
ELSEVIER Theoretical Computer Science 172 (1997) 233-254

Theoretical
Computer Science

Fugitive-search games on graphs and related parameters’

Nick D. Dendris, Lefieris M. Kirousis’, Dimitrios M. Thilikos

Department of Computer Engineering and Informatics, University of Patras, Rio, 265 00 Patras, Greece
Computer Technology Institute, P. 0. Box 1122, 261 IO Patras. Greece

Received August 1994; revised May 1996

Communicated by G. Ausiello

Abstract

The goal of a fugitive-search game on a graph is to trap a fugitive that hides on the vertices
of the graph by systematically placing searchers on the vertices. The fugitive is assumed to have

complete knowledge of the graph and of the searchers’ moves, but is restricted to move only
along paths whose vertices are not guarded by searchers. The search number of the graph is the
least number of searchers necessary to trap the fugitive. Variants of the fugitive-search game
have been related to important graph parameters like treewidth and pathwidth. In this paper, we
introduce a class of fugitive-search games where the searchers do not see the fugitive and the
fugitive can only move just before a searcher is placed on the vertex it occupies. Letting the
fugitive’s speed (i.e. the maximum number of edges the fugitive can traverse at a single move)
vary, we get different games. We show that if the speed of the fugitive is unbounded then the
search number minus 1 is equal to the treewidth of the graph, while if the speed is 1 then the
search number minus 1 is equal to a polynomially computable graph parameter which is called
width, or alternatively linkage, and is studied in the context of the Constraint Satisfaction and
Boolean Satisfiability Problems. We also show that in the above two cases, the search number
remains the same even if we consider only search strategies that at every step further restrict the
fugitive’s possible resorts (this monotonicity property is usually expressed as: “recontamination
does not help”). Moreover, we give an equivalent characterization of the search number for any

given fugitive speed in terms of an elimination ordering of the vertices of the graph. Using this
characterization, we show that for any graph, if the length of any chordless cycle is bounded
by a constant s (s>3), then the treewidth of the graph plus 1 is equal to the search number for
fugitive speed s - 2.

1. Introduction

In the sequel, let G = (V, E) be a connected, undirected graph without multiple edges
or self-loops. The fugitive-search game was introduced by Parsons [30,31] (see also

* Corresponding author. E-mail: kirousis@fiyni.ceid.upatras.gr.
’ This research was partially supported by the European Union ESPRIT Basic Research Projects ALCOM 11

(contract no. 7141), GEPPCOM (contract no. 9072) and Insight II (contract no. 6019).

0304-3975/97/$17.00 @ 1997 -EIsevier Science B.V. AH rights reserved

PII SO304-3975(96)00177-6

234 N. D. Dendris et al. I Theoretical Computer Science I72 (1997) 233-254

[lo]). In the original version of the game, the graph is thought of as a system of

tunnels where an omniscient fugitive with unbounded speed is hidden. The object of

the game is to trap the fugitive using searchers. A searcher can either be placed on an

arbitrary vertex of the graph, or be removed from the graph, or slide along an edge.

The fugitive cannot go through a vertex guarded by a searcher; it is trapped once a

searcher is placed on the vertex it currently occupies and there is no place for it to

go. Also, the searchers cannot see the fugitive. The fugitive being omniscient means

that it a priori has complete knowledge of the graph and of the searchers’ moves. It

exploits this knowledge to move along unguarded paths to locations where it is harder

to get trapped. The goal of the game is to trap the fugitive using the least possible

number of searchers. Megiddo et al. [28] showed that computing the search number

is an NP-hard problem. The fact that it actually belongs to the class NP follows

from an important monotonicity result of LaPaugh [24] (see also [S]) stating that

excluding search strategies which give the fugitive the possibility of “recontaminating”

the graph, namely visiting an already searched vertex, does not increase the search

number (in short: “recontamination does not help to search the graph”). Therefore,

only monotone search strategies, i.e. strategies where the searched portion of the graph

is never decreased, need to be considered.

A variant of the search game, called node-search game, was introduced in [21].

In this variant, searchers can only be placed on or removed from the vertices of the

graph (no sliding is allowed). The fugitive resides on a vertex and is allowed to move

from one vertex to another along unguarded paths. Again, the fugitive is assumed to

have unbounded speed and be omniscient: the searchers can be placed on any vertex,

but they cannot see the fugitive. It turned out that for this variant, which also has

the monotonicity property of the original version [21], the search number is equal to

the interval thickness of the graph (i.e. the size of the smallest max-clique in any

interval supergraph of G; see [20]) and therefore to the pathwidth of the graph plus 1

(see [30]). Results relating search number to other graph parameters can be found in

[14,19,29].

Seymour and Thomas [33] introduced still another variant of the fugitive-search

game. Their setting differs from node-search in that the fugitive is visible. That is, at

every stage of the search the searchers can see the vertex of the graph where the fugitive

resides and use this knowledge to reassign their positions accordingly. This additional

ability of the searchers introduces a kind of interaction between the searchers and the

fugitive. Seymour and Thomas showed that the search number for this variant is equal

to the treewidth plus 1 (for a survey of results related to treewidth see [7,23]). They

also showed that the monotonicity property still holds, i.e. excluding search strategies

that allow the fugitive to visit a searched vertex is of no help to the fugitive. They

proved the monotonicity property by showing that if for a given number of searchers

the fugitive has an escape strategy, then there is a nice escape strategy, i.e. there is a

collection of sets of vertices that offer a resort to the fugitive in the sense that there

always exists the possibility for the fugitive to move from any such set of vertices to

another one independently of the location of the searchers. The existence of such a

N. D. Dendris et al. I Theoretical Computer Science I72 (1997) 233-254 235

resort is proved using ideas on obstruction sets (see [32]). Bienstock [3] gives a survey

of the related results.

In this paper, we examine search games where the searchers are always assumed

not to be able to see the fugitive. Again, the fugitive resides on vertices, moves along

unguarded paths and is supposed to be omniscient. As for the searchers, similarly to

[20] and not to [30,31], they can only be placed on, or removed from, the vertices of

the graph, one at a time, with the goal to eventually trap the fugitive. However, the

mobility of the fugitive is restricted: we assume that the fugitive is inert, i.e. it only

moves just before a searcher visits the vertex it occupies (given of course that there is

a vertex that can be reached via an unguarded path; otherwise the fugitive is trapped).

