
Parameterized Counting Algorithms for General

Graph Covering Problems⋆

Naomi Nishimura1, Prabhakar Ragde1, and Dimitrios M. Thilikos2

1 School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
N2L 3G1.

2 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya, Campus Nord, Desp. Ω-228, c/Jordi Girona Salgado, 1-3. E-08034,

Barcelona, Spain.

Abstract. We examine the general problem of covering graphs by graphs:
given a graph G, a collection P of graphs each on at most p vertices, and
an integer r, is there a collection C of subgraphs of G, each belonging to
P , such that the removal of the graphs in C from G creates a graph none
of whose components have more than r vertices? We can also require
that the graphs in C be disjoint (forming a “matching”). This framework
generalizes vertex cover, edge dominating set, and minimum maximal
matching. In this paper, we examine the parameterized complexity of
the counting version of the above general problem. In particular, we
show how to count the solutions of size at most k of the covering and
matching problems in time O(n·r(pk+r)+2f(k,p,r)), where n is the num-
ber of vertices in G and f is a simple polynomial. In order to achieve the
additive relation between the polynomial and the non-polynomial parts
of the time complexity of our algorithms, we use the compactor tech-
nique, the counting analogue of kernelization for parameterized decision
problems.

1 Introduction

Parameterized algorithms offer an approach to solving NP-hard problems through
the observation that many such problems come with one or more natural pa-
rameters which may be small in practice, and so algorithms that are polynomial
in the input size but exponential in the parameters may be of practical use. The
considerable literature on parameterized complexity provides both algorithms
for certain problems (e.g. vertex cover, where the parameter k is the size of the
cover) and evidence (in the form of completeness results) that other problems
(e.g. clique) do not have efficient parameterized algorithms.

One common technique in designing parameterized algorithms is to find a
problem kernel. This consists of reducing an instance of a problem to a smaller
instance of size dependent only on the parameters, such that the smaller instance

⋆ The two first authors were supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC). The third author was supported by the Spanish
CICYT project TIN-2004-07925 (GRAMMARS).

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός
9th International Workshop on Algorithms and Data Structures,
WADS 2005, Algorithms and data structures, Lecture Notes in
Computer Science, Springer Verlag, Vol. 3608, pp. 99–109, 2005.

has a solution if and only if the original instance does. Inefficient algorithms
(e.g. brute force search) can then be used on the kernel. While this approach is
appealing, it may be difficult to find a kernel for a given problem.

Our focus in this paper is on counting the number of solutions constrained by
the parameters (e.g. the number of vertex covers of size at most k), as first consid-
ered by Flum and Grohe [FG04]. Fernau [Fer02] defines fixed-parameter enumer-
ability, and considers the two problems of enumerating all solutions (producing
each one, as opposed to counting the total), and of enumerating all optimal so-
lutions. But for many problems (e.g. vertex cover) enumerating all solutions is
not fixed-parameter enumerable, as there are too many solutions. This naturally
suggests our approach of counting the solutions without enumerating them.

We consider a different sort of kernel-like structure from that used in tra-
ditional parameterized algorithms, one specialized for counting. Such a kernel
comes with a function mapping a solution in the original instance to one in
the kernel, in a fashion that allows us to compute the size of each preimage.
That way, we reduce the problem of counting the solutions of the original prob-
lem to the problem of enumerating the solutions in the kernel. We count so-
lutions in the original instance by using a (possibly inefficient) algorithm to
enumerate solutions in the kernel and summing the sizes of preimages. This
method was used by Dı́az, Serna, and Thilikos [DST04a,DST04b] in the con-
text of colouring problems; here we apply it to covering and matching prob-
lems. This method is a departure from previous work on parameterized count-
ing [Fer02,Dam04,AR02,DST04b]. Our goal is to obtain running times with an
additive relation between the part that is polynomial in the input size and the
part that is possibly exponential in the parameters.

