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Abstract. Graph searching problems are described as games played on graphs, between a set
of cops and a fugitive. Variants of the game restrict the abilities of the cops and the fugitive and the
corresponding search numbers (the least number of cops that have a winning strategy) are related to
several well-known parameters in graph theory. We study the case where the fugitive is visible (the
cops’ strategy can take into account his current position) and lazy (he moves only when the cops move
to his position). Our results are stated and proven in a general setting where the fugitive’s speed
(i.e., the lengths of paths he can move along) can be unbounded or bounded by some constant. We
give a min-max characterization of the corresponding parameters, which we show to be computable
in polynomial time for fugitives with unbounded speed and speed at most 3 and to be NP-complete
for all other finite speeds. This is in contrast to the other standard versions of the game, where the
parameters corresponding to fugitives with unbounded speed are NP-complete. Several consequences
of our results are also discussed.
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1. Introduction. Graph searching games are played between a group of cops
and a fugitive, on the vertices and edges of a graph. The cops aim at capturing the
fugitive, while the fugitive tries to escape capture. The rules by which the players
move lead to several variants of the game. While the definition and study of such
games dates back to the late 1970s [22, 23], they have recently been studied widely,
mainly due to numerous applications in security problems in networks [1, 4, 12,13].

There are several basic variants of the game and we consider only those where the
cops and the fugitive reside on the vertices of the graph. At any one time, the fugitive
occupies some vertex of the graph but each cop, independently, may be either on a
vertex of the graph or out of play. In node search games, the cops are moved either by
placing them on or removing them from vertices; in the more general setting of mixed
search, a cop may, in addition, slide along an edge from the endpoint he occupies
to the other, vacant, endpoint. In both variants, the fugitive moves along cop-free
paths in the graph. The fugitive is captured if a cop moves to the vertex he occupies
and he has no path along which to escape. If the fugitive is captured, the cops win;
if he remains on the run forever, he wins. (We do not consider edge search, where
the fugitive resides on edges of the graph, as this can be reduced to mixed search by
standard techniques [5, 29].)

Further variants of the game come from altering the properties of the fugitive.
He may be either visible to the cops, in which case the cops may use the fugitive’s
current position to choose their moves, or invisible, in which case the cops do not
know where he is and their moves may be specified in advance. He may also be lazy,
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node search Visible Invisible

Lazy
δs + 1, in P for s ∈ {1, 2, 3,∞},
NP-complete for 4 6 s <∞ [this paper]

tw + 1 [9], NP-c [2]

Active tw + 1 [26], NP-c [2] pw + 1 [5,17], NP-c [2]

Table 1.1
Graph node-search variants (for fugitives with unbounded speed), their corresponding graph

parameters and their complexities.

in which case he moves only when a cop moves to his vertex, or active, in which case
he may move at every round of the game.

Each variant of the game generates a graph parameter that is the minimum
number of cops that have a winning strategy in a given graph. For the visible–active
and invisible–lazy cases, the node search number is known to be one greater than
the treewidth of the graph; for the invisible–active case, it is one greater than the
graph’s pathwidth. Similar parameters can be defined for mixed search [5,24,27,28].
The decision problems associated with these graph parameters are known to be NP-
complete.

In this paper, we study the remaining case, where the fugitive is visible and lazy,
which does not seem to have been considered before. Generalizing, we parameterize
the game by the speed s of the fugitive, i.e., the maximum length of paths along which
he may move. We write, respectively, vlnss and vlmss for the node- and mixed-search
numbers for a fugitive with speed s, with s =∞ denoting a fugitive with unbounded
speed. Our main result is a min-max theorem for the two parameters, for any speed
s ∈ N ∪ {∞}. In particular, we give a characterization in terms of the existence
of specific obstructing structures, which we call hide-outs, that guarantee an escape
strategy for the fugitive.

We also introduce two hierarchies of graph parameters, defined in terms of layouts,
which we write δs and δsm (defined in Section 4). These parameters are equivalent,
respectively, to vlnss and vlmss. The min-max theorem implies that our search
parameters, in the case of a fugitive with unbounded speed, can be computed in
polynomial time, which is quite unexpected, since all other variants of the game dis-
cussed above lead to NP-complete parameters. The parameters can also be computed
in polynomial time for fugitives with speed at most 3; for other finite speeds, they
are NP-complete. The known and new results for fugitives of unbounded speed are
summarized in Table 1.1.

δs is a natural generalization of the classical graph parameter of degeneracy,
defined as

δ∗(G) = max {δ(H) | H ⊆ G},

where δ(H) is the minimum degree of H’s vertices. It is known from folklore that
δ∗(G) = δ1(G) [7,18,21] and δ∗(G)+1 is also known as the graph’s colouring number,
since there is an easy greedy algorithm that colours a graph G with that many colours
[10].

We prove that each of vlnss and vlmss defines a nontrivial hierarchy of param-
eters: for any r and s with 3 6 r < s <∞, there are graphs with

vlnsr(G) < vlnss(G) < vlns∞(G)

and similarly for mixed search.
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To give a lower bound for treewidth, Bodlaender, Koster and Wolle define the
contraction degeneracy of a graph G to be δC(G), the maximum δ(H) over non-
trivial minors H of G [7, 19, 30]. We extend contraction degeneracy by replacing the
term δ(H) with δs(H) and show that the extension δ∞C(G), where δ(H) is replaced
with δ∞(H), approximates treewidth, in the sense that there is a function f such
that, for all graphs, δ∞C(G) 6 tw(G) 6 f(δ∞C(G)). This improves on contraction
degeneracy, which is known to provide only a lower bound for treewidth.

The remainder of the paper is organized as follows. Section 2 gives basic def-
initions. The searching model for a visible, lazy fugitive is formally described in
Section 3. In Section 4, we define hide-outs and our generalization of graph degen-
eracy. Our main results appears in 5 where we prove our min-max characterisation.
In Section 6 we give the algorithmic and complexity results on our parameters. The
nontriviality of the hierarchies defined is shown in Section 7. In Section 8, we gener-
alize contraction degeneracy. Finally, we make concluding remarks and present some
open problems in Section 9.

2. Preliminaries. We write N for the set {1, 2, . . . } and N+ for N∪{∞}. Given
a set S and an object x, we write S+x and S−x for S∪{x} and S \{x}, respectively.

All graphs considered in this paper are finite, simple and undirected. To avoid
trivial exceptions, we assume that all graphs contain at least one edge.

We write V (G) and E(G), respectively, for the vertex set and edge set of a graph
G and xy for the undirected edge {x, y}. For X ⊆ V (G), G[X] is the subgraph of G
induced by the vertices in X and, for Y ⊆ E(G), G− Y = (V (G), E(G) \ Y ). Given
a vertex x ∈ V (G), we let EG(x) be the set of all edges of G incident with x. Also we
denote by NG[x] the closed neighborhood of x in G that contains x together with all
vertices of G that are adjacent to x. If x ∈ V (G) and e ∈ E(G), we write G − x for
the graph G[V (G)−x] and G−e for the graph (V (G), E(G)−e) respectively. We use
the notation δ(G) and ∆(G) for the minimum and maximum degree of G’s vertices,
respectively. We also use the notation H ⊆ G to denote the fact that a graph H is a
subgraph of a graph G. Finally, we denote by Kd the complete graph with d vertices.

The operation of dissolving a vertex x ∈ V (G) of degree two is the removal of x
from G and the addition of an edge connecting its two former neighbours. A graph H
is a topological minor of G if it can be made from some subgraph of G by dissolving
vertices of degree two. A graph H is a minor of G if it can be made from a subgraph
of G by contracting edges (i.e., identifying the two endpoints of the edge and deleting
the resulting loop).

A tree decomposition of a graph G is a pair (T,X) where T is a tree and X =
{Xi | i ∈ V (T )} is a collection of subsets of V (G) such that:

• ⋃
i∈V (T )Xi = V (G);

• for each edge xy ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ); and
• for each x ∈ V (G), {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is defined to be

max {|Xi| − 1 | i ∈ V (T )}

and the treewidth of a graph G is the minimum width over all tree decompositions ofG.
If we restrict the tree T to be a path, then we define the notions of path decomposition
and pathwidth. We write tw(G) and pw(G), respectively, for the treewidth and
pathwidth of a graph G.