Formal definitions are given in the next section. We prove that this inert-fugitive search

game has the monotonicity property (i.e. recontamination does not help) and that the

corresponding search number is equal to the treewidth plus 1. From this and the results

of [33], it follows that the search numbers for an inert fugitive on one hand and for

a visible fugitive, on the other, coincide. This relates the effect of a restriction on the

mobility of the fugitive (inertness) with the effect of an enhancement of the abilities of

the searchers (ability to see the fugitive). In contrast to this, based on results of [20,29]

one can easily show (see Section 2, Theorem 2) that without the inertness restriction on

the fugitive the corresponding search number, being equal to the node-search number

[21], is equal to the pathwidth plus 1. It must be pointed out that our proof of the

monotonicity property for the inert-fugitive game makes use of the result by [33] about

the existence of a “resort” for an escaping fugitive. However, our proof relating the

search number with the treewidth is completely different from the corresponding one

in [34] (as we already pointed out, the latter refers to an interactive game, where,

rather than restricting the mobility of the fugitive, the searchers are assumed to have

the additional ability of “vision”).

We also examine search games where the fugitive, besides being inert, is further

restricted to have speed equal to a given number s, i.e. the number of unguarded edges

it can traverse at each move is at most s. If s = n - 1 (n is the number of vertices

of the graph) we say that the speed is unbounded, since, in this case, the fugitive

can tranverse any unguarded path. We thus obtain a class of fugitive-search games

parametrized in terms of the speed of the fugitive.

We show that if the speed is 1 then the monotonicity property holds (i.e. recontam-

ination does not help) and moreover, the search number minus 1 is equal to the width

(also known as linkage), a graph parameter studied in the context of the Constraint

Satisfaction and Boolean Satisfiability Problems (see e.g. [ll-13,16,17,25,26]). De-

spite the etymological affinity, width is polynomially computable for arbitrary graphs,

whereas treewidth and pathwidth are NP-complete. The sequential and parallel com-

plexity of width have been extensively studied in [l, 221. To define the width of a

graph consider a layout of the graph and let the backdegree of a vertex u be the num-

ber of vertices preceeding u in the layout that are adjacent to u; the minimum over all

layouts of the maximum backdegree of any vertex of the graph is the width of G. It

is known that the width of G is equal to the maximum min-degree of any subgraph

236 N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

of G. Certain classes of graphs with bounded width are advantageous for applying

backtracking, the classical method to solve the Constraint Satisfaction Problem (see

[25]). In analogy to the classical definitions of pathwidth and treewidth, we also give

a new characterization of the width in terms of a decomposition of the graph into sets

of vertices.

The above characterizations of the search numbers for fugitives with differing abili-

ties, but with identical rules for searchers, offer a uniform game-theoretic approach to

pathwidth, treewidth and width.

Other variants of the fugitive-search game with mobility restrictions were used by

Franklin et al. [151 to model issues of privacy in distributed systems, However, they

only consider variations on the mobility settings of the searchers, rather than the fugitive

(for them the searchers represent bugs eavesdropping in a network, whereas the fugitive

represents the information to be captured).

In the last section, we give a result implying interesting algorithmic properties. We

characterize the search number for an inert fugitive with a given speed in terms of an

elimination ordering. Using this characterization, we prove that for any graph whose

largest chordless cycle is at most s+2, the treewidth plus 1 is equal to the search num-

ber for an inert fugitive with speed S. This is a new characterization for the treewidth

of a graph in terms of the length of its longest chordless cycle. Intuitively, this fact

asserts that for graphs with small chordless cycles, even if we decrease the speed of

the fugitive, this does not offer any advantage of the searchers. Our characterization

was used in [9], to investigate the complexity of treewidth and the existence of small

separators in special classes of graphs. We finally mention that, if the speed is 1,

then this result implies that for triangulated graphs, the treewidth is equal to the width

(however, this equality is an easy corollary of extant results).

2. Formal definitions and results on pathwidth

A search on a graph G = (V, E) is a sequence So,. . . , S, of sets of vertices (St c V, i =
0,. . . ,Y) such that So = 8 and for all i = 1,. . . , r the symmetric difference of the sets

Si and Si-i has cardinality 1. Intuitively, set Si contains the vertices holding a searcher

at step i of the search, and at each step of the search, either one searcher is added on

or one searcher is removed from the graph.

The search number of a search is the maximum of the cardinalities of the sets

Si, i = 0 ,..., r.
Let Y = {Si, i = O,..., r} be a search. For i = 0,. . . , r, we inductively define the

set of free locations Fi for an agile fugitive with unbounded speed as follows:

. F. = V.

l For i = 1 ,...,r, let Fi = (Fi-1 -Si)U{u E V-Si: there is a path from a vertex

u E Fi_1 to v whose vertices except u belong to V - Si}.

Intuitively, after the ith step of the search, the fugitive can be at any of the vertices

of Fi. Being omniscient, after each step of the search, it chooses a most advantageous

N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254 231

location in Fi. Intuitively also, V - S, is the set of unguarded vertices. The fugitive

moves along unguarded paths to vertices that have possibly admitted a searcher in

the past. The fugitive is agile in the sense that it has the ability to move whenever

there appears an unguarded path that starts from its current location (also see below the

definition of the inert-fugitive game). It is easy to see that the search game for an agile

fugitive as defined here is exactly the same as the node-search game introduced in [21].

The set of free locations for an inert fugitive with unbounded speed is defined as

follows:

. Fo = V.

l For i = 1,. . . ,Y, let Fi = (Fi_1 - Si) U {v E V - Si: there is a path from a vertex

u E F,_i n (Si - Si-i) to v whose vertices except u belong to V - Si}.

Intuitively, an inert fugitive is allowed to move only when a searcher is about to be

placed on the vertex it occupies. This is so because the fugitive can move away from

a vertex u only if u E Fi-1 n (Si - Si-1). Notice also that, for an inert fugitive, if

Si C Si_t or even if Si s V - Fi-1, then Fi = Fi_1, i.e. when searching for an inert

fugitive, if we remove a searcher from the graph or place a searcher to a vertex not

in the set of the fugitive’s free locations, this does not cause the fugitive to move.

Finally, if n is the number of vertices of the graph and 1 ds 6 n - 1 is an integer,

the set of free locations for an inert fugitive with speed s is defined as follows:

. F. = V.

l For i = l,...,~, let Fi = (Fi-1 - Si) U {V E V - Si: there is a path of length at

most s from a vertex u E Fi_1 n (S, - A’_,) to v whose vertices except u belong to

V - Si}.

Intuitively, an inert fugitive with speed s behaves exactly as an inert fugitive with

unbounded speed except that it cannot traverse a path of length more than S.

Given the type of the fugitive, a search Y is complete if F, = 0. For each type of

fugitive, the corresponding search number of the graph is the minimum search number

over all searches which are complete with respect to this type of fugitive.

For all types of fugitives, a search is called monotone if Vi = 1,. . , r, Fi G Fi-1.

Notice that for a monotone search and for all types of fugitives, Fi = Fi-1 - Si.

Intuitively, a search is monotone if it does not allow recontamination.

For each type of fugitive, the corresponding monotone search number of the graph
is the minimum search number over all monotone searches which are complete with

respect to this type of fugitive.

