QUICKLY EXCLUDING $K_{2, r}$ FROM PLANAR GRAPHS*

Dimitrios M. Thilikos ${ }^{\dagger \ddagger}$

[^0]
EXCLUDING $K_{2, r}$ FROM PLANAR GRAPHS

Dimitrios M. Thilikos

Department of Computer Science DC 2117, University of Waterloo,

200 University Avenue West,
Waterloo, Ontario N2L 3G1, Canada.

Abstract

We prove that any planar graph that does not contain $K_{2, r}$ as a minor has treewidth $\leq r+2$.

1 introduction

In this paper we consider finite graphs without loops or multiple edges. We will denote the vertex (edge) set of a graph G as $V(G)(E(G))$.

A tree-decomposition of a graph G is a pair $D=(X, T)$ with $T=(I, F)$ a tree and $X=\left\{X_{i} \mid i \in I\right\}$ a family of subsets of $V(G)$, one for each vertex of T, such that

- $\bigcup_{i \in I} X_{i}=V(G)$.
- for all edges $\{v, w\} \in E(G)$, there exists an $i \in I$ with $v \in X_{i}$ and $w \in X_{i}$.
- for all $i, j, k \in I$: if j is on the path from i to k in T, then $X_{i} \cap X_{k} \subseteq X_{j}$.

The width of a tree-decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$ is $\max _{i \in I}\left|X_{i}\right|-1$. The treewidth of a graph G is the minimum width over all possible tree-decompositions of G.

Given a graph H, we say that a graph G is H-minor free if G does not contain H as a minor (for the definition of the minor containment, see Section 2). The following has been proven in [13].

Theorem 1 For any planar graph H there exist a constant c_{H} such that any H-minor free graph G has treewidth $\leq c_{H}$.

The above result has been a basic step for the proof of the Graph Minors Theorem (formerly known as Wagner's Conjecture), developed by Robertson and Seymour, in their graph minors series (for a survey, see [12]). A simpler proof of Theorem 1, with a much better bound for c_{H}, was given by Robertson, Seymour, and Thomas in [14], where $c_{H} \leq 20^{2(2|V(H)|+4|E(H)|)^{5}}$ (additional results on general bounds for c_{H} can be found in [11]).

Much research has been done towards proving tighter bounds for c_{H} when H is restricted to certain families of planar graphs. Such kind of bounds have been found in [1] (trees), [9]
(cycles and subgraphs of cycles), [5] (disjoint copies of K_{3}), and [3] (graphs that are minors of a circus graph and a $(2 \times k)$-grid). Lastly, a bound for c_{H}, in the case H is a $K_{2, r}$, has been found in [6] (we denote as $K_{2, r}$ the complete bipartite graph that have r vertices in the one part and 2 vertices in the other).

Theorem 2 Let r be a positive integer. Then any $K_{2, r}$-minor free graph has treewidth $\leq 2 r-2$.

The above result has certain applications in distributing computing as it provides a partial characterization for the class of graphs that allow k-label Interval Routing Schemes under dynamic cost edges (in short, this class is denoted as $k-\mathcal{L I R S}$). In particular, in [6] it is proved that k - $\mathcal{L I R S}$ is closed under taking of minors. Combining this with the fact that no graph in k - $\mathcal{L I R S}$ contains $K_{2 k+1}$ as a subgraph (see [10]), it follows that graphs that allow k-label Interval Routing Schemes under dynamic cost edges have treewidth at most $4 k$ (for a survey on Interval Routing Schemes and other Compact routing methods see [8]).

In this paper we prove a tighter upper bound for c_{H} when $K_{2, r}$ is excluded as a minor from planar graphs.

Theorem 3 Let $r \geq 1$ and G be a planar $K_{2, r}$-minor free graph. Then, treewidth $(G) \leq r+2$.

Consequently, our result implies that the planar graphs that allow k-label Interval Routing Schemes under dynamic cost edges, have treewidth $\leq 2 k+3$.

2 Definitions and Preliminary Results

We will assume that all the graphs we deal with are connected, as this does not influence the generality of our results. Let G be a graph. Given a vertex $v \in V(G)$, we denote as $N_{G}(v)$ the vertices of G that are adjacent to v and we set $d_{G}(v)=\left|N_{G}(v)\right|$. Moreover, if $S \subseteq V(G)$ we
set $N_{G}(S)=\left\{N_{G}(v) \mid v \in S\right\}-S$. If $v, u \in V(G)$, then we denote as $D_{G}(v, u)$ the length of the shortest path connecting v and u in G. We also define $G-v=G[V(G)-\{v\}]$. We call clique of a graph G any complete subgraph of G (if it contains 3 vertices we call it triangle). If $S \subseteq V(G)$, we call the graph $(S,\{\{v, u\} \in E(G) \mid v, u \in S\})$ the subgraph of G induced by S and we denote it as $G[S]$. We say that a graph G is a minor of a graph H if H can be obtained from G by a series of vertex/edge deletions or/and edge contractions. (a contraction of an edge $\{u, v\}$ in G is the operation that replaces u and v by a new vertex whose neighbors are the vertices that where adjacent to u and/or $v)$. We say that $G \leq H(G \subseteq H)$ if G is a minor (subgraph) of H. Notice that $G \subseteq H$ implies that $G \leq H$. Clearly, a graph G is H-minor free if $H \not \leq G$. The following is easy (for a formal proof see [2]).

Lemma 1 Let G, H be graphs where $G \leq H$. Then $\operatorname{treewidth}(G) \leq \operatorname{treewidth}(H)$.

A proof of the following can be found in [4].

Lemma 2 Let $\left(\left\{X_{i} \mid i \in I\right\}, T\right)$ be a tree-decomposition of graph G. For any clique K of G, there exists an $i \in I$ with $V(K) \subseteq X_{i}$.

Let G be a graph and \mathcal{S} be a collection of non-empty subsets of $V(G)$. We define as $G^{(\mathcal{S})}=\left(V(G), E(G) \cup\left(\cup_{S \in \mathcal{S}} E^{(S)}\right)\right)$ where $E^{(S)}=\{\{v, u\} \mid v, u \in S$ and $v \neq u\}$. Moreover, if $\mathcal{S}=\left\{S_{1}, \ldots, S_{q}\right\}$ we define $G^{<\mathcal{S}>}=\left(V(G) \cup\left\{v_{1}^{\text {new }}, \ldots, v_{q}^{\text {new }}\right\}, E(G) \cup\left(\cup_{1 \leq i \leq q} E^{<S_{i}>}\right)\right)$ where $\left\{v_{1}^{\text {new }}, \ldots, v_{q}^{\text {new }}\right\} \cap V(G)=\emptyset$ and $E^{<S_{i}>}=\left\{\left\{v_{i}^{\text {new }}, u\right\} \mid u \in S_{i}\right\}, 1 \leq i \leq q$.

An easy consequence of Lemma 2 is the following (see also [6]).

Lemma 3 Let G be a graph and \mathcal{S} be a collection of non-empty subsets of $V(G)$ such that $\forall_{S \in \mathcal{S}} G[S]$ is a clique of G. Then $\operatorname{treewidth}(G)=\operatorname{treewidth}\left(G^{<\mathcal{S}>}\right)$.

Given two graphs G_{1}, G_{2} we set $G_{1} \cup G_{2}=\left(V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$. The following lemma describes a widely known way of merging tree-decompositions (see e.g. [6, 7]). We present it in a form suitable for the objectives of our paper.

