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Abstract. We introduce a new framework for designing fixed-parameter algorithms with subexpo-
nential running time—2O(

√
k)nO(1). Our results apply to a broad family of graph problems, called

bidimensional problems, which includes many domination and problems such as vertex cover, feed-
back vertex set, minimum maximal matching, dominating set, edge dominating set, disk dimension,
and many others restricted to bounded-genus graphs (phrased as bipartite-graph problem). Further-
more, it is fairly straightforward to prove that a problem is bidimensional. In particular, our framework
includes, as special cases, all previously known problems to have such subexponential algorithms.
Previously, these algorithms applied to planar graphs, single-crossing-minor-free graphs, and/or map
graphs; we extend these results to apply to bounded-genus graphs as well. In a parallel development
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of combinatorial results, we establish an upper bound on the treewidth (or branchwidth) of a bounded-
genus graph that excludes some planar graph H as a minor. This bound depends linearly on the size
|V (H )| of the excluded graph H and the genus g(G) of the graph G, and applies and extends the
graph-minors work of Robertson and Seymour.

Building on these results, we develop subexponential fixed-parameter algorithms for dominating
set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. In particular,
this general category of graphs includes planar graphs, bounded-genus graphs, single-crossing-minor-
free graphs, and any class of graphs that is closed under taking minors. Specifically, the running time
is 2O(

√
k)nh , where h is a constant depending only on H , which is polynomial for k = O(log2 n). We

introduce a general approach for developing algorithms on H -minor-free graphs, based on structural
results about H -minor-free graphs at the heart of Robertson and Seymour’s graph-minors work. We
believe this approach opens the way to further development on problems in H -minor-free graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—computations on discrete structures; G.2.2 [Discrete Mathe-
matics]: Graph Theory—graph algorithms; network problems

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: (k, r )-center, fixed-parameter algorithms, domination, planar
graph, map graph

1. Introduction

Dominating set is a classic NP-complete graph optimization problem which fits
into the broader class of domination and covering problems on which hundreds
of papers have been written; see, for example, the survey [Haynes et al. 1998]. A
sample application is the problem of locating sites for emergency service facilities
such as fire stations. Here we suppose that we can afford to build k fire stations
to cover a city, and we require that every building is covered by at least one fire
station. The problem is to find a dominating set of size k in the graph where edges
represent suitable pairings of fire stations with buildings. In this application, we can
afford high running time (e.g., several weeks of real time) if the resulting solution
builds fewer fire stations (which are extremely expensive). Thus, we prefer exact
fixed-parameter algorithms (which run fast, provided the parameter k is small)
over approximation algorithms, even if the approximation were within an additive
constant. The theory of fixed-parameter algorithms and parameterized complexity
has been thoroughly developed over the past few years; see, for example, Demaine
et al. [2005a], Downey and Fellows [1999], Fellows [2001], Fomin and Thilikos
[2003], Grohe and Flum [2002], and Alber et al. [2004a, 2004b].

In the last two years, several researchers have obtained exponential speedups
in fixed-parameter algorithms for various problems on several classes of graphs.
While most previous fixed-parameter algorithms have a running time of 2O(k)nO(1)

or worse, the exponential speedups result in subexponential algorithms with running
times of 2O(

√
k)nO(1). For example, the first fixed-parameter algorithm for dominat-

ing set in planar graphs [Alber et al. 2001] has running time O(8kn); subsequently,
a sequence of subexponential algorithms and improvements have been obtained,
starting with running time O(46

√
34kn) [Alber et al. 2002], then O(227

√
kn) [Kanj

and Perković 2002], and finally O(215.13
√

kk +n3 +k4) [Fomin and Thilikos 2003].
Other subexponential algorithms for other domination and covering problems on
planar graphs have also been obtained [Alber et al. 2002, 2004b; Chang et al. 2001;
Kloks et al. 2002; Gutin et al. 2001].
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However, all of these algorithms apply only to planar graphs. In another sequence
of papers, these results have been generalized to wider classes of graphs: map graphs
[Demaine et al. 2005a], which include planar graphs; K3,3-minor-free graphs and
K5-minor-free graphs [Demaine et al. 2005c], which include planar graphs; and
single-crossing-minor-free graphs [Demaine et al. 2002, 2005c], which include
K3,3- and K5-minor-free graphs. These algorithms [Demaine et al. 2005a, 2002,
2005c] apply to dominating set and several other problems related to domination,
covering, and logic.

Algorithms for H -minor-free graphs for a fixed graph H have been studied ex-
tensively; see, for example, Charikar and Sahai [2002], Gupta et al. [1999], Chekuri
et al. [2003], Klein et al. [1993], Plotkin et al. [1994]. In particular, it is generally be-
lieved that several algorithms for planar graphs can be generalized to H -minor-free
graphs for any fixed H [Gupta et al. 1999; Klein et al. 1993; Plotkin et al. 1994]. H -
minor-free graphs are very general. The deep Graph-Minor Theorem of Robertson
and Seymour shows that any graph class that is closed under minors is characterized
by excluding a finite set of minors. In particular, any graph class that is closed under
minors (other than the class of all graphs) excludes at least one minor H .

Our Results. We introduce a framework for extending algorithms for planar graphs
to apply to H -minor-free graphs for any fixed H . In particular, we design subexpo-
nential fixed-parameter algorithms for dominating set, vertex cover, and set cover
(viewed as one-sided domination in a bipartite graph) for H -minor-free graphs.
Our framework consists of three components, as described below. We believe
that many of these components can be applied to other problems and conjectures
as well.

First, we extend the algorithm for planar graphs to bounded-genus graphs.
Roughly speaking, we study the structure of the solution to the problem in
k × k grids, which form a representative substructure in both planar graphs and
bounded-genus graphs, and capture the main difficulty of the problem for these
graphs. Then, using Robertson and Seymour’s graph-minor theory, we repeatedly
remove handles to reduce the bounded-genus graph down to a planar graph, which
is essentially a grid.

Second, we extend the algorithm to almost-embeddable graphs that can be drawn
in a bounded-genus surface except for a bounded number of “local areas of nonpla-
narity”, called vortices, and for a bounded number of “apex” vertices, which can
have any number of incident edges that are not properly embedded. Because each
vortex has bounded pathwidth, the number of vortices is bounded, and the number of
apices is bounded, we are able to extend our approach to solve almost-embeddable
graphs using our solution to bounded-genus graphs.

Third, we apply a deep theorem of Robertson and Seymour, which character-
izes H -minor-free graphs as a tree structure of pieces, where each piece is an
almost-embeddable graph. Using dynamic programming on such tree structures,
analogous to algorithms for graphs of bounded treewidth, we are able to combine
the pieces and solve the problem for H -minor-free graphs. Note that the standard
bounded-treewidth methods do not suffice for general H -minor-free graphs, unlike,
for example, bounded-genus graphs, because their treewidth can be arbitrarily large
with respect to the parameter [Demaine et al. 2004a]. Our contribution is to over-
come this barrier algorithmically using a two-level dynamic program in a more
general tree structure called a “clique-sum decomposition.”
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The first step of this procedure, for bounded-genus graphs, applies to a broad class
of problems called “bidimensional problems”. Roughly speaking, a parameterized
graph problem is bidimensional if the parameter is large enough (linear) in a grid
and closed under contractions. Examples of bidimensional problems include vertex
cover, feedback vertex set, minimum maximal matching, dominating set, edge
dominating set, set cover, disk dimension, and TSP tour (in the shortest-path metric
of the graph). We obtain subexponential fixed-parameter algorithms for all of these
problems in bounded-genus graphs. As a special case, this generalization settles
an open problem about dominating set posed by Ellis et al. [2004]. Along the way,
we establish an upper bound on the treewidth (or branchwidth) of a bounded-genus
graph that excludes some planar graph H as a minor. This bound depends linearly
on the size |V (H )| of the excluded graph H and the genus g(G) of the graph G,
and applies and extends the graph-minors work of Robertson and Seymour.

This article forms the basis of several more recent papers, for example, Demaine
and Hajiaghayi [2004a, 2004b, 2005a, 2005b], Demaine et al. [2004a, 2004b],
and Fomin and Thilikos [2003]. In particular, the theory of bidimensionality intro-
duced in this article has flourished into a comprehensive body of algorithmic and
combinatorial results. The consequences of this theory include tight parameter-
treewidth bounds, direct seperator theorems, linearity of local treewidth, subexpo-
nential fixed-parameter algorithms, and polynomial-time approximation schemes
for a broad class of problems on graphs that exclude a fixed minor. In Section 6,
we describe some of these results in comparison to this article.

This article is organized as follows: First, we introduce the terminology used
throughout the article, and formally define tree decompositions, treewidth, and
fixed-parameter tractability in Section 2. Section 3 is devoted to graphs on sur-
faces. We construct a general framework for obtaining subexponential parameter-
ized algorithms on graphs of bounded genus. First, we introduce the concept of
bidimensional problem, and then prove that every bidimensional problem has a
subexponential parameterized algorithm on graphs of bounded genus. The proof
techniques used in this section are very indirect and are based on deep theorems
from Robertson and Seymour’s Graph Minors XI [Robertson and Seymour 1994]
and XII [Robertson and Seymour 1995a]. As a byproduct of our results we obtain
a generalization of Quickly Excluding a Planar Graph Theorem [Robertson et al.
1994] for graphs of bounded genus. In Section 5, we make a further step by devel-
oping subexponential algorithms for graphs containing no fixed graph H as a minor.
The proof of this result is based on combinatorial bounds from the previous section,
a deep structural theorem from Graph Minors XVI [Robertson and Seymour 2003],
and complicated dynamic programming. Finally, in Section 6, we present several
extensions of our results and some open problems.