Fig. 1 depicts a graph whose search number for an agile fugitive with unbounded

speed is 6; its search number for an inert fugitive with unbounded speed is 4; and its

search number for an inert fugitive with speed 1 is 3. We now informally describe

how these numbers are attained.

(1) For a fugitive with unbounded speed (agile or inert), start searching the graph

from left to right, keeping as “attack front” searchers on ui,u2 and us; then on ~4,~s

and ug; and then on ~7, us and ug (four searchers are required, the extra one for the

transition from one “front” to the next). Then proceed to search each of the two

branches of the graph.

238 N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

Fig. 1. An example graph which for an agile fugitive with unbounded speed has search number 6; for an

inert fugitive with unbounded speed has search number 4; and for an inert fugitive with speed 1 has search

number 3.

(a) If the fugitive is agile, during the search of the upper branch, keep watches on
the three vertices u7,ug and ug to guard off the fugitive from the lower branch. As it
can be easily seen, only three extra searchers are enough to search the upper branch
(the lower branch is easier), thus the total number of searchers needed is 6.

(b) If the fugitive is inert, there is no need for a watch; four searchers altogether

suffice.
(2) In the case of an inert fugitive with speed 1, place searchers on ~1, ~2 and us, then

remove the searcher residing on ~3 and place it on ~5 (since the speed is 1, the fugitive
cannot go to us): then, in the same way, move the searcher residing on u2 to ~4 and then
back to ~3: then move the searcher from ui to #g: finally move the searcher from ~3 to
~4. Thus the transition from one “attack front” to the next one has been attained with
only 3 searchers. Continue like this, to search all possible vertical triples of vertices.

Theorem 1. For a graph G and for an agile fugitive with unbounded speed, the
monotone search number of G is equal to the search number of G.

Proof. The theorem is a restatement of the corresponding result in [21]. The proof in
[21] is obtained by reduction to edge-searching, the original variant of the fugitive-
search game; the monotonicity of this variant was first proved by LaPaugh [24]
(see also [4,5]). 0

Notice that in the case of an inert fugitive, a monotone search may entail re-insertion
of a searcher on a vertex that has already been visited by a searcher (of course, by
monotonicity, the fugitive cannot be on such a vertex). The monotonicity property

N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254 239

for such searches guarantees only that the fugitive cannot visit an already searched

vertex (and not that a searcher is never re-inserted on a vertex that has previously

admitted a searcher). For example, to search the graph of Fig. 1 for a fugitive with

unbounded speed using only 4 searchers, it is necessary, at some steps of the search,

to re-insert searchers to already searched vertices. However, for an agile fugitive, it is

not only known that recontamination does not help, but also that searcher re-insertion

is unnecessary [20].

We now give, for completeness, the definition of pathwidth.

Definition 1. A path-decomposition of G = (V,E) is a class {X;: i = 1,. . . ,Y} of

subsets of V that satisfies the following conditions:

1. lJ:=iXi = V.

2. ‘J{u, W} E E, 3: u, w E Xi.

3. Qi,j,k, if 1 <i<j<k<r, then Xi nXk CXj.

The pathwidth of a path-decomposition {Xi: i = 1,. . , I-} is defined to be maxi <i<r

IX, 1 - 1. The pathwidth of G is the minimum pathwidth of any path-decomposition

of G.

Finally, we mention:

Theorem 2. The pathwidth of G incremented by 1 is equal to the search number of
G for an agile fugitive with unbounded speed.

Proof. Kirousis and Papadimitriou [20] prove that the node-search number of G is

equal to the interval thickness of G (interval thickness is defined to be the smallest

max-clique in any interval supergraph of G). M&ring [29] shows that the pathwidth

plus 1 is also equal to the interval thickness. The theorem immediately follows from

these results and from the fact that the node-search game is the same as the agile-

fugitive search game. 0

Fig. 2(a) depicts in detail a monotone search for an agile fugitive with unbounded

speed in a three-dimensional cube. Fig. 2(b) depicts an optimal path-decomposition for

the graph. Notice that the pathwidth of this graph is 4.

3. Inert-fugitive game and treewidth

In this section, we show that the search number for an inert fugitive with unbounded

speed is equal to the treewidth of the graph incremented by 1. We also show that for

this type of fugitive, the monotone search number is equal to the (nonmonotone) search

number. The proof of this monotonicity result depends on the existence of a screen, a

notion introduced by Seymour and Thomas [33]. Screens are obstructions for graphs

with small treewidth.

For completeness, we first give the definition of treewidth.

240 N.D. Dendris et al. I Theoretical Computer Science I72 (1997) 233-254

a ba ba ba b

Oa

oc
Od

Oe

Oh

- !
Oa

OC

Oe

Oh

08

a)

Oa

OC

0”

Of

og
:

Oa

Ob

OC

Of

08

b)

Fig. 2. (a) The steps of an example monotone search of the three-dimensional cube for an agile fugitive

with unbounded speed. The search steps are drawn left to right, top to bottom. A circle around a vertex

indicates that a searcher resides on it; cleared vertices are drawn filled. (b) An optimal path-decomposition

for the three-dimensional cube.

Definition 2. A tree-decomposition of G = (V,E) is a pair ({Xi: i E I}, T) where

{Xi: i E I} is a collection of subsets of Y and T = (I,F) is a tree having the index

set I as set of vertices so that the following conditions are satisfied:

1. Ui& = K

~.V{U,IV}EE, ZliEZ:u,wEXi.
3. Vi, j, k E I: if j is on a path in T from i to k then X flXk CXj.

The treewidth of a tree-decomposition ({Xi: i E I}, T) is defined to be maxi,=1 (Xi] - 1.

The treewidth of G is the minimum treewidth of any tree-decomposition of G.

Treewidth has many equivalent characterizations (see e.g. [2,6]). We are going to use

one expressed in terms of elimination orderings of graphs. An elimination ordering of

N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254 241

a graph G = (V,E) is an ordering rr = (ut,..., u,) of the vertices of G (n = IVl). The

graphs generated during an elimination of the vertices of G according to n are defined

to be: Gt = G and G;+t = the graph obtained from Gi by deleting vertex Ui and adding

new edges (if necessary) so that all pairs of neighbors of Ui in Gi are adjacent in Gi+r .

Obviously, G,+I = empty graph. The dimension of Vi with respect to rt is the degree

of v, in Gi. The dimension of x is the maximum dimension of any ai E rc, and finally

the elimination dimension of G is the minimum dimension of any elimination ordering

of G. The following result can be found in [2]:

Theorem 3. The treewidth of a graph is equal to its elimination dimension.

Given an elimination ordering x = (~1,. . . , v,) of G, it is convenient to define the

support of a vertex Ui to be the set of vertices rj with j > i that are connected to vi

by a path in G whose vertices except its endpoints vi and Uj (if any) precede vi in rc.