Our problems are defined by a graph G, a collection P of graphs each on at
most p vertices, an integer r, and a parameter k. We wish to “cover” G by k
graphs chosen from P , such that the connected subgraphs left uncovered have
no more than r vertices each. That is, we ask whether or not there is a collection
C of subgraphs of G (with |C| ≤ k), each belonging to P , such that the removal
of the graphs in C from G creates a graph none of whose components have more
than r vertices. In this formulation, we allow the graphs in C to overlap, forming
a “covering”. Another variation of the problem requires that the graphs in C be
disjoint, forming a “matching”.

This framework generalizes vertex cover, edge dominating set, and minimal
maximum matching. For vertex cover, P contains only the graph with one ver-
tex, and r = 1; for edge dominating set, P contains only the graph with two
connected vertices, and r = 1; for minimal maximum matching, we add the con-
straint that the graphs in C must be disjoint. Interestingly, minimum maximal
maximal matching and edge dominating set are polynomially equivalent as de-
cision problems, but not as counting problems. In this paper, we show how to
count the number of solutions of the general covering and matching problems
problems in time O(n·r(pk+r)+2O(pkr(pk+r))) where n is the number of vertices
in G.

2 Basic definitions

All graphs in this paper are undirected, loopless and without multiple edges. For
each graph G considered, we will denote as V (G) and E(G) its vertex and edge
set, respectively. Given a set S ⊆ V (G) we define NG(S) as the set of all vertices
v ∈ V (G)−S such that v has a neighbour in S. For a set of graphs C, we denote
as V(C) the set of all vertices of the graphs in C, i.e. V(C) =

⋃

G∈C V (G).
For p a fixed constant and P a fixed set of graphs of no more than p vertices,

we define the following parameterized problems:

(k, r)-Minimum Covering by Graphs in P ((k, r)-MCG-(P))
Input: A graph G, a collection of graphs P , and an integer r.
Parameter: A non-negative integer k.
Question: Does G contain a collection C of k subgraphs each isomorphic
to some graph in P and such that G[V (G) −V(C))] has no component
of size more than r?

If in the above problem we demand that the graphs in C be pairwise dis-
joint (i.e. no vertices in common) then we define the (k, r)-Minimum Maximal

Matching by Graphs in P ((k, r)-MMM-(P)).
We denote by MCGk(G) the set of solutions of the (k, r)-MCG-(P) problem

when the input is G and the parameter is k. Similarly, we define MMMk(G) and
notice that MCGk(G) ⊆ MMMk(G). Also we define mcgk(G) = |MCGk(G)|
and mmmk(G) = |MMMk(G)|.

In what follows we will give a parameterized counting algorithm for each
of the above problems. In particular, we will give two algorithms that output
mcgk(G) and mmmk(G), respectively, in O(n · r(pk + r) + 2O(pkr(pk+r))).

A basic tool for our algorithms is the notion of (a, b)-central set. In particular,
we say that a subset P of V (G) is an (a, b)-central set (or central set for short) if
|P | ≤ a and each connected component of G[V (G) − P] has at most b vertices.
Notice that a vertex cover of size at most k is a (k, 1)-central set and vice
versa. For convenience, we refer to the connected components of G[V (G) − P]
as satellite graphs. Of particular interest are those satellite graphs that have
neighbours in P ; we will call these dependent satellite graphs and all others
independent satellite graphs.

To form our counting algorithms, we use the notion of compactor enumeration
as introduced by Dı́az, Serna, and Thilikos [DST04a,DST04b]. The idea is to find
a particular kind of kernel for a parameterized problem such that any solution of
the problem can be mapped to a solution within the kernel. If we can enumerate
all the solutions within the kernel, and for each one, compute (in a reasonable
amount of time) the number of preimages of general solutions mapping to it,
we can count the number of general solutions of the problem. More formally,
a compactor Cmp(Π, k) for a parameterized problem Π with parameter k and
set of solutions Sol(Π, k) has the following properties: |Cmp(Π, k)| is a function
that depends only on k; Cmp(Π, k) can be enumerated with an algorithm whose
complexity depends only on k; there is a surjective function m : Sol(Π, k) →

Cmp(Π, k); and for any C ∈ Cmp(Π, k), |m−1(C)| can be computed within time
O(f(k)nc).