4 DAVID RICHERBY AND DIMITRIOS M. THILIKOS

3. The searching model. In this section, we define a model for the graph
search game against a visible, lazy fugitive. The players have complete information
about each other’s position and may use this to decide their next move. The cops’
goal is to capture the fugitive who tries, of course, to evade capture. Initially, there
are no cops in the graph but, at any moment before his capture, the fugitive is on
some vertex. The fugitive is lazy, in that he may move only when a cop is moved to
his current vertex. When he moves, he does so with speed s ∈ N+: that is, he moves
along a cop-free path of length at most s.

A play of the game consists of a sequence of rounds, with each round being
composed of three parts, as follows.

Announcement. The cops announce their intended move to the fugitive. This can
be: the placement of a cop on a vertex x, not currently occupied by a cop;
the removal of a cop from an occupied vertex x; or sliding a cop from one
end x of an edge xy to the other, which is initially not occupied by a cop.

Avoidance. If a cop is to be placed on or slid to the fugitive’s current vertex, the
latter may move along any cop-free path of length at most s. In the case
of placement to x, that vertex is not considered blocked at this round; for
sliding from x to y, the edge xy is considered blocked but the vertices x and
y are not.

Realization. The cops carry out the announced action.

The fugitive is captured if a cop moves to his vertex and he has no move to escape.
We may assume that the fugitive has full knowledge of the cops’ strategy and will
take the optimal decision towards avoiding capture. The fugitive is visible, so the
cops’ moves take his position into account and the game is interactive.

We denote the position of the fugitive in the graph at the ith round by a vertex
vi ∈ V (G). Since, at any time, there is at most one cop on each vertex, we may
represent the position of the cops after the ith move as a set Si ⊆ V (G).

We say that a finite or infinite sequence S0, S1, . . . of subsets of V (G) is consistent
if, for all i > 0, G[Si M Si+1] is either a single vertex or a two-clique (we use symbol
M for the symmetric difference of two sets). Thus, the sequence corresponds to a
sequence of cop positions in a play of the game and either Si+1 = Si + x for some
x /∈ Si (placement to x), Si+1 = Si−x for some x ∈ Si (removal from x) or Si M Si+1

is an edge of G (sliding from the unique vertex in Si \ Si+1 to the unique vertex in
Si+1 \ Si).

Given two consecutive sets S and S′ of a consistent sequence, we say that a path
P in G is (S, S′)-avoiding if its internal vertices avoid S ∩ S′ and its edges avoid the
edge e = S M S′, in the case that |e| = 2.

Let k ∈ N and s ∈ N+. A (k, s)-play of the game on a graph G is a finite or
countably infinite sequence of alternating vertex sets and vertices

〈Si, vi | 0 6 i < κ〉

for some κ ∈ N+, such that:

• S0 = ∅;
• the sequence S0, S1, . . . is consistent;
• |Si| 6 k for all i; and
• for each i with 0 < i < κ, either

– vi−1 /∈ Si and vi = vi−1 (the cops did not move to the fugitive’s vertex
so he did not move);
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– vi−1 ∈ Si, there is an (Si−1, Si)-avoiding path of length at most s from
vi−1 to vi and vi /∈ Si (the cops moved to the fugitive’s vertex and he
ran along a cop-free path of length at most s); or

– i = κ − 1, vi = vi−1 ∈ Si and there are no (Si−1, Si)-avoiding paths
from vi (we are at the last move of a finite play, a cop has moved to the
fugitive’s vertex and he has no cop-free path on which to escape: the
fugitive has been captured).

Each move made by the cops may depend both on their current position and that
of the fugitive. A (k, s)-strategy is a function

µ : V (G)[6k] × V (G)→ V (G)[6k],

whose inputs are the position S of the cops and the position v of the fugitive and whose
output is S′, the new position of the cops, which is reached by a single placement,
removal or sliding move and with |S′| 6 k. The strategy is to be used against a
fugitive who has speed s ∈ N+.

Note that, when we define strategies, we will not define the action of the cops in
positions that can never occur when the strategy is executed. Thus, we give only a
partial function. Formally, the strategy is any total extension of this partial function,
assigning arbitrary moves to the cops in situations that do not occur in any play.

Given a (k, s)-strategy µ, a µ-play is any (k, s)-play 〈Si, vi | 0 6 i < κ〉 where
Si+1 = µ(Si, vi) for all i. A (k, s)-strategy µ is said to be winning for the cops against
a fugitive with speed s if every µ-play is finite (i.e., results in the capture of the
fugitive).

We define the visible, lazy mixed-search number against a fugitive with speed s
for a graph G to be

vlmss(G) = min {k | there is a winning (k, s)-strategy for G} .

Recall that we demanded the symmetric difference of consecutive cop positions Si and
Si+1 to be either a singleton or a set of two adjacent vertices x ∈ Si and y ∈ Si+1.
The latter case reflects the sliding move of a searcher along the edge e = {x, y}, from
x to y and assumes that the vertex y is not occupied by a searcher before sliding.
Actually, it is possible to drop this assumption by allowing more than one searcher
to occupy a vertex. Certainly, this requires the definition of a more general model.
However, it would not make any real difference: sliding a searcher along e from x to
y, while y is occupied is equivalent to the removal of this searcher from x. Moreover,
the case where x is occupied by two searchers and one of them slides along e from x
to y is the same as having this searcher out of the graph and placing him on y.

By applying the same definitions but now demanding that the symmetric dif-
ference of consecutive cop positions is always a singleton (i.e., only placement and
removal moves are allowed), we define the analogous visible, lazy node search number
against a fugitive with speed s for a graph G, which we denote vlnss(G).

The following lemma gives key properties of the defined parameters.
Lemma 3.1. For any graphs G and H and any s ∈ N+,
1. δ(G) + 1 6 vlnss(G) 6 ∆(G) + 1 and δ(G) 6 vlmss(G) 6 ∆(G);
2. if H ⊆ G, then vlnss(H) 6 vlnss(G) and vlmss(H) 6 vlmss(G);
Proof. To capture the fugitive on any vertex x, a cop must be placed on every

one of the at least δ(G) vertices adjacent to x and either a further cop placed on x
(node search) or one of those cops slid onto x (mixed search). The fugitive can always
be caught on any vertex x by placing cops on the at most ∆(G) neighbours of x and
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y Y

w

Xx

Figure 1: An example graph with δs(G) = 2 for any s ∈ N+.

G H

Figure 2: The graph H is a minor of G, however vlns∞(G) = 5, while vlns∞(H) = 7. Notice
that the vertices of degree 4 in G form a (4,∞)-hide-out. The vertices of degree six in H form
a (6,∞)-hide-out, as shown by the bold paths.

Proof. The case s = ∞ is immediate from the max-flow min-cut theorem and the existence
of polynomial-time algorithms for computing maximal flows. For finite values of s, the result
follows from [15] and [20].

In fact, for any finite s ! 4, it is NP-hard even to approximate seps
G(x,X) within a constant

factor of 1.1377 [3].
Let G be a graph, k ∈ N and s ∈ N+. A (k, s)-layout of G is an ordering v1, . . . , vn of V (G)

such that, for every i ∈ {1, . . . , n}, seps
G(vi, {v1, . . . , vi−1}) " k. We define the s-degeneracy

of G to be δs(G), the least k for which G has a (k, s)-layout. Notice that the 1-degeneracy is
identical to the classical graph-theoretic parameter of degeneracy.

A (k, s)-hide-out in a graph G is any set R ⊆ V (G) such that, for every x ∈ R, seps
G(x,R−

x) ! k. In Figure 2, the set of vertices in H of degree six is a (6,∞)-hide-out; one of the sets
of paths is shown in bold.