We need the following easy technical lemma.

Lemma 1. Let 7c = (u,,..., v,) be an elimination ordering of G. Then for every vi, the

support of vi is equal to the set of neighbors of vi in Gi and therefore the cardinality

of the support of vi is equal to the dimension of vi with respect to n.

Proof. Let u be a vertex after vi in n which is connected to vi via a path of nodes

preceding vi in rc. Let v, be the first with respect to n internal vertex of this path. By

the definition of G,,,+t, we get that in G,,,+t the length of the path is reduced by 1.

Repeating the same argument over the length of the path, and since all internal nodes

have been deleted in Gi, we get that in Gi the vertex vi is connected to u. For the

converse, observe that if u is a neighbor of Vi in Gi, then in Gi_t, u is connected to

ai by a path which may have vi-1 as an internal vertex. Repeating this argument all

the way back to G, we get the required. q

We now prove the following:

Theorem 4. The treewidth of a graph G plus 1 is equal to the monotone search
number for an inert fugitive with unbounded speed.

Proof. We first show that if the treewidth of G is k, then there is a complete monotone

search for an inert fugitive with unbounded speed that uses at most k + 1 searchers.

By Theorem 3 there is an elimination ordering rc = (VI,. . . , v,) of G which has

dimension k. We construct a complete monotone search with k+ 1 searchers as follows:

First, place a searcher on II,. Thus, the fugitive may retreat at any vertex other than v,.

Assume now that all vertices after vi in n have been visited, and the fugitive resides

at some vertex in the set {VI,. . . , vi}. To extend the search to clear vi, first remove all

the searchers (if any) residing on vertices of the graph, arbitrarily and one at a time.

Notice that the fugitive, being inert, will not move. Afterwards, place searchers on the

vertices in the support (with respect to n) of Ui. Again, this will not cause the fugitive

242 N.D. Dendris et al. I Theoretical Computer Science I72 (1997) 233-254

to move. Finally, place a searcher on Q. As a result of placing the searcher onto vi,
the fugitive can move to any vertex he can reach from ui. Thus, in principle, he/she
could move to an already searched vertex. However, the already searched vertices that
can be reached are those in the support of ui with respect to rc. Since these vertices
already held a searcher before the placement of the searcher on vi, we get that the
fugitive has to escape to some vertex in the set {a 1,. . . , v~_~ }, and vi is cleared. Being
the search performed from v, to vi, we conclude that it is complete and monotone.
Also, by Lemma 1, the search uses at most k + 1 searchers. This completes the proof
of the first direction.

We now prove that if there is a complete monotone search with k+ 1 searchers, then
there is an elimination ordering of dimension at most k. Order the vertices in terms of
the search step that places a searcher on them for the first time; then reverse this order
to get rc = (ui,..., v,) (formally, during the search, a searcher visits vi for the first time
before a searcher visits uj for the first time iff i > j). We claim that the elimination
ordering thus defined has dimension at most k. Indeed, by Lemma 1, if a vertex Vi
has dimension with respect to x strictly more than k, then also the support of vi has

cardinality strictly more than k. But then, since there are no more than k + 1 searchers
available, when visiting vi with a searcher for the first time there would exist a vertex
in the support of vi not guarded by a searcher. This contradicts the monotonicity of
the search. 0

Fig. 3(a) depicts a monotone search for an inert fugitive with unbounded speed in
the three-dimensional cube, and Fig. 3(b) depicts an optimal tree-decomposition of the
same graph. Notice that the inertness of the fugitive is strongly used to search the
graph with less searchers than in the pursuit of an agile fugitive.

The next step is to prove the monotonicity of the search game for an inert fugitive
of unbounded speed. Crucial for the proof is the notion of screen introduced in [33].
Below we give the related definitions and then state the corresponding theorem.

Let G = (V, E) be a graph and let HI, Hz & V. We say that HI, Hz mutually touch
ifH~flH2#@or3e={vl,v2}EE:v1EH~~v~EH2.

Definition 3. A screen S of a graph G = (V, E) is a collection HI,, . . , H,. of nonempty
subsets of V that induce connected and pairwise touching subgraphs of G. The screen
S has thickness > k iff VX C V with 1x1 < k, 3Hi : Hi f7X = 0.

We point out that set X in the definition above does not necessarily induce a connected
subgraph to G. Notice also that the sets HI,. . . , H, are not required to form a cover

of If.

Theorem 5 (Seymour and Thomas [33]). Let G = (V, E) be a graph. Zf the treewidth
of G 2 k then G has a screen of thickness 3 k + 1.

We now prove:

N. D. Dendris et al. I Theoretical Computer Science I72 (1997) 233-254 243

b ;1 b ;L b a b

b a b a

e f

IIECI

h g

d c

b a b

b a b a b

c d c d

b a b a b

Fig. 3. (a) An example monotone search for an inert fugitive with unbounded speed for the three-dimensional

cube, and (b) an optimal tree-decomposition.

244 N. D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

Theorem 6. Zf G = (V, E) has a screen with thickness 2 k + 1 then an inert fugitive

with unbounded speed cannot be captured with <k searchers (even by a nonmonotone
search).

Proof. Let HI,. . . , H, be a screen of G of thickness 2 k + 1. Then

VXCVif (X(<k+l, then !lHi:HiftX=@.

We will now provide a strategy for the fugitive that allows it to avoid any search that

uses < k+ 1 searchers. Recall that the fugitive, being omniscient, knows in advance all

the moves of the searchers. Initially, i.e. before any searchers appear on the graph, the

fugitive arbitrarily selects some screen element H. Let u be the first vertex of H ever

to be visited by a searcher. The fugitive chooses u as its very first location. Let X be

the set of vertices occupied by a searcher immediately before v admits a searcher for

the first time. Then, since the search uses less than k + 1 searchers, (X U {v} (< k + 1,

and thus there is a screen element H’ such that H’ rl (X U {v}) = 0. Notice also that

XnH = 0. Thus, when a searcher is placed on v, the fugitive can escape to any vertex

in H’. This is so because H and H’ are connected, mutually touching and moreover,

just before putting a searcher on v, H and H’ carry no searcher. The fugitive, being

omniscient, chooses to go to that vertex of H’ that will be visited first by a searcher

after the current step of the search.

Repeating this procedure, it becomes clear that the fugitive can escape being captured

by <k searchers forever. 0

Fig. 4 depicts a screen of thickness > 5 for the octahedron. Notice that any placement

of up to 4 searchers (not necessarily on vertices inducing a connected graph) leaves

at least one searcher-free screen element.

Now, from Theorems 4-6, we get as immediate corollaries the following two results,

our main results in this section:

Theorem 7. For an inert fugitive with unbounded speed, the monotone search number

of a graph G is equal to (nonmonotone) search number of G (i.e. recontamination
does not help to search for such a fugitive).