Lemma 4 Let $G_{i}, 0 \leq i \leq q$ be graphs and $\mathcal{S}=\left\{S_{i} \mid, 1 \leq i \leq q\right\}$ a collection of vertex sets such that $\forall_{1 \leq i \leq q} S_{i}=V\left(G_{0}\right) \cap V\left(G_{i}\right)$. Suppose also that $\forall_{0 \leq i \leq q}$ treewidth $\left(G_{i}\right) \leq k$ and $\forall_{1 \leq i \leq q} S_{i}$ induces a clique in G_{i} and G_{0}. Then, $\operatorname{treewidth}(G) \leq k$ where $G=\bigcup_{0 \leq i \leq r} G_{i}$.

Proof. We first choose a set of indices I and a partition $\left\{I_{0}, I_{1}, \ldots, I_{q}, I_{q+1}\right\}$ of I such that $\forall_{0 \leq i \leq q} D^{i}=\left(\left\{X_{j} \mid j \in I^{i}\right\},\left(I^{i}, F^{i}\right)\right)$ is a tree decomposition of G_{i} with width $\leq k$ and $I_{q+1}=$ $\left\{h_{1}, \ldots, h_{q}\right\}$. From Lemma 2 we have that, for $i=1, \ldots, q, S_{i}$ will be a subset of some node, say $X_{l_{i}}$, of D^{0} and of some node, say $X_{j_{i}}$, of D^{i}. We set $X_{h_{i}}=S_{i}, 1 \leq i \leq q$ and $F=$ $\left\{\left\{l_{1}, h_{1}\right\},\left\{h_{1}, j_{1}\right\}, \ldots,\left\{l_{q}, h_{q}\right\},\left\{h_{q}, j_{q}\right\}\right\} \cup\left(\cup_{0 \leq i \leq q} F^{i}\right)$. It is now easy to see that $\left(\left\{X_{m} \mid m \in\right.\right.$ $I\},(I, F))$ is a tree decomposition of G with width $\leq k$.

Let G be a graph and let $v \in V(G)$. We set $r=\max \left\{D_{G}(v, u) \mid u \in V(G)\right\}$ and, for $i=$ $0, \ldots, r$, we define $G_{i}=G\left[V_{i} \cup \cdots \cup V_{r}\right]$ where $V_{i}=\left\{u \in V(G) \mid D_{G}(v, u)=i\right\}$. For $i=0, \ldots, r$, let $\left\{C_{i}^{1}, \ldots, C_{i}^{q_{i}}\right\}$ be the connected components of G_{i}. For $i=0, \ldots, r$ and $j=1, \ldots, q_{i}$, we define $V_{i}^{j}=V_{i} \cap V\left(C_{i}^{j}\right)$. Clearly, $\left\{V_{0}^{1}, V_{1}^{1}, \ldots, V_{1}^{q_{1}}, \ldots, V_{r}^{1}, \ldots, V_{r}^{q_{r}}\right\}$ is a partition of $V(G)$ and we denote it as $\mathcal{W}(G, v)$. Let now U be a set containing $|\mathcal{W}(G, v)|$ vertices and let $f: U \rightarrow \mathcal{W}(G, v)$ be a bijection, mapping each vertex of U to a set of $\mathcal{W}(G, v)$. We define the directed graph (U, F) where $(x, y) \in F$ iff $\phi(x) \cap N_{G}(\phi(y)) \neq \emptyset$ and $D_{G}(v, \phi(x))+1=D_{G}(v, \phi(y))$. It is easy to see that $T_{G}=(U, F)$ is a directed tree rooted on $\phi^{-1}\left(V_{0}^{1}\right)=\phi^{-1}(\{v\})$. We call the triple $\left(\mathcal{W}(G, v), \phi, T_{G}\right) v$-representation of G (for an example of a v-representation of a graph G, see Figure 1).

Clearly, for any $i, 1 \leq i \leq r$, any vertex in V_{i} is adjacent with a vertex in V_{i-1}. A direct consequence of this fact is the following.

Lemma 5 Let G be a graph and $\left(\mathcal{W}(G, v), \phi, T_{G}\right)$ a v-representation of $G, v \in V(G)$. Then, for any vertex $x \in V\left(T_{G}\right)$ and any vertex $u \in \phi(x)$, there exist a path in G connecting v and u that has no internal vertex that belongs to $\phi(x)$ or to the image of a descendant of y in T_{G}.

Let G be a graph and $\left(\mathcal{W}(G, v), \phi, T_{G}\right)$ a v-representation of G for some $v \in V(G)$. We will denote the root of T_{G} as x_{r}. Let $y \in V\left(T_{G}\right)$ and let $\left\{y_{1}, \ldots, y_{q}\right\}$ be the set of the children of y in T_{G} (if y is a leaf of T_{G} then this set is empty). We set $\mathcal{T}(y)=\left\{\phi(y) \cap N_{G}\left(\phi\left(y_{i}\right)\right) \mid 1 \leq i \leq q\right\}$. and if $y \neq x_{r}$ we set $\tau(y)=N_{G}(\phi(y)) \cap \phi(x)$ where x is the unique parent of y. We also set $\tau\left(x_{r}\right)=\emptyset$. It is now easy to see that

$$
\begin{equation*}
\forall_{y \in V\left(T_{G}\right)} \mathcal{T}(y)=\left\{\tau\left(y_{1}\right), \ldots, \tau\left(y_{q}\right)\right\} \tag{1}
\end{equation*}
$$

We define $G_{y}=G[\phi(y) \cup \tau(y)], \mathcal{S}_{y}=\{\tau(y)\} \cup \mathcal{T}(y), \bar{G}_{y}=\cup_{z \in T_{G}^{y}} G_{z}$, and $\overline{\mathcal{S}}_{y}=\bigcup_{z \in V\left(T_{G}^{y}\right)} \mathcal{S}_{z}$ where T_{G}^{y} is the subtree of T_{G} induced by y and its descendants. Let G be a graph and $V_{1}, V_{2} \subseteq V(G)$. We write $V_{1} \sim V_{2}$ if $V_{1} \cap V_{2}=\emptyset$ and $V_{i} \subseteq N_{G}\left(V_{3-i}\right), i=1,2$.

Lemma 6 Let G be a $K_{2, r}$-minor free planar graph and $\left(\mathcal{W}(G, v), \phi, T_{G}\right)$ a v-representation of G for some $v \in V(G)$. Then, for any vertex y of T_{G}, the following hold.
a. $\tau(y) \sim \phi(y)$
b. $G[\phi(y)]^{<\mathcal{T}(y)>}$ is connected.
c. $G_{y}^{<\mathcal{S}_{y}>}$ is planar.
d. $|\tau(y)|<r$.

Figure 1: A v-representation of a graph G (the vertices in G_{y} are depicted as squares).