The s-degeneracy of a graph and the presence or absence of (k, s)-hide-outs within it are
closely linked with the node search number for a visible, lazy fugitive. We now adapt these two
concepts for mixed-search. First, set

mseps
G(x,X) = min {seps

G−Y (x,X) | Y ⊆ EG(x) and |Y | " 1} .

That is, Y can be either empty, or a singleton containing one edge incident with x. The
following Lemma is immediate from the definitions.

Lemma 3. For any graph G and any x ∈ V (G), X ⊆ V (G) − x and s ! 2,

msep1
G(x,X) + 1 = sep1

G(x,X) = dG[X+x](x)

mseps
G(x,X) " seps

G(x,X) " mseps
G(x,X) + 1 .

7

Figure 4.1. An example graph with δs(G) = 2 for any s ∈ N+.

proceeding as before. This completes the proof of (1). For (2), notice that if there are
fewer than vlnss(H) cops (respectively, vlmss(H) cops) then the fugitive can avoid
capture in the node-search game (respectively, mixed-search game) on G forever by
staying within H.

Variants of the above model have already appeared in the literature, for fugitives
of unbounded speed. The version where the fugitive is visible and active is due to
Seymour and Thomas [26], who show that the corresponding node-search number is
tw(G) + 1; the node-search number is the same for an invisible, lazy fugitive [9].
Finally, the version with an invisible, active fugitive was introduced by Kirousis and
Papadimitriou [17] and studied further by Bienstock and Seymour [5]. In this case, the
node-search number is pw(G) + 1 [16, 17]. It follows immediately that determining
any of the above search numbers is NP-complete and the same can also be shown
for the mixed search variants of all of these games. However, we prove that the
parameters vlns∞(G) and vlms∞(G) are polynomial-time computable. These results
are summarized in Table 1.1.

4. Degeneracy and hide-outs. Let G be a graph, x ∈ V (G) and X ⊆ V (G)−
x. For any s ∈ N+, we say that a set A ⊆ V (G) − x is an (s, x,X)-separator if
G − A contains no path from x to X of length at most s. Define sepsG(x,X) to be
the minimum size of any (s, x,X)-separator in G. For example, for the graph G in
Figure 4.1, sep∞G (x,X) = 1, as w is a cut vertex. However, sepsG(x,X) = 0 for any
s < 4. Moreover, sep3

G(x, Y ) = 2 and sep2
G(x, Y ) = sep1

G(x, Y ) = 1.

For s 6 3 and s =∞, sepsG(x,X) is the maximum cardinality of any set of x–X
paths of length at most s that are vertex-disjoint apart from the common endpoint
x. This is immediate from Menger’s theorem in the case s =∞ and can be shown by
a simple modification to the proof of Lovász et al. [20, Theorem 3] for s 6 3. On the
other hand, for finite s > 4, there are graphs where sepsG(x,X) is greater than the
maximum number of disjoint s-paths from x to X [20].

Lemma 4.1. Let s ∈ N+. Given a graph G, x ∈ V (G), X ⊆ V (G)−x and k ∈ N,
the problem of determining whether sepsG(x,X) 6 k can be solved in polynomial time
for s ∈ {1, 2, 3,∞} and is NP-complete for all other s.

Proof. The case s = ∞ is immediate from the max-flow min-cut theorem and
the existence of polynomial-time algorithms for computing maximal flows. For finite
values of s, the result follows from [15] and [20]. In fact, for any finite s > 4, it is
NP-hard even to approximate sepsG(x,X) within a constant factor of 1.1377 [3].

Let G be a graph, k ∈ N and s ∈ N+. A (k, s)-layout of G is an ordering
v1, . . . , vn of V (G) such that, for every i ∈ {1, . . . , n}, sepsG(vi, {v1, . . . , vi−1}) 6 k.
We define the s-degeneracy ofG to be δs(G), the least k for whichG has a (k, s)-layout.
Notice that the 1-degeneracy is identical to the classical graph-theoretic parameter of
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y Y

w

Xx

Figure 1: An example graph with δs(G) = 2 for any s ∈ N+.

G H

Figure 2: The graph H is a minor of G, however vlns∞(G) = 5, while vlns∞(H) = 7. Notice
that the vertices of degree 4 in G form a (4,∞)-hide-out. The vertices of degree six in H form
a (6,∞)-hide-out, as shown by the bold paths.

Proof. The case s = ∞ is immediate from the max-flow min-cut theorem and the existence
of polynomial-time algorithms for computing maximal flows. For finite values of s, the result
follows from [15] and [20].

In fact, for any finite s ! 4, it is NP-hard even to approximate seps
G(x,X) within a constant

factor of 1.1377 [3].
Let G be a graph, k ∈ N and s ∈ N+. A (k, s)-layout of G is an ordering v1, . . . , vn of V (G)

such that, for every i ∈ {1, . . . , n}, seps
G(vi, {v1, . . . , vi−1}) " k. We define the s-degeneracy

of G to be δs(G), the least k for which G has a (k, s)-layout. Notice that the 1-degeneracy is
identical to the classical graph-theoretic parameter of degeneracy.

A (k, s)-hide-out in a graph G is any set R ⊆ V (G) such that, for every x ∈ R, seps
G(x,R−

x) ! k. In Figure 2, the set of vertices in H of degree six is a (6,∞)-hide-out; one of the sets
of paths is shown in bold.

The s-degeneracy of a graph and the presence or absence of (k, s)-hide-outs within it are
closely linked with the node search number for a visible, lazy fugitive. We now adapt these two
concepts for mixed-search. First, set

mseps
G(x,X) = min {seps

G−Y (x,X) | Y ⊆ EG(x) and |Y | " 1} .

That is, Y can be either empty, or a singleton containing one edge incident with x. The
following Lemma is immediate from the definitions.

Lemma 3. For any graph G and any x ∈ V (G), X ⊆ V (G) − x and s ! 2,

msep1
G(x,X) + 1 = sep1

G(x,X) = dG[X+x](x)

mseps
G(x,X) " seps

G(x,X) " mseps
G(x,X) + 1 .

7

Figure 4.2. The graph H is a minor of G, however vlns∞(G) = 5, while vlns∞(H) = 7.
Notice that the vertices of degree 4 in G form a (4,∞)-hide-out. The vertices of degree six in H
form a (6,∞)-hide-out, as shown by the bold paths.

degeneracy.
A (k, s)-hide-out in a graph G is any set R ⊆ V (G) such that, for every x ∈ R,

sepsG(x,R − x) > k. In Figure 4.2, the set of vertices in H of degree six is a (6,∞)-
hide-out; one of the sets of paths is shown in bold.

The s-degeneracy of a graph and the presence or absence of (k, s)-hide-outs within
it are closely linked with the node search number for a visible, lazy fugitive. We now
adapt these two concepts for mixed-search. First, set

msepsG(x,X) = min {sepsG−Y (x,X) | Y ⊆ EG(x) and |Y | 6 1} .

That is, Y can be either empty, or a singleton containing one edge incident with x.
The following Lemma is immediate from the definitions.

Lemma 4.2. For any graph G and any x ∈ V (G), X ⊆ V (G)− x and s > 2,

msep1
G(x,X) + 1 = sep1

G(x,X) = dG[X+x](x)

msepsG(x,X) 6 sepsG(x,X) 6 msepsG(x,X) + 1 .

For example, in graph G of Figure 4.1, we have sep3
G(x, Y ) = msep3

G(x, Y ) = 2,
while sep3

G(y, Y ) = 2 = msep3
G(y, Y ) + 1.

Lemma 4.3. Let s ∈ N+. Given a graph G, x ∈ V (G), X ⊆ V (G) − x and
k ∈ N, the problem of determining whether msepsG(x,X) 6 k is in polynomial time
for s ∈ {1, 2, 3,∞} and is NP-complete for all other s.

Proof. The polynomial part follows directly from Lemma 4.1 and the definition
of msepsG. For the NP-completeness part, construct a graph G′ = G ∪ P , where P
is a path of length s from x to some vertex in X, disjoint from G apart from its
endpoints. We have msepsG′(x,X) = sepsG(x,X) and the result is then immediate
from Lemma 4.1.