Proof. Indeed, if the monotone search number of a graph G is k+l, then by Theorem 4

the treewidth of G is k, so by Theorem 5 there is a screen of thickness >k + 1 and

therefore by Theorem 6 there does not exist a complete search using < k + 1 searchers

(not even a nonmonotone one). q

Theorem 8. The treewidth of a graph G plus 1 is equal to its (nonmonotone) search

number for an inert fugitive with unbounded speed.

Proof. This follows immediately from Theorems 4 and 7. 0

From the previous theorem and the results of [33], it follows that the search numbers

for an inert fugitive on one hand and for a visible fugitive, on the other, coincide.

N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254 245

H,= (1,51

H,= {I,31

H,= { 121

I-I,= 121

H,= (41

H,= 161

H,= (3Sl

Fig. 4. A screen of thickness 2 5 for the octahedron. The screen elements are drawn using dotted lines.

Also, as expected, the search number for an inert and visible fugitive (with unbounded

speed), is equal to the search number for an inert only (or, alternatively, visible,

only) fugitive (with unbounded speed). Indeed, by an argument similar to the proof

of Theorem 6, it can easily be seen that any inert fugitive, visible or not, cannot

be captured by <k searchers if G has a screen of thickness > k + 1; the claim now

-follows from Theorems 5 and 8. Finally, observe that the previous theorem also implies

that computing the search number for an inert fugitive with unbounded speed is NP-

complete (notice that not even the membership in the class NP is obvious - essentially

it is a consequence of Theorem 7).

4. Unit-speed fugitive and width

In this section, we examine the search game for inert fugitives that have speed 1.

We prove that the search number in this case is equal to the width, which, as we

mention in the introduction, is a polynomially computable graph parameter studied in

the context of the Constraint Satisfaction and Boolean Satisfiability Problems. We also

prove that “recontamination does not help” to search for an inert fugitive with unit

speed. The proof shows the existence of a very simple obstruction for small search

number (for this type of fugitive), Finally, in analogy with the definitions of pathwidth

and treewidth that we have mentioned, we give a characterization of width in terms of

decomposition into sets of vertices.

We first give the related definitions.

A layout of a graph G = (V,:E) is an (ordered) n-tuple L = (~1,. . ., u,) of the

vertices of G (n = IV\).

246 N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

The width of a vertex v with respect to a layout L is the number of vertices which
are adjacent to r and precede v in the layout.

The width of a layout L of G is the maximum width of any vertex in L.
The width of G is the minimum width of any layout of G.
For clarity, let us mention that we use the term m°ree of a subgraph H of G

to denote the least degree of any of its vertices; the degree of a vertex is taken with
respect to the subgraph.

The following theorem is proved in [16] (see also [27]).

Theorem 9. The width of a graph is equal to the largest min-degree of any subgraph
of G.

We now prove that:

Theorem 10. The monotone search number of G when searching for an inert fugitive
with speed 1 equals its width plus one.

Proof. Consider a layout L = (VI,. . . , v,), of the vertices of G = (V,E) and let k
be the width of L. We construct a complete monotone search for an inert fugitive
with speed 1 whose search number is no more than k + 1. We do this as follows:
Initially, place a searcher on the first vertex v1 of L. Inductively, in order to “clear”
vi+], first remove all searchers from the graph, arbitrarily and one at a time; then place
a searcher on all vertices which are adjacent to vi+, and precede vi+1 in the layout,
again arbitrarily and one at a time; finally place a searcher on vi+1 itself. It is obvious
that a fugitive that can traverse only one edge every time it moves is always forced to
move further in the layout. Thus, it is finally captured. Since the width of L is k, k + 1
searchers are used for this search. This completes the proof of the first direction.

For the converse, let Y be a complete monotone search for an inert fugitive with
speed 1, and let the search number of 9’ be k + 1. We will define a layout L of
the vertices of G whose width is at most k. Indeed, define L to be the order by
which the vertices of G are visited by a searcher for the first time during Y. Since
recontamination does not take place during 9, and as immediately before placing a
searcher the number of searchers already on the graph is no more than k, we easily
conclude that L has width at most k. 0

Theorem 11. If there is a subgraph H of G with min-degree k, then an inert fugitive
with speed 1 cannot be captured using <k searchers (even by a nonmonotone search).

Proof. If the fugitive chooses to reside in H, any attempt to capture it with Q k
searchers (even allowing recontamination) will be futile. Indeed, whenever the search
places a searcher on the vertex of H where the fugitive is hiding (call this vertex v)
there will always exist a vertex u in H which is both unguarded and adjacent to v; the
fugitive can escape to u. q

From the above theorems we get:

N. D. Dendris et al. I Theoretical Computer Science I72 (1997) 233-254 241

Theorem 12. For an inert fugitive with speed 1, the monotone search number of a
graph G is equal to the (nonmonotone) search number of G.

Proof. If the monotone search number is k + 1, then, by Theorems 9 and 10, there

exists a subgraph H of G with min-degree k. But then, by Theorem 11, there does not

exist a complete search of G using < k + 1 searchers (not even a nonmonotone one).

Theorem 13. The width of a graph plus 1 is equal to its search number for an inert

fugitive with speed 1.

Proof. This follows immediately from Theorems 10 and 12. 0

Before proceeding, let us make an observation: if we allow for an inert fugitive with

speed 1 to be visible, then the search number does not change. Indeed, by an argument

similar to the proof of Theorem 11, it can be easily seen that any inert fugitive, visible

or not, cannot be captured by <k searchers if G has a subgraph of min-degree k.
The claim then follows from Theorems 9 and 13. As we pointed out at the end of the

previous section, the same observation is true when the speed is unbounded. We do not

know, however, whether this observation still holds for an arbitrary, but independent

of n, value of the speed.

We now give a characterization of the width of G in terms of a decomposition of

G in sets of vertices. Although this result is not immediately related to the rest of the

paper, it further attests the uniformity of the notions of width, treewidth and pathwidth.

Definition 4. A width-decomposition of a graph G = (V, E) is defined to be a class

{Xi,. ,X,} of subsets of V such that the following conditions are satisfied:

l. Ul<j<rxI = v.
2. V{u,v} E E, u E X,,,, or v E XQ,), where F(U) = mini <iGr{i: u E Xi}.

Theorem 14. The width of a graph is equal to the minimum of the quantities maxi <i<r

lXi\ - 1 over all its width-decompositions.