Proof. (a) follows directly from the definitions of $\tau(y)$ and $\phi(y)$. We will prove (b) by showing that $G[\phi(y)]^{<\mathcal{T}(y)>}$ is isomorphic to a graph that can be obtained from a connected subgraph of G only through edge contractions. Recall that $G_{i}=G[\{u \in V(G) \mid D(v, u) \geq i\}]$ and let $\left\{y_{1}, \ldots, y_{q}\right\}$ be the set of children of y in T_{G} (if y is a leaf then (b) follows trivially as, in this case, $G[\phi(y)]$ is connected, and $\mathcal{T}(y)=\emptyset)$. Let $d=D_{G}\left(v_{y}, v\right)$ where v_{y} is any vertex in $\phi(y)$. For any vertex $z \in\left\{y, y_{1}, \ldots, y_{q}\right\}$, we set $\bar{G}_{z}^{\circ}=G\left[V\left(\bar{G}_{z}\right)-\tau(z)\right]$. Notice that \bar{G}_{y}° is one of the connected components of G_{d} and that, for $1 \leq i \leq q, \bar{G}_{y_{i}}^{\circ}$ is one of the connected components of G_{d+1}. Using Eq. (1) and the fact that $\forall_{1 \leq i \leq q} \tau\left(y_{i}\right) \sim \phi\left(y_{i}\right)$, one can easily see that $G[\phi(y)]^{<\{\mathcal{T}(y)\}>}$ is isomorphic to the graph occurring if we contract in \bar{G}_{y}° all the edges of $\bar{G}_{y_{i}}^{\circ}, 1 \leq i \leq q$. This completes the proof of (b). As (c) and (d) are trivial for the case where y is the root of T_{G}, we assume that x is the unique parent of y in T_{G}. We will prove (c) by showing that $G_{y}^{<\mathcal{S}_{y}>}$ is isomorphic to a minor of G. Using Lemma 5, we can choose $|\tau(y)|$ paths of G, each connecting one of the vertices of $\tau(y)$ with v and without internal vertices in $V\left(\bar{G}_{y}\right)$. Let $V^{*}\left(E^{*}\right)$ be the vertices (edges) of these paths. Clearly $G^{*}=\left(V^{*}, E^{*}\right) \cup \bar{G}_{y}$ is a subgraph of G. Let G^{\prime} be the graph obtained from G^{*} if we contract all edges that do not have both endpoints in $\{v\} \cup V\left(\bar{G}_{y}\right)$,
until this it not possible any more. Notice that G^{\prime} is isomorphic to $\bar{G}_{y}^{<\{\tau(y)\}>}$. Similarly now to the proof of (b), we contract, in G^{\prime}, all the edges of $\bar{G}_{y_{i}}^{\circ}, 1 \leq i \leq q$. Using the same arguments as in the proof of (b), we can see that the occurring graph is isomorphic to $G_{y}^{<\mathcal{S}_{y}>}$ and this proves (c). Suppose, towards a contradiction to (d), that $|\tau(y)| \geq r$. Notice that \bar{G}_{y}° is a connected subgraph of G^{\prime} and that $\phi(y) \sim \tau(y)$. Therefore, if we contract in G^{\prime} all the edges of \bar{G}_{y}° we have a graph that is isomorphic to $K_{2,|\tau(y)|}$, a contradiction.

Lemma 7 Let G be a $K_{2, k}$-minor free planar graph and $\left(\mathcal{W}(G, v), \phi, T_{G}\right)$ a v-representation of G for some $v \in V(G)$. Suppose also that for any $y \in V\left(T_{G}\right) \operatorname{treewidth}\left(G_{y}^{\left(\mathcal{S}_{y}\right)}\right) \leq k$. Then, $\operatorname{treewidth}(G) \leq k$.

Proof. Let x_{r} be the root of T_{G}. As G is a subgraph of $\bar{G}_{x_{r}}^{\left(\overline{\mathcal{S}}_{x_{r}}\right)}$, it is enough to prove that $\forall_{x \in V\left(T_{G}\right)}$ the following relation holds.

$$
\begin{equation*}
\operatorname{treewidth}\left(\bar{G}_{x}^{\left(\overline{\mathcal{S}}_{x}\right)}\right) \leq k \tag{2}
\end{equation*}
$$

If x is a leaf of T_{G} then $\overline{\mathcal{S}}_{x}=\mathcal{S}_{x}, \bar{G}_{y}=G_{y}$, and Eq. (2) follows because $\bar{G}_{x}^{\left(\overline{\mathcal{S}}_{x}\right)}=G_{x}^{\left(\mathcal{S}_{x}\right)}$. Assume now that Eq. (2) holds if we replace x by any of the children $\left\{y_{1}, \ldots, y_{q}\right\}$ of a non-leaf vertex $y \in V\left(T_{G}\right)$. We will prove that Eq. (2) holds if we replace x by y as well. From Eq. (1) we have that $\mathcal{T}(y)=\left\{\tau\left(y_{1}\right), \ldots, \tau\left(y_{q}\right)\right\}=\mathcal{S}_{y} \cap\left(\cup_{1 \leq i \leq q} \overline{\mathcal{S}}_{y_{i}}\right)=\left\{V\left(G_{y}^{\left(\mathcal{S}_{y}\right)}\right) \cap V\left(\bar{G}_{y_{i}}^{\left(\overline{\mathcal{S}}_{y_{i}}\right)}\right) \mid 1 \leq i \leq q\right\}$. As, for $i=1, \ldots, q, \tau\left(y_{i}\right)$ induces a clique in $G_{y}^{\left(\mathcal{S}_{y}\right)}$ and $\bar{G}_{y_{i}}^{\left(\overline{\mathcal{S}}_{y_{i}}\right)}$, the claim now follows if we apply Lemma 4 for $G_{y}^{\left(\mathcal{S}_{y}\right)}, \bar{G}_{y_{1}}^{\left(\overline{\mathcal{~}}_{y_{1}}\right)}, \ldots, \bar{G}_{y_{q}}^{\left(\overline{\mathcal{S}}_{y_{q}}\right)}$, and $\mathcal{T}(y)$.

We define the graph class \mathcal{D}_{r} containing all the graphs $G=\left(V_{0} \cup V_{1} \cup V_{2} \cup V_{3}, E\right)$ that satisfy the following conditions.
(1) $V_{0}, V_{1}, V_{2}, V_{3}$ are disjoint sets.
(2) $V_{0}=\left\{v_{0}\right\}, N_{G}\left(V_{0}\right)=V_{1}$, and $N_{G}\left(V_{3}\right) \subseteq V_{2}$.
(3) $G\left[V_{2} \cup V_{3}\right]$ is connected.
(4) $V_{1} \sim V_{2}$.
(5) G is planar.
(6) $\left|V_{1}\right|<r$ and all vertices in V_{3} have degree less than r.

From now on, given a graph $G=\left(V_{\rho} \cup \ldots \cup V_{\rho+h}, E\right), \rho \geq 0, h \geq 1, \forall_{\rho \leq i<j \leq \rho+h} V_{i} \cap V_{j}=\emptyset$, we will use the notation $V_{i}(G)=V_{i}, i=\rho, \ldots, \rho+h$ (we call $V_{\rho}, \ldots, V_{\rho+h}$ parts of G).

Finally, if $G \in \mathcal{D}_{r}$, we set $\mathcal{S}(G)=\left\{V_{1}\right\} \cup\left\{N_{G}(v) \mid v \in V_{3}\right\}$ and we define $\left.G\right|_{\emptyset}=G^{(\mathcal{S}(G))}$. We also define $\tilde{\mathcal{D}}_{r}=\left\{\left.G\right|_{\emptyset} \mid G \in \mathcal{D}_{r}\right\}$.

Lemma 8 Let G be a $K_{2, r}$-minor free planar graph and $\left(\mathcal{W}(G, v), \phi, T_{G}\right)$ a v-representation of G for some $v \in V(G)$. Then $\forall_{y \in V\left(T_{G}\right)} G_{y}^{\left(\mathcal{S}_{y}\right)}$ is a subgraph of a graph in $\tilde{\mathcal{D}}_{r}$.