2. Background

2.1. PRELIMINARIES. All the graphs in this article are undirected without loops.
The reader is referred to standard references for appropriate background [Bondy and
Murty 1976]. In addition, for exact definitions of various NP-hard graph-theoretic
problems in this article, the reader is referred to Garey and Johnson [1979].

Our graph terminology is as follows: A graph G is represented by G = (V, E),
where V (or V (G)) is the set of vertices and E (or E(G)) is the set of edges. We
denote an edge e between u and v by {u, v}. We define n to be the number of
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vertices of a graph when this is clear from context. For every subset W ⊆ V (G)
of vertices, the subgraph of G induced by W is denoted by G[W ]. We define the
q-neighborhood of a vertex v ∈ V (G), denoted by N q

G[v], to be the set of vertices of
G at distance at most q from v . Notice that v ∈ N q

G[v]. We define NG[v] = N 1
G[v]

and NG(v) = NG[v] − {v}.
The (disjoint) union of two disjoint graphs G1 and G2, G1 ∪ G2, is the graph

G with merged vertex and edge sets: V (G) = V (G1) ∪ V (G2) and E(G) =
E(G1) ∪ E(G2).

One way of describing classes of graphs is by using minors. Given an edge
e = {u, v} of a graph G, the graph G/e is obtained from G by contracting the
edge e; that is, to get G/e we identify the vertices u and v and remove all loops and
duplicate edges. A graph H obtained by a sequence of edge contractions is said
to be a contraction of G. A graph H is a minor of G if H is a subgraph of some
contraction of G. A graph class C is minor-closed if any minor of any graph in C is
also a member of C. A minor-closed graph class C is H-minor-free if H �∈ C.

For example, a planar graph is a graph excluding both K3,3 and K5 as minors
(Kuratowski’s Theorem).

2.2. FIXED-PARAMETER ALGORITHMS. Developing fast algorithms for NP-
hard problems is an important issue. Downey and Fellows Downey and Fellows
[1999] formalized a new approach to cope with NP-hardness, called fixed-parameter
tractability. For many NP-complete problems, the inherent combinatorial explosion
can be attributed to a certain aspect of the problem, a parameter. The parameter is
often an integer that is small in practice. The running times of simple algorithms
may be exponential in the parameter but polynomial in the rest of the problem size.
A problem is fixed-parameter tractable if it has an algorithm whose running time
is f (k)nO(1) where n is the problem size, k is the parameter value, and f is any
function (typically, 2�(k)). For example, it has been shown that a vertex cover of
size k can be found in O(1.2745kk4 + kn) time [Chandran and Grandoni 2005],
and hence this problem is fixed-parameter tractable.

Alber et al. [2002] demonstrated a solution to finding a dominating set of size
k in a planar graph in O(46

√
34kn) time. This result was the first nontrivial re-

sult for the parameterized version of an NP-hard problem where the exponent
of the exponential term grows sublinearly in the parameter (see also Kanj and
Perković [2002] and Fomin and Thilikos [2003] for further improvements of the
time bound of [Alber et al. 2002]) and it initiated the extensive study of subex-
ponential algorithms for various parameterized problems on planar graphs. Using
this result, others could obtain exponential speedup of fixed-parameter algorithms
for many NP-complete problems on planar graphs (see, e.g., Chang et al. [2001],
Kloks et al. [2002], Alber et al. [2004b], and Cai et al. [2001]). (See also Cai and
Juedes [2003] for discussions on lower bounds of subexponential algorithms on
planar graphs.) Recently, Demaine et al. [2002, 2005a, 2005b] extended these re-
sults to many NP-complete problems on map graphs and graphs excluding a single-
crossing-graph such as K5 or K3,3 as a minor. As mentioned before, we extend these
results for bounded-genus graphs and more generally H -minor-free graphs for any
fixed H .

2.3. TREEWIDTH AND BRANCHWIDTH. The notion of treewidth was introduced
by Robertson and Seymour [1986a] and plays an important role in their fundamental
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work on graph minors. To define this notion, first we consider the representation of
a graph by a tree, which is the basis of our algorithms in this article.

A tree decomposition of a graph G is a pair (T, χ ) where T is a tree and χ =
{χi | i ∈ V (T )} is a family of subsets of V (G) such that

(1)
⋃

i∈V (T ) χi = V (G);
(2) for each edge e = {u, v} ∈ E(G), there is an i ∈ V (T ) such that both u and v

belong to χi ;
(3) for all v ∈ V (G), the set of nodes {i ∈ V (T ) | v ∈ χi } forms a connected

subtree of T .

To distinguish between vertices of the original graph G and vertices of the tree T ,
we call vertices of T nodes and call their corresponding χi ’s bags. The maximum
size of a bag in χ minus one is called the width of the tree decomposition (T, χ ).
The treewidth of a graph G, denoted tw(G), is the minimum width over all tree
decompositions of G. A tree decomposition is called a path decomposition if T is
a path. The pathwidth of a graph G, denoted pw(G), is the minimum width over
all possible path decompositions of G.

A branch decomposition of a graph G is a pair (T, τ ) where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from the set of leaves of T to E(G).
The order of an edge e in T is the number of vertices v ∈ V (G) such that there are
leaves t1, t2 in T in different components of T −e = (V (T ), E(T )−e) with τ (t1) and
τ (t2) both containing v as an endpoint. The width of (T, τ ) is the maximum order
over all edges of T , and the branchwidth of G, denoted bw(G), is the minimum
width over all branch decompositions of G. (In the case |E(G)| ≤ 1, we define
the branchwidth to be 0; if |E(G)| = 0, then G has no branch decomposition;
if |E(G)| = 1, then G has a branch decomposition consisting of a tree with one
vertex, and the width of this branch decomposition is considered to be 0.)

It is known that, if H is a minor of G, then tw(H ) ≤ tw(G) and bw(H ) ≤ bw(G)
[Robertson and Seymour 1991]. The following connection between treewidth and
branchwidth is due to Robertson and Seymour:

THEOREM 2.1 (ROBERTSON AND SEYMOUR 1991; THEOREM 5.1). For any con-
nected graph G where |E(G)| ≥ 3, bw(G) ≤ tw(G) + 1 ≤ 3

2 bw(G).

3. Graphs on Surfaces

3.1. PRELIMINARIES. In this section, we describe some of the machinery de-
veloped in the Graph Minors series that we use in our proofs. See also Robertson
and Seymour [1994].

A surface � is a connected compact 2-manifold without boundary. A line in �
is a subset homeomorphic to [0, 1]. An O-arc is a subset of � homeomorphic to a
circle. A subset of � is an open disk if it is homeomorphic to {(x, y) | x2 + y2 < 1},
and it is a closed disk if it is homeomorphic to {(x, y) | x2 + y2 ≤ 1}.

A 2-cell embedding of a graph G in a surface � is a drawing of the vertices
as points in � and the edges as lines in � such that every region (face) bounded
by edges is an open disk. To simplify notation, we do not distinguish between a
vertex of G and the point of � used in the drawing to represent the vertex, or
between an edge and the line representing it. We also consider G as the union of
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points corresponding to its vertices and edges. Also, a subgraph H of G can be
seen as a graph H where H ⊆ G. A region of G is a connected component of
� − E(G) − V (G). (Every region is an open disk.) We use the notation V (G),
E(G), and R(G) for the set of the vertices, edges, and regions of G.

If � ⊆ �, then � denotes the closure of �, and the boundary of � is bd(�) =
� ∩ � − �. A vertex or an edge x is incident to a region r if x ⊆ bd(r ).

A subset of � meeting the drawing only at vertices of G is called G-normal. If
an O-arc is G-normal, then we call it a noose. The length of a noose is the number
of vertices it meets. We say that a disk D is bounded by a noose N if N = bd(D).
A graph G 2-cell embedded in a connected surface � is θ -representative if every
noose of length less than θ is contractable (null-homotopic in �).

Tangles were introduced by Robertson and Seymour [1991]. A separation of a
graph G is a pair (A, B) of subgraphs with A ∪ B = G and E(A ∩ B) = ∅, and its
order is |V (A ∩ B)|. A tangle of order θ ≥ 1 is a set T of separations of G, each
of order less than θ , such that

(1) for every separation (A, B) of G of order less than θ , T contains one of (A, B)
and (B, A);

(2) if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪ A2 ∪ A3 �= G; and
(3) if (A, B) ∈ T , then V (A) �= V (G).

Let G be a graph 2-cell embedded in a connected surface �. A tangle T of order
θ is respectful if, for every noose N in � of length less than θ , there is a closed disk
� ⊆ � with bd(�) = N such that the separation (G ∩ �, G ∩ � − �) ∈ T .

Our proofs are based on the following results from the Graph Minors series of
papers by Robertson and Seymour.

THEOREM 3.1 (ROBERTSON AND SEYMOUR 1991; THEOREM 4.3). Let G be a
graph with at least one edge. Then there is a tangle in G of order θ if and only if G
has branchwidth at least θ .

THEOREM 3.2 (ROBERTSON AND SEYMOUR 1994; THEOREM 4.1). Let � be a
connected surface, not homeomorphic to a sphere; let θ ≥ 1; and let G be a
θ -representative graph 2-cell embedded in �. Then, there is a unique respectful
tangle in G of order θ .

Roughly speaking, a tangle of order θ assigns a notion of “inside” for each
separation of order at most θ . Theorem 3.2 says that, if the surface has positive
genus and the embedding is θ -representative, then every separation of order θ
splits � into parts in such a way that exactly one part is homeomorphic to a disk,
and a tangle selects the corresponding component of the graph. When the surface
is the sphere, this partition is more ambiguous, and the tangle disambiguates which
part is considered “inside.” See Robertson and Seymour [1994, Sect. 1] for more
intuition.

