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Abstract

In the DOMINATING SET problem we are given an n-vertex graph G with a positive integer k and we
ask whether there exists a vertex subset D of size at most k such that every vertex of G is either in D
or is adjacent to some vertex of D. In the connected variant, CONNECTED DOMINATING SET, we
also demand the subgraph induced by D to be connected. Both variants are basic graph problems,
known to be NP-complete, and many algorithmic approaches have been tried on them.

In this paper we study both problems on graphs excluding a fixed graph H as a minor from
the kernelization point of view. Our main results are polynomial time algorithms that, for a given
H-minor free graph G and positive integer k, output an H-minor free graph G0 on O(k) vertices
such that G has a (connected) dominating set of size k if and only if G0 has. The polynomial time
algorithm that obtains such equivalent instance is known as kernelization algorithm and its output is
called a problem kernel. If the size of the output can be bounded by a polynomial (linear) function
of k, then it is called polynomial (linear) kernel. Prior to our work, the only polynomial kernel
for DOMINATING SET on graphs excluding a fixed graph H as a minor was due to Alon and Gutner
[ECCC 2008, IWPEC 2009] and to Philip, Raman, and Sikdar [ESA 2009] but the size of their kernel
is kc(H), where c(H) is a constant depending on the size of H . Alon and Gutner asked explicitly,
whether one can obtain a linear kernel for DOMINATING SET on H-minor free graphs. We answer
this question in affirmative. For CONNECTED DOMINATING SET no polynomial kernel on H-minor
free graphs was known prior to our work.

As a byproduct of our results we also obtain the first subexponentail time algorithm for CON-
NECTED DOMINATING SET running in time 2

O(

p
k log k)nO(1), as well as a simplification of a

2

O(

p
k)nO(1) algorithm for DOMINATING SET on H minor free graphs due to Demaine et al. [SODA

2003, J. ACM 2005]. All our results are based on a novel combination of the irrelevant vertex tech-
nique and divide-and-conquer.
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1 Introduction

In the DOMINATING SET (DS) problem, we are given a graph G and a non-negative integer k, and the
question is whether G contains a set of k vertices whose closed neighborhood contains all the vertices
of G. In the connected variant, CONNECTED DOMINATING SET (CDS), we also demand the subgraph
induced by the dominating set to be connected. DS, together with its numerous variants, is one of the
most classic and well-studied problems in algorithms and combinatorics [31]. A considerable part of
the algorithmic study on this NP-complete problem has been focused on the design of parameterized
algorithms. Formally, a parameterization of a problem is assigning an integer k to each input instance
and a parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm that solves the
problem in time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary computable function
depending on the parameter k only. In general, DS is W[2]-complete and therefore it cannot be solved
by a parameterized algorithm, unless an unexpected collapse occurs in the Parameterized Complexity
(see [20, 23, 36]). However, there are interesting graph classes where FPT-algorithms exist for the
DOMINATING SET problem. The project of widening the horizon where such algorithms exist spanned
a multitude of ideas that made DS the testbed for some of the most cutting-edge techniques of param-
eterized algorithm design. For example, the initial study of parameterized subexponential algorithms
for DS on planar graphs [1, 12, 27] resulted in the creation of bidimensionality theory characterizing a
broad range of graph problems that admit efficient approximate schemes or fixed-parameter solutions on
a broad range of graphs [13, 15, 19].

Another emerging technique in parameterized complexity is kernelization. A parameterized problem
is said to admit a polynomial kernel if there is a polynomial time algorithm (the degree of polynomial is
independent of the parameter k), called a kernelization algorithm, that reduces the input instance down
to an instance with size bounded by a polynomial p(k) in k, while preserving the answer. This reduced
instance is called a p(k) kernel for the problem. If p(k) = O(k), then we call it a linear kernel (for a
more formal definition, see Section 2). One of the first results on linear kernels is the celebrated work
of Alber, Fellows, and Niedermeier on DS on planar graphs [2]. This work augmented significantly
the interest in proving polynomial (or preferably linear) kernels for other parameterized problems. The
result from [2], see also [7], has been extended to much more general graph classes. An important step
in this direction was done by Alon and Gutner [3, 30] who obtained a kernel of size O(kh) for DS on
H-minor free graphs, where the constant h depends on the excluded graph H . Later, Philip, Raman, and
Sikdar [37] obtained a kernel of size O(kh) on Ki,j-free and d-degenerated graphs, where h depends on
i, j and d respectively. Sizes of kernels in [3, 30, 37] are bounded by polynomials in k whose degrees
depend on the size of the excluded minor H . Therefore, the challenge is to ask for polynomial kernels
of size f(h) · kO(1), where the function f depends exclusively on the graph class. In this direction,
there are already results for more restricted graph classes. According to the meta-algorithmic results on
kernels introduced in [6], DS has a kernel of size f(g) · k on graphs of genus g. Recently, an alternative
meta-algorithmic framework, based on bidimensionality theory [13], was introduced in [26], implying
the existence of a kernel of size f(H) · k for DS on graphs excluding an apex graph H as a minor.
While apex-minor free graphs form much more general class of graphs than graphs of bounded genus,
H-minor free graphs form much larger class than apex-minor free graphs. For example, the class of
graphs excluding H = K

