G) − 1 are equal to the pathwidth and the treewidth
of G respectively (see [6,7,12–14,17]). For surveys concerning graph searching
and related parameters see [1,3,9].

The recontamination question for a search game asks whether it is equivalent
to its monotone version, i.e., whether excluding all the non-monotone searches,
reduces the searchers’ ability. If the answer is no, we say that the correspond-
ing search game is monotone or that recontamination does not help. A lot of
research has been done on the recontamination question. The first monotonic-
ity proof was concerned with edge-search and was given by LaPaugh in [15].
The proof of the monotonicity of node-search was given by Kirousis and Pa-
padimitriou in [14] and the one for mixed-search, by Bienstock and Seymour
in [2], where a unifying and relatively simpler proof for all the previous ver-
sions was presented. As far as the inert search games are concerned, the only
version known to be monotone is the inert node search proved in [6]. The proof
is strongly based on the equivalence of ins(G) and treewidth and the existence
of a min-max theorem for treewidth proven by Seymour and Thomas in [21].

In this paper, we prove that recontamination does not help for inert edge
search and, therefore, for the equivalent mixed search as well. Our proof is

4

relatively simple and, as a corollary, yields the monotonicity of inert node
search in a simpler and more direct way than the one used in [6]. The above
are summarized in the following table.

Edge Node Mixed

search search search

Agile LaPaugh ([15]) Kirousis and Bienstock and

fugitive Papadimitriou ([14]) Seymour ([2])

Inert fugitive This paper Dendris et al. ([6]) This paper

In our proof, we follow an approach parallel to the one used by Bienstock and
Seymour in [2]. Our main tool is the concept of an expansion on a graph. In
the next section we give its formal definition and prove the relevant mono-
tonicity result. In sections 3 and 4 we prove the equivalence of the inert mixed
search number with the graph theoretic parameters of proper-treewidth and
la (for the definitions see Sections 3 and 4 respectively). Our results consti-
tute the “tree” counterpart of the known equivalence of the agile mixed search
number and proper-pathwidth and are based on a complete characterization
of the chordal graphs that have inert mixed search number ≤ k. In Section
5, we summarize our results as well as their counterparts for other search
parameters.

2 The concept of an expansion on a graph

In this section we will define the concept of an expansion on a graph, that will
be our main tool to derive the monotonicity result for the inert edge/mixed
search game. In what follows, we consider only graphs without multiple edges,
since if a graph has multiple edges between a pair of vertices v, u, we may
subdivide all the multiple edges connecting v and u without harming the inert
search number.

We first give some helpful auxiliary definitions. Given a graph G, a set F ⊆
V (G), and a vertex v ∈ F , we define as Cv[F] the connected component of
G[F] that contains v. We also set F = V (G) − F . If E ⊆ E(G), we define as
∂EF the set of vertices in F that are adjacent to vertices in F through edges
not in E (we may sometimes abuse the notation and let F be a graph instead
of a set of vertices). Notice that ∂EV (Cv[F]) ⊆ F , i.e., it does not contain
vertices in F − V (Cv[F]).

We now define an expansion on G to be any sequence E = (X0, . . . , Xr) of
subsets of V (G), where X0 = ∅, Xr = V (G), and such that

(1) ∀1≤i≤r |Xi − Xi−1| ≤ 1.

5

(2) ∀1≤i≤r if Xi ⊆ Xi−1, then all the vertices of Xi−1 −Xi belong in the same
component of G[X i ∪ X i−1].

For i = 1, . . . , r, we define φ(Xi) as follows:

• If Xi − Xi−1 = ∅, then φ(Xi) = max{|∂V (C)|, where C is a connected
component of X i}.
• If Xi − Xi−1 = {p}, then φ(Xi) = min{|∂EV (Cp[X i ∪ {p}])|, where E is
either empty or it contains an edge connecting p with some vertex in the
neighborhood of v in G[Xi]} + 1.

If E = (X0, . . . , Xr) is an expansion on G, we will say that E uses ≤ k guards,
if ∀1≤i≤rφ(Xi) ≤ k. We call an expansion E = (X0, . . . , Xr) on G monotone if,
for any i = 1, . . . , r, Xi−1 ⊆ Xi and |Xi − Xi−1| = 1.

Given an expansion E on a graph G, we define M(E) = {|E|} ∪ {1 ≤ i <
|E| | Xi−1 *⊆ Xi} and we set m(E) = min M . Clearly, an expansion E is
monotone if and only if m(E) = |E|. In case m(E) < |E|, we set h(E) =
max{0 ≤ j < m(E) | Xm(E) *⊆ Xj}.

Lemma 1 If there exists an inert edge search (possibly non-monotone) on a
graph G that uses ≤ k searchers, then there exists an expansion on G that
uses ≤ k guards.

PROOF. Let E = (F 0, F 1, . . . , F r). Let Xi−1, Xi be two consecutive el-
ements of E for some i = 1, . . . , r. We claim that when F i−1 *= F i ex-
pansion requirements 1 and 2 hold. We set F i−1 = F i. Otherwise, we set
Xi−1 = F i−1, Xi = F i.

In the case where Si ⊆ F i−1, then Si−Si−1 ⊆ F i−1 and thus (Si−Si−1)∩Fi−1 =
∅. From the definition of F i we have that F i = F i−1 ∪ Si = F i−1.

Suppose now that Si *⊆ F i−1. We may assume that Si − Si−1 = {pi}. Notice
that pi *∈ Si−1 and Si−1 ⊆ F i−1 imply that pi *∈ F i−1. Combining this with the
fact that pi ∈ Si ⊆ F i, we have that {pi} ⊆ F i − F i−1. From the definition
of Fi we have that F i ⊆ F i−1 ∪ Si and as Si−1 ⊆ F i−1 we can argue that
F i ⊆ F i−1∪ (Si−Si−1) = F i−1∪{pi}. From the last relation, we have that if a
vertex belongs to F i but not in F i−1 it should be u. Therefore F i−F i−1 ⊆ {pi}.
We can now conclude that F i − F i−1 = {pi} and thus requirement 1 holds.
Towards proving requirement 2, notice that Fi−1 ∩ (Si − Si−1) = {pi}. Let
Ri = Xi−Xi−1. Then we have that any vertex v in Ri∪{pi} is connected with
u via a path of vertices in Ri∪{pi}. As F i−1−F i ⊆ Ri∪{pi}, {pi} = F i−F i−1

and Ri ⊆ Fi ∪ Fi−1, requirement 2 follows.