Proof. Assume first that the width of G = (V, E) is k. Then, by definition, there is a

layout L = (u,, . . . , v,) of the vertices of G where every vertex is adjacent to at most

k vertices preceding it in the layout (n = (VI). Define a width-decomposition Xi, i =
1,. . . , n as follows: Xi = {Vi} U {vj: j < i A {vi, vi} E E}. Obviously, condition 1 of the

definition of a width-decomposition is satisfied. Also, it is obvious that maxi <i<n IXil-

1 bk. Observe also that F(vi) = i. To prove condition 2 of the definition of width-

decomposition, let {Vi, nj} be an edge of the graph and assume without loss of generality

that j < i. By construction then, Vj E Xi = XqVC~. This completes the proof of the first

direction.

For the converse, assume that there is a width-decomposition Xi,. . . ,X, such that

IXil - l<k, for all i = l,... ,Y. We construct a layout of the vertices of the graph

such that the width of every vertex in the layout is <k. For two vertices u and v, if

248 N. D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

F(u) < F(v), place u before u in the layout. If F(u) = F(u) let the relative position

of u and u in the layout be arbitrary (in other words, order the vertices by the value

of F and break ties arbitrarily). We have to show that in this layout every vertex is

adjacent to at most k vertices preceding it. Since Vi, [Xi1 <k + 1, it is enough to show

that if u percedes u and they are adjacent then u E XF(~). Observe that if F(u) = F(u),

then obviously u E XJcu,. So assume that F(u) # F(v). Therefore, since u precedes

u, we have that F(u) <F(v). By condition 2 of the definition of width-decomposition

and since u and zi are adjacent, we have that either u E X,P(“) or v E X&j. However,

v E X&J implies that F(u) <F(u), a contradiction since we have shown that F(u) <
F(v). Therefore u E X,,,,. 0

5. Elimination orderings - treewidth of graphs with chordless cycles
of hounded length

In this section, we give a characterization of the monotone search number for an

inert fugitive of a given arbitrary speed in terms of an elimination ordering of the

graph. Using this result, we show that in the class of graphs whose largest chordless

cycle has length at most s + 2, the treewidth plus 1 is equal to the monotone search

number for an inert fugitive with speed s. A corollary of this result and Theorem 10

is that for triangulated graphs, the treewidth is equal to the width, which is a poly-

nomially computable parameter and has an NC approximation algorithm for constant

approximation factors < l/2 [l] (this equality for the case of unit speed also follows

from extent results [34]).

As mentioned in Section 3, an elimination ordering of a graph G = (V,E) is an

ordering rc = (vi,..., v,) of the vertices of the graph (n = / VI). Given an elimination

ordering n and an integer s (1 d s <n - 1), the graphs generated during an s-elimination
of the vertices of G according to rc are defined to be: Gi = (VI, El) is the same as

G; for Gi+l = (V2+l, Ei+l), we have that K+i = Vi - {ui} and Ei+l is the set of pairs

{u, u} such that u, v E vi+, and there is a path in G that connects u with v, has length

at most s and all its vertices except u and v are among vi,. . . , vi. The s-dimension of
vi with respect to TC is defined to be the degree of vi in Gi. The s-dimension of 71 is
defined to be the maximum s-dimension of any of the nis with respect to rc, and finally

the s-elimination dimension of G is the minimum s-dimension of any elimination

ordering of G.

We now prove:

Theorem 15. For any s (1 ds dn - 1), the s-elimination dimension of G plus 1 is
equal to its monotone search number for an inert fugitive with speed s.

Proof. Consider a complete monotone search of G for an inert fugitive with speed s

which uses k + 1 searchers. Let rc = (vi,. . . , v,) be the inverse order of the one the

search places searchers on the vertices of G for the first time, i.e. ni is before nj in

rc iff the placement of the first searcher on nj occurs before the placement of the first

N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254 249

searcher on Vi. We will prove that the s-dimension of IZ is at most k. Indeed, consider

an arbitrary vertex vi0 E rt and let vi,, . . . , Uid be the set of vertices which precede Vi0

in rc and are connected to Vi0 via paths of length at most s and whose internal vertices

are after vi,, in 7~. By definition, d is the s-dimension of UiO. Notice now that when a

searcher was placed for the first time on niO, there had to be a searcher in each of the

Vi, 9.. . 3 VLJ, or otherwise recontamination would occur. Hence, the s-dimension of vi0 is

d k. This completes the proof of the first direction.

For the converse, let rc = (~1,. . . , v,) be an ordering of the vertices of G, with

s-dimension k. We will construct a monotone search for an inert fugitive with speed

s which uses at most k + 1 searchers. Initially, place a searcher on 0,. Assume now

that we have monotonically searched all vertices after Vi, i.e. the fugitive cannot be in

any 01, I > i. To search vi, first remove all searchers from the graph, arbitrarily and

one at a time; then place, arbitrarily and one at a time, searchers on all VI: I > i such

that there exists a path which connects vi to VI, has length at most s and its internal

vertices are among v,, m < i; finally, place a searcher on vi. The cardinality of the set

of these vls is no more than the s-dimension of rt. Therefore, the search we defined

uses at most k + 1 searchers. Clearly also, it is a complete monotone search for an

inert fugitive with speed s. 0

We now state the following characterization of treewidth for the class of graphs

whose chordless cycles are of bounded length.

Theorem 16. The treewidth of a graph with no chordless cycles of Zength > s + 2 is
equal to its s-elimination dimension.

To prove the above theorem, we first give some definitions and show certain lemmata.

For reasons of clarity, let us mention that we use the term sub-tree of a given tree

to refer to a connected subgraph of the tree.

The following is proved in [18] (see also [8]).

Lemma 2. Given a tree T = (I,F), let 5 be a class of sub-trees of T such that

tr’S,S’~5-, SnS’#0. Then &,,S#0.

Also, using the previous lemma the following is proved in [8].

Lemma 3. Consider a tree-decomposition ((4, i E I}, T = (I,F)) of a graph G =

(V,E). Then, for any subset K of V inducing a clique on G, 3 E I: K C X..

Consider now an elimination ordering n = (III,. . . , v,) of a graph G = (V(G),E(G)).
We define below a new procedure to eliminate the vertices of G according to n. We

call this procedure tree-elimination:

procedure tree-elimination (H = (V(H),E(H)) : V(H) & V(G))
(1) Let u be the first vertex of n that belongs to V(H).

250 N. D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

(2) If there exist (nonempty) connected components, say Cl,. . . , C,., of the graph

obtained from H by removing u and all its adjacent (in H) vertices, then do the

following steps.

(3) For each C’, let 8Cj be the set of vertices that are adjacent to u and, moreover,

are adjacent to at least one vertex of Cj. Formally, Xj = {u E V(H) : {u, v} E E(H)
and 3~ E Cj : {u, W} E E(H)}.

(4) For each Cj, let Cj be the graph with set of vertices V(Cj) U aCj and set of

edges the union of the following:

(a) the set of edges induced from E(H) on V(Cj) U Xj,
(b) the set of “new” edges necessary to make Xj a clique.