7

, the complete graph on 7 vertices, as a minor, contains all apex graphs.
Alon and Gutner posed as an open problem in [3, 30] whether one can obtain a linear kernel for DS on
H-minor free graphs.

In this work we obtain a linear kernel for DS on graphs excluding some fixed graph H as a minor,
which answer affirmatively the question of Alon and Gutner. Moreover, a non-trivial modification of the
ideas for DS kernelization can be used to obtain a linear kernel for CDS, which is usually much more
difficult problem to handle due to connectivity constrains. The extension of the results in [26] to the
more general family of H-minor free graphs cannot be straightforward. Similar difficulties in transition
of algorithmic techniques from apex-minor free to H-minor free graphs were observed in approximation
[17] and parameterized algorithms [13, 21]. Intuitively, the explanation is that excluding an apex graph
makes it possible to bound the tree-decomposability of the input graph by a sublinear function of the
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parameter which is not the case for more general classes of H-minor free graphs.
The main idea behind our algorithm is to identify and remove “irrelevant” vertices without chang-

ing the solution such that in the reduced graph one can select O(k) vertices whose removal leaves
protrusions, that is, subgraphs of constant treewidth separated from the remaining vertices by a constant
number of vertices. As far as we able to obtain such a graph, we can use the techniques from [26] to con-
struct the linear kernel. But identifying “irrelevant” vertices is a non-trivial task and is the main technical
contribution of this work. For this, we use the decomposition theorem of Robertson and Seymour [39]
and its algorithmic variants [9, 16] to decompose a graph into a set of torsos connected via clique-sums.
For each torso and its set of apex vertices we define the notion of irrelevant vertex whose removal does
not change the problem. By performing such removal we are able to reduce the size of each torso but
since the number of torsos can be ⌦(n), this does not bring us directly to the desired constant-treewidth
vertex removal subgraph. To overcome this obstacle, we have to implement the irrelevant vertex rule in
a divide and conquer manner, and here the bidimensionality of DS comes into play.

Besides linear kernels for DS and CDS, an immediate byproduct of our “irrelevant vertex technique”
is a radical simplification of the subexponential parameterized algorithm of Demaine et al. [13] for DS,
and the first parameterized subexponential algorithm for CDS on H-minor free graphs.

We stress that the “irrelevant vertex technique” has already appeared in several paradigms of param-
eterized algorithm design. Its most notorious application was given by Robertson and Seymour in the
Graph Minors series where they gave FPT-algorithms for the disjoint paths problem and minor checking
problem [38], see also [9, 10, 28, 32, 33, 34] for further applications of this technique. However, to our
knowledge, this is the first time this idea is used in the context of kernelization and the way we use it is
completely different from all previous paradigms.

2 Definitions and Notations

In this section we give various definitions which we make use of in the paper. We refer to Diestel’s book
[18] for standard definitions from Graph Theory. Let G be a graph with vertex set V (G) and edge set
E(G). A graph G0 is a subgraph of G if V (G0

) ✓ V (G) and E(G0
) ✓ E(G). For subset V 0 ✓ V (G),

the subgraph G0
= G[V 0

] of G is called a subgraph induced by V 0 if E(G0
) = {uv 2 E(G) | u, v 2 V 0}.

By NG(u) we denote (open) neighborhood of u in graph G that is the set of all vertices adjacent to u
and by N [u] = N(u) [ {u}. Similarly, for a subset D ✓ V , we define NG[D] = [v2DNG[v] and
NG(D) = NG[D] \D. We omit the subscripts when it is clear from the context.