Our proofs also use the notion of the radial graph. Informally, the radial graph
of a graph G 2-cell embedded in � is the bipartite graph RG obtained by selecting
a point in every region r of G and connecting it via an edge to every vertex of G
incident to that region. However, a region may be incident to the same vertex “more
than once”, so we need a more formal definition. Precisely, RG is a radial graph of
a graph G 2-cell embedded in � if
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(1) E(G) ∩ E(RG) = V (G) ⊆ V (RG);
(2) each region r ∈ R(G) contains a unique vertex vr ∈ V (RG);
(3) RG is bipartite with a bipartition (V (G), {vr : r ∈ R(G)});
(4) if e, f are edges of RG with the same ends v ∈ V (G), vr ∈ V (RG), then e ∪ f

does not bound a closed disk in r ∪ {v}; and
(5) RG is maximal subject to Conditions (1)–(4).

The radial graph is unique up to isomorphism [Robertson and Seymour 1994,
Sect. 3].

3.2. BOUNDING THE REPRESENTATIVITY. Define the (r ×r )-grid to be the graph
on r2 vertices {(x, y) | 1 ≤ x, y ≤ r} with edges between vertices differing by
±1 in exactly one coordinate. A partially triangulated (r × r )-grid is any planar
supergraph of the (r × r )-grid with the same set of vertices.

LEMMA 3.3. Let G be a graph 2-cell embedded in a surface �, not homeo-
morphic to a sphere, of representativity at least 4r > 0. Then G contains as a
contraction a partially triangulated (r × r )-grid.

PROOF. Let θ = 4r be (a lower bound on) the representativity of G. By
Theorem 3.2, G has a respectful tangle of order θ . Let A(G) be the set of vertices,
edges, and regions (collectively, atoms) of the graph G. According to Robertson and
Seymour [1994, Sect. 9] (see also Robertson and Seymour [1995a]), the existence
of a respectful tangle of order θ makes it possible to define a metric d on A(G) as
follows:

(1) If a = b, then d(a, b) = 0.
(2) If a �= b, and a and b are interior to a contractible closed walk in the radial

graph RG of length less than 2θ , then d(a, b) is half the minimum length of
such a walk. (Here, by interior, we mean the direction in which the walk can
be contracted, and we include the boundary as part of the interior.)

(3) Otherwise, d(a, b) = θ .

Let c be any vertex in G; refer to Figure 1. For 0 ≤ i < θ , define Zi to be the union
of all atoms of distance at most i from c (where distance is measured according to
the metric d). By Robertson and Seymour [1994, Theorem 8.10], Zi is a nonempty
simply connected set, for all i . (A subset of a surface is simply connected if it is
connected and has no noncontractible closed curves.) Thus, the boundary bd(Zi )
of each Zi is a closed walk in the radial graph.

We claim that the closed walks bd(Zi ) and bd(Zi+1) are vertex-disjoint. Consider
any vertex a of RG on bd(Zi ) and an adjacent vertex b of RG outside Zi . The distance
between a and b, measured according to d, is 1 because there is a length-2 closed
walk connecting them, doubling the edge (a, b) in the radial graph. By Robertson
and Seymour [1994, Theorem 9.1], the metric d satisfies the triangle inequality, and
hence d(c, b) ≤ d(c, a) + 1 = i + 1. In fact, this bound must hold with equality,
because b /∈ Zi . Therefore, every vertex a of RG on bd(Zi ) is surrounded on the
exterior of Zi by vertices of RG at distance exactly i +1 from c, so bd(Zi ) is strictly
enclosed by bd(Zi+1).

Consider the “annulus” A = (Zθ−1 − Zθ/2) ∪ bd(Zθ−1) ∪ bd(Zθ/2), which
includes the boundary bd(A) = bd(Zθ−1) ∪ bd(Zθ/2). We claim that there are at
least θ/2 vertex-disjoint paths in RG withinA connecting vertices of RG in bd(Zθ/2)
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FIG. 1. The radial graph in the proof of Lemma 3.3.

to vertices of RG in bd(Zθ−1). By Menger’s Theorem, the contrary implies the
existence of a cut in A of size less than θ/2 separating the two sets, which by
simple connectedness (essentially, planarity) of Zθ−1 implies the existence of a
cycle of length less than θ that separates the two sets, but such a cycle must be
contained in Zθ/2.

Now we form a (θ/2 × θ/2)-grid in the radial graph. The row lines in the grid
are formed by taking, for each i = θ/2, θ/2 + 1, θ/2 + 2, . . . , θ − 1, the unique
simple cycle that encloses c and that is a subset of the closed walk bd(Zi ). The
column lines in the grid are formed by the θ/2 vertex-disjoint paths found above.
Therefore, we obtain a subdivision of the (θ/2 × θ/2)-grid as a subgraph of the
radial graph. Note that, by our construction, the rows of this grid can in fact form
cycles, not just paths.

Finally, we transform this grid into a (θ/4 × θ/4)-grid in the original graph G.
Each row of the grid in the radial graph, viewed as a cycle C , corresponds in the
original graph to a cyclic sequence of faces “surrounding” the row. We replace this
row by the “inner half” of each face, that is, the unique simple cycle that encloses c,
is enclosed by C , and whose edges are edges of these surrounding faces. In this way,
each row in the radial graph maps in the original graph to a curve contained within
this row line. Two adjacent mapped row lines may touch but cannot properly cross,
so row lines of distance 2 or more in the grid cannot overlap when mapped to the
original graph. Similarly, we can map each column of the grid in the radial graph
to the original graph, trimming the ends to where they meet the second and last
mapped rows (where the innermost row is considered first). Thus, by discarding the
odd-numbered rows and columns, we obtain a subdivision of the (θ/4 × θ/4)-grid
in the original graph. Because Zθ−1 is simply connected, the grid is embedded in
a simply connected subset of �, so if we apply contractions without deletions, we
obtain a partially triangulated grid.
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4. Bidimensional Parameters and Bounded-Genus Graphs

In this section, we define a general framework of parameterized problems for which
subexponential algorithms with small constants can be obtained. Our framework
is sufficiently broad that an algorithmic designer needs to check only two simple
properties of any desired parameter to determine the applicability and practicality
of our approach.

4.1. DEFINITIONS. Recall from Section 3.2 that a partially triangulated (r ×r )-
grid is any planar graph obtained by adding edges between pairs of nonconsecutive
vertices on a common face of a planar embedding of an (r × r )-grid.

Definition 4.1. A parameter P is any function mapping graphs to nonnegative
integers. The parameterized problem associated with P asks, for some fixed k,
whether P(G) ≤ k for a given graph G.

Definition 4.2. A parameter P is minor bidimensional with density δ if

(1) contracting or deleting an edge in a graph G cannot increase P(G), and
(2) for the (r × r )-grid R, P(R) = (δr )2 + o((δr )2).

A parameter P is called contraction bidimensional with density δ if

(1) contracting an edge in a graph G cannot increase P(G),
(2) for any partially triangulated (r × r )-grid R, P(R) ≥ (δr )2 + o((δr )2), and
(3) δ is the smallest real number for which this inequality holds.

In either case, P is called bidimensional. The density δ of P is the minimum
of the two possible densities (when both definitions are applicable). We call the
sublinear function f (x) = o(x) in the bound on P(R) the residual function of P .

Notice that density assigns a positive real number, typically at most 1, to any
bidimensional parameter. Interestingly, this assignment defines a total order on all
such parameters.

4.2. EXAMPLES. Many parameters are bidimensional. Here we mention just a
few. Examples of minor-bidimensional parameters are the following.

Vertex Cover. A vertex cover of a graph G is a set C of vertices such that every
edge of G has at least one endpoint in C . The vertex-cover problem is to find a
minimum-size vertex cover in a given graph G. The corresponding parameter, the
size of a minimum vertex cover, is minor bidimensional with density δ = 1/

√
2.

(Roughly half the vertices must be in any vertex cover of the grid, and one color
class in a vertex 2-coloring of the grid is a vertex cover.)

Feedback Vertex Set. A feedback vertex set of a graph G is a set U of vertices
such that every cycle of G passes through at least one vertex of U . The size of a
minimum feedback vertex size is a minor-bidimensional parameter with density
δ ∈ [1/2, 1/

√
2]. (δ ≥ 1/2 because there are r2/4 + o(r2) vertex-disjoint squares

in the (r × r )-grid, each of which must be broken; δ ≤ 1/
√

2 because it suffices to
remove one color class in a vertex 2-coloring of the grid.)

Minimum Maximal Matching. A matching in a graph G is a set E ′ of edges
without common endpoints. A matching in G is maximal if it is contained by
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no other matching in G. The size of a minimum maximal matching is a minor-
bidimensional parameter with density δ ∈ [1/

√
8, 1/

√
2]. (δ ≥ 1/

√
8 because any

maximal matching must include at least one edge interior to any 3 × 4 subgrid,
and there are r2/8 + o(r2) interior-disjoint 3 × 4 subgrids; δ ≤ 1/

√
2 because the

number of edges in a matching is at most r2/2.)

Examples of contraction-bidimensional parameters are:

Dominating Set. A dominating set of a graph G is a set D of vertices of G
such that each of the vertices of V (G) − D is adjacent to at least one vertex of D.
The size of a minimum dominating set is a contraction-bidimensional parameter
with density δ = 1/3. (δ ≥ 1/3 because every vertex dominates at most 9 vertices;
δ ≤ 1/3 because there is a triangulation of the (r × r )-grid with dominating set of
size r2/9 + o(r2).)