(5) Recursively apply tree-elimination on each Cj,j = 1,. . . ,r.

/*Notice that the graphs Cj are not necessarily pairwise disjoint.*/

Let (Hl)lE~ be the family of all graphs to which tree-elimination is recursively,

applied when we run tree-elimination on G according to rc. Include G in this family

(say G = HI,). Let UH, be the first vertex in rc that belongs to V(Hj). Notice that for

two different HIS, the corresponding r&s may be equal.

We give the family (Hl)lE~ a rooted tree structure as follows: The root is G = HI,; HI
is the parent of H, iff when the procedure tree-elimination is recursively applied on

HI, then H,,, is one of the graphs Cj defined at step 4 of this recursive call (notice

that by this definition, the procedure tree-elimination will be subsequently recursively

applied on H,,,). We call this tree the recursion tree.
Define the tree-dimension of n to be the maximum degree of any OH, with respect

to HI. Define the tree-elimination dimension of G to be the minimum tree-dimension

of any elimination ordering.

Lemma 4. For any Hi, the treewidth of Hl is at most equal to the maximum of
the degrees of v&s (the degrees are taken with respect to the corresponding H,,,s),
over all H,,,s that are either descendants of or coincide with Hl in the recursion tree.
Therefore, the treewidth of G is at most equal to the tree-elimination dimension of G.

Proof. The proof uses bottom-up induction on the recursion tree. Let Cl,. . . , CYj,. . . , C?,

be the children of HI in the recursion tree (if HI is a leaf, then this family of C’s

is empty). The graphs C’s are defined at an application of step 4 of the procedure

tree-elimination. Let acl,. . . , Xj, . . . , X, be the corresponding sets of vertices defined

at the preceding step 3 of the procedure. We inductively assume that the lemma is true

for Cl,..., C’, . . . , c,.. Observe that if H,,, is a descendant of or coincides with HI, then

H,,, is a descendant of or coincides with one of the Cjs or it coincides with HI. So
by the induction hypothesis we only have to prove that the treewidth of HI is at most

equal to the maximum of the treewidths of the graphs Cl,. , . , cr and of the degree of

ZJH/ in HI. To prove this, consider optimal tree-decompositions ({X/: i E ii), Tj), j =
1 , . . . ,r, for each one of the graphs Cj, j = 1 ,. . . ,r. By Lemma 3, each of the sets

Kj, j = 1,. , r is contained in one node of the corresponding tree-decomposition.

N. D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254 251

Construct now a tree-decomposition ({Xl: i E I}, T) for HI in the following way: I

is the disjoint union of the Z, , . . . , ,, . . . ,Ir plus a new vertex io; let Xi0 be the set of I,
vertices comprising the vertex aH, together with its neighbors in Hl; for i E I and

i # io, let Xi be equal to the corresponding Xii; finally T is composed by connecting

each Tj, j = 1,. . , r, to io via the vertex k for which XL contains Xj. It is easy to

see that this is a tree-decomposition with the required properties. 0

Given an edge {u,w} E E(Hl), define its weight with respect to HI (notationally

weightH,(u, w)) to be the length of the shortest path in G that connects v to w and

whose internal vertices precede of uH, in the ordering rt.

Lemma 5. If G has no chordless cycle of length > s + 2 (s is a constant positive
integer), then no HI contains a chordless cycle that has length 4 or more and whose
edges have weights (with respect to Hl) with total sum > s + 2.

Proof. For reasons of linguistic convenience we call the cycles with the properties

described in the lemma bad cycles. First notice that if H,,,I is a descendant of or

coincides with H, in the recursion tree, then for every edge {u, w} E E(H,) nE(H,f),

weightHm, (u, w) < weight, (u, w). (1)

Suppose now, towards a contradiction, that there are nodes of the recursion tree that

contain bad cycles and let Hl be one which is closest to the root G = HI, of the tree.

Since the weight of any edge in G with respect to G is 1, it easily follows from the

hypothesis about the cycles of G that HI does not coincide with the root G = HI,.
Let Hi- be the parent of HI in the recursion tree. Also let C be a bad cycle in HI.
By the fact that HI is a closest to the root node of the recursion tree which contains

bad cycles and by Eq. (1), it easily follows that there is in H, an edge, say {ui, uz},

that does not belong to any ancestor of HI in the recursion tree. By the way new

edges are added during the procedure tree-elimination, it follows that both vi and 02

are adjacent to VH,_ in HI-. First we claim that all other edges of C except {ui,u2}

belong also to Hl- , Indeed, if there was an edge { ug, uq} in C different from { ui ,212)

and not in HI-, then v3 and v4 would be neighbors of OH,_ and at least one of them

would be distinct from both ui and ~2; but if that were the case, C would contain

a chord, a contradiction and therefore the claim is true. Consider now the cycle C’,

which is obtained from C by deleting {vi, ~2) and adding in its place {OH,_ , VI } and

{rH,_ ,rz}. Using th e a b ove claim, it is easy to verify that C’ is chordless (otherwise

C would also contain a chord). Finally, by the way weights are defined, it follows that

weight,, ({ a,, 4) < weight,[_ (h+ul}) + w&&t,,_ ({UH,_ ,u2}).

Thus, C’ is a bad cycle in HI-, a contradiction. 0

(2)

Lemma 6. If G has no chordless cycle of length > s + 2 (s is a constant positive
integer) then no HI contains an edge of weight (in HI) > s.

252 N.D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

Proof. The weight of an edge in G with respect to G is 1, so the lemma is true for

the root G. Let, towards a contradiction, ZZl be closest to the root node of the recursion

tree that contains an edge with weight > s and suppose that this edge is {vi, 02). H,

does not coincide with the root G of the recursion tree, so let Hl- be the parent of HI.

It easily follows from Eq. (1) in the proof of the previous lemma that {vi, Q} does

not belong to Hl- . Therefore, from the way new edges are added during the procedure

tree-elimination, it follows that both 01 and v2 are adjacent to UH,_ .

Now observe that by the definition of the procedure tree-elimination, ui and ~2 are

connected by a path in HI- whose internal vertices are not adjacent to OH,_. Let P be

the shortest such path. Since the edge {vi, ~2) does not belong to HI-, P has length

at least 2 and, of course, the sum of weights of its edges is also at least 2. Add now

the edges {OH,_ ,vi} and {a~,_ ,vz} to P. We thus obtain a chordless cycle in HI- of

length at least 4 which, by Eq. (2), has total sum of weights > s + 2. This contradicts

the previous lemma. 0

Lemma 7. Zf G has no chordless cycle of length > s + 2 (s is a constant positive
integer) then the tree-elimination dimension of G is < the s-elimination dimension

of G.