We denote by Kh the complete graph on h vertices. For integer r � 1 and vertex subsets P,Q ✓
V (G), we say that a subset Q is r-dominated by P , if for every v 2 Q there is u 2 P such that the
distance between u and v is at most r. For r = 1, we simply say that Q is dominated by P . We denote
by N r

G(P ) the set of vertices r-dominated by P .
Given an edge e = xy of a graph G, the graph G/e is obtained from G by contracting the edge e,

that is, the endpoints x and y are replaced by a new vertex vxy which is adjacent to the old neighbors of
x and y (except from x and y). A graph H obtained by a sequence of edge-contractions is said to be a
contraction of G. We denote it by H c G. A graph H is a minor of a graph G if H is the contraction
of some subgraph of G and we denote it by H m G. We say that a graph G is H-minor-free when
it does not contain H as a minor. We also say that a graph class GH is H-minor-free (or, excludes H
as a minor) when all its members are H-minor-free. An apex graph is a graph obtained from a planar
graph G by adding a vertex and making it adjacent to some of the vertices of G. A graph class GH is
apex-minor-free if GH excludes a fixed apex graph H as a minor.

We denote by tw(G) the treewidth of graph G. (See Appendix for the definition of treewidth.)

Kernels and Protrusions. A parameterized problem ⇧ is a subset of �⇤ ⇥ N for some finite alphabet
�. An instance of a parameterized problem consists of (x, k), where k is called the parameter. We will
assume that k is given in unary and hence k  |x|O(1). A central notion in parameterized complexity
is fixed parameter tractability (FPT) which means, for a given instance (x, k), solvability in time f(k) ·
p(|x|), where f is an arbitrary function of k and p is a polynomial in the input size [20]. The notion of
kernelization is formally defined as follows.
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A kernelization algorithm, or in short, a kernel for a parameterized problem ⇧ ✓ �

⇤ ⇥ N is an
algorithm that given (x, k) 2 �

⇤ ⇥ N outputs in time polynomial in |x| + k a pair (x0, k0) 2 �

⇤ ⇥ N
such that (a) (x, k) 2 ⇧ if and only if (x0, k0) 2 ⇧ and (b) |x0|, k0  g(k), where g is some computable
function. The function g is referred to as the size of the kernel. If g(k) = kO(1) or g(k) = O(k) then
we say that ⇧ admits a polynomial kernel and linear kernel respectively.

Given a graph G, we say that a set X ✓ V (G) is an r-protrusion of G if tw(G[X])  r and the
number of vertices in X with a neighbor in V (G) \X is at most r.

Graph Structure Theorem. The torso of a tree-decomposition (X , T ) of a graph G is a graph Lt,
t 2 V (T ), obtained from G[Xt] by adding edges uv such that u and v is in Xt \Xt0 , where t and t0 are
nodes adjacent in T . Observe that it is possible that u and v may not be adjacent in G. To state the next
theorem we need also the notion of a graph that can be h-nearly embedded in a surface. Due to space
constraints, this definition is moved to Appendix. The following theorem is one of the most fundamental
results in Graph Minors Theory of Robertson and Seymour, see also Section 12.4 in Diestel’s book [18].

Theorem 1 ([39]). For every graph H there exists an integer h, depending only on the size of H ,
such that every graph excluding H as a minor has a tree-decomposition whose torsos can be h-nearly
embedded in a surface ⌃ in which H cannot be embedded.

The main consequence of Theorem 1 we need for our purposes is that for every H there exist con-
stants h and h0 such that for every torso L of the decomposition from Theorem 1, there exists a set of
vertices A ✓ V (L) of size at most h, called apices, such that the graph obtained from L after deleting
the apices does not contain some apex graph H 0 of size h0 as a minor. See, e.g. [29, Theorem 13].

Throughout the paper, given a graph G and vertex subsets Z and S, whenever we say that a subset
Z dominates all but (everything but) S then we mean that V (G) \ S ✓ N [Z]. Observe that a vertex of
S can also be dominated by the set Z.

3 Kernel for DOMINATING SET

In this section we give a linear kernel for the DOMINATING SET problem. The kernelization algorithm
has two phases. In the first phase we remove “irrelevant vertices” and obtain an equivalent graph with
treewidth bounded by O(

p
k). Then we apply the first phase in a recursive fashion to obtain a set D of

size O(k) vertices such that its deletion leaves the graph of constant treewidth. We call such set D as
treewidth deletion set. Then applying “protrusion rule” [6] together with the fact that DOMINATING SET
has finite integer index, we get the desired linear kernel for DOMINATING SET.

Obtaining an equivalent graph of treewidth at most O(

p
k). Let G be a graph excluding some fixed

graph H as a minor. In this section we assume that we are given a tree-decomposition (X , T ) of G as
in Theorem 1, such that the torsos of the tree-decomposition can be h-nearly embedded in a surface ⌃

in which H cannot be embedded. Such a decomposition can be constructed in polynomial time [9, 16].
Let Lt be one such torso corresponding to some vertex t 2 V (T ). Next we show how to obtain an
equivalent graph G0, in fact an induced subgraph of G obtained by deleting vertices from Lt, such that
the treewidth of the subgraph corresponding to Lt in G0 has treewidth O(

p
k). We repeat this procedure

for every torso corresponding to vertices in V (T ). Finally we obtain an equivalent graph G0 such that it
has a tree-decomposition (X 0, T ) such that all its torsos are of treewidth O(

p
k). Since the treewidth of

a graph is at most the maximum treewidth of its torsos, see e.g. [13], this implies that the treewidth of
G0 is O(

p
k).