3 Central sets

The notion of a central set plays a key role in our algorithms, as a necessary
condition for a nonzero number of solutions (Lemma 1) and as an important
step towards forming a compactor.

Lemma 1. If for a graph G mcgk(G) > 0 or mmmk(G) > 0, then G contains a
(pk, r)-central set.

Proof. We present the proof for the case mcgk(G) > 0, as the proof for the case
mmmk(G) > 0 is identical. Since there is at least one solution to the problem, we
let C be one such solution. By definition, the collection C consists of k subgraphs
each isomorphic to a graph in P , and hence the total number of vertices in V(C)
is at most pk. Moreover, again by the definition of the problem, G[V (G)−V(C))]
has no component of size more than r. This implies that C is a (pk, r)-central
set, as claimed.

As central sets are used in our covering and matching algorithms, the com-
plexity of finding an (a, b)-central set for a graph G has an impact on the com-
plexity of our counting algorithms. The problem of determining whether G has
an (a, b)-central set is NP-hard when a and b are both part of the input, as for
b = 1 the problem is vertex cover. If a is fixed, the brute-force checking of all
O(na) candidate solutions constitutes a polynomial-time algorithm. For the case
in which b is fixed, the problem can be shown to be NP-hard using a reduction
from vertex cover in which G is transformed into a graph G′ by attaching an
b-clique to each vertex v ∈ V (G): then G has a vertex cover of size a if and only
if G′ has an (a, b)-central set. Our parameterized solution follows.

Lemma 2. An (a, b)-central set of a graph G can be found, if it exists, in time
O(n(a + b) + (ab(a + b − 1) + a)(b + 1)a), where n is the number of vertices
in G; otherwise, in the same time bound it can be determined that G has no
(a, b)-central set.

Proof. We present an algorithm, FIND-CENTRAL-SET(a, b,G), that deter-
mines whether G has an (a, b)-central set and, if so, returns one (a, b)-central
set. We first observe that if a vertex v of G has degree greater than a + b − 1,
it must be in the (a, b)-central set C, as otherwise the placement of any a of its
neighbours in C would leave a graph of size at least b+1 in G[V (G)−C] (namely
v and its remaining neighbours), violating the definition of an (a, b)-central set.
Consequently, if there are more than a such high-degree vertices, since the size of
the (a, b)-central set is at most a, we can conclude that we have a NO-instance,
as indicated in Step 1 below.

FIND-CENTRAL-SET(a, b,G)
1. Let A contain all vertices of G that have degree greater than a+b−1.
If |A| > a then return NO.
2. Let G′ = G[V (G) − A] and a′ = a − |A|. Let G∗ be the union
of the connected components of G′ that have more than b vertices. If
|V (G∗)| > a′b(a+ b− 1) + a′ then return NO.
3. If ST-CENTRAL-SET(a′, b, G∗) returns NO, return NO and re-
turn; otherwise, let C be the (a′, b)-central set of G∗ that is returned.
4. return YES and A ∪ C as an (a, b)-central set of G.

We can then reduce the problem to that of finding an (a′, b)-central set in
a graph G∗ of degree at most a + b − 1 in Steps 2 and 3, where a′ is a minus
the number of high-degree vertices found in the previous paragraph. We observe
that if G′ = G[V (G)−A] is a YES-instance, there can be at most a′(a+ b− 1)
dependent satellite graphs, since each of the a′ vertices in the (a′, b)-central set
have at most a + b − 1 neighbours. As each dependent satellite graph has at
most b vertices and the central set has at most a′, the size of G∗ can be at
most a′b(a + b − 1) + a′. Having obtained a graph of size dependent only on
the parameters a and b, it is now possible to obtain a solution using the search-
tree based routine ST-CENTRAL-SET(a, b,G) below. The routine consists
of checking if all connected components are of size at most b for the base case
a = 0, and otherwise choosing b+ 1 vertices that share a component and trying
each as a possible member of the central set.