We claim that, if {pi} = Si − Si−1 and E = E(Si !Si−1), then |∂EV (Cpi[Fi ∪

6

{pi}])| ≤ k − 1.

By the definition of Ri we have that G[Ri ∪ {pi}] is one of the connected
components of G[Fi∪{pi}]. As Ri∪{pi} ⊆ Fi∪{pi}, we have that G[Ri∪{pi}] =
Cpi[Fi ∪ {pi}].

Notice now that ∂EV (G[Ri ∪ {pi}]) is a subset of F i − {pi} containing any
vertex v ∈ F i that is connected with pi with a path whose vertices, except v,
are in Ri ∪ {pi} and without edges in E(G[Si ! Si−1]). From the definition
of Ri, we have that each such vertex must be a member of Si − {pi} and, as
|Si − {pi}| ≤ k − 1, the claim follows.

It is now easy to see that, by replacing, in E , any maximal subsequence
(F i, . . . , F i+σ), σ > 0, where F i = · · · = F i+σ by F i, we obtain a new se-
quence E ′ = {X1, . . . , Xr′} that is an expansion on G that uses ≤ k guards.
!

Lemma 2 If there exists an expansion (possibly non-monotone) on G that
uses ≤ k guards, then there exists a monotone expansion on G that uses ≤ k
guards.

PROOF. Lemma 2 is based on the algorithm that appears in Figure 1 that
transforms a non-monotone expansion to a monotone one.

Algorithm: Conversion to monotone expansion.
Input: An expansion E on a graph G(V, E) using k guards.
Output: A monotone expansion E on G(V, E) using k guards.
1. begin
2. if m(E) = |E| then output E
3. if h(E) < m(E) − 1 then

E ← (X0, . . . , Xh(E), Xm(E), . . . , X|E|) and goto 2
4 if Xh(E) = Xh(E)−1 then

E ← (X0, . . . , Xh(E)−1, Xm(E) , . . . , X|E|) and goto 2
5 let {p′} = Xm(E)−1 − Xm(E)−2 and {p} = Xm(E) − Xm(E)−1

6. if p %∈ V (Cp′

[Xi−1)]) then
E ← (X0, . . . , Xm(E)−2, Xm(E) − {p′}, Xm(E), . . . X|E|) and goto 2

7. E ← (X0, . . . , Xm(E)−2, Xm(E) − {p}, Xm(E), . . . X|E|)
and goto 2

8. end

Fig. 1. Converting a non-monotone expansion to a monotone one

Setting E (0) = E , the input expansion, let E (j), j > 0, denote the input ex-
pansion after the j-th return to line 2 of the algorithm, if the algorithm has
not already terminated before completing j such returns. Otherwise, E (j) is
undefined. From now on, when we refer to E (j) it is implied that E (j) is defined.

We will prove that the following properties hold for the algorithm given above:

I1: For each j, E (j) is an expansion.

7

I2: For each j, if E (j) = X0, . . . , Xr, then φ(Xi) ≤ k, 0 ≤ i ≤ r.
I3: The algorithm terminates.

Let us first prove I1. The defining properties of an expansion need only be
checked locally, at the position where the algorithm modifies E (j−1) to give
E (j). We will be concerned with property 1 first.

Consider step 3. Then |Xm(E) − Xh(E)| ≤ 1 for, otherwise, it would hold
|Xh(E)+1 − Xh(E)| > 1 since, from the definition of h(E), Xm(E) ⊆ Xh(E). How-
ever, this contradicts the fact that E j−1 was an expansion.

For step 4, property 1 holds trivially. Let us then consider step 6. It holds that
|(Xh(E) − {p′}) − Xh(E)−2| = {p}. Also, it is easy to see that Xm(E) − (Xh(E) −
{p′}) = {p}. Therefore, property 1 holds.

For step 7 now, (Xm(E) −{p})−Xm(E)−2 = (Xm(E) −Xm(E)−2)∩{p}. However,
the difference Xm(E) − Xm(E)−2 can only be equal to ∅ or p′, if p′ ∈ Xm(E).
Therefore property 1 holds again.

Let us turn now to property 2 and consider line 3 first. It holds that Xh(E) −
Xm(E) ⊆ Xm(E)−1 − Xm(E), because Xh(E) ⊆ Xm(E)−1. Then if there were two
vertices in Xh(E) −Xm(E) such that they belonged to two different components
in G[Xh(E) ∩ Xm(E)], then they would also belong to two different components
in G[Xm(E) ∩ Xm(E)−1], contradicting the fact that E (j−1) was an expansion.

Property 2 also holds trivially for E (j), after the execution of line 4. Let us then
consider line 6 of the algorithm and the difference Xm(E)−2 − (Xm(E) − {p′}) =
(Xm(E)−1∪{p′})− (Xm(E)−{p′}) = Xm(E)−1 −Xm(E). Also, Xm(E)−2∩ (Xm(E)−
{p′}) = (Xm(E)−1 − {p′}) ∩ (Xm(E) − {p′}) = Xm(E)−1 ∩ Xm(E). Therefore, for
property 2 to hold, all vertices in Xm(E)−1 − Xm(E) should belong to the same
component of G[Xm(E)−1 ∩ Xm(E)], which is true since E (j−1) was an expansion.

Finally, consider line 7 of the algorithm. Then Xm(E)−2−(Xm(E)−{p}) is again
equal to Xm(E−1) − Xm(E). Also, Xm(E)−2 ∩ (Xm(E) − {p}) = Xm(E)−1 ∩ Xm(E).
Therefore, like in step 6 of the algorithm, property 2 holds.