Edge Dominating Set. An edge dominating set of a graph G is a set D of
edges of G such that every edge in E(G) − D shares at least one endpoint with
some edge in D. The size of a minimum edge domainting set is a contraction-
bidimensional parameter with density δ = 1/

√
14. (δ ≥ 1/

√
14 because every

edge in a triangulated grid dominates at most 14 edges; δ ≤ 1/
√

14 because size-
14 neighborhoods of a diagonal edge can be tiled to form a triangulated (r ×r )-grid
requiring r2/14 + o(r2) dominating edges.)

Many of our results can be applied not only to bidimensional parameters but also
to parameters that are bounded by bidimensional parameters [Demaine et al. 2005c,
2004a]. For example, the clique-transversal number of a graph G is the minimum
number of vertices intersecting every maximal clique of G. This parameter is not
contraction-bidimensional because an edge contraction may create a new maximal
clique and cause the clique-transversal number to increase. On the other hand, it
is easy to see that this graph parameter always exceeds the size of a minimum
dominating set. In particular, this fact can be used to obtain a parameter-treewidth
bound for the clique-transversal number.

Our results can also be applied to maximization problems. For example, maxi-
mum independent set is a contraction-bidimensional parameter.

4.3. SUBEXPONENTIAL ALGORITHMS AND PLANAR GRAPHS. Almost all known
techniques for obtaining subexponential parameterized algorithms on planar graphs
are based on the following “bounded-treewidth approach” [Alber et al. 2002; Fomin
and Thilikos 2003; Kanj and Perković 2002]:

(I1) Prove that tw(G) ≤ c
√

P(G) for some constant c;

(I2) Compute or approximate the treewidth (or branchwidth) of G;

(I3) Decide whether P(G) ≤ k as follows: If the treewidth is more than c
√

k,
then the answer to the decision problem is NO. If treewidth is at most c

√
k,

then run a standard dynamic program for graphs of bounded treewidth in
2O(tw(G))nO(1) = 2O(

√
k)nO(1) time.

All previously known ways of obtaining the most important step (I1) use rather
complicated techniques based on separators. Next we give some hints why bi-
dimensional parameters are important for the design of subexponential algorithms



Subexponential Parameterized Algorithms on H-Minor-Free Graphs 877

by showing how step (I1) can be performed for planar graphs. We need the following
result of Robertson, Seymour, and Thomas.

THEOREM 4.3 (ROBERTSON AND SEYMOUR 1991; THEOREM 4.3; ROBERTSON
ET AL. 1994; THEOREM 6.3). Let r ≥ 1 be an integer. Every planar graph with no
(r × r )-grid as a minor has branchwidth at most 4r − 3.

Using this theorem, we obtain the following relation between treewidth and
bidimensional parameters:

THEOREM 4.4. Let P be a bidimensional parameter. Then, for any planar
graph G, tw(G) = O(

√
P(G)).

PROOF. First, we consider the case when P is minor-bidimensional. Suppose,
for contradiction, that tw(G) > c

√
P(G) for a large constant c to be determined.

By Theorem 2.1, bw(G) > 2
3 tw(G) > 2

3 c
√

P(G). By Theorem 4.3, G must
have an (r × r )-grid R as a minor, where r ≥ 1

6 c
√

P(G). Let δ be the density
of P . Then |V (R)| = r2 ≤ P(R)/δ2 − o(r2) ≤ P(G)/δ2 − o(r2) because P is
minor-bidimensional. But r2 ≥ 1

36 c P(G), so we get a contradiction by choosing c
large enough.

If P is contraction-bidimensional, we can use the same proof with one change.
After obtaining the grid R as a minor, we remove the edge deletions and take only
the edge contractions that form R from G, to obtain a partially triangulated grid R′
as a contraction of G. Then, the rest of the proof uses R′ instead of R; in particular,
P(R′) ≤ P(G).

The class of bidimensional parameterized problems contains all parameters
known from the literature to have subexponential parameterized algorithms for
planar graphs [Alber et al. 2001, 2002, 2004b; Chang et al. 2001; Kloks et al.
2002; Gutin et al. 2001]. Recently, Cai et al. [2001] defined a class of parame-
ters, Planar TMIN1, and proved that, for every planar graph G and parameter P
in Planar TMIN1, tw(G) = O(

√
P(G)). Every problem in Planar TMIN1 can be

expressed as a special type of dominating-set problem on bipartite graphs. (We
refer to [Cai et al. 2001] for definitions and further properties of Planar TMIN1.)
Using Theorem 4.4, it is possible to prove a similar result, establishing the bound
tw(G) = O(

√
P(G)) for most parameters P in Planar TMIN1.

It is tempting to wonder whether every parameter admitting a 2O(
√

k)nO(1)-time
algorithm on planar graphs is bidimensional.

4.4. PARAMETER-TREEWIDTH BOUND FOR BOUNDED-GENUS GRAPHS. To ex-
tend Theorem 4.4 to graphs of bounded genus, more work needs to be done.

If P is a bidimensional parameter with density δ and residual function f , then
we define the normalization factor of P to be the minimum number β ≥ 1 such
that ( δ

β
r )2 ≤ (δr )2 + f (δr ) for all r ≥ 1.

LEMMA 4.5. Let P be a contraction (minor) bidimensional parameter with
density δ. Then, P(G) < ( δ

β
r )2 implies that G excludes the (r × r )-grid as a minor

(and all partial triangulations of the (r × r )-grid as contractions).

PROOF. If P is minor bidimensional and H is the (r × r )-grid and H is a
minor of G, then P(H ) ≤ P(G). Because P(H ) = (δr )2 + f (δr ), we have that
( δ
β

r )2 > P(G) ≥ (δr )2 + f (δr ), which contradicts the definition of β.
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If P is contraction bidimensional and H is a partial triangulation of the (r×r )-grid
and H is a contraction of G, then P(H ) ≤ P(G). Because P(H ) = (δr )2 + f (δr ),
we have that ( δ

β
r )2 > P(G) ≥ (δr )2 + f (δr ), which contradicts the definition

of β.

Let G be a graph and let v ∈ V (G) be a vertex. Also suppose we have a partition
Pv = (N1, N2) of the set of the neighbors of v . Define the splitting of G with respect
to v and Pv to be the graph obtained from G by

(1) removing v and its incident edges;
(2) introducing two new vertices v1 and v2; and
(3) connecting vi with the vertices in Ni , for i = 1, 2.

If H is the result of consecutive application of several such operations to some
graph G, then we say that H is a splitting of G. If, in addition, the sequence of
splittings never splits a vertex that was the result of a previous splitting, then we
say that H is a fair splitting of G. The vertices v of G involved in the splittings that
make up a fair splitting are called affected vertices.

A parameter P is α-splittable if, for every graph G and for each vertex v ∈
V (G), the result G ′ of splitting G with respect to v satisfies P(G ′) ≤ P(G) + α.
Many natural graph problems are α-splittable for small constants α. Examples
of 1-splittable problems are dominating set, vertex cover, edge dominating set,
independent set, clique-transversal set, and feedback vertex set, among many others.

For the proof of our main result on properties of bidimensional parameters, we
need two technical lemmas used in induction on the genus.

It is convenient to work with Euler genus. The Euler genus eg(�) of a nonori-
entable surface � is equal to the nonorientable genus g̃(�) (or the crosscap num-
ber). The Euler genus eg(�) of an orientable surface � is 2g(�), where g(�) is
the orientable genus of �.

The following lemma is very useful in proofs by induction on the genus. The
first part of the lemma follows from Mohar and Thomassen [2001, Lemma 4.2.4]
(corresponding to a nonseparating cycle) and the second part follows from Mohar
and Thomassen [2001, Proposition 4.2.1] (corresponding to a surface-separating
cycle).

LEMMA 4.6. Let G be a connected graph 2-cell embedded in a surface � not
homeomorphic to a sphere, and let N be a noncontractible noose on G. Then there
is a fair splitting G ′ of G affecting the set S = {v1, . . . , vρ} of vertices of G met by
N such that one of the following holds:

(1) G ′ can be 2-cell embedded in a surface with Euler genus strictly smaller than
eg(�); or

(2) each connected component Gi of G ′ can be 2-cell embedded in a surface with
Euler genus strictly smaller than eg(�) and is a contraction of some graph G∗

i
obtained from G after at most ρ splittings.

The following lemma is a consequence of the definition of branchwidth:

LEMMA 4.7. Let G be a graph and let G ′ be the splitting of a vertex in G. Then,
bw(G) ≤ bw(G ′) + 1.
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FIG. 2. Splitting a noose.

PROOF. Consider a branch decomposition (T, τ ) of G ′ of width bw(G ′). The
same (T, τ ) is also a branch decomposition of G if we replace each edge of G ′ with
the unique correponding edge in G. The order of each edge e of T increases by
at most 1 because all vertices except the split vertex have the same incident edges
so are counted the same and, at worst, the split vertex is counted in G whereas
its two copies in G ′ might not be counted (because each copy is incident to edges
corresponding to leaves in only one connected component of T − e).

THEOREM 4.8. Suppose that P is an α-splittable bidimensional parameter
(α ≥ 0) with density δ > 0 and normalization factor β ≥ 1. Then, for any
(connected ) graph G 2-cell embedded in a surface � of Euler genus eg(�),
bw(G) ≤ 4β

δ
(eg(�) + 1)

√
P(G) + 1 + 8α(β

δ
(eg(�) + 1))2.