Reducing the treewidth of a torso. We need to reduce the treewidth of a torso not only in the beginning of
the procedure but also when we apply a recursive procedure to obtain O(k) sized treewidth deletion set.
Thus we outline a generic procedure in exactly the way we will use it on our recursive algorithm later.
Let G be a graph, Lt be one of its torsos, S be a dominating set of G, and A = {a

1

, . . . , ah} be the set of
apices of Lt. Our objective is to apply a reduction rule that essentially “preserves” all dominating sets of
size at most |S| in G. Let F be the set of all functions from A ! {0, 1}. The set F essentially contains
all possible guesses on the set of apices with respect to how they are dominated in each dominating set
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of size at most |S| of G. With every dominating set D in G of size at most |S| we associate a function
f 2 F such that for every ai 2 A, f(ai) is the distance from ai to D. In other words, if f(ai) = 0 then
ai is in D and if f(ai) = 1 then ai is dominated by some vertex in D.

To describe the reduction rule we need several definitions. For every subset A0 ✓ A, we select a
vertex v of G as representative and denote by v(A0

) if for all aj 2 A0 we have that {v, aj} 2 E(G).
Let R be the vertex subset formed by selecting for each subset of A a representative (if there is any –
distinct subsets of S may have the same representative). We address R as a set of representative vertices
for subsets of A. The size of R is at most 2|A|. For a given f 2 F , we also define the following:

• The set W (f) =
⇣

[

1ih
f(ai)=0

NG(ai)
⌘

\ (A [ S) of dominated vertices.

• We also need a “sanity” check to report if there is a feasible solution that can be obtained by
“extending” f and whose size is not far from |S|. To perform this check, we use the factor
2-approximation algorithm for H-minor free graphs given in [14, 25], to compute a subset of
V (G) \A of size at most 2(|S|+2) which dominates V (G) \ (A[W (f)[S) in graph G \A. If
the approximation algorithm returns such a set, then we say that f is feasible. Let us remark, that
f cannot be feasible if the size of a minimum dominating set of V (G) \ (A[W (f)[S) in G \A
is at least |S|+ 2. When f is feasible, we denote by D(f) the corresponding vertex set of G \ A
of size at most 2(|S|+ 2) dominating V (G) \ (A [W (f) [ S).

• A vertex w 2 W (f) is irrelevant with respect to f if w /2 R and (NG(w) \A) ✓ W (f).

Let us remark that there always exists a feasible function f 2 F . Indeed, function f that assigns
0 to the vertices of S \ A and 1 to A \ S is feasible because S \ A is the desired dominating set for
V (G) \ (A [W (f) [ S) of size at most |S| and hence the approximation algorithm will always return
D(f) of size at most 2|S|.

Now we are ready to state our irrelevant vertex rule.

Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible f 2 F , then delete w
from G.

We apply the irrelevant vertex rule as long as possible in G. Let the set of vertices deleted in this
process be B. Let G0 be the resulting graph, that is, G0

= G \ B. The proof of the correctness of our
algorithm is based on the following lemma.

Lemma 1. Let S be a dominating set in a graph G, and G0
= G \B, where B are the vertices removed

from G by applying Irrelevant Vertex Rule. Then (a) for every set Z in G of size at most |S| that
dominates everything but S, there is a set Z 0 of size at most |Z| in G0 such that Z 0 contains Z \ S and
Z 0 dominates all the vertices of N [Z] in G0; (b) for every set Z 0 in G0 that dominates all but S there is
a set Z in G of size at most |Z 0| such that Z contains Z 0 \ S and Z dominates N [Z 0

] [B.

Proof. We prove the lemma for the case B = {w}. The case |B| > 1 follows by applying these
arguments inductively.