We will now show that all modifications made by the algorithm on expansion
E (j−1), produce an expansion E (j) that uses at most that many guards as
E (j−1). Consider first line 3. If h(E) = m(E) in E (j−1), then no modification is
effected by line 3. Otherwise, let let {p} = Xm(E) − Xh(E). In E (j−1), Xm(E) −
Xh(E)+1 = ∅ (again from the definition of h). Therefore, in E (j−1), it was true
that φ(Xm(E)) = max{|∂V (C)|} ≤ k, where C is a connected component of
Xm(E). We must now show that φ(Xm(E)) is still at most k, but now under the
second branch of the definition of φ, since Xm(E)−Xh(E) = {p}. If h(E) = m(E),
then φ(Xm(E)) ≤ k, since line 3 is not executed. If in the second branch of the
definition of φ, E is empty, then clearly φ(Xm(E)) ≤ k. Otherwise, consider

8

the set Sp of all edges that join p with vertices of Xm(E). We claim that there
exists an edge e ∈ Sp, such that that φ(Xm(E)) = min{|∂{e}V (Cp[Xm(E) ∪
{p}])|} ≤ k − 1, where e connects p with some vertex in the neighborhood
of p in G[Xm(E)]. Suppose in contrary that for every e, φ(Xm(E)) ≥ k. This
means that if we exclude p, there are at least k vertices in {∂V (C)}, where C
is the connected component of Xm(E) − {p} that includes p. If p belonged in
this component, we would have φ(Xm(E)) ≥ k + 1 in E (j−1), which is not true
since we assumed that the previous expansion used k guards. Therefore, an
edge e such that φ(Xm(E)) ≤ k − 1 in the new expansion E (j) must exist.

Property I2 holds trivially for step 4. Let us consider step 6. Now Xm(E) −
(Xm(E) − {p′}) = {p} and we must show that, according to the second branch
of the definition of φ, φ(Xm(E)) ≤ k. This holds because if we consider the
previous expansion E (j−1) and the sets Xm(E−1) and Xm(E)−2 for which it holds
Xm(E−1) - Xm(E)−2 = {p′}, we have that φ(Xm(E)−1) ≤ k, again with the second
branch of the definition of φ. Therefore, this must hold for E (j) too, since the
components that contain p′ in Xm(E)−1 − {p′} and Xm(E) − {p′} are the same.
Moreover, for the sets (Xm(E) − {p′}) and Xm(E)−2 whose difference is equal to
{p}, it also holds that φ(Xm(E) − {p′}) ≤ k for the same reason.

In step 7 of the algorithm now, the situation is similar to step 6. The difference
Xm(E) −Xm(E)−1 is a set with exactly one element, the element p. Since E (j−1)

uses k guards, it holds that φ(Xm(E)) ≤ k, using the second branch of the
definition of φ. After the execution of step 7, it is easy to see that φ(Xm(E)) ≤ k
since the second branch of the definition of φ can be used again on the same
set, Xm(E). Now consider the sets Xm(E) − {p} and Xm(E)−2. Their difference
can be either {p′} or ∅. In the first case, we observe that in E (j−1), it holds that
φ(Xm(E)) ≤ k, according to the second branch of the definition of φ, for some
edge singleton E. This means that when p is introduced in Xm(E)), k guards are
used again since the vertex adjacent to p via the edge in E, does not contribute
anymore to φ. Now the same reasoning is applied, as for step 6, to prove that
there exists an edge set E for which the second branch of the definition of
φ gives k guards in the new expansion and for the vertex p′. Now suppose
(Xm(E) − {p}) − Xm(E)−2 = ∅. Then p′ *∈ Xm(E) and (Xm(E) − {p}) ⊆ Xm(E)−2.
Then we should use the first branch of the definition of φ. Using again the
edge set E from the second branch of the definition, for the expansion E (j−1)

and the sets Xm(E) and Xm(E) − {p} that differ in the vertex p, when p is
introduced again at most k guards are used in E (j) since the vertex adjacent
to p via the edge in E, does not participate anymore in the calculation of φ.

Finally, in order to prove that the algorithm terminates, it suffices to observe
that each of the modifications in lines 3, 4, 6 and 7 either decrease the size of
a set by 1 (6 and 7) or decrease the number of sets in an expansion (lines 3
and 4). !

9

Before we proceed, we will introduce some usefull notation. Let E = (X0, . . . , Xr)
be a monotone expansion. We set P = (p1, . . . , pr), where {pi} = Xi −
Xi−1, 1 ≤ i ≤ r. We can now define, for each particular G and E , a func-
tion ρ where ρ(Xi) is chosen as a set in

{∂Ei
V (Cpi[Xi ∪ {pi}]) where Ei is either empty or it contains an edge con-

necting pi with some vertex in the neighborhood of pi in G[Xi] }

whose cardinality determines the value of φ(Xi) (in particular, φ(Xi) = |ρ(Xi)|+
1). Clearly, the definition of ρ(Xi) can be accompanied with the corresponding
sequence (E1, . . . , Er) of edge sets that give to φ its optimal values.

Lemma 3 If there exists a monotone expansion on G that uses ≤ k guards,
then there exists a monotone inert edge search on G that uses ≤ k searchers.

PROOF. Let E = (X0, . . . , Xr) be a monotone expansion on G. It is enough
to prove that, for any i = 1, . . . , r there exists a monotone inert edge search Si

for Xi using ≤ k searchers. Notice that this is trivial when i = 1. We assume
now that Si−1 is a monotone inert edge search for Xi−1 using ≤ k searchers, i.e.,
Fi−1 = X i−1. We construct a new strategy Si for Xi as follows. We initialize Si

so that it is the same as Si−1. Let S be the last set of Si−1. Let {q1, . . . , qσ} be an
arbitrary ordering of S. We extend Si by concatenating the following sequence
of sets: ({q2, . . . , qσ}, {q3, . . . , qσ}, . . . , {qσ}, ∅}) (i.e. we remove, one by one, all
the searchers in S). Notice that the new sequence is a search as each new set
added has one element less than the one before it. Moreover, the new sets are
all subsets of S and therefore, they all have cardinality at most k. Finally, as
S ⊆ Xi−1, the free locations corresponding to the new sets are all equal to Fi−1,
i.e., no recontamination happens. We further enhance Si by concatenating the
following sequence of sets: ({s1}, {s1, s2}, . . . , {s1, . . . , sτ−1}, ρ(Xi)). As E is
monotone, we have that X i − {pi} = X i−1. Notice now that ρ(Xi) ⊆ Xi −
{pi} = Xi−1 and, as before, we have that the occurring sequence is a search,
the new sets have all cardinality at most k and the free locations corresponding
to the new sets are all equal to Fi−1, i.e., no recontamination happens.