PROOF. We induct on the Euler genus of �.
In the base case that eg(�) = 0, Lemma 4.5 implies that, if P(G) < ( δ

β
r )2, then G

excludes the (r ×r )-grid as a minor. This implication is precisely Lemma 4.5 when
P is minor bidimensional. If P is contraction bidimensional, then the implication
follows because, if a connected planar graph G can be transformed to a graph H
(e.g., the (r ×r )-grid) via a sequence of edge contractions and/or removals, then by
applying only the contractions in this sequence, we obtain a partial triangulation of
H as a contraction of G. Now, by Theorem 4.3, if P(G) < ( δ

β
r )2, then bw(G) ≤

4r − 6. If we set r = β

δ

√
P(G)� + 1, we have that bw(G) ≤ 4β

δ

√
P(G)� − 2.

Because α, β, δ ≥ 0, the induction base follows.
Suppose now that eg(�) ≥ 1 and that the induction hypothesis holds for any

graph 2-cell embedded in a surface with Euler genus less than eg(�). Let G be a
graph 2-cell embedded in �. We set k = P(G) and claim that the representativity
of this embedding of G is at most 4β

δ

√
k + 1�. Lemma 4.5 implies that, if k <

( δ
β

r )2, then G excludes any triangulation of the (r × r )-grid as a contraction. By
the contrapositive of Lemma 3.3, this implies that the representativity of G is
less than 4r . If we set r =  δ

β

√
k + 1� + 1, we have that the representativity of

G is at most 4β

δ

√
k + 1�. Let N be a minimum-size noncontractible noose N

on � meeting ρ vertices of G where ρ ≤ 4β

δ

√
k + 1�. By Lemma 4.6, there

is a fair splitting along the vertices met by N such that either Condition 1 or
Condition 2 holds; see Figure 2. Let G ′ be the resulting graph and let �′ be a
surface such that eg(�′) ≤ eg(�) − 1 and every connected component of G ′ is
2-cell embedable in �′. We claim that, given either Condition 1 or Condition 2,
bw(G ′) ≤ 4β

δ
eg(�)

√
k + αρ + 1 + 8α(β

δ
)2(eg(�))2.
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Given Condition 1, we apply the induction hypothesis to G ′ and get that bw(G ′) ≤
4β

δ
(eg(�′)+1)

√
P(G ′) + 1+8α(β

δ
)2(eg(�′)+1)2. Because G ′ is obtained from G

after at mostρ splittings and P is anα-splittable parameter, we have P(G ′) ≤ k+αρ.
Because eg(�′) ≤ eg(�) − 1, we obtain bw(G ′) ≤ 4β

δ
eg(�)

√
k + αρ + 1 +

8α(β

δ
)2(eg(�))2.

Given Condition 2, we apply the induction hypothesis to each of the connected
components of G. Let Gi be such a component. We get that bw(Gi ) ≤ 4β

δ
(eg(�′)+

1)
√

P(Gi ) + 1 + 8α(β

δ
)2(eg(�′) + 1)2. Because Gi is a contraction of some graph

G∗
i obtained from G after at most ρ splittings and P is an α-splittable parameter,

we get that P(Gi ) ≤ P(G∗
i ) ≤ k + αρ. Again because eg(�′) ≤ eg(�) − 1,

we have bw(Gi ) ≤ 4β

δ
eg(�)

√
k + αρ + 1 + 8α(β

δ
)2(eg(�))2. Because bw(G ′) =

maxi (bw(Gi )), we obtain bw(G ′) ≤ 4β

δ
eg(�)

√
k + αρ + 1 + 8α(β

δ
)2(eg(�))2.

Because G ′ is the result of at most ρ consecutive vertex splittings on G,
Lemma 4.7 yields that bw(G) ≤ bw(G ′) + ρ. Therefore,

bw(G) ≤ 4β

δ
eg(�)

√
k + αρ + 1 + 8α

(
β

δ

)2
(eg(�))2 + ρ

≤ 4β

δ
eg(�)

√
k + α(4β

δ

√
k + 1) + 1 + 8α

(
β

δ

)2
(eg(�))2 + 4β

δ

√
k + 1

= 4β

δ
eg(�)

√
(
√

k + 1)(
√

k + 1 + 4α
β

δ
) + 8α

(
β

δ

)2
(eg(�))2 + 4β

δ

√
k + 1

≤ 4β

δ
eg(�)

√
(
√

k + 1 + 4α
β

δ
)(
√

k + 1 + 4α
β

δ
) + 8α

(
β

δ

)2
(eg(�))2

+ 4β

δ

√
k + 1, because α, β, δ ≥ 0

= 4β

δ
eg(�)(

√
k + 1 + 4α

β

δ
) + 8α

(
β

δ

)2
(eg(�))2 + 4β

δ

√
k + 1

= 4β

δ
eg(�)

√
k + 1 + 16α

(
β

δ

)2
eg(�) + 8α

(
β

δ

)2
(eg(�))2 + 4β

δ

√
k + 1

= 4β

δ
(eg(�) + 1)

√
k + 1 + 8α

(
β

δ

)2
(eg(�)2 + 2eg(�))

≤ 4β

δ
(eg(�) + 1)

√
k + 1 + 8α

(
β

δ

)2
(eg(�)2 + 2eg(�) + 1), because α, β,

δ ≥ 0

= 4β

δ
(eg(�) + 1)

√
k + 1 + 8α

(
β

δ
(eg(�) + 1)

)2
.

Theorem 4.8 is a general theorem that applies to any α-splittable bidimensional
parameter. For minor-bidimensional parameters, the bound for branchwidth can be
further improved.

THEOREM 4.9. Suppose that P is a minor-bidimensional parameter with den-
sity δ ≤ 1 and normalization factor β ≥ 1. Then, for any graph G 2-cell embedded
in a surface � of Euler genus eg(�), bw(G) ≤ 4β

δ
(eg(�) + 1)

√
P(G) + 1.

PROOF. The proof is similar to the proof of Theorem 4.8. The only difference is
that, instead of a fair splitting along the vertices of a minimum-size noncontractible
noose, we just remove vertices of the noose from the graph. Because the parameter
is minor bidimensional, the parameter cannot increase by this operation. The rest
of the proof proceeds as before. Let G be a graph 2-cell embedded in a surface � of
Euler genus eg(�), and let k = P(G). We have the following substantially simpler
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inequality than the one in Theorem 4.8:

bw(G) ≤ 4β

δ
eg(�)

√
k + 1 + ρ ≤ 4β

δ
eg(�)

√
k + 1 + 4β

δ

√
k + 1

= 4β

δ
(eg(�) + 1)

√
k + 1.

4.5. COMBINATORIAL RESULTS AND FURTHER IMPROVEMENTS. As a conse-
quence of Theorem 4.9, we establish an upper bound on the treewidth (or branch-
width) of a bounded-genus graph that excludes some planar graph H as a minor.

As part of their seminal Graph Minors series, Robertson and Seymour proved
the following:

THEOREM 4.10 (ROBERTSON AND SEYMOUR 1986B). If G excludes a planar
graph H as a minor, then the branchwidth of G is at most bH and the treewidth of
G is at most tH , where bH and tH are constants depending only on H.

The current best estimate of these constants is the exponential upper bound
tH ≤ 202(2|V (H )|+4|E(H )|)5

[Robertson et al. 1994]. However, it is known that planar
graphs can be excluded “quickly” from planar graphs. More precisely, the following
result says that, for planar graphs, the constants depend only linearly on the size
of H :

THEOREM 4.11 (ROBERTSON ET AL. 1994). If G is planar and excludes a pla-
nar graph H as a minor, then the branchwidth of G is at most 4(2|V (H )| +
4|E(H )|) − 3.

This theorem follows from combining Theorem 4.3 with Theorem 1.5 of
Robertson et al. [1994] that every planar graph H is a minor of an (r × r )-grid
where r = 2|V (H )| + 4|E(H )|.

Essentially the same proofs of Theorems 4.8 and 4.9 yield the following gen-
eralization of Theorem 4.3 for graphs of bounded genus. In fact, though, we can
prove the following result directly from Theorem 4.9.

THEOREM 4.12. If G is a graph of Euler genus eg(G) with branchwidth more
than 4r (eg(G) + 1), then G has the (r × r )-grid as a minor.

PROOF. Consider the parameter ξ (G) = max{r2 | G has an (r × r )-grid as a
minor}. This parameter never increases when taking minors, and has value r2 on the
(r × r )-grid, so is minor bidimensional with density 1 and normalization factor 1.
If G excludes the (r × r )-grid as a minor, then ξ (G) < r2, so ξ (G) ≤ r2 − 1. By
Theorem 4.9, we have that bw(G) ≤ 4(eg(G) + 1)

√
ξ (G) + 1 ≤ 4(eg(G) + 1)r ,

proving the contrapositive of the theorem.

As above, by combining Theorem 4.12 with Robertson et al. [1994, Theorem 1.5],
we obtain the following generalization of Theorem 4.11:

COROLLARY 4.13. If G is a graph of Euler genus eg(G) that excludes a pla-
nar graph H as a minor, then its branchwidth is at most 4(2|V (H )| + 4|E(H )|)
(eg(G) + 1).

4.6. ALGORITHMIC CONSEQUENCES. As we already discussed, the combinato-
rial upper bounds for branchwidth/treewidth are used for constructing subexponen-
tial parameterized algorithms as follows: Let G be a graph and P be a parameterized
problem we need to solve on G. First one constructs a branch/tree decomposition
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of G that is optimal or “almost” optimal. A (θ, γ, λ)-approximation scheme for
branchwidth/treewidth consists of, for every w , an O(2γ w nλ)-time algorithm that,
given a graph G, either reports that G has branchwidth/treewidth at least w or
produces a branch/tree decomposition of G with width at most θw . For example,
the current best schemes are a (3 + 2/3, 3.698, 3 + ε)-approximation scheme for
treewidth [Amir 2001] and a (3, lg 27, 2)-approximation scheme for branchwidth
[Robertson and Seymour 1995b].