We start with the first statement. Let Z be a subset in G that dominates everything but S. If |Z| > |S|,
then we put Z 0

= S and it clearly satisfies all the requirements. Thus we assume that |Z|  |S|. Let
f 2 F be such that ai 2 Z if and only if f(ai) = 0. The function f is feasible as the set Z \ A is
a dominating set for V (G) \ (A [ W (f) [ S) of size at most |Z|  |S| and hence the approximation
algorithm will always return D(f) of size at most 2|S|. If w /2 Z, then Z 0

= Z is a dominating set for
vertices in N [Z] that are in G0. Hence we assume that w 2 Z. Let A0 ✓ A be the set of apices aj 2 A
such that aj 2 NG(w). Because w is irrelevant, there is a vertex v(A0

) 2 R such that v(A0
) 6= w and

NG(w) \ A ✓ NG(v(A0
)) \ A. Then we claim that Z 0

= Z \ {w} [ {v(A0
)} is a set of size at most

|Z| in G0 that dominates N [Z]. Suppose that there is a vertex u 2 N [Z] contained in V (G0
) and not

dominated by Z 0. Then u must be in the neighborhood of w. Since w is irrelevant, we have that w and
its neighborhood is dominated for every feasible choice of function f . Thus if u is not in A, then since
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f is feasible, we have that it is also dominated by some vertex in Z that is in A. Finally, for u 2 A,
because NG(w) \A ✓ NG(v(A0

)) \A, we have that u is dominated by v(A0
).

We proceed with the second statement of the lemma. Let Z 0 be a vertex subset of G0 that dominates
all but S. We show that Z 0 also dominates N [Z 0

] [ {w}. Targeting a contradiction, let us assume that
w is not dominated by a vertex in Z 0. Let A0

= A \ Z 0 and g be a function that assigns 0 to all vertices
in A0 and 1 to A \ A0. Clearly g is a feasible because set (Z \ A) [ {w} is of size at most |S| + 1 and
it dominates V (G) \ (A [W (g) [ S). Since g is feasible and w is irrelevant, we have that w 2 W (g)
Hence there exists a vertex in A0 that is a neighbor of w. This concludes the proof.

The following lemma provides the bounds on the treewidth of the torso without irrelevant vertices.

Lemma 2. Let L0
t = Lt \B. Then tw(L0

t) = O(

p|S|).
Proof. Let L⇤

t = L0
t \ A. We first show that there exists a 2-dominating set of size O(|S|) for L0

t \ A.
Towards this consider the following set

Q =

[

f2F,
f is feasible

D(f) [R [ S.

The size of R is at most 2|A|  2

h, the size of F is also at most 2h, and the size of D(f) is at most
2|S|+ 2. Thus |Q|  2

h
(2|S|+ 2) + 2

h
+ |S|.

We first show that there exists a set Q0 corresponding to Q that forms a 2-dominating set of size
O(|S|) in L0

t \ A. Let Q⇤
= Q \ V (L⇤

t ) and let t0 be a neighbor of t in the tree decomposition T , such
that (Xt\Xt0) \B 6= ; and such that there is no vertex from (Xt\Xt0) \B in Q⇤. For every such t0 we
do the following: if there is a vertex from Q appearing in one of the bags corresponding to the subtree
containing t0 in T \{t}, then we add an arbitrary vertex from (Xt\Xt0)\B to Q⇤. Let the resulting set be
Q0. Observe that for every vertex that we add this way, we can associate a distinct element from Q. This
implies that the size of Q0 is at most the size of Q. Hence |Q0|  |Q|  2

h
(2|S|+2)+2

h
+|S| = O(|S|).

Now we show that Q0 forms the desired 2-dominating set of L0
t \ A. Let V 0

= V (L0
t) \ A and let

C = ([t0Xt \Xt0) \ (A [ B), where t0 is a neighbor of t in T . In other words, C is the set of vertices
in L⇤

t that also appears in other torsos. Every vertex v 2 (V 0 \ S) that is not dominated with respect to
at least one feasible f is clearly dominated by a vertex from D(f). If v /2 C then there is a vertex of
D(f) in V 0 that dominates v and hence it is contained in Q0. So suppose that v 2 C. If there is a vertex
of D(f) in V 0 that dominates v then again we are done. This implies that v is dominated by a vertex
from outside the torso. But by our procedure, we have selected a vertex from X 0

t \Xt that contains v.
However, X 0

t \Xt is a clique in torso and hence the selected vertex dominates v. So we can assume that
v is dominated in every feasible f . Now the only reason v is not deleted from the graph is because there
is some feasible g 2 F such that NG(v) \ A 6✓ W (g). Hence there is a neighbor of v, say u, that is
not dominated with respect to g. By earlier arguments, we know that there exists a vertex w 2 Q0 that
dominates u and hence vertex w 2-dominates v. This shows that Q0 is the desired 2-dominating set for
L0
t \A.