We now examine two cases. In case Ei = ∅, we concatenate to Si the set
R ∪ {pi}. It is clear that Si remains a search using ≤ k searchers. Moreover,
Fi = Fi−1 − {pi} as any path in G connecting vertices in F i−1 = X i−1 =
X i ∪ {pi} with pi should contain a vertex in ρ(Xi) = ∂Ei

V (Cpi[X i ∪ {pi}]),
i.e., no recontamination happens.

It remains to examine the case where Ei = {{p′i, pi}}. If p′i ∈ ρ(Xi), this
case is identical to the previous one. If p′i *∈ ρ(Xi), we concatenate to Si the
set ρ(Xi) ∪ {p′i}. As p′i ∈ NG[Xi](pi) ⊆ Xi − {pi} = Xi−1, and |ρ(Xi)| =
φ(Xi) − 1 =≤ k − 1, we easily conclude that S remains a monotone search
using ≤ k searchers. Finally, we further concatenate to S the set ρ(Xi)∪{pi}.

10

Notice that (ρ(Xi) ∪ {p′i}) ! (ρ(Xi)) ∪ {pi}) = {p′i, pi} ∈ E(G) and therefore
S is again a search. It is also obvious that |ρ(Xi) ∪ {pi}| ≤ k. Finally, we
have that Fi = Fi−1 − {pi} as any path in G avoiding {p′i, pi} and connecting
vertices in F i−1 = X i−1 = X i ∪ {pi} with pi should contain a vertex in
ρ(Xi) = ∂Ei

V (Cpi[X i ∪ {pi}]), i.e., no recontamination happens.

In both cases, we have that Fi = Fi−1 − {pi} = X i−1 ∪ {pi} = X i and Si is a
monotone inert edge search Si for Xi using ≤ k searchers. !

Now, combining Lemmata 1, 2 and 3 we have the following theorem:

Theorem 1 Monotonocity does not help in the inert mixed search.

Notice that the monotonicity of the inert node search is a consequence of the
monotonicity of inert mixed search and the fact that the inert node search can
be reduced to the inert mixed search using the following easy lemma:

Lemma 4 If Gn is the graph resulting after replacing every edge in G with
two edges in parallel, then ins(G) = ims(Gn).

In the case where we are restricted to graphs without multiple edges, we can
instead define Gn in the above lemma as the graph resulting after replacing
every edge in G with two paths of length 2 connecting its endpoints. We
mention that a direct consequence of Lemma 4 and the the monotonicity of
inert mixed search is that computing ims(G) (or equivalently, ies(G)) is a
NP-complete problem.

Finally, the inert mixed search number, as well as all the other search param-
eters, is closed under taking of minors. This follows by the monotonicity of
inert mixed search and the following lemma.

Lemma 5 Let G be a graph and S be a monotone inert mixed search on G
that uses ≤ k searchers. Then, the graph obtained after the removal or the
contraction of any edge e of G has a monotone inert mixed search that uses
≤ k searchers.

PROOF. The case where H is the result of the removal of e follows from
the easy observation that S = (S0, . . . , Sr) is monotone inert mixed search of
H as well. Suppose now that H is the result of the contraction of e. Let v
be the endpoint of e that appears first in some set in in S and let u be the
other, i.e. S clears first u and then v. W.l.o.g. we assume that the result of
the contraction of e is v and we form a search S ′ = (S ′

0, . . . , S
′
r) of H where,

for i = 0, . . . , r, S ′
i = Si − {u}. It is now easy to see that S ′ is a monotone

inert mixed search of H that uses ≤ k searchers. !

11

3 Proper-treewidth

In this section we introduce the parameter of proper-treewidth and we will
prove a series of lemmas able to prove its equivalence with the inert mixed
search number.

A chordal graph is any graph with no induced cycle of length ≥ 4. A chordal
graph is called Kk+1-chordal, k ≥ 1, if its maximum size clique contains k + 1
vertices. Alternatively, we can define Kk+1-chordal graphs in the following
recursive way: A (k + 1)-clique is a Kk+1-chordal graph; the graph obtained
from a Kk+1-chordal graph if we introduce a new vertex and connect it with
≤ k vertices of one of its cliques is also a Kk+1-chordal graph. If in the above
definition we replace “≤” with “=”, then we define the class of k-trees. We also
define the treewidth of a graph G as the least k for which G is a subgraph of a
k-tree. We will need the following known (and easy) theorem about the relation
of k-trees and Kk+1-chordal graphs (for standard definitions and results about
chordal graphs see [10]).

Theorem 2 The k-trees are exactly the k-connected Kk+1-chordal graphs.

Given two graphs G1, G2 and two cliques K1, K2 of G1 and G2 respectively
where |V (K1)| = |V (K2)| ≤ k, we define the k-clique sum of G1 and G2 the
graph obtained if we take the disjoint union of G1 and G2, and we identify the
vertices and the edges of K1 with the vertices and the edges of K2. We will
need the following known result (see [25], pages 328–329).

Theorem 3 A graph is a Kk+1-chordal iff it can be obtained after applying a
sequence of k-clique sums on a series of cliques of size at most k + 1.