We first determine the running time of ST-CENTRAL-SET(a′, b, G∗), ob-
serving that the depth of the recursion will be at most a′. We can find connected
components in time linear in the size of G∗, or in time O(a′b(a + b − 1) + a′).
In Step 3, the routine is called b + 1 times, giving a total running time of
O((a′b(a+ b− 1) + a′)(b + 1)a

′

) = O((ab(a + b− 1) + a)(b + 1)a).

ST-CENTRAL-SET(a, b,G)
1. If a = 0, check whether each connected component of G has at most
b vertices; if so, return YES, and if not, return NO.
2. Let K be any set of b + 1 vertices inducing a connected subgraph of
G. If no such K can be found, return YES.
3. For each v ∈ K, determine ST-CENTRAL-SET(a− 1, b, G′) where
G′ = G[V (G) − {v}]. If any answer is YES, return YES and the set
of vertices removed in the sequence of calls leading to the YES answer.
Otherwise, return NO.

The running time of FIND-CENTRAL-SET(a, b,G) can be determined
as follows. Step 1 requires checking at most a + b neighbours of each of the
n nodes, in total time O(n(a + b)). Determining the connected components of
G′ and counting the number of vertices in components of size more than b can
be completed in linear time, O(n). Thus, using the result above for Step 3, we
conclude that the total running time is O(n(a+ b)+ (ab(a+ b− 1)+ a)(b+1)a).

4 Forming a compactor

The compactor for mcgk(G) is based on the fact that our graph can be viewed
as a central set surrounded by satellite graphs. We first group satellite graphs
into equivalence classes and then prune the classes to form a reduced graph
G′. In each counting algorithm, the number of solutions in G is computed by
determining the number of solutions in G represented by each solution in G′.

To be able to substitute a satellite graph in an equivalence class by another
graph in the same class, satellite graphs in the same equivalence class should be
isomorphic to each other, have the same neighbourhood in the central set, and
have the same attachments to those neighbours. More formally, we first define the
graphs formed by the satellites and their neighbours, and then formally define
the necessary property. For H a subgraph of G, we denote as ∂G(H) the graph
G[V (H) ∪NG(V (H))]. Then, for G a graph and G1 and G2 subgraphs of G, we
say that G1 and G2 are friends for G if the following conditions are satisfied.

1. NG(V (G1)) = NG(V (G2)),
2. There is an isomorphism φ from ∂G(G1) to ∂G(G2) where for each v ∈

NG(V (G1)),φ(v) = v.

The counting algorithms proceed by finding a (pk, r)-central set, grouping
satellites into equivalence classes, pruning the graph G to form a graph G′ by
reducing the size of each sufficiently large equivalence class, solving the problem
on G′, and then counting the number of solutions to G represented by the so-
lutions found for G′. The pruned graph G′ plays the role of the compactor in
the formalization in Section 2. Crucial to the algorithm is the formation of G′,
identifying for each equivalence class S which graphs are to be retained (RS)
and how many have been omitted (oS).

Lemma 3. Given a graph G and a (pk, r)-central set C of G, it is possible to
determine the following, where C is the set of connected components of G[V (G)−
C], S is a partition of C such that any two graphs in the same part are friends,
and S∗ is the collection of sets in S with more than pk + 1 graphs:

RS : a set of pk + 1 graphs from S.
oS : the number of graphs that have been omitted from S to form RS , namely

|S|− pk − 1.
G′ : the graph formed by removing graphs associated with each S, namely G′ =

G[V (G) −
⋃

S∈S∗ V(S −RS)].

for each S ∈ S∗ in time O(nr(pk + r) + 2r(pk+r)), where |S∗| ∈ O(2r(pk+r)).

Proof. The algorithmCREATE-KERNEL-SETS(p, k, r, C,G) partitions satel-
lites into equivalence classes based on an arbitrary ordering on the vertices in
the central set C and each satellite in C (Steps 1 and 2) and a bit vector used to
indicate the edges that exist both in the satellite and between the satellite and
the central set. In particular, each bit vector has one entry for each potential

edge between vertices in the satellite (at most
(

r
2

)

in total) and for each potential
edge between a vertex in the satellite and a vertex in the (pk, r)-central set (at
most pkr in total). Satellites with the same bit vectors will be placed in the same
equivalence class.