To conclude, L0
t \ A excludes an apex graph as a minor (see discussions after Theorem 1) and

it has a 2-dominating set of size O(|S|). By the bidimensionality of 2-dominating set, we have that
tw(L⇤

t ) = O(

p|S|) [13, 24]. We add all the apices of A to all bags of the tree decomposition of L0
t \A

of width O(

p|S|) and this increases its width by at most h. Hence tw(L0
t) = O(

p|S|).
Let us remark that Irrelevant Vertex Rule is based on the performance of a polynomial time approx-

imation algorithm and thus by Lemmata 1 and 2, we obtain the following lemma.

Lemma 3. There is a polynomial time algorithm that for a given graph G and a dominating set S of G,
outputs an induced subgraph G0 of G such that S ✓ V (G0

) and tw(G0
) = O(

p|S|). Moreover, for
every set Z in G of size at most |S| that dominates everything but S, there is a set Z 0 in G0 of size at
most |Z| such that Z 0 ◆ Z \ S and Z 0 dominates all the vertices of N [Z] in G0. Similarly for every set
Z 0 ✓ V (G0

) that dominates in G0 al vertices but S, there is set Z ✓ V (G) of size at most |Z 0| such that
Z ◆ Z 0 \ S, Z dominates N [Z 0

] and also all the vertices in V (G) \ V (G0
).
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Algorithm 1 DELETION-SET(G, Y )

1: if |Y |  9d2 then

2: Return ;.
3: else

4: Apply Lemma 3 with G and S = Y and obtain an equivalent graph G0 as described in the statement of the
Lemma 3 such that tw(G0

) = O(

p|Y |). Hence there exists ↵, a constant, such that tw(G0
)  ↵

p|Y |.
5: Compute an approximate tree decomposition (T,X = {Xt}t2V (T )

) of width at most d
p|Y | for G0 using

the factor � approximation algorithm for treewidth given in [22]. Here d = ↵�.
6: Find the partitioning of the vertex set V (G0

) into V
1

, V
2

and X (a bag corresponding to a node in T ) as
described in Lemma 4 with the weight function that assigns 1 to the vertices in S and 0 otherwise. Let
Y
1

= (Y \ V
1

) [X and Y
2

= (Y \ V
2

) [X .
7: end if

8: Return
⇣

X
S

DELETION-SET(G0
[V

1

[X], Y
1

)

S

DELETION-SET(G0
[V

2

], Y
2

)

⌘

.

Before we proceed further, we show the power of Lemma 3 by deriving a simple subexponential
time algorithm for DOMINATING SET on H-minor free graphs. It is one of the cornerstone result in [13]
and is based on a non-trivial two-layer dynamic programming over clique-sum decomposition tree of a
H-minor free graphs. Lemma 3 can be used to obtain much simpler algorithm. Given a graph G and
a positive integer k we first apply factor 2-approximation algorithm given in [14, 25] for DOMINATING
SET on G and obtain a set S. If the size of S is more than 2k then we return that G does not have a
dominating set of size at most k. Otherwise, we apply Lemma 3 and obtain an equivalent graph G0 such
that tw(G0

) = O(

p
k). Now applying a constant factor approximation algorithm developed in [13]

for computing the treewidth on G0 we get a tree decomposition of width O(

p
k). It is well known that

checking whether a graph with treewidth t has a dominating set of size at most k in time 2O(t)nO(1) [1].
This together with the above bound on the treewidth, gives us an alternative proof of the following.

Theorem 2 ([14]). Given an n-vertex graph G excluding a fixed graph H as a minor, one can check
whether G has a dominating set of size at most k in time 2

O(

p
k)nO(1).

Finding an equivalent graph with O(k) sized treewidth deletion set. Now we want to apply Lemma 3
recursively to obtain O(k)-sized treewidth deletion set. That is, given a graph G excluding a fixed graph
H as a minor and a positive integer k, in polynomial time we output a graph G0 such that (a) G has a
dominating set of size at most k if and only if G0 has a dominating set of size at most k; and (b) it is
possible to remove O(k) vertices from G0 such that the resulting graph is of constant treewidth. We also
need the following well known lemma, see e.g. [5], on separators in graphs of bounded treewidth.

Lemma 4. Let G be a graph given with a tree-decomposition of width at most t and w : V ! R+[ {0}
be a weight function. Then in polynomial time we can find a bag X of the given tree-decomposition such
that for every connected component G[C] of G \ X , w(C)  w(V )/2. Furthermore, the connected
components C

1

, . . . , C` of G \ X can be grouped into two sets V
1

and V
2

such that w(V (G))�w(X)

3


Vi  2(w(V (G))�w(X))

3

, for i 2 {1, 2}. We call this (V
1

, X, V
2

) separation.