Let G be a Kk+1-chordal graph. We call a clique in G simplicial when it
contains a simplicial vertex of G. We will call the cliques of G of size ≤ k
small and the cliques of size k +1 big. We call a small clique of G separating if
its vertex set is a minimal separator of G. We call an edge of G linking, when
it does not belong to any separating clique of G. We call a big clique K of G
proper if it contains some linking edge.

We omit the proofs of the two following lemmas as they are direct consequences
of the definitions.

Lemma 6 All the simplicial big cliques of G are proper.

Lemma 7 Let G be a Kk+1-chordal graph and e = {v1, v2} a linking edge of
some (k+1)-clique of it. Then, e is not induced by the vertices of any minimal
separator of G and there exists no other (k + 1)-clique that contains e.

12

We call a Kk+1-chordal graph proper if all of its (k + 1)-cliques are proper.
We call a graph partial proper k-tree, or equivalently we say that it has
proper-treewidth ≤ k, if it is a subgraph of a proper k-tree.

We say that a graph H is a vertex subgraph of G if V (G) = V (H) and
E(H) ⊆ E(G).

Lemma 8 Any graph G with ims(G) ≤ k is a subgraph of a proper Kk+1-
chordal graph.

PROOF. From Lemma 1 and Theorem 1 there exists a monotone expansion
E = (X0, . . . , Xr) on G that uses ≤ k guards. We set {pi} = Xi−Xi−1, 1 ≤ i ≤
r. For any i, 1 ≤ i ≤ r, let C(Xi) = {∂V (C) | C is a connected component of
G[X i]}. We set Si = ∂V (Cpi+1[X i]), 0 ≤ i ≤ r − 1 and we define the sequence
Ḡ1, . . . , Ḡr as follows: Ḡ1 = G[{p1}], and Ḡi = (V (Ḡi−1)∪ {pi}, E(Ḡi−1)∪Ei)
where Ei contains the edges connecting the vertices of Si−1 with pi. We claim
that for any j, 1 ≤ j ≤ r,

(i) Ḡj is a Kk+1-chordal graph that contains G[Xj] as a vertex subgraph.
(ii) All the members of C(Xj) induce cliques in Ḡj of size ≤ k.
(iii) E is an expansion of G̃i = G ∪ Ḡi that uses ≤ k guards.

Clearly, (i) and (ii) hold for j = 1. We assume that they hold for any j, 1 ≤
j < i ≤ r and we will prove that they hold for j = i as well.

From (i), we have that Ḡi−1 is a Kk+1-chordal graph and contains G[Xi−1] as
a vertex subgraph. Notice that Si−1 = ∂V (Cpi[X i−1]) ∈ C(Xi−1) and, from
(ii), Si−1 induces in Ḡi−1 a clique of size ≤ k. By construction, Ḡi, is a chordal
graph of maximum clique size ≤ k+1 that contains G[Xi] as a vertex subgraph.

It remains to prove that all the members of C(Xi) induce cliques in Ḡi of size ≤
k. This is a direct consequence of (ii) in the special case where V (Cpi[X i−1]) =
{pi}, as C(Xi) = C(Xi−1) − {NG(pi)} (notice that G[X i] has the same con-
nected components as G[X i−1] except from G[{pi}]).

We can now assume that V ′ = V (Cpi[X i−1])−{pi} is not empty. Let Cpi(Xi) =
{∂V (C) | C is a connected component of G[V ′]}. Clearly, the connected com-
ponents of G[V ′] are the only connected components in C(Xi) that are not
also connected components in C(Xi−1). Therefore, Cpi(Xi) = C(Xi)−C(Xi−1),
and it is enough to prove that, each member of Cpi(Xi) induces a clique in Ḡi

of size ≤ k. Notice that each member of Cpi(Xi) is a subset of ∂V ′. Therefore,
it is enough to prove that ∂V ′ induces a clique in Ḡi of size ≤ k. Recall that
ρ(Xi) ≤ k − 1. This means that either ρ(Xi) = Si−1 or that there is a vertex
a ∈ Si−1 such that ρ(Xi) = Si−1 − {a} and such that, apart from pi, there
is no other vertex in X i−1 ⊇ V ′ connected with a in G (clearly in this case

13

Ei = {{a, pi}}). In the first case we obtain that ∂V ′ ⊆ Si−1 ∪ {pi} and thus
|∂V ′| ≤ k. In the second case, ∂V ′ ⊆ Si−1 ∪ {pi}− {a} and thus |∂V ′| ≤ k. In
both cases, Si−1 induces a clique in Ḡi−1 and therefore, ∂V ′ induces a clique
in Ḡi of size ≤ k.

In order to prove (iii) we claim that ρG̃i
(Xh) = ρG̃i−1

(Xh), 1 ≤ h ≤ r (the index
on function ρ denotes the graph on which it is defined). Clearly, ρG̃i−1

(Xh) ⊆

ρG̃i
(Xh), 1 ≤ h ≤ r as G̃i−1 is a vertex subgraph of G̃i. From the induction

hypothesis, we have that ρG̃i
(Xh) ⊆ ρG̃i−1

(Xh), i < h ≤ r. Let v be a vertex

in ρG̃i
(Xh) for some 1 ≤ h ≤ i. There exists a path P in G̃i that starts

from v, such that all its vertices after v belong in Xh−1, and finishes on ph.
Clearly, if P exists also in G̃i−1, we have that v ∈ ρG̃i−1

(Xh) as well and thus

ρG̃i
(Xh) ⊆ ρG̃i−1

(Xh). If P is not a path in G̃i−1 then some of the edges of

this path are edges in E ′ = E(G̃i) − E(G̃i−1) or edges connecting Si−1 with
pi that do not belong in G̃i−1. We call these edges critical (notice that, as
all the edges in E ′ are incident to pi, the critical edges can be at most two).
Observe now that the existence of some critical edge {b, pi} in G̃i implies the
existence of a path in G (and thus in G̃h−1 as well) that starts from b, has all
the following vertices in X i−1 (and thus in Xh−1) and finishes on pi. Resuming,
there exists a path in G̃h−1 that starts on a, all the following vertices are in
Xh−1, and finishes in v. This means that v ∈ ρG̃i−1

(Xh) as well. Therefore,
ρG̃i

(Xh) ⊆ ρG̃i−1
(Xh), 1 ≤ h ≤ i and this completes the proof of the claim.