If the branchwidth/treewidth of a graph is “large”, then combinatorial upper
bounds come into play and we conclude that P has no solution on G. Otherwise, we
run a dynamic program on graphs of bounded branchwidth/treewidth and compute
P(G).

Thus, we conclude with the main algorithmic result of this section:

THEOREM 4.14. Let P be a bidimensional parameter with density δ and nor-
malization factor β. Suppose P is either minor bidimensional, in which case we set
µ = 0, or P is contraction bidimensional and α-splittable, in which case we set
µ = 2. Suppose that there is an algorithm for the associated parameterized prob-
lem that runs in O(2aw nb) time given a tree/branch decomposition of the graph
G with width w. Suppose also that we have a (θ, γ, λ)-approximation scheme for
treewidth/branchwidth. Set τ = 1 in the case of branchwidth and τ = 1.5 in the
case of treewidth. Then the parameterized problem asking whether P(G) ≤ k can
be solved in O(2max{aθ,γ }τ4 β

δ
(g(G)+1)(

√
k+1+µα

β

δ
(g(G)+1))nmax{b,λ}) time.

The existence of an O(2aw nb)-time algorithm for treewidth/branchwidth w holds
for many examples of bidimensional parameters with small values of a and b; see
Alber et al. [2002, 2004b], Chang et al. [2001], Demaine et al. [2005c], Fomin and
Thilikos [2003, 2004], and Kloks et al. [2002]. Observe that the correctness of our
algorithms is simply based on Theorems 4.8 and 4.9, despite their nonalgorithmic
natures, and (θ, γ, λ)-approximation scheme for branch/tree decomposition. We
note that the time bounds we provide do not contain any hidden constants, and the
constants are reasonably low for a broad collection of problems covering all the
problems for which 2O(

√
k)nO(1)-time algorithms already exist.

5. H-Minor-Free Graphs

In this section, we show how the results on graphs of bounded genus can be gener-
alized on graphs with excluded minors.

5.1. CLIQUE SUMS. Suppose G1 and G2 are graphs with disjoint vertex sets
and let k ≥ 0 be an integer. For i = 1, 2, let Wi ⊆ V (Gi ) form a clique of size k
and let G ′

i be obtained from Gi by deleting some (possibly no) edges from Gi [Wi ]
with both endpoints in Wi . Consider a bijection h : W1 → W2. We define a k-sum
G of G1 and G2, denoted by G = G1 ⊕k G2 or simply by G = G1 ⊕ G2, to be
the graph obtained from the union of G ′

1 and G ′
2 by identifying w with h(w) for all

w ∈ W1. See Figure 3. The images of the vertices of W1 and W2 in G1 ⊕k G2 form
the join set.

Note that each vertex v of G has a corresponding vertex in G1 or G2 or both. It
is also worth mentioning that ⊕ is not a well-defined operator: it can have a set of
possible results.
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FIG. 3. A k-sum of two graphs G1 and G2.

The following lemma shows how the treewidth changes when we apply a clique-
sum operation, which plays an important role in our results.

LEMMA 5.1 (DEMAINE ET AL. 2004A; LEMMA 3). For any two graphs G and
H, tw(G ⊕ H ) ≤ max{tw(G), tw(H )}.

5.2. CHARACTERIZATIONS OF H-MINOR-FREE GRAPHS. Our result uses the
deep theorem of Robertson and Seymour [2003] on graphs excluding a nonpla-
nar graph as a minor. Intuitively, their theorem says that, for every graph H , every
H -minor-free graph can be expressed as a “tree structure” of pieces, where each
piece is a graph that can be drawn in a surface in which H cannot be drawn, except
for a bounded number of “apex” vertices and a bounded number of “local areas of
nonplanarity” called vortices. Here, the bounds depend only on H .

Roughly speaking we say a graph G is h-almost-embeddable in a surface � if
there exists a set X of size at most h of vertices, called apex vertices or apices,
such that G − X can be obtained from a graph G0 embedded in � by attaching at
most h graphs of pathwidth at most h to G0 within h faces in an orderly way. More
precisely:

Definition 5.2. A graph G is h-almost-embeddable in a surface � if there exists
a vertex set X of size at most h called apices such that G − X can be written as
G0 ∪ G1 ∪ · · · ∪ Gh , where

(1) G0 has an embedding in �;
(2) the graphs Gi , called vortices, are pairwise disjoint;
(3) there are faces F1, . . . , Fh of G0 in �, and there are pairwise disjoint disks

D1, . . . , Dh in �, such that for i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0) ∩
V (Gi ) = V (G0) ∩ Di ; and

(4) the graph Gi has a path decomposition (Bu)u∈Ui of width less than h, such that
u ∈ Bu for all u ∈ Ui . The sets Bu are ordered by the ordering of their indices
u as points along the boundary cycle of face Fi in G0.
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An h-almost-embeddable graph is called apex free if the set X of apices is
empty.

Now, the deep result of Robertson and Seymour is as follows:

THEOREM 5.3 (ROBERTSON AND SEYMOUR 2003). For every graph H, there
exists an integer h ≥ 0, depending only on |V (H )|, such that every H-minor-free
graph can be obtained by at most h-sums of graphs that are h-almost-embeddable
graphs in some surfaces in which H cannot be embedded.

In particular, if H is fixed, any surface in which H cannot be embedded has
bounded genus. Thus, the summands in the theorem are h-almost-embeddable
graphs in bounded-genus surfaces. This structural theorem plays an important role
in obtaining the rest of the results of this article.

Another way to view Theorem 5.3 is that every H -minor-free graph G has a
tree decomposition (T, χ ) such that, for each node i ∈ V (T ), the induced subgraph
G[χi ] augmented with additional edges to form a clique on the vertices that overlap
with the parent’s bag, and a clique on the vertices that overlap with each child’s
bag, is h-almost-embeddable in a bounded-genus surface. (This augmented graph
is called the torso [χi ] in, e.g., Grohe [2003] and Diestel and Thomas [1999].)
The intersections between bag χi and its parent’s bag, and with each child’s bag,
correspond to the join sets in the clique-sum decomposition. Our development
primarily follows the original clique-sum viewpoint of Robertson and Seymour,
but we will also occasionally view the sums as being organized into the tree T .

Theorem 5.3 is very general and appeared in print only recently. However, several
nice applications (see, e.g., Böhme et al. [2002], Grohe [2003], and DeVos et al.
[2004]) are already known.

In [Demaine et al. 2005b] the following algorithmic version of Theorem 5.3 is
shown:

THEOREM 5.4 (DEMAINE ET AL. 2005B). For any graph H, there is an algo-
rithm with running time nO(1) that either computes a clique-sum decomposition as
in Theorem 5.3 for any given H-minor-free graph G, or outputs that G is not H-
minor-free. Here n is the number of vertices in G, and the exponent in the running
time depends on H.

In this article, we show that, given the tree decompositions computed by Theo-
rem 5.4, we can obtain efficient algorithms for problems on H -minor-free graphs.
Although our main development is in terms of dominating set, our approach can be
viewed as a guideline for solving other problems on H -minor-free graphs. Some
further results in this direction are described in Section 6.

5.3. ALMOST-EMBEDDABLE GRAPHS AND r -DOMINATING SET. In order to treat
each term separately in the clique-sum decomposition of an H -minor-free graph,
we need to solve a more general problem than dominating set. This r -dominating set
problem, which also arises in facility location, is also contraction-bidimensional.
This property enables us to obtain a parameter-treewidth bound for this problem as
well.

Definition 5.5. Let G be a graph. A subset D ⊆ V (G) of vertices r-dominates
another subset S ⊆ V (G) of vertices if each vertex in S is at distance at most r
from a vertex in D. We say that D is an r-dominating set if it r -dominates V (G).
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We need the following result proved in Demaine et al. [2005a].

LEMMA 5.6 (DEMAINE ET AL. 2005A). Let ρ, k, r ≥ 1 be integers and G be a
planar graph having an r-dominating set of size k and containing a (ρ × ρ)-grid
as a minor. Then k ≥ (ρ−2r

2r+1 )2.

In other words, Lemma 5.6 says that, for any fixed r , r -dominating set is a bidi-
mensional parameter. It is also easy to see that it is 1-splittable. Thus, Theorem 4.8
yields the following lemma.

LEMMA 5.7. For any constant r , if a graph G of genus g has an r-dominating
set of size at most k, then the treewidth of G is O(g

√
k + g2).

Now we extend this result to apex-free h-almost-embeddable graphs. Before
expressing this result, we need the following slight modification of Grohe [2003,
Lemma 2].

LEMMA 5.8. Let G = G0∪G1∪ · · · ∪Gh be an apex-free h-almost-embeddable
graph. For 1 ≤ i ≤ h, let (Bu)u∈Ui be the path decomposition of vortex Gi of width
at most h. Suppose that, for each 1 ≤ i ≤ h, the vertices Ui = {u1

i , u2
i , . . . , umi

i }
form a path in G0. Then, tw(G) ≤ (h2 + 1)(tw(G0) + 1) − 1.

PROOF. Let B be a bag of a tree decomposition of G0 of minimum width
tw(G0). For each index 1 ≤ i ≤ h, and for each vertex u ∈ B ∩ Ui , we add to B
the corresponding bag Bu of the path decomposition of Gi . The size of each Bu is
at most h, and the original size of B is at most tw(G0) + 1. Thus, such additions
increase the size of B by at most h2(tw(G0)+1). Performing these additions for all
bags B of a tree decomposition increases the maximum bag size from tw(G0) + 1
to (h2 + 1)(tw(G0) + 1). It can be easily seen that the resulting set of bags B form
a tree decomposition of G, because each Ui forms a path in G0.