Proof. Notice that $G_{y}^{<\mathcal{S}_{y}>}=\left(V_{0} \cup V_{1} \cup V_{2} \cup V_{3}, E\right)$ where $V_{0}=N_{G_{y}^{<\mathcal{S}_{y}>}}(\tau(y))-\phi(y), V_{1}=$ $\tau(y), V_{2}=\phi(y)$ and $V_{3}=N_{G_{y}^{<\mathcal{S}_{y}>}}(\phi(y))-\tau(y)$. We first claim that $G_{y}^{<\mathcal{S}_{y}>} \in \mathcal{D}_{r}$. Indeed, Conditions (1) and (2) follow directly from the definition of G_{y}. Condition (3)-(5) follow from Lemma 6.(a)-(c). Finally, Condition (6) follows combining Eq. (1) and Lemma 6.(d). Notice now that $\mathcal{S}_{y}=\left\{V_{1}\right\} \cup\left\{N_{G}(v) \mid v \in V_{3}\right\}$ and thus $\left(G_{y}^{<\mathcal{S}_{y}>}\right)^{\left(\mathcal{S}_{y}\right)}=\left.G_{y}^{<\mathcal{S}_{y}>}\right|_{\emptyset}$. As now $G_{y}^{\left(\mathcal{S}_{y}\right)} \subseteq\left(G_{y}^{\left(\mathcal{S}_{y}\right)}\right)^{<\mathcal{S}_{y}>}=\left(G_{y}^{<\mathcal{S}_{y}>}\right)^{\left(\mathcal{S}_{y}\right)}$, the result follows.

It is now clear that Theorem 3 follows directly from Lemmata 1, 7, 8 , and the following.

Lemma 9 Let $r \geq 1$. If $G \in \mathcal{D}_{r}$ then $\left.G\right|_{\emptyset}$ has treewidth $\leq r+2$.
It is easy to see that, for any graph $G \in \mathcal{D}_{r}$, one can construct a graph $H \in \mathcal{D}_{r}$ where $\forall_{v \in V_{3}(G)} d_{G}(v) \geq 3$ and treewidth $\left(\left.G\right|_{\emptyset}\right) \leq \operatorname{treewidth}\left(\left.H\right|_{\emptyset}\right)$ (use Lemma 3, setting $\mathcal{S}=$ $\left\{N_{G}(v) \mid v \in V_{3}(G)\right.$ and $\left.\left.d_{G}(x) \leq 2\right\}\right)$. Therefore, we may add the following condition in the definition of \mathcal{D}_{r}, without harming the generality of our results.
(7) $\forall_{v \in V_{3}} d_{G}(v) \geq 3$.

We will devote the rest of this paper to the proof of Lemma 9. In the next section we will develop the main tools required for the proof of Lemma 9. The main proof will be given in Section 4.

3 The classes \mathcal{Z}_{r} and \mathcal{Q}_{r}

A graph $G=\left(V_{1} \cup V_{2}, E\right)$ is called an r-fence, if it can be written in the following form: $V=$ $V_{1} \cup V_{2}$, with $V_{i}=\left\{v_{1}^{i}, \ldots, v_{r}^{i}\right\}, i=1,2$ and $E=\left\{\left(v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}\right)\left|v_{j}^{i} \neq v_{j^{\prime}}^{i^{\prime}},\left|j-j^{\prime}\right| \leq 1, i, i^{\prime} \in\{1,2\}\right\}\right.$. An example of a 12 -fence is given in Figure 2.

Figure 2: A 12-fence.

Lemma 10 If $G=\left(V_{1} \cup V_{2}, E\right)$ is an r-fence then $\operatorname{treewidth}\left(G^{\left(\left\{V_{1}, V_{2}\right\}\right)}\right) \leq r+1$.

Proof. Take the tree-decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T\right)$ where T is a path with r vertices and $X_{1}=\left\{v_{1}^{1}, \ldots, v_{r}^{1}, v_{1}^{2}, v_{2}^{2}\right\}, X_{i}=X_{i-1} \cup\left\{v_{i+1}^{2}\right\}-\left\{v_{i-1}^{1}\right\}, i=2, \ldots, r-1$. It is easy to see that this is a tree-decomposition of G with treewidth $\leq r+1$.

Let \mathcal{Z}_{r} be the collection of graphs $G=\left(V_{1} \cup V_{2}, E\right)$ that can be constructed as follows:

1. Take two disjoint sets of vertices $V_{1}=\left\{v_{1}^{1}, \ldots, v_{k_{1}}^{1}\right\}, V_{2}=\left\{v_{1}^{2}, \ldots, v_{k_{2}}^{2}\right\}$ with $k_{1}, k_{2}<r$ and add edges $\left\{v_{1}^{i}, v_{2}^{i}\right\}, \ldots,\left\{v_{k_{i}-1}^{i}, v_{k_{i}}^{i}\right\}, i=1,2$ and edges $\left\{v_{1}^{1}, v_{1}^{2}\right\},\left\{v_{k_{1}}^{1}, v_{k_{2}}^{2}\right\} .\left(V_{i}, i=1,2\right.$, will be the parts of the graph under construction.)
2. Add a maximal set of edges such that
a. the graph stays planar,
b. any vertex in $V_{1}\left(\right.$ resp. $\left.V_{2}\right)$ is adjacent to at least one vertex in $V_{2}\left(\right.$ resp. $\left.V_{1}\right)$,
c. the resulting planar graph can be embedded such that the outer face is formed by the cycle $\left(v_{1}^{1}, \ldots, v_{k_{1}}^{1}, v_{k_{2}}^{2}, v_{k_{2}-1}^{2}, \ldots, v_{1}^{2}, v_{1}^{1}\right)$.

Notice that the graph constructed so far is outerplanar.
3. The construction is completed by setting $E^{j}=E\left(G\left[V_{j}\right]\right), j=1,2$ and applying the following operation for an arbitrary number of times:

For some edge $\left\{v_{i}^{2}, v_{i+1}^{2}\right\} \in E^{2}$ and a set of vertices $V_{l, r}^{1}=\left\{v_{l}^{1}, \ldots, v_{l+r}^{1}\right\} \subseteq V_{1}, l, r \geq 1$ such that $E\left(G\left[V_{l, r}^{1}\right]\right) \subseteq E^{1}$ and $\left\{v_{i}^{2}, v_{l}^{1}\right\},\left\{v_{i+1}^{2}, v_{l+r}^{1}\right\} \in E(G)$ we set
(i) $E^{1} \leftarrow E^{1}-E\left(G\left[V_{l, r}^{1}\right]\right)$
(ii) $E^{2} \leftarrow E^{2}-\left\{\left\{v_{i}^{2}, v_{i+1}^{2}\right\}\right\}$
(iii) $E(G) \leftarrow E(G) \cup\left\{\left\{v_{i}^{2}, v_{l}^{1}\right\}, \ldots,\left\{v_{i}^{2}, v_{l+r}^{1}\right\}\right\} \cup\left\{\left\{v_{i+1}^{2}, v_{l}^{1}\right\}, \ldots,\left\{v_{i+1}^{2}, v_{l+r}^{1}\right\}\right\}$.

For an example of the construction of a graph in \mathcal{Z}_{14} see Figure 3.

Figure 3: The construction of a graph in \mathcal{Z}_{14}.

If $G \in \mathcal{Z}_{r}$, then define $\left.G\right|_{\emptyset}=G^{\left(\left\{V_{1}(G), V_{2}(G)\right\}\right)}$. Also, we define $\tilde{\mathcal{Z}}_{r}=\left\{\left.G\right|_{\emptyset} \mid G \in \mathcal{Z}_{r}\right\}$.

Lemma 11 If $G \in \mathcal{Z}_{r}$, then treewidth $\left(\left.G\right|_{\emptyset}\right) \leq r$.

Proof. We will use induction on r. If $r \leq 3$, then the Lemma is trivial. We assume that lemma holds for any $r \leq k$. We will prove that if $G=\left(V_{1} \cup V_{2}, E\right) \in \mathcal{Z}_{k+1}$, then treewidth $\left(\left.G\right|_{\emptyset}\right) \leq k+1$.