According to the claims (i) – (iii) above, G is a vertex subgraph of the Kk+1-
chordal graph Ḡ = Ḡr = G̃r. Moreover, E is an expansion on Ḡ that uses ≤ k
guards. It now remains to show that any big clique in Ḡ is proper.

Suppose in contrary that there exists a k-clique K in Ḡ that is not proper.
From Lemma 6, K will be a non-simplicial clique and, as K is not proper,
all of its edges are inducing edges of separating cliques (i.e. it does not have
linking edges). As E is a monotone expansion on Ḡ that uses ≤ k guards,
Lemma 3 implies that there exists a monotone search S = {S0, . . . , St} on
Ḡ that uses at most k searchers. We call appearance number of a vertex v of
K, the smallest i, 1 ≤ i ≤ t for which v ∈ Si. Let now u be the vertex of
V (K) with the biggest appearance number (intuitively u is the vertex of K
that is cleared last). Let i be the appearance number of u. We first exclude
that Si = Si−1 ∪ {u}. Indeed, in this case, |Si−1| ≤ k − 1. Therefore, there
exists an edge from u to a vertex in V (K) that is not in |Si−1| and his will
cause recontamination. The only remaining case is when G[Si !Si−1] induces
a single edge {v, u} in G. W.l.o.g. we assume that u ∈ Si. Notice that, if there
exists any other path connecting u and v, whose internal vertices are not in
V (K) we have recontamination. Notice now that, as K is not proper, e is not
a linking edge and therefore, its endpoints are vertices of a separating clique
of K. This implies the existence of a path connecting v and u whose internal

14

vertices are not in K, a contradiction. Therefore all the big cliques of Ḡ are
proper and the lemma holds. !

We will now prove that the proper Kk+1-chordal graphs can be viewed as
vertex subgraphs of proper k-trees.

Lemma 9 Let G be a Kk+1-chordal graph and K a big clique of G. Let also
E be the set of linking edges of K. If K contains a minimal separator S of
size < k then there exists a vertex v ∈ V (K)−S such that there exists an edge
in E not induced by S ∪ {v}.

PROOF. Let e = {w, u} be a linking edge of K. From Lemma 7, we have
that e is not induced by S and thus at least one of its endpoints is not in S. If
e∩S = ∅, then clearly for any choice of v ∈ V (K)−S, S ∪ {v} cannot induce
e. Suppose now that one, say w, of w, u is in S. Notice that V (K)− (S ∪ {u})
is non empty as |V (K)| = k + 1 and |S| < k. Therefore, for any choice of
v ∈ V (K) − (S ∪ {u}), S ∪ {v} cannot induce e. !

Lemma 10 For any r, 1 ≤ r ≤ k − 1, any r-connected proper Kk+1-chordal
graph is a vertex subgraph of a (r + 1)-connected proper Kk+1-chordal graph.

PROOF. We apply the following procedure as long as there exists in G a
separator S of size r:

Let C be one of the connected components of G[V (G) − S]. Let G1 =
G[V (C) ∪ V (S)] and G2 = G[V (G) − V (C)]. Let Ki, i = 1, 2 be a maximal
clique in Gi that contains S as a subclique. We distinguish 3 cases: (a) If
both Ki, i = 1, 2 are small, then add in G an edge that connects any vertex
v1 of K1 with any vertex v2 of K2. (b) If one, say K1, of Ki, i = 1, 2 is small,
then add in G an edge that connects any vertex v1 of K1 with a vertex v2

of K2 such that {v2} ∪ S is not inducing all the linking edges of K2. (c) If
both Ki, i = 1, 2 are big cliques, then add in G an edge {v1, v2} where, for
i = 1, 2, {vi} ∪ S is not inducing all the linking edges of Ki.

As, the input of the above transformation is a proper Kk+1-chordal graph,
the transformation is always doable as long as a separator S of size r exists
because of Lemma 9. We now claim that the property of the proper Kk+1-
chordality is an invariant of the above transformation. Let G be an input and
let G be an output of the above transformation. Observe that G′ is a Kk+1-
chordal graph as it is the clique sum of three Kk+1-chordal graphs: G1, the
clique formed if we add in G[S ∪ {v1, v2}], edge {v1, v2}, and G2 (notice that
|S ∪ {v1, v2}| ≤ k + 1). It remains to prove that all the big cliques of G′ are
proper. Clearly, if the newly appearing clique is a big clique then it should

15

be proper as, by construction, it contains {v1, v2} as linking edge. It remains
now to see that each one of the old big cliques of G′ still have at least one
linking edge. Clearly, a linking edge of a big clique has some chance of losing
this status after the above transformation, only in cases (b) and (c) where K2

(in case (b)) and Ki, i = 1, 2 (in case (c)) are big cliques. We examine first
case (b). Clearly, a clique that could lose all its linking edges after the above
transformation is K2 as all the edges induced by S ∪ {v} are edges of K2.
Moreover, no other big clique can loose any of its linking edges because no
linking edge is shared by two big cliques (Lemma 7). Notice now that, from
Lemma 9 the choice of v makes it so that there will be always a linking edge
in K not induced by S ∪ {v}, thus K is proper. The case (c) is very similar.

Clearly, the above transformation will not be further applicable only if the
resulting graph does not contain any minimal separator of size r. Therefore, it
will finally produce a (r+1)-connected proper Kk+1-chordal graph as required.
!

Applying now inductively Lemma 10 and using Theorem 2, we have the fol-
lowing result.

Lemma 11 Any proper Kk+1-chordal graph is a vertex subgraph of a proper
k-tree.

A corollary of Lemmata 8 and 11 is the following.

Lemma 12 For any graph G, proper-treewidth(G) ≤ ims(G).

4 The parameter la

In this section we will prove that the inert mixed search number and the
proper-treewidth are equal to the graph theoretic parameter la, defined as the
last k for which a graph is a minor of the product T × Kk for some tree T .