LEMMA 5.9. Let r be a constant and let G = G0 ∪ G1 ∪ · · · ∪ Gh be an apex-
free h-almost-embeddable graph on a surface � of genus g. Let k be the size of a
set D ⊆ V (G) that r-dominates V (G0). Then tw(G) = O(h2(g

√
k + h + g2)). In

particular, for fixed g and h, tw(G) = O(
√

k).

PROOF. For each 1 ≤ i ≤ h, let (Bu)u∈Ui be the path decomposition of vortex
Gi , where Ui = {u1

i , u2
i , . . . , umi

i }. Let G ′
0 be the graph obtained from G0 by adding

new vertices C = {c1, c2, . . . , ch} and edges (ci , u j
i ) and (u j

i , u j+1
i ) (where j + 1 is

treated modulo mi ) for all 1 ≤ i ≤ h and 1 ≤ j ≤ mi . Because G0 is embeddable
in �, G ′

0 is also embeddable in �. G ′
0 has an r -dominating set of size at most

k + h, namely, (D ∩ V (G0)) ∪ C . By Lemma 5.7, tw(G ′
0) = O(g

√
k + h + g2).

The subgraph G ′′
0 = G ′

0 − C of G ′
0 satisfies the same treewidth bound: tw(G ′′

0) =
O(g

√
k + h + g2). Also, in G ′′

0, the vertices Ui , 1 ≤ i ≤ h, form a path. By
Lemma 5.8, the treewidth of G ′′ = G ′′

0 ∪ G1 ∪ · · · ∪ Gh is O(h2(g
√

k + h + g2)).
Finally, because G is a subgraph of G ′′, tw(G) ≤ tw(G ′′).

5.4. H-MINOR-FREE GRAPHS AND DOMINATING SET. Now that we have an
understanding of r -dominating set in apex-free almost-embeddable graphs, we
return to the original problem of dominating set in the more general setting of H -
minor-free graphs. For this section, we use the notation G∗ for the entire H -minor-
free graph so that the primary object of interest, an almost-embeddable piece of G∗,
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can be referred to as G. The main result of this section is the following algorithmic
result.

THEOREM 5.10. One can test whether an H-minor-free graph G∗ has a domi-
nating set of size at most k in time 2O(

√
k)nO(1), where the constants in the exponents

depend on H.

The main intuition behind the proof of Theorem 5.10 is as follows. The algorithm
consists of two levels of dynamic programming. The top-level dynamic program is
over the clique-sum decomposition of G∗. Within each subproblem, we can focus on
a single almost-embeddable graph G. If G is apex free, then we have a parameter-
treewidth bound on G by Lemma 5.9. However, a single apex vertex in G can
dominate many vertices; hence, in general, we cannot bound the treewidth of G.
Therefore, the algorithm guesses which apex vertices are in the dominating set,
and removes the vertices of G that become “irrelavant” to our problem. (Roughly
speaking, a vertex is irrelevant if it is already dominated, and it cannot be used to
dominate anyone else; however, the precise definition is more complicated because
of clique-sums.) If we remove the apex vertices in this way, then we show how to
obtain a parameter-treewidth bound for the remaining graph in Theorem 5.12. Once
we have a parameter-treewidth bound, the bottom-level dynamic program solves (a
generalized form of) the problem on this graph and thus G.

Before detailing the proof, we need more precise definitions.

Definition 5.11. Consider a clique-sum decomposition of an H -minor-free
graph G∗ in accordance with Theorem 5.3, organized into a tree structure (T, χ )
as described in Section 5.2. Let G be one term in the clique-sum decomposition of
G∗ that is h-almost embeddable on a surface of genus g, with apex set X . If we
remove from T the node of T corresponding to term G, we obtain a forest T ′ of
p subtrees; let G1, G2, . . . , G p denote the clique-sums of the terms corresponding
to the nodes in each connected component of T ′. We say that G is clique-summed
with each Gi , 1 ≤ i ≤ p, with join set Wi = V (G) ∩ V (Gi ). Because the clique-
sums are at most h-sums, |Wi | ≤ h. A clique Wi is called fully dominated by a
subset S ⊆ V (G) of vertices in G if V (Gi ) − X ⊆ NG∗(S); otherwise, clique Wi
is called partially dominated by S. A vertex v of G is fully dominated by a set S if
NG∗[V (G)−X ](v) ⊆ NG∗(S).

Note that the only edges that can appear in G but not in G∗ are the edges among
vertices of Wi , 1 ≤ i ≤ p.

THEOREM 5.12. Let G be an h-almost embeddable on a surface of genus g
in a clique-sum decomposition of a graph G∗. Suppose G is clique-summed with
graphs G1, . . . , G p via join sets W1, . . . , Wp, where |Wi | ≤ h, 1 ≤ i ≤ p. Suppose
G∗ has a dominating set D of size at most k. Then, there is a subset S ⊆ D of
size at most h such that, if we form the graph Ĝ by removing all vertices fully
dominated by S that are not included in any partially dominated clique Wi from G,
then tw(Ĝ) = O(h2g

√
k + h + g2) = O(

√
k).

PROOF. Suppose X is the set of apices in G, so that G − X is an apex-free
h-almost embeddable graph. Let S = X ∩ D. We claim that S is our desired set.
The rest of the proof is as follows: we construct a set D̂ of size at most k for
Ĝ − X which 2-dominates every vertex v of Ĝ − X which is not included in any
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vortex. Then, since Ĝ − X is apex-free h-almost-embeddable on a surface of genus
g with a 2-dominating set of size at most k desired by Lemma 5.9, it has treewidth
at most O(h2g

√
k + h + g2). Then we can add vertices of X to all bags and still

have a tree decomposition of width O(h2g
√

k + h + g2), as desired. We construct
D̂ from D as follows. First, we set D̂ = D ∩ V (G). For each 1 ≤ i ≤ p, if
D ∩ (V (Gi ) − Wi ) �= ∅ and Wi �⊆ X , we add an arbitrary vertex w ∈ Wi − X
to D̂. Here we say a vertex v of D is mapped to a vertex w of D̂ if v = w or if
v ∈ D ∩ (V (Gi ) − Wi ) and vertex w ∈ Wi − X is the one that we have added to
D̂. One can easily observe that since each new vertex in D̂ is in fact accounted by
a unique vertex in D, |D̂| ≤ k. It only remains to show that D is a 2-dominating
set for Ĝ − X . If a vertex v ∈ V (Ĝ) − X is not fully dominated, then there exists
a vertex w ∈ NG(v) which is not dominated by S and thus not dominated by X
(since S = D ∩ X ). This means that v is 2-dominated by a vertex u of Ĝ − X which
dominates w (we note that u can be originally a vertex u′ in (V (Gi ) − Wi ) ∩ D
which is mapped to u in D̂). Also, we note that for each clique Wi in which there is a
mapped vertex of D, this vertex dominates all vertices of Wi − X in Ĝ − X and thus
we keep the whole clique Wi − X in G. It only remains to show that every vertex of
a partially dominated clique Wi is 2-dominated by a vertex of Ĝ − X . We consider
two cases: if Wi ∩ S = ∅, since V (Gi ) − Wi �= ∅, there must exists a (mapped)
vertex of D̂ in Wi − X and we are done. Now assume Wi ∩ S �= ∅. If Wi ⊂ X
then Wi ∩ (V (Ĝ) − X ) = ∅ and we are done (since there is no clique in Ĝ − X
at all). Otherwise, there exists a vertex Wi − X . If (V (Gi ) − Wi ) ⊆ NG∗(S) �= ∅,
then V (Gi ) ∩ D �= ∅. Thus, there exists a mapped vertex w ∈ Wi − X and we have
1-dominated vertices of Wi − X . As mentioned before if D∩(Wi − X ) �= ∅, vertices
Wi − X are 1-dominated and we are done. The only remaining case is the case in
which there exists a vertex w ∈ Wi − X which is dominated by a vertex x ∈ V (G)
and by assumption w �∈ NG∗(S) (we note that in this case, there is no dominating
vertex in V (Gi ) − Wi for any i for which w ∈ Wi .) This means that vertex x is
not fully dominated and thus it remains in Ĝ. In addition, vertex x 2-dominates all
vertices of Wi − X , since Wi is a clique in G and thus all vertices of Wi − X are
2-dominated. This completes the proof of the theorem.

We are now ready to prove Theorem 5.10.

PROOF OF THEOREM 5.10. First, we use the nO(1)-time algorithm of Theorem 5.4
to obtain the clique-sum decomposition of graph G∗. As mentioned before, this
clique-sum decomposition can be considered as a generalized tree decomposition
of G∗.

More precisely, we consider the clique-sum decomposition as a rooted tree. We
try to find a dominating set of size at most k in this graph using a two-level dynamic
program. Suppose a graph G is an h-almost-embeddable graph on a surface of genus
g in a clique-sum decomposition of a graph G∗. Assume G is clique-summed with
graphs G0, G1, . . . , G p via join sets W0, W1, . . . , Wp, where |Wi | ≤ h, 0 ≤ i ≤ p.
Also assume that G0 is considered as the parent of G and G1, . . . , G p are considered
as children of G.