We proceed as follows. Given a graph G and a positive integer k we first apply factor 2-approximation
algorithm given in [14, 25] for DOMINATING SET on G and obtain a set S. If the size of S is more than
2k then we return that G does not have a dominating set of size at most k. By Lemma 3, there is a con-
stant ↵, such that the treewidth of a graph G0 obtained from G by removing irrelevant vertices is at most
↵
p
k. We apply the recursive procedure detailed in Algorithm 1 on (G,S) to obtain a treewidth dele-

tion set of size O(k). Let D be the set of vertices returned by the algorithm described in Algorithm 1.
Also let B be the set of irrelevant vertices deleted by repeated applications of Lemma 3 in the algorithm
described in Algorithm 1 during the whole algorithm. Let G0 be the graph obtained after deleting B
from G. Now we show the following.

Lemma 5. Let G, G0, S, D and B be as above. Then G has a dominating set of size at most k if and
only if G0 has a dominating set of size at most k. Furthermore tw(G0 \D) = O(1) and |D| = O(k).
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Proof. By using induction on |S|, we show the following property: For any set Z in G that dominates
everything but S, there is a set Z 0 in G0 of size at most |Z| such that Z 0 contains Z\S and Z 0 dominates
all the vertices of N [Z] in G0. Similarly for any set Z 0 in G0 that dominates all but S there is a set Z in
G of size at most |Z 0| that contains Z 0 \ S and Z dominates N [Z 0

] and also all vertices in G \ G0. If
these conditions hold we say that G and G0 are S-equivalent.

For |S|  9d2, then G = G0, and the statement holds. For inductive step, let us assume that
|S| > 9d2. We first apply Lemma 3 on G and S to obtain G⇤ such that G and G⇤ are S-equivalent.
Then we find a partition of the vertex set V (G⇤

) into V
1

, V
2

and X such that |S|/3  |Vi \ S|  2|S|/3
for i 2 {1, 2}. Let Si = (S \ Vi) [ X for i 2 {1, 2}. Since d

p|Y | + 2|Y |
3

< |Y | for |Y | > 9d2 and
|X|  d

p|S|, we have that |S
1

| < |S| and |S
2

| < |S|. Observe that no vertex in S can be irrelevant and
hence B = B

1

[B
2

, where B
1

= B \ V
1

and B
2

= B \ V
2

.
By induction assumption, we have that G⇤

[Vi [ X] and G⇤
[(Vi [ X) \ Bi], i 2 {1, 2}, are Si-

equivalent. Now we want to show that G⇤ and bG = G⇤ \ (B
1

[ B
2

) are S-equivalent. We first show
that for a set Z in G⇤ that dominates everything but S there exists Z 0 in bG of size at most |Z| that
dominates all of N [Z] in bG and contains Z \ S. For i 2 {1, 2}, we put Zi = Z \ (Vi [ X). Then
Z
1

dominates all but S
1

in G⇤
[V

1

[ X] and Z
2

dominates all but S
2

in G⇤
[V

2

[ X]. By induction
assumption, there exists Z 0

i in G⇤
[(Vi [ X) \ Bi] that dominates N [Zi] and contains Zi \ Si, where

i 2 {1, 2}. We claim that Z 0
= Z 0

1

[ Z 0
2

contains Z \ S and Z 0 dominates N [Z]. First notice that since
Z 0
i contains Zi \ Si, |Z 0

i|  |Z| and that Z
1

\ X = Z
2

\ X , we have that |Z 0|  |Z|. Furthermore
since Z \ S = (Z

1

\ S) [ (Z
2

\ S), we have that Z 0 contains Z [ S. Now we need to show that N [Z 0
]

dominates N [Z] in bG but that follows because N [Z] = N [Z
1

] [ N [Z
2

] and Z 0
1

dominates N [Z
1

] and
Z 0
2

dominates N [Z
2

]. This completes the proof in one direction.
Now we prove the reverse direction. We show that for a set Z 0 in bG that dominates everything but

S there exists Z in G⇤ of size at most |Z 0|, containing Z 0 \ S, and dominating N [Z 0
] and B (the set of

vertices in V (G⇤
) \ bG). Let the intersections of Z 0 to (V

1

\ B
1

) [X and (V
2

\ B
2

) [X be Z 0
1

and Z 0
2

respectively. By induction hypothesis, for i 2 {1, 2} there is Zi in G⇤
[(Vi [X)] that dominates N [Z 0

i]

and all of Bi and contains Z 0
i \ Si. As before we can show that Z

1

[ Z
2

is the required set Z. This
completes the proof of the property.