The graph T × Kk for a tree T with n vertices, is the graph obtained by
replacing each tree vertex with a copy of a k-labeled clique Kk and joining
with an edge two vertices of different cliques if they have the same label and
their corresponding tree vertices were previously adjacent in T . la(G) is a
graph theoretic parameter introduced in [26] and [5] and used for studying
invariants of graphs related with the multiplicities of eigenvalues of elliptic
self-adjoint differential operators.

Lemma 13 For any graph G, la(G) ≤ proper-treewidth(G).

16

PROOF. We have to prove that any proper k-tree H is a minor of T × Kk

for some tree T . We introduce first some terminology for the products of the
form T ×Kk. We distinguish the edges of T ×Kk as follows. If they are edges
of k-cliques we call them strong. Otherwise we call them weak.

Let S be a big clique of H . Notice that in the non-trivial case where the
cardinality of the vertex set of H is at least k +2, S contains at least one and
at most two separating cliques (in case H is a k-clique, the result is obvious).
Let S1 be the one of them and if there exists a second one we denote it as S2,
otherwise we consider as S2 an arbitrary k-clique of S that is different than S1.
Observe now that the (k+1)-clique G[S] is isomorphic to a graph obtained by
K2 ×Kk after a sequence of contractions applied to all the weak edges except
from one. We rename the vertices of the two k-cliques in K2×Kk so that they
are S1 and S2. We also assume that the unique weak edge of K2 × Kk that is
not contracted is the one connecting the vertices in the symmetric difference
of S1 and S2. We call MS, the renamed version of K2 × Kk corresponding to
S. Clearly, by undoing the contractions following the inverse order, G[S] can
be transformed to MS. We call this process inverse contractions for S. It is
now easy to verify that if we apply the inverse contractions for any big clique
in G, we will obtain a graph isomorphic to T × Kk for some tree T and the
result follows. !

Lemma 14 For any tree T , T × Kk has a monotone inert mixed search that
uses k searchers.

PROOF. We prove the following stronger statement: for any tree T , T ×Kk

has a monotone inert mixed search S that uses k searchers and such that for
any v ∈ V (G) the vertices of the clique – we denote it by Kv – corresponding
to v, appear as a set of S. The proof uses induction on the number of edges
of T . If E(T) = ∅, then the result is obvious. If E(T) = {e} where e = {v, u}
then we set V (Kv) = {v1, . . . , vk}, V (Ku) = {u1, . . . , uk} and the required
search is the concatenation of Su+ Su→v Sv− where

Su+ = (∅, {u1}, {u1, u2}, . . . , V (Ku) − {uk, uk−1}, V (Ku) − {uk}, V (Ku)),

Su→v = (V (Ku)∪{v1}−{u1}, V (Ku)∪{v1, v2}−{u1, u2}, . . . , V (Kv)∪{uk}−
{vk}) and

Sv− = (V (Kv), V (Kv) − {vk}, V (Kv) − {vk, vk−1}, . . . , {v1, v2}, {v1, }, ∅).

Suppose now that the claim is correct for |E(T)| < n and let T be a tree where
|E(T)| = n. Let v be a leaf of T and let u be its unique neighboring vertex. Let
T ′ = T (V (T)−{v}). From the induction hypothesis, T ′×Kk has a monotone
inert mixed search S ′ that uses k searchers and such that V (Ku) = Si where
S ′ = (S0, . . . , Si, . . . , Sr). We set S1 = (S0, . . . , Si) and S2 = (Si+1, . . . , Sr). It

17

is now enough to see that the required search of T ×Kk is the concatenation,
in series, of S1, Su→v, Sv−, Su+, and S2. !

A consequence of Lemmata 14 and 5 is the following.

Lemma 15 For any graph G, ims(G) ≤ la(G).

From Lemmata 12,13, and 15 we conclude the following.

Theorem 4 For any graph G, ims(G) = proper-treewidth(G) = la(G).

5 Conclusions

The equivalence between the inert mixed search number and la fits in a more
general framework of relations between search parameters and “width” type
parameters. In particular, we proved that the graphs that are subgraphs of
proper k-trees are exactly the graphs with inert mixed search number at most
k. It is known that if we alter the restriction of properness we have the param-
eter of inert node search number which can be, in turn, reduced to the inert
mixed search number using the transformation of Lemma 4. In this way, it ap-
pears that the problem of computing the treewidth of a graph (or, equivalently,
the inert node search number) can be reduced to the problem of computing
the proper-treewidth (or, equivalently, the la). The “path” counterpart of this
relation has already been revealed by A. Takahashi, S. Ueno, and Y. Kajitani,
in [24] where they define the parameter of proper-pathwidth 1 as an equiva-
lent parameter to the agile mixed search number. According to their results, a
loopless graph without multiple edges has agile mixed search number at most
k iff it has proper-pathwidth ≤ k or, equivalently, if it is a subgraph of a k-path
(a k-path can be viewed as a k-tree that either has ≤ k + 1 vertices or it has
only two simplicial vertices). Moreover, it is known (see [12,17,13]) that the in-
ert node search number of a loopless graph without multiple edges is the least
k for which a graph is a subgraph of a k-caterpillar (a k-caterpillar is a k-tree
that is also an interval graph – for definitions and results on k-caterpillars see
e.g. [19]). Finally, it is possible to prove that if we modify the definition of la so
that the tree involved is simply a path, then we have its “path” counterpart,
equivalent to proper-pathwidth and the agile mixed search number. The proof
of the equivalence of this modified la and the proper-pathwidth is mainly based
on the “path” analogues of Lemmata 13 and 14. The proofs of those lemmata
are just simplified versions of their “tree” counterparts, proved in this paper,

1 We point out that the parameter of proper-pathwidth defined in [24] is differ-
ent from the parameter of proper-pathwidth (equivalent to bandwidth) defined by
Kaplan and Shamir in [11].