It is easy to see that any graph $H \in \mathcal{Z}_{k+1}$, with at least one part of cardinality $<k$, is a subgraph of a graph $G \in \mathcal{Z}_{k+1}$ where $\left|V_{1}(G)\right|=\left|V_{2}(G)\right|=k$. Therefore, from Lemma 1 , we may assume that both parts of G have cardinality k.

Figure 4: An example of the proof of Lemma 11.

If G is a k-fence, then the result follows from Lemma 10. Suppose that G is not an k-fence. We set $q=\max \left\{i \mid G\left[\left\{v_{1}^{1}, \ldots, v_{i}^{1}, v_{1}^{2}, \ldots, v_{i}^{2}\right\}\right]\right.$ is an i-fence $\}$ (clearly, $q<k$). It is easy to see that $N_{G}\left(v_{q}^{h}\right) \cap\left\{v_{q+1}^{3-h}, \ldots, v_{k}^{3-h}\right\}=\emptyset$, for some h that is either 1 or 2 . According to the value of h, we set $S=\left\{v_{1}^{3-h}, \ldots, v_{q}^{3-h}, v_{q+1}^{h}, \ldots, v_{k}^{h}\right\}$ (an example of a graph where $h=2$ is depicted in Figure 4.(i) - examples of graphs where $h=1$ are depicted in Figures 4.(ii) and 4.(iii)). We also set $G_{A}=G\left[\left\{v_{q+1}^{h}, \ldots, v_{k}^{h}\right\} \cup V_{3-h}(G)\right], G_{B}=G\left[V_{h}(G) \cup\left\{v_{1}^{3-h}, \ldots, v_{q}^{3-h}\right\}\right]$ (for the
case of the graph in Figure 4.(iii), graphs G_{A} and G_{B} are depicted in Figures 4.(iv) and 4.(v) respectively). As $\left.G\right|_{\emptyset}$ is a subgraph of $\left.G\right|_{\emptyset} ^{(\{S\})}$, from Lemma 1 , it is enough to prove that $\left.G\right|_{\emptyset} ^{(\{S\})}$ has treewidth $\leq k+1$. Towards this, we will show that it is possible to apply Lemma 4 for $G_{A}^{\left(\left\{S, V_{2}\right\}\right)}, G_{B}^{\left(\left\{S, V_{1}\right\}\right)}$, and $\{S\}$. Indeed, it is easy to see that $\left.G\right|_{\emptyset} ^{(\{S\})}=G_{A}^{\left(\left\{S, V_{2}\right\}\right)} \cup G_{B}^{\left(\left\{S, V_{1}\right\}\right)}$, $V\left(G_{A}^{\left(\left\{S, V_{2}\right\}\right)}\right) \cap V\left(G_{B}^{\left(\left\{S, V_{1}\right\}\right)}\right)=S$, and that S induces a clique in both $G_{A}^{\left(\left\{S, V_{2}\right\}\right)}$ and $G_{B}^{\left(\left\{S, V_{1}\right\}\right)}$. Clearly, what remains is to prove that both $G_{A}^{\left(\left\{S, V_{2}\right\}\right)}$ and $G_{B}^{\left(\left\{S, V_{1}\right\}\right)}$ have treewidth $\leq k+1$.

Let $V_{i}^{\prime}=\left\{v_{q+1}^{i}, \ldots, v_{k}^{i}\right\}, i=1,2$. It is not hard to see that $G_{A}^{\prime}=G_{A}\left[V_{1}^{\prime} \cup V_{2}^{\prime}\right]$ is a subgraph of a graph in Z_{k-q+1}. Therefore, $G_{A}^{\prime\left(\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}\right)}$ is a subgraph of a graph in \tilde{Z}_{k-q+1} and, as $k-q+1 \leq k$, by the induction hypothesis, $\operatorname{treewidth}\left(G_{A}^{\prime\left(\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}\right)}\right) \leq k-q+1$. As $G_{A}^{\left(\left\{S, V_{2}\right\}\right)}$ contain q vertices more than $G_{A}^{\prime}\left(\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}\right)$, one can easily see that it has treewidth $\leq k+1$.

We now define $V_{i}^{\prime}=\left\{v_{1}^{i}, \ldots, v_{q}^{i}\right\}, i=1,2$. Clearly, $G_{B}^{\prime}=G_{B}\left[V_{1}^{\prime} \cup V_{2}^{\prime}\right]$ is a q-fence and, from Lemma 10, treewidth $\left(G_{B}^{\prime}\left(\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}\right), ~ \leq q+1\right.$. As $G_{B}^{\left(\left\{S, V_{2}\right\}\right)}$ contains $k-q$ vertices more than $G_{B}^{\prime}\left(\left\{V_{1}^{\prime}, V_{2}^{\prime}\right\}\right)$, one can easily see that it has treewidth $\leq k+1$.

Let \mathcal{Q}_{r} be the collection of all the graphs $G=\left(V_{1} \cup V_{2}, E\right)$ that are the result of the identification of vertices v_{1}^{i} and $v_{\left|V_{i}(H)\right|}^{i}, i=1,2$ and edges $\left\{v_{1}^{1}, v_{1}^{2}\right\}$ and $\left\{v_{\left|V_{i}(H)\right|}^{1}, v_{\left|V_{i}(H)\right|}^{2}\right\}$ of a graph in $H \in \mathcal{Z}_{r+1}$ (we use the notation $V_{i}(H)=\left\{v_{1}^{i}, \ldots, v_{\left|V_{i}(H)\right|}^{i}\right\}, i=1,2$). We may assume that $v_{\left|V_{i}(H)\right|}^{i}, i=1,2$ are not any more vertices of G and that $\left\{v_{\left|V_{1}(H)\right|}^{1}, v_{\left|V_{2}(H)\right|}^{2}\right\}$ is not any more an edge in G (for an example of a graph in \mathcal{G}_{12}, see Figure 5).

If $G \in \mathcal{Q}_{r}$ and $e=\{x, y\}$ is an edge of $G\left[V_{2}(G)\right]$, we define $\left.G\right|_{e}=G^{\left(\left\{V_{1}(G) \cup\{x, y\}, V_{2}(G)\right\}\right)}$. Also, we define $\tilde{\mathcal{Q}}_{r}=\left\{\left.G\right|_{e} \mid G \in \mathcal{Q}_{r}\right.$ and e is an edge of $\left.G\left[V_{2}(G)\right]\right\}$. For an example of the construction of a graph in \mathcal{Q}_{12} see Figure 5.

Lemma 12 If $G \in \mathcal{Q}_{r}$ and $e \in E\left(G\left[V_{2}\right]\right)$ then treewidth $\left(\left.G\right|_{e}\right) \leq r+2$.

Proof. Let $e=\{x, y\}$. Notice that there will exist a vertex $a \in V_{1}(G)$ that is adjacent to

Figure 5: The construction of a graph in \mathcal{Q}_{12} and an example of the proof of Lemma 12.
both x and y in G. Let now $b \in V_{1}(H)$ be any neighbor of a in G. It is easy to see that $G^{\prime}=G[V(G)-\{x, y, a, b\}]$ is a subgraph of a graph in \mathcal{Z}_{r-2} (see Figure 5). From Lemmata 1 and 11 we have that $\left.H=G^{\prime}\left(\left\{V_{1}(G)-\{a, b\}, V_{2}(G)-\{x, y\}\right\}\right)\right)$ has treewidth $\leq r-2$ and, as H is a subgraph of $\left.G\right|_{e}$ containing four vertices less, we can easily see that treewidth $\left(\left.G\right|_{e}\right) \leq r+2$.