Let G be a graph, k ∈ N and s ∈ N+. A mixed (k, s)-layout is an ordering
v1, . . . , vn of V (G) such that msepsG(vi, {v1, . . . , vi−1}) 6 k for every i ∈ {1, . . . , n}.
Let the mixed s-degeneracy of G be δsm(G), the least k for which G has a mixed
(k, s)-layout. In Figure 4.1, δ1m(G) = 1 and δsm(G) = 2 for s > 2. Notice that
δ1(G) = δ1m(G) + 1, by Lemma 4.2.

We define a mixed (k, s)-hide-out in a graph G to be any set R ⊆ V (G) such
that, for every x ∈ R, msepsG(x,R− x) > k. In the graph G of Figure 4.1, the black
vertices form a mixed (2, s)-hide-out for any s > 2.
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5. Min-max theorems. We are now ready to give our min-max characteriza-
tions for both vlnss(G) and vlmss(G) for all s ∈ N+.

Theorem 5.1. For any graph G and any s ∈ N+,

vlnss(G)− 1 = δs(G) = max {k | G contains a (k, s)-hide-out}
vlmss(G)− 1 = δsm(G) = max {k | G contains a mixed (k, s)-hide-out} .

Proof. We give a full proof of the more complicated mixed-search case and indicate
what needs to be changed to give a proof of the simpler node-search case. It suffices
to show that, for any graph G = (V,E), any k ∈ N and any s ∈ N+, the following are
equivalent:

1. δsm(G) 6 k (resp., δs(G) 6 k),
2. vlmss(G) 6 k + 1 (resp., vlnss(G) 6 k + 1) and
3. G contains no mixed (k + 1, s)-hide-out (resp., no (k + 1, s)-hide-out).

(1) ⇒ (2). Let v1, . . . , vn be a mixed (k, s)-layout of G and, for i ∈ {1, . . . , n},
let Xi = {v1, . . . , vi−1}. By the definition of msep, for each i ∈ {1, . . . , n}, there is a
Yi ⊆ EG(vi), of size at most one, such that sepsG−Yi

(vi, Xi) 6 k.
By construction, G− Yi contains an (s, vi, Xi)-separator Si of size at most k. By

definition, any vi–Xi path in G of length at most s must meet Si or use the edge Yi
if it exists. Let Zi = Si if Yi = ∅ or Si + x if Yi = {vix}.

We can now define a winning (k + 1, s)-strategy µ for G. Suppose that, at some
point in the game, the cops are at position Z and the fugitive is on vertex vi. The
strategy proceeds by first removing the cops one at a time from Z \ Zi and then
placing cops one at a time on the vacant vertices of Zi. Finally, a cop is either placed
on the fugitive’s vertex vi, if Yi = ∅, or slid there, otherwise. Formally, let z1, . . . , zα
enumerate Z \Zi and let z′1, . . . , z

′
β enumerate Zi \Z, with both being sub-sequences

of v1, . . . , vn. For j ∈ {1, . . . , α}, we set

µ(Z \ {z1, . . . , zj−1}, vi) = Z \ {z1, . . . , zj}

and, for j ∈ {1, . . . , β}, we set

µ(Zi \ {z′1, . . . , z′j}, vi) = Zi \ {z′1, . . . , z′j−1} .

Finally, if Yi = ∅ then |Zi| 6 k so we can set µ(Zi, vi) = Zi + vi. Otherwise, it is
possible that |Zi| = k + 1 but, in that case, we can set µ(Zi, vi) = Zi M Yi.

When the cops move to the fugitive’s vertex vi, there is a cop on every vertex of
Si and, if Yi = {e}, there is a cop sliding along edge e. Since every path of length
at most s from vi to Xi passes through Si or e, the fugitive, if he can move at all,
can only move to some vertex vj with j > i. Since there are only n vertices in G
and the cops force the fugitive to move at least once every 2k + 3 rounds (at most
k+ 1 removals, k+ 1 placements and one slide), the fugitive will be caught in at most
n(2k + 3) rounds.

In the case of node search, Yi = ∅ for all i ∈ {1, . . . , n} so there are no sliding
moves to consider.

(2) ⇒ (3). Let R be a mixed (k+ 1, s)-hide-out in G. The fugitive can avoid capture
forever, against any (k + 1, s)-strategy of the cops by using the following escape
strategy.

• Initially, the fugitive occupies any vertex v ∈ R.
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• Suppose a cop is placed on the fugitive’s current vertex v and let S ⊆ V (G)
be the position of the cops after this placement. We have |S − v| 6 k.
sepsG(v,R−v) > msepsG(v,R−v) > k+1, so G− (S−v) contains an s-path
from v to R−v and the fugitive can run to some other vertex in the hide-out.

• In the mixed-search case, suppose a cop slides from some vertex u to the fugi-
tive’s current vertex v. Since msepG(v,R−v) > k+1, we have sepsG−uv(v,R−
v) > k + 1 so the fugitive escapes as before.

(3) ⇒ (1). Assuming that G does not contain a mixed (k + 1, s)-hide-out, we in-
ductively construct a mixed (k, s)-layout v1, . . . , vn of G. Since V (G) is not a mixed
(k + 1, s)-hide-out, there is a vertex v with msepsG(v, V (G) − v) 6 k. Let vn = v.
Suppose we have chosen v`, . . . , vn for some ` ∈ {2, . . . , n}. V (G) \ {v`, . . . , vn} is not
a mixed (k+1, s)-hide-out so, as before, we may choose v`−1 to be some vertex v with
msepsG(v, V (G) \ {v, v`, . . . vn}) 6 k. For the case of node search, replace “msepsG”
with “sepsG” and mixed hide-outs with ordinary hide-outs.

We remark that the strategies we have considered only allow the cops to choose
their next move based on the current position in the game and not, for example, on
the history of the play so far.

The following lemma gives some consequences of Theorem 5.1.
Lemma 5.2. Let G and H be graphs and let s ∈ N+.
1. vlmss(G) 6 vlnss(G) 6 vlmss(G) + 1.
2. vlns1(G) = vlms1(G) + 1 = δ∗(G) + 1.
3. If H is a topological minor of G, then vlns∞(H) 6 vlns∞(G) and vlms∞(H) 6

vlms∞(G).
Proof. By Lemma 4.2 and the definitions of δ and δm, we obtain that δ1(G) =

δ1m(G) + 1 and δsm(G) 6 δs(G) 6 δsm(G) + 1. Then parts 1 and 2 follow directly from
Theorem 5.1.

For part 3, let H be obtained from H ′ ⊆ G by dissolving vertices of degree 2.
Observe that every (k,∞)-hide-out (mixed (k,∞)-hide-out) in H is also a (k,∞)-
hide-out (mixed (k,∞)-hide-out) in H ′. Then the result follows from Theorem 5.1.

Thus, from Lemma 3.1.2 and Lemma 5.2.3, vlns∞ and vlms∞ are closed under
taking subgraphs and topological minors. However, they are not closed under tak-
ing minors, since every graph G is a minor of some graph H with ∆(H) 6 3. G
may have arbitarily large search numbers but, by Lemma 3.1.1, vlns∞(H) 6 4 and
vlms∞(H) 6 3.

Lemma 5.2.3 cannot be extended to vlnss or vlmss for finite s. For s ∈ N,
there are graphs G with topological minors H such that vlnss(H) > vlnss(G) = 3
or vlmss(H) > vlmss(G) = 2: for example, take H to be any graph and replace the
edges with independent (s+ 1)-paths to make G. (See also Figure 4.2.)

6. Algorithms and complexity. The proof of Theorem 5.1 also indicates that
Algorithm 1 can be used to compute δs(G) for any s ∈ N+. The algorithm attempts
to construct a (k, s)-layout of G greedily, which would show that δs(G) 6 k. If this
fails, a (k, s)-hide-out of G has been detected and, since the hide-out itself has no
(k, s)-layout, nor does G. A straightforward modification of the algorithm, replacing
sepsG with msepsG, determines whether δsm(G) 6 k, giving either a mixed (k, s)-layout
or a mixed (k, s)-hide-out. By Lemmata 4.1 and 4.3, both variants of the algorithm
run in polynomial time for s =∞ and s 6 3.