18

and are omitted. We summarize the whole landscape of equivalences between
parameters in the following table:

Node search Mixed search

Agile (a) pathwidth≤ k (a) proper-pathwidth

(b) subgraphs of k-caterpillars (b) subgraphs of k-paths

(c) minors of T × Kk where T is a line

Inert (a) treewidth≤ k (a) proper-treewidth

(b) subgraphs of k-trees (b) subgraphs of proper k-trees

(c) minors of T × Kk where T is a tree

6 Open problems

The first search game concerning a “tree” type parameter was given by Sey-
mour and Thomas in [22] and was equivalent to treewidth. In the setting of
that game the fugitive was agile but “visible”, i.e. the searchers’ moves depend
on the knowledge of the fugitive’s moves. Clearly, according to the equivalence
of treewidth and node search for an “invisible but inert” fugitive, proven in
[6], these two games are equivalent. We believe that it is possible to define an
“agile but visible” equivalent of the inert mixed search as well. However, it is
an open problem whether the obstruction type characterization of treewidth,
given in [22], can be extended to one of proper treewidth. An additional fea-
ture of the “invisible but inert” framework introduced in [6] and is adopted in
this paper, is that it can be parameterized in terms of the speed of the fugitive,
i.e. the length of a maximum unguarded path that the inert fugitive can cross
during some “threatening” move (a move of type (i) or (ii)). In this direction,
it appears challenging to extend the results of [6] for the parametrized version
of the (more general) inert mixed search.

An interesting variant of any search game can be defined when the search
number of a search S = (S0, . . . , Sr) is given by

∑
1≤i≤r |Si| instead of the

classical min0≤i≤r |Si|. The monotonicity question, as well as the identification
of known graph theoretical parameters connected with these search variants,
appears to be a challenging problem. In this direction, there are results only
for the case of agile node search. In particular, Fomin and Golovach in [8] prove
the monotonicity of the agile node search variant as well as its equivalence with
the interval graph completion problem. We believe that our results, combined
with the results in [8], can produce results related to other search variants as
well.

The fact that the inert mixed search number is closed under minors, indicates
(see e.g. [20]) that, for any fixed k, there exists a polynomial time algorithm
deciding, for any given graph G, whether ims(G) ≤ k or not. However such

19

an algorithm is unknown for k ≥ 3. A solution for k = 2 is straightforward as
it can be easily seen that ims(G) ≤ 2 iff G does not contain K4 or Kn

3 as a
minor. However, such an obstruction-based characterization for bigger values
of k appears to be a difficult open problem.

References

[1] D. Bienstock. Graph searching, path-width, tree-width and related problems
(a survey). DIMACS Ser. in Discrete Mathematics and Theoretical Computer
Science, 5:33–49, 1991.

[2] D. Bienstock and P. Seymour. Monotonicity in graph searching. J. Algorithms,
12:239 – 245, 1991.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theor. Comp. Sc., 209:1–45, 1998.

[4] R. Breisch. An intuitive approach to speleotopology. A publication of the
Southwestern Region of the National Speleological Society, VI:72–78, 1967.

[5] Y. C. de Verdière. Multiplicities of eigenvalues and tree-width of graphs. Journal
of Combinatorial Theory, Series B, 74:121–146, 1998.

[6] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. Fugitive-search games on
graphs and related parameters. Theor. Comp. Sc., 172:233–254, 1997.

[7] J. A. Ellis, I. H. Sudborough, and J. Turner. The vertex separation and search
number of a graph. Information and Computation, 113:50–79, 1994.

[8] F. Fomin and P. Golovach. Interval completion via graph searching. Manuscript,
submitted to SIAM Journal on Computing, 1999.

[9] F. Fomin and N. Petrov. Pursuit-evasion and search poblems on graphs.
Congressus Numerantium, 122:47–58, 1996.

[10] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[11] H. Kaplan and R. Shamir. Pathwidth, bandwidth and completion problems to
proper interval graphs with small cliques. SIAM J. Comput., 25:540–561, 1996.

[12] N. G. Kinnersley. The vertex separation number of a graph equals its path
width. Inform. Proc. Letters, 42:345–350, 1992.

[13] L. M. Kirousis and C. H. Papadimitriou. Interval graphs and searching. Disc.
Math., 55:181–184, 1985.

[14] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theor. Comp.
Sc., 47:205–218, 1986.

20

[15] A. S. LaPaugh. Recontamination does not help to search a graph. J. ACM,
40:224–245, 1993.

[16] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.
The complexity of searching a graph. J. ACM, 35:18–44, 1988.

[17] R. H. Möhring. Graph problems related to gate matrix layout and PLA folding.
In E. Mayr, H. Noltemeier, and M. Sys#lo, editors, Computational Graph Theory,
Computing Suppl. 7, pages 17–51. Springer Verlag, 1990.

[18] T. D. Parsons. Pursuit evasion in a graph. In Y. Alavi and D. R. Lick, editors,
Theory and Application of Graphs, pages 426–441, Berlin, 1976. Springer Verlag.

[19] A. Proskurowski. Separating subgraphs in k-trees: Cables and caterpillars. Disc.
Math., 49:275–285, 1984.

[20] N. Robertson and P. D. Seymour. Graph minors — a survey. In I. Anderson,
editor, Surveys in Combinatorics, pages 153–171. Cambridge Univ. Press, 1985.

[21] P. D. Seymour and R. Thomas. Graph searching and a minimax theorem for
tree-width. J. Comb. Theory Series B, 58:239–257, 1993.

[22] P. D. Seymour and R. Thomas. Graph searching and a minimax theorem for
tree-width. J. Comb. Theory Series B, 58:239–257, 1993.

[23] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed-searching and proper-path-
width. Theoretical Computer Science, 137:253–268, 1995.

[24] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed-searching and proper-path-
width. Theor. Comp. Sc., 137:253–268, 1995.

[25] C. Thomassen. Embeddings and Minors, in Handbook of Combinatorics, ed.
R. L. Graham, M. Grötschel and L. Lovasz, North Holland, 1990.

[26] H. van der Holst. Topological and Spectral Sraph Characterizations. PhD thesis,
Amsterdam University, 1996.

21