4 The class \mathcal{P}_{r}

We are now ready to prove Lemma 9 . Note that if G is a graph in \mathcal{D}_{r}, then $G\left[V_{2}\right]$ is outerplanar. Recall that outerplanar graphs have treewidth ≤ 2 (see e.g. [2]). Using this fact we can easily see that, if $G \in \mathcal{D}_{r}$ for $r \leq 3$, then $\left.G\right|_{\emptyset}$ has treewidth $\leq r+1$. Therefore, Lemma 9 holds for $r \leq 3$. In what follows we will prove that it also holds when $r \geq 4$.

Our first step will be the definition, for $r \geq 4$, of a subclass of \mathcal{D}_{r} which we will denote as \mathcal{P}_{r}. The main property of \mathcal{P}_{r} is that any graph in \mathcal{D}_{r} is a minor of some graph in \mathcal{P}_{r}. Using this fact, it will be enough to prove Lemma 9 for \mathcal{P}_{r} instead of \mathcal{D}_{r} which is much easier.

We define $\mathcal{P}_{r}, r \geq 4$ as the set of graphs that can be constructed from a graph $G \in \mathcal{D}_{r}, r \geq 4$,
by applying the following five steps:
(a) Consider a planar embedding of G. Let $v \in V_{0}[G] \cup V_{3}[G]$. From Conditions (2) and (3) we have that all the vertices in $G\left[N_{G}(v)\right]$ have degree ≤ 2 (otherwise, $K_{3,3} \leq G$). Using Condition (7), we have that, for any vertex $v \in V_{3}[G]$, there exist a set of edges E_{v}, with endpoints in $V_{1}(G)$, such that $G_{v}=\left(V(G), E(G) \cup E_{v}\right)$ remains planar and all the vertices in $G_{v}\left[N_{G_{v}}(v)\right]$ have degree 2. Moreover, such a set $E_{v_{0}}$ exist also for the unique vertex in V_{0} in case $\left|V_{1}\right| \geq 3$. In case $V_{1}=\left\{v_{1}^{1}, v_{2}^{1}\right\}$, we set $E_{v_{0}}=\left\{v_{1}^{1}, v_{2}^{1}\right\}$ where $V_{0}(G)=\left\{v_{0}\right\}$. In case $\left|V_{1}\right|=1$ we set $E_{v_{0}}=\emptyset$. We define $G_{a}=\left(V(G), E(G) \cup\left(\cup_{v \in V_{0}[G] \cup V_{3}[G]} E_{v}\right)\right)$. Notice that the fact that Condition (3) holds for G, implies that $G_{a}\left[V_{2}\left(G_{a}\right)\right]$ is a connected outerplanar graph. Clearly, $G_{a} \in \mathcal{D}_{r}$.
(b) If there exist an edge $\{a, b\} \notin E\left(G_{a}\right)$ such that $a \in V_{1}\left(G_{a}\right) \cup V_{2}\left(G_{a}\right), b \in V_{2}\left(G_{a}\right)$ and $\left(V\left(G_{a}\right), E\left(G_{a}\right) \cup\{\{a, b\}\}\right)$ is a planar graph, then add this edge to G_{a}. We repeat this step until no such edge can be added in G_{a}. We denote the resulting graph as G_{b}. Clearly, $G_{b} \in \mathcal{D}_{r}$. Notice that if $\left|V_{1}\left(G_{b}\right)\right| \geq 3$, all faces in the planar embedding of G_{b} correspond to triangles (if $\left|V_{1}\left(G_{b}\right)\right| \leq 2$ then the same holds for the planar embedding of $G_{b}-v_{0}$).
(c) If there is a biconnected component in $G_{b}\left[V_{2}\right]$ that contains only two vertices, say a, b, then it is easy to see that there exist at least one vertex $d \in V_{1}\left(G_{b}\right)$ such that $\{a, d\},\{b, d\} \in$ $E\left(G_{b}\right)$ (in the graph G_{b} of Figure 6, d can be a_{1}^{1} or a_{2}^{1}). In this case, we add a new vertex c to $V_{2}\left(G_{b}\right)$, and add edges $\{\{a, c\},\{b, c\},\{c, d\}\}$. We repeat this step until all the biconnected components of $G_{b}\left[V_{2}\right]$ contain at least 3 vertices. We denote the resulting graph as G_{c} and observe that $G_{c} \in \mathcal{D}_{r}$.
(d) If there is a triangle of $G_{c}\left[V_{2}\left(G_{c}\right)\right]$ with vertices a, b, and c such that no vertex of $V_{3}\left(G_{c}\right)$ is adjacent to all its vertices, then add a new vertex d in $V_{3}\left(G_{c}\right)$, and add edges

Figure 6: The construction of a graph in \mathcal{P}_{7}
$\{a, d\},\{b, d\},\{c, d\}$. Repeat this step until no such a triangle exist any more. We denote the resulting graph as G_{d}. Notice also that $G_{d} \in \mathcal{D}_{r}$.
(e) Let A be the articulation vertices of $G_{d}\left[V_{2}\left(G_{d}\right)\right]$. Let $x \in A$. If $\left|V_{1}\left(G_{d}\right)\right| \geq 3$, we observe that the set $N_{G}(x) \cap V_{1}\left(G_{d}\right)$ can be partitioned into two vertex sets V_{x}, V_{x}^{\prime}, each containing consecutive vertices of the cycle formed by the vertices of $V_{1}\left[G_{d}\right]$ (in Figure $6, V_{x}=$ $\left.\left\{v_{3}^{1}\right\}, V_{x}^{\prime}=\left\{v_{6}^{1}, v_{1}^{1}\right\}\right)$. Let $V_{x}=\left\{a_{i}, \ldots, a_{\left(i+\sigma-1 \bmod \left|V_{1}\left(G_{d}\right)\right|\right)+1}\right\}$ (in Figure $6, i=3, \sigma=0$). If $\left|V_{1}\left(G_{d}\right)\right| \leq 2$ we set $V_{x}=\left\{v_{1}^{1}\right\}$ (notice that, in this case, $v_{1}^{1} \in V_{1}\left(G_{d}\right)=N_{G_{d}}(x) \cap V_{1}\left(G_{d}\right)$). Since all the faces of G_{d} (or $G_{d}-v_{0}$ in case $\left|V_{1}\left(G_{d}\right)\right| \leq 2$) are triangles, there will exist two
vertices $y, z \in V_{2}\left(G_{d}\right)$ such that $\{x, y\},\{x, z\},\left\{y, a_{i}\right\},\left\{z, a_{i+\sigma}\right\} \in E\left(G_{d}\right)$ (Notice that y, z belong to different connected components of $\left.G_{d}\left[V_{2}\left(G_{d}\right)-\{x\}\right]\right)$. We now construct graph G_{e} by applying, for any $x \in A$, the following operations: (i) we remove from G the edges in $\left\{\{x, t\} \mid t \in V_{x}\right\}$, (ii) we add a new vertex w in $V_{2}\left(G_{d}\right)$ and two new vertices u, v in $V_{3}\left(G_{d}\right)$, (iii) we add in $E\left(G_{d}\right)$ edges $\{w, x\},\{w, y\},\{w, z\},\{u, x\},\{u, y\},\{u, w\},\{v, x\},\{v, z\}$, and $\{v, w\}$, and (iv) we add in $E\left(G_{d}\right)$ the edge set $\left\{\{w, t\} \mid t \in V_{x}\right\}$. The resulting graph G_{e} becomes a member of \mathcal{P}_{r}. Notice that $G_{e}\left[V_{2}\left(G_{e}\right)\right]$ is a biconnected outerplanar graph and that $G_{e} \in \mathcal{D}_{r}$.