Proof. Let rc be an elimination ordering of the graph and let (HI)I~L (respectively,

(Gi)icr) be the family of graphs generated when we apply tree-elimination (respec-

tively, s-elimination) to G according to x Consider an arbitrary element Hl of the

family (HI),~L and suppose that the vertex OH, is the ith vertex in rt (i.e. vi = a&).

It suffices to prove that the degree of OH, in HI is at most equal to the degree of

Vi = VH, in Gi. For this, it is enough to show that HI is a subgraph of Gi. Since OH,

is the first vertex in rc that is contained in HI and since Gi contains ai = VH, and all

vertices after ui in n, it follows that V(H/) & V(Gi). The fact that E(H/) GE(Gi)
follows immediately from Lemma 6 and the way new edges are added during s-

elimination. 0

Proof of Theorem 16. By Lemmata 4 and 7, we conclude that

treewidth of G d s-elimination dimension of G.

The other direction immediately follows from Theorem 3 and the obvious fact that the

elimination dimension of a graph is at least equal to its s-elimination dimension. 0

The following is the conclusion of this section:

Theorem 17. The treewidth of a graph with no chordless cycles of length > s + 2
incremented by 1 is equal to its monotone search number for an inert fugitive with
speed s.

Proof. It is immediate from Theorems 15 and 16. 0

N. D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254 253

Open problem. The question of whether “recontamination” may help an inert fugitive

with speed a constant s > 1 is open.

Acknowledgements

We thank Christos Papadimitriou and Paul Spirakis for their patience to hear us talk

about fugitive searching and for their valuable suggestions. We thank Moti Yung, who

during a short visit to Patras revived our interest for search games.

References

[l] R. Anderson and E. Mayr, Parallelism and greedy algorithms, Adu. Comput. Res. 4 (1987) 17-38; see
also: A P-complete problem and approximations to it, Tech. Report, Dept. Computer Science, Stanford

University, California, 1984.

[2] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability

(a survey), BIT 25 (1985) 2-33.

[3] D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), DZMACS Ser.
Discrete Math. Theoret. Comput. Sci. 5 (1991) 33-49.

[4] D. Bienstock, N. Robertson, P.D. Seymour and R. Thomas, Quickly excluding a forest, J. Combin.
Theory Ser. B 52 (1991) 274-283.

[5] D. Bienstock and P.D. Seymour, Monotonicity in graph searching, J. Algorithms 12 (1991) 239-245.
[6] H.L. Bodlaender, Classes of graphs with bounded treewidth, Tech. Report RUU-CS-86-22, Dept. of

Computer Science, Utrect University, The Netherlands, 1986.

[7] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernet. 11 (1993) l-21.

[8] H.L. Bodlaender and R.H. Mohring, The pathwidth and treewidth of cographs, in: Proc. 2nd
Scandinavian Workshop on Algorithm Theory (SWAT) 1990, Lecture Notes in Computer Science

447 (Springer, Berlin, 1990) 301-309.

[9] H.L. Bodlaender and D.M. Thilikos, Treewidth and small separators for graphs with small chordality,

Tech. Report UU-CS-199502, Dept. of Computer Science, Utrecht University, Utrecht, The Netherlands,

1995.

[lo] R. Breisch, An intuitive approach to speleotopology, in: Southwestern Capers, Vol. VI (Southwestern

Region of the National Speleological Society, 1967) 72-78.

[I I] R. Dechter, Constraint networks, in: S.C. Shapiro, ed., Encyclopedia of Artificial Intelligence (Wiley,

New York, 1992) 285293.

[12] R. Dechter, Directional resolution: the Davis-Putnam procedure, revised, in: Working Notes AAAZ
Spring Symp. on AZ and NP-Hard Problems (1993) 29-35.

[13] R. Dechter and J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38 (1989)
353-366.

[14] J.A. Ellis, I.H. Sudborough and J.S. Turner, The vertex separation number of a graph, in: Proc. 1983

Allerton Conf on Comunication and Computing (1983) 224-233.
[15] M. Franklin, Z. Galil and M. Yung, Eavesdropping games: a graph-theoretic approach to privacy in

distributed systems, in: Proc. 34th Annual Symp. on Foundations of Computer Science (FOCS) 1993
(IEEE Computer Sot. Press, Silver Spring, MD, 1993) 670-679.

[16] E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24-32.

[17] E.C. Freuder, A sufficient condition for backtrack-bounded search, J. ACM 32 (1985) 7555761.
[18] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory

Ser. B 16 (1974) 47-56.
[19] N.G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform. Process, Lett.

42 (1992) 345-350.
[20] L.M. Kirousis and C.H. Papadimitriou, Interval graphs and searching, Discrete Math. 55 (1985)

181-184.

254 N. D. Dendris et al. I Theoretical Computer Science 172 (1997) 233-254

[21] L.M. Kirousis and C.H. Papadimitriou, Searching and pebbling, J. Theoret. Comput. Sci. 47 (1986)
205-218.

[22] L.M. Kirousis and D.M. Thilikos, The linkage of a graph, SIAM J Comput., to appear.

[23] T. Kloks, Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands, 1993.

[24] A.S. LaPaugh, Recontamination does not help to search a graph, J. ACM 40 (1993) 224-245.

[25] A. Mackworth, Constraint satisfaction, in: S.C. Shapiro, ed., Encyclopedia of Artificial Intelligence
(Wiley, New York, 1992) 276285.

[26] A. Mackworth and E. Freuder, The complexity of some polynomial network consistency algorithms for

constraint satisfaction problems, ArtiJicial Intelligence 25 (1985) 65-74.
[27] D.W. Matula, A min-max theorem for graphs with application to graph coloring, SIAM Rev. 10 (1968)

481-482.

[28] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson and C.H. Papadimitriou, The complexity of

searching a graph, J. ACM 35 (1988) 18-44

[29] R.H. M&ring, Graph problems related to gate matrix layout and PLA folding, in: E. Mayr,

H. Noltemeier and M. Syslo, eds., Computational Graph Theory, Computing Supplementurn,
Vol. 7 (1990) 17-51.

[30] T.D. Parsons, Pursuit-evasion in a graph, in: Y. Alavi and D.R. Lick, eds., Theory and Applications
of Graphs (Springer, Berlin, 1976) 426-441.

[31] T.D. Parsons, The search number of a connected graph, in: Proc. 9th Southeastern Conf: on
Combinatorics, Graph Theory, and Computing, Utilitas Mathematics, Winnipeg, Canada (1978)

549-554.

[32] N. Robertson and P.D. Seymour, Graph minors III. Planar tree-width, J. Combin. Theory Ser. B 36
(1984) 49-64.

[33] P.D. Seymour and R. Thomas, Graph searching and a minimax theorem for tree-width, J. Combin.
Theory Ser. B 58 (1993) 22-33.

[34] J. van Leeuwen, Graph algorithms, in: J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, Vol. A (Elsevier, Amsterdam, 1990) 527-63 1.