Theorem 6.1. Let s ∈ N+. Given a graph G and k ∈ N, the problem of de-
termining whether vlnss(G) 6 k (respectively, vlmss(G) 6 k) is computable in time
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Algorithm 1 check-s-degen: check whether δs(G) 6 k.

Input: an n-vertex graph G and an integer k > 1.
Output: if δs(G) 6 k, a (k, s)-layout; if not, a (k, s)-hide-out.

S ← V (G).
for i = n, . . . , 1,

if there is x ∈ S with seps
G(x, S − x) 6 k then vi ← x;

else output “δs(G) > k, witnessed by hide-out S.”
S ← S − vi.

Output “δs(G) 6 k, witnessed by layout v1, . . . , vn.”

polynomial in |V (G)| if s ∈ {1, 2, 3,∞} and is NP-complete otherwise.
Proof. As we commented above, the polynomial-time cases are covered by Al-

gorithm check-s-degen and Lemmata 4.1 and 4.3. The remaining cases for node
search are in NP because the fact that vlnss(G) 6 k is witnessed by a (k, s)-layout
v1, . . . , vn, along with an (s, vi, {v1, . . . , vi−1})-separator of size at most k for each
i ∈ {1, . . . , n} and the validity of such a witness can be checked in polynomial time.
The same argument can be applied for mixed search.

It remains to prove that it is NP-hard to determine whether vlnss(G) 6 k (resp.,
vlmss(G) 6 k) for finite s > 4. We first examine the node search case. In particular,
we reduce the problem of determining whether sepsG(x,X) 6 k to the problem of
determining whether δs(G) 6 k. By Theorem 5.1, this is equivalent to the problem
of determining whether vlnss(G) 6 k.

Given a graphG with n vertices, a vertex x ∈ V (G), a setX ⊆ V (G)−x and a non-
negative integer k, we will construct a new graph G′ such that sepsG(x,X)+ |V (G)| =
δs(G′). Take k + n+ 1 copies of G and, for each v ∈ X, identify the copies of v. We
refer to the resulting set of vertices in G′ as X and we write X∗ for the set of copies
of x. Then, add n new vertices (we call this set W) and add a new path of length s
from each vertex in W to each vertex in X∗. We claim that δs(G′) = sepsG(x,X) +n.
For this, it is enough prove the following two claims for each k > 0.
Claim 1: sepsG(x,X) 6 k implies that δs(G′) 6 k + n.
Claim 2: sepsG(x,X) > k implies that δs(G′) > k + n.

For Claim 1, assume, on the contrary, that G′ contains a (n + k + 1, s)-hide-
out R. We must have R ⊆ W ∪ X ∪ X∗, as every other vertex in G′ has degree at
most n − 1. Notice also that, if x ∈ X∗ ∩ R, then x can be separated by R − x by
removing |W | + sepsG(x,X) 6 n + k vertices. Therefore, R ⊆ W ∪ X. Notice now
that each vertex in W is at least s+ 1 edges away from any other vertex in W or in
X, therefore, R ⊆ X. This means that |R| 6 |X| 6 n− 1 contradicting the fact that
any (n+ k + 1, s)-hide-out R must contain at least n+ k + 2 vertices.

For Claim 2, first let X ′ be the set containing all vertices of X that are at distance
at most s from x. As sepsG(x,X) > k+1 > 1, X ′ contains at least one vertex. Notice
also that sepsG(x,X ′) > k+ 1, therefore sepsG′(x

∗, X ′) > k+ 1, for each x∗ ∈ X∗. We
claim that R = W ∪X∗ ∪X ′ is an (n+ k + 1, s)-hide-out in G′. For this, notice first
that each vertex w of W is the beginning of n+ k+ 1 disjoint paths to the vertices of
X∗, therefore sepsG′(w,R−w) > sepsG′(w,X

∗) > k+ n+ 1. Now, let x∗ ∈ X∗. Note
that sepsG′(x

∗, R−x∗) > sepsG′(x
∗,W ∪X ′) > n+sepsG′(x

∗, X ′) > n+k+1. Finally,
let x ∈ X ′. As there are internally disjoint paths of length 6 s from x to each vertex in
X∗ and |X∗| > n+k+1, we deduce that sepSG′(x,R−x) > sepSG′(x,X

∗) > n+k+1.
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We conclude that R is indeed a (n+k+1, s)-hide-out of G′; therefore δs(G′) > n+k+1.

For the NP-hardness of the mixed search case, we consider the following construc-
tion. Let G∗ be the graph obtained by taking the disjoint union of two copies G1 and
G2 of G and, for i = 1, 2, adding edges as follows: for each vi ∈ V (Gi), make vi

adjacent with all the vertices of NG2−j [v3−i] where v3−i is the counterpart of vi in
G3−i (see Figure 6.1 for an example).

It remains to prove that it is NP-hard to determine whether vlnss(G) ! k (resp., vlmss(G) !
k) for finite s " 4. We first examine the node search case. In particular, we reduce the problem
of determining whether seps

G(x,X) ! k to the problem of determining whether δs(G) ! k. By
Theorem 5, this is equivalent to the problem of determining whether vlnss(G) ! k.

Given a graph G with n vertices, a vertex x ∈ V (G), a set X ⊆ V (G)−x and a non-negative
integer k, we will construct a new graph G′ such that seps

G(x,X) + |V (G)| = δs(G′). Take
k + n + 1 copies of G and, for each v ∈ X, identify the copies of v. We refer to the resulting set
of vertices in G′ as X and we write X∗ for the set of copies of x. Then, add n new vertices (we
call this set W) and add a new path of length s from each vertex in W to each vertex in X∗.
We claim that δs(G′) = seps

G(x,X) + n. For this, it is enough prove the following two claims
for each k " 0.
Claim 1: seps

G(x,X) ! k implies that δs(G′) ! k + n.
Claim 2: seps

G(x,X) > k implies that δs(G′) > k + n.
For Claim 1, assume, on the contrary, that G′ contains a (n+k+1, s)-hide-out R. We must

have R ⊆ W ∪X ∪X∗, as every other vertex in G′ has degree at most n−1. Notice also that, if
x ∈ X∗ ∩ R, then x can be separated by R− x by removing |W |+ seps

G(x,X) ! n + k vertices.
Therefore, R ⊆ W ∪X. Notice now that each vertex in W is at least s+1 edges away from any
other vertex in W or in X, therefore, R ⊆ X. This means that |R| ! |X| ! n− 1 contradicting
the fact that any (n + k + 1, s)-hide-out R must contain at least n + k + 2 vertices.

For Claim 2, first let X ′ be the set containing all vertices of X that are at distance at
most s from x. As seps

G(x,X) " k + 1 " 1, X ′ contains at least one vertex. Notice also
that seps

G(x,X ′) " k + 1, therefore seps
G′(x∗,X ′) " k + 1, for each x∗ ∈ X∗. We claim

that R = W ∪ X∗ ∪ X ′ is an (n + k + 1, s)-hide-out in G′. For this, notice first that each
vertex w of W is the beginning of n + k + 1 disjoint paths to the vertices of X∗, therefore
seps

G′(w,R−w) " seps
G′(w,X∗) " k+n+1. Now, let x∗ ∈ X∗. Note that seps

G′(x∗, R−x∗) "
seps

G′(x∗,W ∪X ′) " n+ seps
G′(x∗,X ′) " n+ k +1. Finally, let x ∈ X ′. As there are internally

disjoint paths of length ! s from x to each vertex in X∗ and |X∗| " n + k + 1, we deduce that
sepS

G′(x,R−x) " sepS
G′(x,X∗) " n+k+1. We conclude that R is indeed a (n+k+1, s)-hide-out

of G′; therefore δs(G′) " n + k + 1.