If a graph $H \in \mathcal{P}_{r}$ is constructed by a graph $G \in \mathcal{D}_{r}$ after applying steps (a)-(e), we call H triangular extension of G. Notice that if H is a triangular extension of G, then G is a minor of H. For an example of the construction of a graph in \mathcal{P}_{r}, see Figure 6. Clearly, $\mathcal{D}_{r} \subseteq \mathcal{P}_{r}, r \geq 4$.

Let $G=\left(V_{0} \cup V_{1} \cup V_{2} \cup V_{3}, E\right) \in \mathcal{P}_{r}$. Notice that, as $G\left[V_{2}\right]$ is outerplanar, G has a planar embedding where each vertex $v \in V_{0} \cup V_{3}$ (or just V_{3}, in case $\left|V_{1}\right| \leq 2$) is at the inside of the cycle C_{v} of G formed by the vertices of $N_{G}(v)$ (recall that any cycle of G defines two areas in any planar embedding of G : one finite and one infinite; we say that a vertex is inside a cycle when the embedding maps it to a point of its finite area).

We call this planar embedding of G outerplanar embedding. We also call the set $\mathcal{R}(G)=$ $\left\{C_{v} \mid v \in V_{3}\right\}$ set of regions of G and, for any region R of $\mathcal{R}(G)$, we denote as v_{R} the vertex of V_{3} that is inside it. We will denote as v_{0} the unique vertex in $V_{1}(G)$ and will use the notation $V_{1}=\left\{v_{1}^{1}, \ldots, v_{\left|V_{1}(G)\right|}^{1}\right\}$ where, if $\left|V_{1}\right| \geq 3, C_{0}=\left(v_{1}^{1}, \ldots, v_{\left|V_{1}(G)\right|}^{1}, v_{1}^{1}\right)$ is the cycle of G formed by the vertices of $N_{G}\left(v_{0}\right)$. We say that an edge $\{x, y\}$ belongs to a region R if x and y are consecutive vertices of R. Notice that an edge of $G\left[V_{2}\right]$ can belong to either one or two regions in $\mathcal{R}(G)$. We denote as $E^{\text {ext }}(G)\left(E^{\text {int }}(G)\right)$ the edges that belong to one (two) region(s) of $\mathcal{R}(G)$. Given a
region $R \in \mathcal{R}(G)$, we define as $E_{R}^{\mathrm{int}}(G)$ the set of edges in $E^{\mathrm{int}}(G)$ that belong to R. Given an edge $e \in E^{\text {ext }}(G)$ we denote as $R(e)$ the unique region to which e belongs.

$$
R(\{x, y\}) \quad v_{R(\{x, y\})} \quad S_{R(\{x, y\}),\{e, f\}}
$$

Figure 7: An example of a graph $G \in \mathcal{P}_{7}$ and of the graph $\left.G\right|_{e}$.

Let $G=\left(V_{0} \cup V_{1} \cup V_{2} \cup V_{3}, E\right) \in \mathcal{P}_{r}$ and consider an outerplanar embedding of G. Notice that $E^{\text {ext }}(G) \neq \emptyset$. If $e=\{x, y\} \in E^{\text {ext }}(G)$, we set $\left.G\right|_{e}=G\left[V_{1} \cup V_{2}\right]^{(\mathcal{S}(G, e))}$ where $\mathcal{S}(G, e)=$ $\left\{N_{G}(v) \mid v \in V_{3}\right\} \cup\left\{V_{1} \cup\{x, y\}\right\}$ (we point out that, in contrary to the definition of $\left.G\right|_{\emptyset}$, the vertices in $V_{0} \cup V_{3}$ are not considered to be vertices of $\left.V\left(\left.G\right|_{e}\right)\right)$. If $R \in \mathcal{R}(G)$ and $e=\{a, b\} \in$ $E_{R}^{\text {int }}(G)$, we define $S_{R, e}$ as the vertex set of a cycle $C_{R, e}=\left(a, v_{i}^{1}, \ldots, v_{i^{\prime}}^{1}, b, a\right)$ of G where both
v_{0} and v_{R} are vertices of the same area of $C_{R, e}$ in the outerplanar embedding of G (vertices $v_{i}^{1}, \ldots, v_{i^{\prime}}^{1}$ are consecutive in the cyclic order of $\left.C_{0}\right)$. We also define $\mathcal{S}_{R}=\left\{S_{R, e} \mid e \in E_{R}^{\mathrm{int}}\right\}$. Finally, for each member $S_{R, e}$ of \mathcal{S}_{R}, we define $V_{R, e}^{\text {in }}$ as the set of the vertices of $V_{2}(G)$ that are inside the cycle $C_{R, e}$. A general example of the given definitions is depicted in Figure 7.

In the next (and last) lemma we exploit the fact that the graphs in \mathcal{P}_{r} contain subgraphs of graphs that also belong in \mathcal{P}_{r} but with smaller number of regions.

Lemma 13 Let $G \in \mathcal{P}_{r}, r \geq 4$ and $e=\{x, y\} \in E^{\text {ext }}(G)$. Then treewidth $\left(\left.G\right|_{e} ^{\left(\mathcal{S}_{R(e)}\right)}\right) \leq r+2$.

Proof. Let $G=\left(V_{0} \cup V_{1} \cup V_{2} \cup V_{3}, E\right) \in \mathcal{P}_{r}$. Clearly, $\left.G\right|_{e}=G\left[V_{1} \cup V_{2}\right]^{(\mathcal{S}(G, e))}$. We set $H=G\left[V_{1} \cup V_{2}\right]^{\left(\mathcal{S}(G, e) \cup \mathcal{S}_{R(e)}\right)}$ and we have to prove that $\operatorname{treewidth}(H) \leq r+2$. We will use induction on the number of regions of G.

If $|\mathcal{R}(G)|=1$, then $\mathcal{S}(G, e)=\left\{V_{2}, V_{1} \cup\{x, y\}\right\}, \mathcal{S}_{R(e)}=\left\{V_{2}\right\}$ and thus $H=G\left[V_{1} \cup\right.$ $\left.V_{2}\right]^{\left(\left\{V_{2}, V_{1} \cup\{x, y\}\right\}\right)} \in \tilde{\mathcal{Q}}_{r}$. The result now follows from Lemma 12.

Suppose now that lemma holds for any graph $G \in \mathcal{P}_{r}$ where $|\mathcal{R}(G)|<l, l \geq 2$. We will prove that it also holds when $|\mathcal{R}(G)|=l$.

Let $E_{R(e)}^{\text {int }}(G)=\left\{e_{1}, \ldots, e_{t}\right\}$ and $\mathcal{S}_{R(e)}=\left\{S_{R(e), e_{1}}, \ldots, S_{R(e), e_{t}}\right\}$. For any $i, \leq i \leq t$, we set $e_{i}=\left\{u_{i}, u_{i}^{\prime}\right\}, G_{i}=G\left[\left\{v_{0}\right\} \cup S_{R(e), e_{i}} \cup V_{R(e), e_{i}}^{\mathrm{in}}\right]$, and $V_{j}\left(G_{i}\right)=V\left(G_{i}\right) \cap V_{j}, 0 \leq j \leq 3$.