It is worth noting that the algorithm does not guarantee that friends are
in the same part, only that graphs in the same part are friends. This is due
to the fact that we are choosing arbitrary orderings of vertices in satellites;
if different orderings are chosen, friends will appear in different parts of the
partition. We settle for this finer partition in order to realize the goal of having
the relation between the polynomial and the exponential parts of the running
time be additive.

As we identify the equivalence classes to which satellites belong, we keep
track of the number of satellites in each class, retaining the first pk + 1 in each
class by marking the vertices for inclusion in G′ (Step 5). It then follows that
G′ will consist of all marked vertices and C, RS will be a set of pk + 1 retained
satellites, and oS will be the number of satellites seen minus pk + 1 to indicate
how many have been omitted.

CREATE-KERNEL-SETS(p, k, r, C,G)
1. Arbitrarily label the vertices in C from 1 through pk.
2. For each component D ∈ C, arbitrarily label the vertices in D from
pk + 1 through pk + |V (D)| ≤ pk + r.
3. Create σ to map the integers 1 through d = pkr +

(

r
2

)

to the pairs
(i, j) where 1 ≤ i ≤ pk + r and pk + 1 ≤ j ≤ pk + r.
4. Create an array R of size 2d with each entry storing an integer and a
pointer.
5. For each component D form a bit vector of size d, where entry ℓ is
set to 1 if and only if σ(ℓ) = (i, j) such that there is an edge between
the vertices with labels i and j in D and (if i ≤ pk) C. Using the value
of the bit vector as an index to R, increment the entry in R; if the entry
in R is now at most pk + 1, add D to the linked list at R and mark all
vertices in D.
6. Form oS by subtracting pk + 1 from each value in R of size greater
than pk + 1.
7. Create G′ by marking all vertices in C and forming the subgraph of
G induced on the marked vertices.
8. Return as RS all linked lists of entries of R with values greater than
pk + 1, all values oS , and G′.

To see that the running time is as claimed, we observe that the labels in
Steps 1 and 2 can be created in time O(n) for n the number of vertices in G,
and in Step 3 σ can be created in time O(d) = O(r(pk + r)). As there are at
most n components D and each bit vector is of length d, bit vector formation
and marking of vertices in Step 5 can be executed in O(nd) time. As there are
2d entries in R, Step 6 can be executed in time O(2d). Finally, since Step 7

will require at most O(n) time, the running time of the algorithm is at most
O(nd + 2d) = O(nr(pk + r) + 2r(pk+r)). We observe that |S∗| ≤ 2d and thus is
in O(2r(pk+r)).

5 Counting coverings and matchings

The following theorems present algorithms that make use of the compactor de-
fined in the previous section.

Theorem 1. The value mcgk(G) can be determined in time

O(n · r(pk + r) + rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + 2p
2

· (p+ 3)!)).

Proof. The algorithm below makes use of the earlier subroutines to find a central
set (Step 1) and construct G′ by removing all but pk + 1 remaining satellites in
each part of a partition (Step 3); it then finds the solution in G′ (Step 4), and
counts the number of solutions in G (Step 5).

COMPUTE-mcg-k(p, r,G)
1. Use FIND-CENTRAL-SET(pk, r,G) to check whether G contains
a (pk, r)-central set. If the answer is NO then return 0.
2. Let C be the (pk, r)-central set of G. Let C be the set of connected
components of G[V (G) − C]. Recall that each graph in C has at most r
vertices.
3. Use CREATE-KERNEL-SETS(p, k, r, C,G) to obtain remaining
graphs RS , numbers of removed graphs oS , and G′.
4. Compute MCGk(G′) using brute force.
5. Compute and return the following number, for jH,S = |{J ∈ RS |
V (J) ∩ V (H) ̸= ∅}|:

∑

G∈MCGk(G′)

∏

S∈S∗

∑

G′⊆G

∏

H∈G′

(

jH,S + oS
jH,S

)

.