Colorings. The subproblems in our first-level dynamic program are defined by a
coloring of the vertices in Wi . Each vertex will be assigned one of 3 colors, labelled
0, ↑1, and ↓1. The meaning of the coloring of a vertex v is as follows. Color 0



888 E. D. DEMAINE ET AL.

represents that vertex v belongs to the chosen dominating set. Colors ↓1 and ↑1
represent that the vertex v is not in the chosen dominating set. Such a vertex v
must have a neighbor w in the dominating set (i.e., colored 0); we say that ver-
tex w resolves vertex v . Color ↓ 1 for vertex v represents that the dominating
vertex w is in the subtree of the clique-sum decomposition rooted at the current
graph G, whereas ↑1 represents that the dominating vertex w is elsewhere in the
clique-sum decomposition. Intuitively, the vertices colored ↓1 have already been
resolved, whereas the vertices colored ↑1 still need to be assigned to a dominating
vertex.

Locally Valid Colorings. A coloring of the vertices of Wi is called locally valid with
respect to sets S1, S2 ⊆ V (G) if the following properties hold:

—for any two adjacent vertices v and w in Wi , if v is colored 0, w is colored ↓1;
and

—if v ∈ S1 ∩ Wi , then v is colored 0; and
—if v ∈ S2 ∩ Wi , then v is not colored 0.

Our colorings are similar to that of previous work (e.g., Alber et al. [2002]) but
we use them in a new dynamic-programming framework that acts over clique-sum
decompositions instead of tree decompositions.

Dynamic Program Subproblems. Our first-level dynamic program has one subprob-
lem for each graph G in the clique-sum decomposition and for each coloring c
of the vertices in W0. Because each join set has at most h vertices, the number
of subproblems is O(n · 3h). We define D(G, c) to be the size of the minimum
“semi”-dominating set of the vertices in subtree rooted at G subject to the follow-
ing restrictions:

(1) Vertices colored ↓1 are adjacent to at least one vertex in the dominating set.
(Vertices colored ↑1 are dominated “for free”.)

(2) Vertices colored 0 are precisely the vertices in the dominating set.
(3) Vertices in W0 are colored according to c.

If we solve every such subproblem, then in particular, we solve the subproblems
involving the root node of the clique-sum decomposition and in which every vertex
is colored 0 or ↓1. The final dominating set of size k is given by the best solution
to these subproblems.

Induction Step. Suppose for each coloring c of Wi , 1 ≤ i ≤ p, we know D(Gi , c).
If the graph G is of size at most h, then we can try all colorings in O(3h ·h2) = O(1)
time (where the factor of h2 is for checking validity). Thus, we focus on almost-
embeddable graphs G. First, we guess a subset X of size at most h. Then for each
subset S of X , we put the vertices of S in the dominating set and forbid vertices of
X −S from being in the dominating set. Now we remove from G all fully dominated
vertices of G − X that are not included in any partially dominated clique Wi . Call
the resulting graph Ĝ. By Theorem 5.12, tw(Ĝ) = O(

√
k), or else we can ignore

this subset S. We can obtain such a tree decomposition of width 3 + 2/3 times
optimum (or determine that tw(Ĝ) is too large), in 2O(

√
k)n3+ε time by a result of

Amir [2001]. All vertices absent from this tree decomposition are fully dominated
and thus, in any minimum dominating set that includes S, they will not appear
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except the following case. It is possible that up to |X − S| = O(h) vertices, which
are either fully dominated or belong to V (Gi ) − Wi where Wi is fully dominated,
appear in the dominating set to dominate vertices of X − S. Call the set of such
vertices S′. We can guess this set S′ by choosing at most h vertices among the
discarded vertices that have at least one neighbor in X − S, and then add S′ to
the dominating set. On the other hand, for any partially dominated clique Wi , we
know that all of its vertices are present in the tree decomposition; because they
form a clique, there is a bag αi in any tree decomposition that contains all vertices
of Wi . We find αi in our tree decomposition and map Wi and Gi to this bag. We
also assume W0 is contained in all bags, because its size is at most h. Now, for each
coloring c of W0, we run the dynamic program of Alber et al. [2002] on the tree
decomposition, with the restriction that the colorings of the bags are locally valid
with respect to S1 := S ∪ S′ and S2 := X − S, and are consistent with the coloring
c of W0. For each bag αi to which we mapped Gi , we add to the cost of the bag the
value D(Gi , c′) for the current coloring c′ of Wi . Using this dynamic program, we
can obtain D(G, c) for each coloring c of W0.

Running Time. The running time for each coloring c of W0 and each choice of S
is 2O(

√
k)n according to Alber et al. [2002]. We have 3h choices for c, O(nh+1)

choices for X , O(2h) choices for S, and O(nh+1) choices for S′. Thus the run-
ning time for this inductive step is 6hn2h+22O(

√
k). There are O(n) graphs in the

clique-sum decomposition of G. Therefore, the total running time of the algorithm
is O(6hn2h+32O(

√
k)) + nO(1) (the latter term for creating the clique-sum decompo-

sition), which is 2O(
√

k)nO(1) as desired.

6. Conclusions and Further Work

We have shown how to obtain subexponential fixed-parameter algorithms for the
broad class of bidimensional problems on bounded-genus graphs, and for domi-
nating set on general H -minor-free graphs for any fixed H . Our approach can also
be used to obtain subexponential algorithms for other problems on H -minor-free
graphs. We now demonstrate some examples of such problems.

The first example is vertex cover, where we use the following reduction. For
a graph G, let G ′ be the graph obtained from G by adding a path of length two
between any pair of adjacent vertices. The following lemma is obvious.

LEMMA 6.1. For any Kh-minor-free graph G, h ≥ 4, and integer k ≥ 1,

—G ′ is Kh-minor-free, and
—G has a vertex cover of size ≤ k if and only if G ′ has a dominating set of size

≤ k.

Combining Lemma 6.1 with Theorem 5.10, we conclude that parameterized
vertex cover can be solved in subexponential time on graphs with an excluded
minor.

Another example is the set-cover problem. Given a collection C =
{C1, C2, . . . , Cm} of subsets of a finite set S = {s1, s2, . . . , sn}, a set cover is a
subcollection C ′ ⊆ C such that

⋃
Ci ∈C ′ Ci = S. The minimum set cover problem is

to find a cover of minimum size. For an instance (C, S) of minimum set cover, its
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graph GS is a bipartite graph with bipartition (C, S). Vertices si and C j are adjacent
in GS if and only if si ∈ C j . Theorem 5.10 can be used to prove that minimum set
cover can be solved in subexponential time when GS is H -minor free for some fixed
graph H . Specifically, for a given graph GS , we construct an auxiliary graph AS
by adding new vertices v, u, w and making v adjacent to {u, w, C1, C2, . . . , Cm}.
Then

—(C, S) has a set cover of size ≤ k if and only if AS has a dominating set of size
≤ k + 1, and

—if GS is Kh-minor-free, then AS is Kh+1-minor-free.

It is reasonable to believe that Theorem 5.10 generalizes to obtain a subexpo-
nential fixed-parameter algorithm for the (k, r )-center problem on H -minor-free
graphs. The (k, r )-center problem is a generalization of the dominating-set problem
in which the goal is to determine whether an input graph G has at most k vertices
(called centers) such that every vertex of G is within distance at most r from some
center. Demaine et al. [2005a] consider this problem for planar graphs and map
graphs, and present a generalization of dynamic programming mentioned in the
proof of Theorem 5.10 to solve the (k, r )-center problem for graphs of bounded
treewidth/branchwidth. This dynamic program and Theorem 5.12 can be gener-
alized to establish the desired result for H -minor-free graphs. A consequence is
that we can solve the dominating-set problem in constant powers of H -minor-free
graphs, which is the most general class of graphs so far for which one can obtain
the exponential speedup.

It is an open and tempting question whether our technique can be generalized
to solve in subexponential time on H -minor-free graphs every problem that can be
solved in subexponential time on bounded-genus graphs. Recent positive progress
on this question has been made [Demaine and Hajiaghayi 2005b]. Based on our re-
sults, they obtain subexponential algorithms for any minor-bidimensional problem
on H -minor-free graphs, and for any contraction-bidimensional problem on apex-
minor-free graphs. (A graph is apex-minor-free if it excludes a fixed apex graph;
an apex graph is a graph in which the removal of a vertex leaves a planar graph.)
Note that these results, while general, cannot be applied directly to dominating set
on H -minor-free graphs. In particular, it remains open to extend the algorithmic
approaches of Section 5 for H -minor-free graphs to all bidimensional parameters.

We also suspect that there is a strong connection between bidimensional param-
eters and the existence of linear-size kernels for the corresponding parameterized
problems in bounded-genus graphs. Such a linear kernel has recently been obtained
for dominating set [Fomin and Thilikos 2004].

Another question asked in the conference version of this article is whether the
upper bounds of Theorems 4.8 and 4.9 can be extended to larger graph classes. The
first steps in this direction were obtained in Demaine et al. [2004a] for minor-closed
graph families. A graph family F has the domination-treewidth property if there is
some function f (d) such that, for every graph G ∈ F with dominating set of size ≤
k, tw(G) ≤ f (k). In Demaine et al. [2004a] it is shown that a minor-closed graph
family has the domination-treewidth property if and only if the family has bounded
local treewidth. In Demaine and Hajiaghayi [2004b], it is shown further that, for any
minor-closed graph family F of bounded local treewidth, tw(G) = O(

√
P(G)) for

any G ∈ F , where P is the dominating-set parameter. More recently, the same result
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has been established for any bidimensional parameter P [Demaine and Hajiaghayi
2005b].

The theory of bidimensionality can also be applied to obtain fixed-parameter
algorithms and polynomial-time approximation schemes for most bidimensional
problems on planar graphs and more generally H -minor-free graphs. We refer the
reader to Demaine and Hajiaghayi [2005a, 2005b] for details.

Finally, we point out that all papers cited in this section were based on the results
of this article.
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