Notice that, if $\left|V_{1}\left(G_{i}\right)\right|=1$ then $G_{i} \in \mathcal{P}_{r}$. In case $\left|V_{1}\left(G_{i}\right)\right|>1$, we observe first that $V_{1}\left(G_{i}\right)$ will contain exactly two vertices w_{i}, w_{i}^{\prime} with degree 1 in $G_{i}\left[V_{1}\left(G_{i}\right)\right]$ (in Figure 8, if $e=\{x, y\}$ and $e_{i}=\{e, f\}$, then $w_{i}=v_{9}^{1}$ and $\left.w_{i}^{\prime}=v_{12}^{1}\right)$. Notice that exactly two edges, in $\left\{\left\{w_{i}, u_{i}\right\},\left\{w_{i}^{\prime}, u_{i}\right\},\left\{w_{i}, u_{i}^{\prime}\right\},\left\{w_{i}^{\prime}, u_{i}^{\prime}\right\}\right\}$ are not edges of $E\left(G_{i}\right)$. Moreover, these two edges cannot have common endpoints. W.l.o.g. we assume that they are $\left\{w_{i}, u_{i}\right\}$ and $\left\{w_{i}^{\prime}, u_{i}^{\prime}\right\}$. We now set $G_{i} \leftarrow\left(V\left(G_{i}\right), E\left(G_{i}\right) \cup\left\{\left\{w_{i}, w_{i}^{\prime}\right\},\left\{w_{i}, u_{i}\right\}\right\}\right)$ and observe that G_{i} is now a member of \mathcal{P}_{r}.

Notice now that $e_{i} \in E^{\text {ext }}\left(G_{i}\right)$, and, as $\left|\mathcal{R}\left(G_{i}\right)\right|<l$, from the induction hypothesis, we

$$
\left.G_{0}\right|_{\{x, y\}}
$$

$$
\left.\left.\left.G_{1}\right|_{\{a, b\}} \quad G_{2}\right|_{\{c, d\}} \quad G_{3}\right|_{\{e, f\}}
$$

Figure 8: An example of the proof of Lemma 13.
have that treewidth $\left(\left.G_{i}\right|_{e_{i}} ^{\left(\mathcal{S}_{R\left(e_{i}\right)}\right)}\right) \leq r+2$. Clearly, $\left.\left.G_{i}\right|_{e_{i}} \subseteq G_{i}\right|_{e_{i}} ^{\left(\mathcal{S}_{R\left(e_{i}\right)}\right)}$ and from Lemma 1, $\operatorname{treewidth}\left(\left.G_{i}\right|_{e_{i}}\right) \leq r+2,1 \leq i \leq t$. Notice also that $S_{R(e), e_{i}}$ induces a clique in $\left.G_{i}\right|_{e_{i}}, 1 \leq i \leq t$.

We now set $G_{0}=G\left[V(G)-\left(\bigcup_{1 \leq i \leq t} V_{R(e), e_{i}}^{\text {in }}\right)-\left\{v_{0}, v_{R(e)}\right\}\right]^{\left(\mathcal{S}_{R(e)}\right)}$ where $V_{1}\left(G_{0}\right)=V_{1}$ and $V_{2}\left(G_{0}\right)$ is the vertex set of $R(e)$. Observe that $G_{0} \in \mathcal{Q}_{r}$ and therefore, $\left.G_{0}\right|_{e} \in \tilde{\mathcal{Q}}_{r}$. From Lemma 12 , we have that treewidth $\left(\left.G_{0}\right|_{e}\right) \leq r+2$. Notice also that $S_{R(e), e_{i}}$ induces a clique in $\left.G_{0}\right|_{e}, 1 \leq i \leq t$.

It is easy to verify that $\forall_{1 \leq i \leq t} V\left(\left.G_{0}\right|_{e}\right) \cap V\left(\left.G_{i}\right|_{e_{i}}\right)=S_{R(e), e_{i}}$ and $H=\left.G_{0}\right|_{e} \cup\left(\left.\cup_{1 \leq i \leq r} G_{i}\right|_{e_{i}}\right)$. Applying now Lemma 4 for $\left.G_{0}\right|_{e},\left.G_{1}\right|_{e_{1}}, \ldots,\left.G_{t}\right|_{e_{t}}$ and $\mathcal{S}_{R(e)}$ we have the required.

For an example of the proof of Lemma 13 see Figure 8.

Proof of Lemma 9. As we mentioned in the beginning of Section 4, Lemma 9 follows easily when $r \leq 3$. Let $G \in \mathcal{D}_{r}, r \geq 4$ and let H be the triangular extension of G. Clearly, $H \in \mathcal{P}_{r}$, and $G \leq H$. Considering H as a member of \mathcal{P}_{r}, we observe that $S(G) \subseteq S(H)$ and therefore, $\left.G\right|_{\emptyset} \leq$ $\left.H\right|_{\emptyset}$. Let $e=\{x, y\}$ be any edge in $E^{\text {ext }}(H)$. Using the fact that $S(H, e)-\left\{V_{1}(H) \cup\{x, y\}\right\}=$ $S(H)-\left\{V_{1}(H)\right\}$, it is easy to see that $\left.\left.H\right|_{\emptyset} \subseteq H\right|_{e} ^{<\mathcal{S}(H)>}$. Clearly, all the members of $\mathcal{S}(H)$ induce a clique in $\left.H\right|_{e}$ and, from Lemma 3, we have that treewidth $\left(\left.H\right|_{e} ^{<\mathcal{S}(H)>}\right)=\operatorname{treewidth}\left(\left.H\right|_{e}\right)$. Since $\left.\left.H\right|_{e} \subseteq H\right|_{e} ^{\left(\mathcal{S}_{R(e)}\right)}$, the result follows from Lemmata 1 and 13.

References

[1] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a forest, J. Comb. Theory Series B 52 (1991), 274-283.
[2] H. L. Bodlaender, Planar graphs with bounded treewidth, Technical Report RUU-CS-8814, Dept. of Computer Science, Utrecht University, Utrecht, the Netherlands, 1988.
[3] H. L. Bodlaender, On linear time minor tests with depth first search, J. Algorithms 14 (1993), 1-23.
[4] H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs, SIAM J. Disc. Meth. 6 (1993), 181-188.
[5] H. L. Bodlaender, On disjoint cycles, Int. J. Found. Computer Science 5, No. 1 (1994), 59-68.
[6] H. L. Bodlaender, R. B. Tan, D. M. Thilikos, and J. van Leeuwen, On interval routing schemes and treewidth, Information and Computation 139, No. 1 (1997), 92-109.
[7] N. D. Dendris, L .M. Kirousis, and D M. Thilikos, Fugitive-search games on graphs and related parameters, Theoretical Computer Science 172, No. 1-2 (1997), 233-254.
[8] R. Diestel, T. R. Jensen, K. Yu. Gorbunov, and C. Thomassen, Highly connected sets and the excluded grid theorem, Manuscript, 1998.
[9] M. R. Fellows and M. A. Langston, On search, decision and the efficiency of polynomialtime algorithms. J. Comp. Syst. Sc. 49 (1994), 769-779,
[10] G. N. Frederickson and R. Janardan, Designing networks with compact routing tables, Algorithmica, 3 (1988), 171-190.
[11] J. van Leeuwen and R. B. Tan, Compact routing methods: A survey, Technical Report UU-CS-1995-05, Department of Computer Science, Utrecht University, Utrecht, 1995.
[12] N. Robertson and P. D. Seymour, Graph minors - a survey, in "Surveys in Combinatorics" (I. Anderson, Ed.), pages 153-171, Cambridge Univ. Press, 1985.
[13] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986), 309-322.
[14] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph, J. Comb. Theory Series B62(1994), 323-348.

[^0]: *This research was partially supported by ESPRIT Long Term Research Project 20244 (project ALCOM IT: Algorithms and Complexity in Information Technology) and by the Natural Sciences and Engineering Research Council of Canada.
 ${ }^{\dagger}$ A large part of this research was done while the author was working at the Department of Computer Science of Utrecht University, Netherlands, supported by the Training and Mobility of Researchers (TMR) Program, (EU contract no ERBFMBICT950198).
 ${ }^{\ddagger}$ Department of Computer Science DC 2117, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada, email: sedthilk@plg.uwaterloo.ca