The correctness of Step 1 follows from Lemma 1, as any graph G with a non-
zero solution will have a (pk, r)-central set. In forming G′, we need to ensure
that in any solution, there is at least one satellite with no vertex in the solution
(in essence, representing all the pruned satellites). As any solution will be of at
most k graphs of at most p vertices each, the entire solution will consist of at
most pk vertices; retaining pk+1 satellites will thus satisfy the needed condition.

The correctness of the algorithm depends on the counting in Step 5, summing
over each solution G in the reduced graph the number of solutions in the origi-
nal graph that are represented by G. In particular, graphs involving remaining
satellites (i.e., those in RS) in a particular equivalence class can be replaced by
graphs involving satellites that were omitted from the class to form the reduced

graph. To count all such possibilities for a particular solution, we consider one
particular pruned equivalence class S, and observe that our total result will be
formed by taking the product of all such values; this is because the effects of
making such alterations are independent for each equivalence class.

For a fixed solution G and equivalence class S, we consider all possible ways
of exchanging a subset G′ of the collection of graphs forming the solution for
satellites that have been omitted. This entails summing over all subsets G′ of
graphs in G, and then for each graph H in the subset G′ counting all the ways
of making exchanges. The graph H may use more than one satellite in the set
RS , where a graph J is used by H precisely when it is a remaining graph (and
hence in RS) and includes at least one vertex of H (and hence V (J) ∩ V (H)).
The number jH,S of graphs used is thus jH,S = |{J ∈ RS | V (J) ∩ V (H) ̸= ∅}|,
and we need to count the number of ways to choose jH,S such graphs out of the
ones used plus the set OS , in order to count the solutions in the general graph
represented by this one.

To see that we are not overcounting or undercounting the number of solutions
in the complete graph that are represented by a solution in the reduced graph,
we first impose an arbitrary ordering on all graphs in each equivalence class and
for each choose an isomorphism as defined in the term friends. We now observe
that if there is more than one way to map the same part of H to a particular
satellite, each of the mappings entails a different solution in the reduced graph,
and hence we count these different possibilities by our counting ways of swapping
satellites for the other solutions.

To determining the running time of the algorithm, we first observe that due
to Lemma 2, the running time of Step 1 is in O(n(pk + r) + pkr(pk + r − 1) +
pk)(r + 1)pk). Finding connected components in Step 2 will take linear time.
The running time of Step 3, O(nr(pk+ r) + 2r(pk+r)), is a direct consequence of
Lemma 3.

A brute-force approach for Step 4 will consist of trying all possible choices of
a collection C of k subgraphs of G′ such that each subgraph is isomorphic to a
graph in P and such that the graph obtained by removing C has no component of
size more than r. This can be accomplished by first choosing k subsets of vertices
of V (G′), each of size at most p, and then checking that each subset induces a
graph that contains a graph P ∈ P as a subset, where each vertex in the subset is
in P . More formally, we choose k subsets S1, . . . , Sk of vertices of V (G′) of size at
most p; there are O(mp) choices for each subset, and O(mpk) choices for the set
of k subsets, where m = |V (G′)| (for the matching problem, we ensure that the
subsets are disjoint). Checking if a particular graph P ∈ P is a subgraph of the
graph induced on a set Si can be accomplished by trying all possible mappings
of vertices to vertices and then checking for all edges, or O(p2p!) time in total.
Finally, to check that no component is of size greater than r, we use a linear
number of steps. In total, the number of steps will thus be O(mpk(m+|P|p2p!)) =
O(mpk(m+ |P|(p+ 3)!)). We observe that since G′ contains the central set and

at most pk + 1 satellites in each equivalence class, since there are 2d = 2pkr+(
r
2)

equivalence classes and each satellite has at most r vertices, the size of m is at

most pk+r(pk+1)2pkr+(
r
2) = O(r(pk+1)2r(pk+r)). Thus Step 4 can be executed

in time O(rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + |P|(p+ 3)!)).
Finally, we determine the running time of Step 5. By the argument in the pre-

vious paragraph, the number of possible solutions in MCGk(G′) is in O(mpk) =
O(rpk(pk+1)pk2pkr(pk+r)). The size of S∗ is no greater than the number of pos-
sible equivalence classes, which was shown in Lemma 3 to be in O(2r(pk+r)).
There are O(2k) subsets of G, as |G| ≤ k, and at most k choices of H for the
same reason. The cost of computing the binomial coefficient is pk + 1 = |RS |,
assuming constant-time arithmetic operations. The total cost of Step 5 will thus
be O(rpk(pk + 1)pk2pkr(pk+r)2r(pk+r)2kk(pk + 1)).