For the NP-hardness of the mixed search case, we consider the following construction. Let
G∗ be the graph obtained by taking the disjoint union of two copies G1 and G2 of G and, for
i = 1, 2, adding edges as follows: for each vi ∈ V (Gi), make vi adjacent with all the vertices of
NG2−j [v3−i] where v3−i is the counterpart of vi in G3−i (see Figure 3 for an example).

G∗G

Figure 3: The reduction for the NP-hardness of the mixed search case.

11

Figure 6.1. The reduction for the NP-hardness of the mixed search case.

We claim that vlnss(G) = dvlmss(G∗)
2 e. From, Lemma 5.2.1, if vlmss(G∗) = x, then

x 6 vlnss(G∗) 6 x+ 1. (6.1)

Our argument now is based on the fact that vlnss(G∗) = 2 · vlnss(G), which is
proved below. As then vlnss(G∗) takes only even values, Relation (6.1) gives an
exact estimation of vlnss(G) and this proves the correctness of the claimed formula.

It remains to prove that vlnss(G∗) = 2 · vlnss(G). We present the proof for the
case where s > 2 that is enough for our purposes (the case where s = 1 is very similar
and simpler). According to Theorem 5.1, this requires the proof of the following two
claims.

Claim 3: If G has a (k, s)-hide-out then G∗ has a (2k + 1, s)-hide-out.
Claim 4: If G has a (k, s)-layout then G∗ has a (2k + 1, s)-layout.

For Claim 3, assume that R is a (k, s)-hide-out of G. As for every x ∈ R,
sepsG(x,R− x) > k, we deduce that for every set S ⊆ V (G)− x where |S| < k, there
is some path of G, of length 6 s, from x to some vertex of R − x, avoiding S. For
each S ⊆ V (G) − x, |S| < k, we pick such a path and we denote it by PS . We also
define the set R∗ =

⋃
v∈R{v1, v2}, containing the counterparts in G1 and G2 of each

vertex in R and we set Rh = R∗ ∩ V (Gh), h = 1, 2.
Our aim is to prove that R∗ is a (2k + 1, s)-hide-out of G∗. For this, let xi be a

vertex of R∗ for some i ∈ {1, 2}. For each PS , we denote by P 1
S and P 2

S the paths of
G∗ starting from xi and continuing with the counterparts of the rest of the vertices
of PS in the graphs G1 and G2 respectively.

We have to prove that for every set S∗ ⊆ V (G∗)−xi where |S∗| 6 2k, G∗ contains
a path of length 6 s, from xi to some vertex of R∗ − xi, avoiding S∗. Let S∗ be such
a set. Notice that |NG(x)| > k, therefore, in G∗, xi and its counterpart x3−i, apart
from being adjacent, have > 2k common neighbors with xi. This in turn implies that
there are at least 2k+ 1 paths of length at most 2 6 s from xi to x3−i in G∗. Clearly
S∗ cannot meet all these paths and, as x3−i ∈ R∗, the claim holds in the case where
x3−i 6∈ S∗.
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Suppose now that x3−i ∈ S∗. We set S∗h = (S∗−x3−h)∩V (Gi), h = 1, 2. Notice
that |S∗h − x3−h| 6 2k − 1, and therefore |S∗1| + |S∗2| 6 2k − 1. This means that
at least one, say S∗1, of S∗1 and S∗2 has at most k − 1 vertices. Recall that S∗1

corresponds to a set S1 of vertices in G. Therefore, PS1 is a path of G∗, of length
6 s, from xi to R∗ − xi, avoiding S∗1. As PS1 avoids also S∗2 and therefore S∗ as
well, the claim follows.

For Claim 4, we assume that v1, . . . , vn is an ordering of the vertices of G such
that sepsG(vi, {v1, . . . , vi−1}) 6 k for every i ∈ {1, . . . , n}. It is enough to prove that
v11 , v

2
1 , . . . , v

1
n, v

2
n is an ordering of the vertices of G∗ such that for every i ∈ {1, . . . , n},

sepsG(v1i , {v11 , v21 , . . . , v1i−1, v2i−1}) 6 2k + 1 and (6.2)

sepsG(v2i , {v11 , v21 , . . . , v1i−1, v2i−1, v1i }) 6 2k + 1 (6.3)

Recall that G contains an (s, vi, {v1, . . . , vi−1})-separator of size 6 k for each i ∈
{1, . . . , n}, i.e. a set, say Si ⊆ V (G) − vi, that meets all paths of G of length 6 s
from vi to {v1, . . . , vi−1}. For every i ∈ {1, . . . , n}, we define S1

i and S2
i as the subsets

of V (G∗) containing the counterparts of the vertices of Si in G1 and G2 respectively.
Let S∗i = S1

i ∪ S2
i and fix some integer i ∈ {1, . . . , n}. Observe that v1i , v

2
i 6∈ S∗ and

that |S∗i | 6 2k. To prove (6.2) and (6.3), it suffices to show that, for each h ∈ {1, 2},
S∗i ∪ {v3−hi } meets all paths of G∗ of length 6 s from vhi to {v11 , v21 , . . . , v1i−1, v2i−1}.
Equivalently, we show that S∗i meets all such paths that start from v1i or v2i and
do not contain both v1i and v2i . Indeed, suppose to the contrary, that S∗i does not
meet some path P ∗i of G∗ that has length 6 s, starts from v1i or v2i but does not
contain both v1i and v2i , and finishes in some vertex in {v11 , v21 , . . . , v1i−1, v2i−1}. By
considering the counterparts of the vertices of P ∗i in G, we obtain a walk Wi in G
from vi to {v1, . . . , vi−1}, of length 6 s. Certainly, we can extract from Wi a path Pi
with the same properties. Recall that Pi contains some vertex x ∈ Si. But then, both
counterparts x1 and x2 of x will be vertices of S∗i and at least one of them will be a
vertex of P ∗i , a contradiction. In the preliminaries of this paper we restricted our
study to simple graphs. If we drop this restriction, we may replace the last reduction
of the proof of Lemma 6.1 by the following simpler one, suggested in [4]: Given any
graph G, we define Ge as the graph created if we replace each edge in G by a double
edge. Then it holds that vlnss(G) = vlmss(Ge), which follows trivially using the
arguments of [4].

7. Comparisons. In this section, we show that the two graph parameters that
we have introduced, vlnss and vlmss, along with tree-width are, as far as possible,
independent for any subsequence of the parameter hierarchies they define. We con-
centrate our analysis on the simpler node search parameters as the same conclusions
can be directly derived for the for the mixed search variant using the same ideas.

Proposition 7.1. For any graph G,

δ1(G) 6 δ2(G) 6 δ3(G) 6 · · · 6 δ∞(G) 6 tw(G) .

Proof. Immediate from the game characterizations of the parameters. Moving
from left to right, the fugitive becomes stronger: from lazy with unit speed through
lazy with increasing but still bounded speed, to lazy with unbounded speed, to active
with unbounded speed.

Remark 1. Proposition 7.1 indicates that the existence of a (k,∞)-hide out can
easily provide lower bounds for the treewidth of graphs. For instance, the graph H in
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Figure 4.2 contains a (6,∞)-hide-out and therefore its treewidth is at least six. Since
H is a minor of G, we have tw(G) > 6. It is easily seen that a visible, active fugitive
can be caught in G with seven cops, which establishes that tw(G) = 6.

Recall that the (n × n) grid graph is the graph gridn with vertices {1, . . . , n}2
and all edges of the form {(i, j), (i+ 1, j)} and {(i, j), (i, j + 1)}. We will also require
the following variant of the grid graphs. Let hexgridn be the graph that results from
applying the following operations to every vertex (i, j) of degree 4 in gridn:

1. add a new vertex (i, j)′;
2. delete the edges {(i− 1, j), (i, j)} and {(i, j − 1), (i, j)};
3. add edges {(i, j), (i, j)′}, {(i− 1, j), (i, j)′} and {(i, j − 1), (i, j)′}.

The graphs grid4 and hexgrid4 are illustrated in Figure 7.1. For n > 4, it can be seen
that the “centre” of hexgridn is a hexagonal mesh.

Figure 4: The graphs grid4 and hexgrid4.

Figure 5: The graph hexgrid5 seen as a minor of the (10 × 5)-grid.

Proof. It is known (e.g., see [6]) that the treewidth of a (! × m)-grid is equal to min {!,m}.
The result follows using the fact that gridn is a minor of hexgridn and hexgridn is a minor of the
(2n × n)-grid as demonstrated in Figure 5.

Theorem 10. Let 3 ! d1 ! d2 ! · · · ! dr ! dr+1 ! dr+2. There is a graph G such that
δ1(G) = d1, δ2(G) = d2, . . . , δr(G) = dr, δ∞(G) = dr+1 and tw(G) = dr+2.

Proof. For i ∈ {1, . . . , r+1}, let Gi be the graph obtained by independently replacing each edge
xy of the complete graph Kdi+1 by an x–y path of length i. Let Gr+2 be the graph obtained
by independently replacing each edge xy of hexgriddr+2

by an x–y path of length r + 1.
For any i ∈ {1, . . . , r + 1} and j ∈ {1, . . . , r}, it is easy to see that

δj(Gi) =

{
2 if j < i

di if j " i .
(4)

We have δ∞(Gr+2) = 3. The upper bound follows from Lemma 1.1, because ∆(Gr+2) = 3;
the lower bound follows from Lemma 6.3 and the fact that Gr+2 contains K4 as a topological
minor. It is easily seen that, for all i ∈ {1, . . . , r + 2}, tw(Gi) = di.

Finally, let G be the union of disjoint copies of G1, . . . , Gr+2. By Lemma 1.2, we have that,
for any s ∈ {1, . . . , r},

δs(G) = max {δs(Gi) | 1 ! i ! r + 2}
= max {d1, . . . , ds, 2, . . . , 2}
= ds .

Similarly, we have δ∞(G) = dr+1 and tw(G) = dr+2, as required.
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Figure 7.1. The graphs grid4 and hexgrid4.

Lemma 7.2. tw(gridn) = tw(hexgridn) = n.
Proof. It is known (e.g., see [6]) that the treewidth of a (` ×m)-grid is equal to

min {`,m}. The result follows using the fact that gridn is a minor of hexgridn and
hexgridn is a minor of the (2n× n)-grid as demonstrated in Figure 7.2.

Figure 4: The graphs grid4 and hexgrid4.

Figure 5: The graph hexgrid5 seen as a minor of the (10 × 5)-grid.

Proof. It is known (e.g., see [6]) that the treewidth of a (! × m)-grid is equal to min {!,m}.
The result follows using the fact that gridn is a minor of hexgridn and hexgridn is a minor of the
(2n × n)-grid as demonstrated in Figure 5.

Theorem 10. Let 3 ! d1 ! d2 ! · · · ! dr ! dr+1 ! dr+2. There is a graph G such that
δ1(G) = d1, δ2(G) = d2, . . . , δr(G) = dr, δ∞(G) = dr+1 and tw(G) = dr+2.

Proof. For i ∈ {1, . . . , r+1}, let Gi be the graph obtained by independently replacing each edge
xy of the complete graph Kdi+1 by an x–y path of length i. Let Gr+2 be the graph obtained
by independently replacing each edge xy of hexgriddr+2

by an x–y path of length r + 1.
For any i ∈ {1, . . . , r + 1} and j ∈ {1, . . . , r}, it is easy to see that

δj(Gi) =

{
2 if j < i

di if j " i .
(4)

We have δ∞(Gr+2) = 3. The upper bound follows from Lemma 1.1, because ∆(Gr+2) = 3;
the lower bound follows from Lemma 6.3 and the fact that Gr+2 contains K4 as a topological
minor. It is easily seen that, for all i ∈ {1, . . . , r + 2}, tw(Gi) = di.

Finally, let G be the union of disjoint copies of G1, . . . , Gr+2. By Lemma 1.2, we have that,
for any s ∈ {1, . . . , r},

δs(G) = max {δs(Gi) | 1 ! i ! r + 2}
= max {d1, . . . , ds, 2, . . . , 2}
= ds .

Similarly, we have δ∞(G) = dr+1 and tw(G) = dr+2, as required.

14

Figure 7.2. The graph hexgrid5 seen as a minor of the (10× 5)-grid.

Theorem 7.3. Let 3 6 d1 6 d2 6 · · · 6 dr 6 dr+1 6 dr+2. There is a
graph G such that δ1(G) = d1, δ

2(G) = d2, . . . , δr(G) = dr, δ
∞(G) = dr+1 and

tw(G) = dr+2.
Proof. For i ∈ {1, . . . , r + 1}, let Gi be the graph obtained by independently

replacing each edge xy of the complete graph Kdi+1 by an x–y path of length i. Let
Gr+2 be the graph obtained by independently replacing each edge xy of hexgriddr+2

by an x–y path of length r + 1.
For any i ∈ {1, . . . , r + 1} and j ∈ {1, . . . , r}, it is easy to see that

δj(Gi) =

{
2 if j < i

di if j > i .
(7.1)

We have δ∞(Gr+2) = 3. The upper bound follows from Lemma 3.1.1, because
∆(Gr+2) = 3; the lower bound follows from Lemma 5.2.3 and the fact that Gr+2
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contains K4 as a topological minor. It is easily seen that, for all i ∈ {1, . . . , r + 2},
tw(Gi) = di.

Finally, let G be the union of disjoint copies of G1, . . . , Gr+2. By Lemma 3.1.2,
we have that, for any s ∈ {1, . . . , r},

δs(G) = max {δs(Gi) | 1 6 i 6 r + 2}
= max {d1, . . . , ds, 2, . . . , 2}
= ds .

Similarly, we have δ∞(G) = dr+1 and tw(G) = dr+2, as required.
Corollary 7.4. For any sequence 3 6 d1 6 d2 6 · · · 6 dr+2, there is a

connected graph with the properties of the previous theorem.
Proof. Take the graph G constructed in the theorem and arbitrarily choose ver-

tices xi ∈ V (Gi) for each i ∈ {1, . . . , r + 2}. Let Y = {y1, . . . , yr+1} be new vertices
and let G′ be the graph formed from G by adding the vertices in Y and the edges
xiyi and xi+1yi for all i ∈ {1, . . . , r + 1}.

Let s ∈ N+ and let k = δs(G) > 3. G is a subgraph of G′ so, by Lemma 3.1.2,
δs(G′) > k. Let v1, . . . , vn be a (k, s)-layout of G. Since k > 3 and each yi has degree
two in G′, sepsG′(yi, X) 6 2 for any i ∈ {1, . . . , r+ 1} and X ⊆ V (G′)− yi. Therefore
v1, . . . , vn, y1, . . . , yr+2 is a (k, s)-layout of G′ so δs(G′) = k = δs(G).

It is easily seen that, for d > 1, if disjoint graphs H and H ′ have treewidth at
most d then any graph formed from H ∪ H ′ by adding a 2-path between the two
constituent graphs also has treewidth at most d. Since 1 6 tw(Gi) 6 tw(G), a simple
induction shows that tw(G′) = tw(G).

Theorem 7.3 and Corollary 7.4 hold also if we replace δs by δsm. We omit the
details as arguments are very similar.

8. Extending contraction degeneracy. A popular approach to estimating
treewidth is to look for algorithms or heuristics that compute lower bounds for it. By
Proposition 7.1, degeneracy gives such a lower bound. However, δ1(hexgridn) = 2 for
any n > 2 but the class of these hexagonal grids has unbounded treewidth.

Bodlaender, Koster and Wolle [7, 19, 30] define the contraction degeneracy of a
graph to be

δC(G) = max {δ1(H) | H is a non-trivial minor of G} .

Contraction degeneracy seemed to be a good lower bound for treewidth — notice that
δ1(G) 6 δC(G) 6 tw(G). Bodlaender et al. prove the problem of determining, given
G and k, whether δC(G) = k is NP-complete and propose heuristics for computing
the parameter [7].