The dominating steps are Steps 3 and 4; using the fact that |P| ≤ 2(
p
2) ≤ 2p

2

,
we obtain the claimed time bound of

O(n · r(pk + r) + rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + 2p
2

· (p+ 3)!)).

We are able to count matchings by making a small modification in the algo-
rithm of the previous theorem.

Theorem 2. The value mmmk(G) can be determined in time

O(n · r(pk + r) + rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + 2p
2

· (p+ 3)!)).

Proof. The proof of the theorem follows from the proof of Theorem 1 and the fact
that we can compute mmmk(G) by replacing the last two lines of the algorithm
COMPUTE-mcg-k(p, r,G) with the following lines.

COMPUTE-mmmk(p, r,G)
4. Compute MMMk(G′) using brute force.
5. Compute and return the following number:

∑

G∈MMMk(G′)

∏

S∈S∗

∑

G′⊆G

(

oS + |{J ∈ RS : V (J) ∩V(G′) ̸= ∅}|

|{J ∈ RS : V (J) ∩V(G′) ̸= ∅}|

)

.

Here we cannot replace each graph in the solution independently; instead we
choose a subset G′ to replace and then consider all ways of choosing the right
number of satellites in each class either from the remaining or the omitted satel-
lites. The analysis is very similar to that given in the proof of Theorem 1.

6 Conclusions

Our primary concern in developing the algorithms was to maintain an additive,
rather than multiplicative, relationship between the polynomial (on n) and non-
polynomial (on the parameters) parts of the running time. We also stress that
our analysis for determining the super-polynomial part of the time complexity is

a worst-case analysis, and the algorithm should be expected to run even faster
in practice, at least for small values of k.

We observe that the algorithm COMPUTE-mcg-k(p, r,G) can be used to
determine the existence of a (k, r)-central set, as the problems are equivalent for
p = 1. We can thus count the number of (k, r)-central sets in a graph in time
O(n · r(k + r) + 2O(kr(k+r))).

We leave as an open problem the question of whether enumerating all optimal
solutions of the covering and matching problems is fixed-parameter enumerable.

References

[AR02] V. Arvind and V. Raman. Approximation algorithms for some parameterized
counting problems. In Electronic Colloquium on Computational Complexity,
2002.

[BG93] J.F. Buss and J. Goldsmith. Nondeterminism within p. SIAM J. Computing,
22:560–572, 1993.

[Dam04] P. Damaschke. Parameterized enumeration, transversals, and imperfect phy-
logeny reconstruction. In Proc., 1st International Workshop on Parameter-
ized and Exact Computation (IWPEC 2004), pages 1–12, 2004.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[DST04a] J. Dı́az, M. Serna, and D. M. Thilikos. Fixed parameter algorithms for

counting and deciding bounded restrictive list h-colorings. In Proc., 12th
Annual European Symposium on Algorithms (ESA 2004), pages 275–286,
2004.

[DST04b] J. Dı́az, M. Serna, and D. M. Thilikos. Recent results on parameterized h-
coloring. In Jarik Nesetril and P. Winkler (eds.) DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Morphisms and Statistical
Physics, volume 63, pages 65–86. Amer. Math. Soc., Providence, RI, 2004.

[Fer02] H. Fernau. On parameterized enumeration. In Proc., 8th Annual Interna-
tional Conference on Computing and Combinatorics (COCOON 2002), pages
564–573, 2002.

[FG04] J. Flum and M. Grohe. The parameterized complexity of counting problems.
SIAM J. Comput., 33(4):892–922 (electronic), 2004.