We have defined the hierarchy δs for s ∈ N+, which can be seen as an extension
of degeneracy. As δ1(G) 6 δ∞(G) 6 tw(G), δ∞ is, itself, a better lower bound for
treewidth than degeneracy and is still polynomial-time computable, though the same
examples as before show that there are graphs G with δ∞(G) = 3 and arbitrary
treewidth. However, we can follow the approach of Bodlaender et al. and define, for
any s ∈ N+, the parameter

δsC(G) = max {δs(H) | H is a non-trivial minor of G} .

Note that δ1C(G) = δC(G). The following is immediate from Proposition 7.1.
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Figure 6: The construction of Theorem 13 for r = 5; the (5,∞)-hide-out consists of the grey
vertices.

Theorem 13. There is a function f : N → N such that, for all graphs G, δ∞C(G) ! tw(G) !
f(δ∞C(G)).

Proof. The idea of the proof is that, for any r, the (r · (r + 1) × (r + 1))-grid graph (defined
analogously to the (r × r)-grid graph gridr) can be contracted to a graph that contains an
(r,∞)-hide-out. To see this, remove the edges in {{(i ·r, 1), (i ·r+1, 1)} | i = 1, . . . , r} and then
contract all remaining edges of the form {(1, j), (1, j + 1)}. The results of these contractions
are r + 1 vertices that form the claimed (r,∞)-hide-out (see Figure 6).

It is easy to verify that (r · (r + 1), r + 1) grid is a minor of an (O(r3/2) × O(r3/2))-grid.
If δ∞C(G) ! r, then no minor of G contains (r + 1,∞)-hide-out and, therefore, G does not
contain an (O(r3/2) × O(r3/2))-grid as a minor.

From [11, 25], there is a function g such that, if G does not contain gridk as a minor, then
tw(G) ! g(k). We conclude that, if δ∞C(G) ! k, then tw(G) ! g(O(k3/2)).

If a planar graph does not contain the (k × k)-grid as a minor, then tw(G) ! O(k) [25].
Therefore, for planar G, tw(G) ! O((δ∞C(G))3/2). The same observation (with the same
polynomial dependence) can be extended to any class of graphs with an excluded minor using
the main result from [8].

9 Concluding remarks

We have studied the number of cops required to catch a lazy, visible fugitive moving with
bounded or unbounded speed in a graph, using node search and the more general mixed search.
We have shown that the associated search numbers correspond to graph parameters that are
generalizations of the classical notion of degeneracy and characterized these parameters in
terms of forbidden substructures, which we call hide-outs. Most parameters associated with
graph searching are NP-complete in the case of fugitives with unbounded speed. However, our
parameters are polynomial-time computable for fugitives with unbounded speed or speed at
most three, and NP-complete for all other finite speeds.

As we mentioned in Section 4, checking whether seps
G(x,X) ! k is an NP-complete problem

for every fixed s " 4 because of the results in [3, 15, 20]. Recent results in [14] imply that, for
every fixed s, this problem can be solved by an sk ·nO(1)-step algorithm (i.e., an FPT-algorithm).
Apparently, using the algorithm of Section 6, the same type of algorithm can be derived for
checking whether vlnss(G) ! k or vlmss(G) ! k.

For most graph searching parameters, an important issue is to prove or disprove their
monotonicity [13]. In the monotone versions of the games, the cops are only allowed to use
strategies that gradually restrict the fugitive to smaller regions of the graph such that, once he

16

Figure 8.1. The construction of Theorem 8.2 for r = 5; the (5,∞)-hide-out consists of the
grey vertices.

Proposition 8.1. For any graph G,

δ1C(G) 6 δ2C(G) 6 δ3C(G) · · · 6 δ∞C(G) 6 tw(G) .

Thus, one can expect δ∞C(G) to give a better lower bound for treewidth than
contraction degeneracy. Unfortunately, δ∞(G) can, itself, be shown to be NP-complete
— the proof is almost identical to the proof for contraction degeneracy in [7]. However,
treewidth is bounded above by a function of δ∞C(G), while contraction degeneracy
gives only a lower bound, because δC(G) 6 5 for any planar G [7] but tw(G) can be
arbitrarily large.

Theorem 8.2. There is a function f : N → N such that, for all graphs G,
δ∞C(G) 6 tw(G) 6 f(δ∞C(G)).

Proof. The idea of the proof is that, for any r, the (r · (r+1)× (r+1))-grid graph
(defined analogously to the (r×r)-grid graph gridr) can be contracted to a graph that
contains an (r,∞)-hide-out. To see this, remove the edges in {{(i · r, 1), (i · r+ 1, 1)} |
i = 1, . . . , r} and then contract all remaining edges of the form {(1, j), (1, j+1)}. The
results of these contractions are r + 1 vertices that form the claimed (r,∞)-hide-out
(see Figure 8.1).

It is easy to verify that (r · (r+1), r+1) grid is a minor of an (O(r3/2)×O(r3/2))-
grid. If δ∞C(G) 6 r, then no minor of G contains (r+ 1,∞)-hide-out and, therefore,
G does not contain an (O(r3/2)×O(r3/2))-grid as a minor.

From [11,25], there is a function g such that, if G does not contain gridk as a minor,
then tw(G) 6 g(k). We conclude that, if δ∞C(G) 6 k, then tw(G) 6 g(O(k3/2)).

If a planar graph does not contain the (k×k)-grid as a minor, then tw(G) 6 O(k)
[25]. Therefore, for planar G, tw(G) 6 O((δ∞C(G))3/2). The same observation (with
the same polynomial dependence) can be extended to any class of graphs with an
excluded minor using the main result from [8].

9. Concluding remarks. We have studied the number of cops required to catch
a lazy, visible fugitive moving with bounded or unbounded speed in a graph, using
node search and the more general mixed search. We have shown that the associ-
ated search numbers correspond to graph parameters that are generalizations of the
classical notion of degeneracy and characterized these parameters in terms of forbid-
den substructures, which we call hide-outs. Most parameters associated with graph
searching are NP-complete in the case of fugitives with unbounded speed. However,
our parameters are polynomial-time computable for fugitives with unbounded speed
or speed at most three, and NP-complete for all other finite speeds.

As we mentioned in Section 4, checking whether sepsG(x,X) 6 k is an NP-
complete problem for every fixed s > 4 because of the results in [3, 15, 20]. Recent
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results in [14] imply that, for every fixed s, this problem can be solved by an sk ·nO(1)-
step algorithm (i.e., an FPT-algorithm). Apparently, using the algorithm of Section 6,
the same type of algorithm can be derived for checking whether vlnss(G) 6 k or
vlmss(G) 6 k.

For most graph searching parameters, an important issue is to prove or disprove
their monotonicity [13]. In the monotone versions of the games, the cops are only
allowed to use strategies that gradually restrict the fugitive to smaller regions of the
graph such that, once he has been cut off from a vertex in the graph, he can never
return there. A game is said to be monotone if restricting the cops to using montone
strategies does not increase the number of cops required on any graph. This property
is highly desirable for searching games as it directly implies that the corresponding
decision problem belongs in NP. Clearly, this is not the case for vlns∞ and vlms∞,
since both corresponding decision problems are in P.

The natural way to define the monotonicity of the games that we examine this
this paper is to consider only strategies where the fugitive never occupies or crosses
a vertex that has already been occupied by a cop. Unfortunately, the strategies
constructed in the first part of the proof of our min-max theorem (Theorem 5), are
not monotone when s > 2, and it is not clear whether they could be replaced by
monotone ones. Consequently, we leave monotonicity as an open issue. In fact, we
conjecture that the games of this paper are monotone when s =∞ and non-monotone
when 2 6 s <∞.

We have shown that δ∞ can serve as a lower bound for treewidth and pathwidth
and that δ∞C approximates treewidth. It would be interesting to know whether there
are graph classes where δ∞ approximates treewidth or pathwidth or on which δ∞C
serves as a good approximation.

Acknowledgments.. We thank the anonymous reviewers for their valuable com-
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