As far as we are done with the proof of the property, it is easy to show that G has a dominating set
of size k if and only if G0 has a dominating set of size k. Given a dominating set of size k, say Z, of G,
we know that there exists a set Z 0 of the same size that dominates all the vertices of N [Z] present in G0.
Since G0 is the induced subgraph of G and Z is the dominating set, we have that N [Z]\V (G0

) = V (G0
)

and hence Z 0 is the dominating set of size at most k for G0. Similarly given a dominating set Z 0 of G0 of
size at most k, we know that there exists a set Z in G of size at most k that dominates N [Z 0

][B = V (G).
This completes the proof of the first part of the lemma.

Now we argue about the size and the properties of D. By our construction of D, it follows that after
we remove D from the graph every connected component contains at most 9d2 vertices from S. Let
us fix a connected component, say C. The graph which after partitioning gives rise to C contains at
most O(d2) = O(1) vertices from S and hence the treewidth of this parent graph and hence its induced
subgraph, C, is O(1). The size of D is estimated via the following recursive formula

µ(|D|)  max

1/3↵2/3

n

µ
⇣

↵|S|+ d
p

|S|
⌘

+ µ
⇣

(1� ↵)|S|+ d
p

|S|
⌘

+ d
p

|S|
o

Using simple induction one can show that the above solves to O(|S|). See for an example [25, Lemma 2].
Hence we conclude that |D| = O(|S|) = O(k). This completes the proof of the lemma.

Final Kernel. Now we proceed with the proof of our main result for DOMINATING SET on graphs
excluding a fixed graph H as a minor. For this we need the following lemmata.

Lemma 6 ([26, Lemma 3.4]). For every fixed graph H and constant t there are constants ⇣ and r that
satisfy the following. For any n-vertex graph G which excludes H as a minor and has a vertex set D of
size k0 such that tw(G \D)  t, then G has an r-protrusion of size at least ⇣n/k0.
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DOMINATING SET has finite integer index, and the following lemma is a special case of [26,
Lemma 4.1], see also [6].

Lemma 7 ([6, 26]). Let GH be the class of graphs excluding a fixed graph H as a minor. Then there
exists a constant cr and an algorithm that given a graph G 2 GH , an integer k and an r-protrusion X
in G with |X| > cr, runs in time O(|X|) and returns a graph G⇤ 2 GH and an integer k⇤ such that
|V (G⇤

)| < |V (G)|, k⇤  k, and G⇤ has a dominating set of size at most k⇤ if and only if G has a
dominating set of size at most k.

Theorem 3. Let GH be the class of graphs excluding a fixed graph H as a minor. DOMINATING SET
has a linear kernel on GH .

Proof. Given a graph G and a positive integer k we first apply factor 2-approximation algorithm given
in [14, 25] for DOMINATING SET on G and obtain a set S. If the size of S is more than 2k, then we
return that G does not have a dominating set of size at most k. Otherwise, we apply Lemma 5 on G
and S and obtain a graph G0 such that G has a dominating set of size at most k if and only if G0 has a
dominating set of size at most k. We also obtain a treewidth deletion set D of size at most O(k), that is
tw(G0 \D)  t for some fixed constant t.

By Lemma 6, G contains an r-protrusion of size at least ⇣|V (G0
)|/tk. The reduction algorithm

exhaustively applies Lemma 7. Since an irreducible instance contains no r-protrusion of size at least cr
it follows that an irreducible instance (G0, k) of DS must satisfy ⇣|V (G0

)|/tk < cr. Thus |V (G0
)| is at

most k · tcr/⇣ = O(k).
Now we show that our kernelization procedure runs in polynomial time. Observe that we can find

a protrusion by guessing the boundary which is of constant size. Once given a protrusion X , we can
replace it with an equivalent instance in O(|X|) time using the Lemma 7. This concludes that the
kernelization algorithm runs in polynomial time.

4 Kernel for CONNECTED DOMINATING SET

In this section we give a linear kernel for CONNECTED DOMINATING SET (CDS). As in the kernelization
algorithm for DS, the kernelization for CDS also has two phases. The main difference is the reduction
rule, though here we also identify an irrelevant vertex and delete it, the correctness proof is much more
involved and requires much more care. As for DS, we apply this reduction rule recursively and obtain a
treewidth deletion set of size O(k). Then applying “protrusion rule” together with the fact that CDS has
finite integer index, we obtain the desired linear kernel for CDS.

Reducing the treewidth of a torso. As with DS, we will reduce the treewidth of a torso not only in the
beginning of the procedure but also when we apply a recursive procedure to obtain O(k) sized treewidth
deletion set. Let G be a graph, S be a dominating set of G, Lt be one of its torsos, and A = {a

1

, . . . , ah}
be the set of apices of Lt. Our objective is to define a reduction rule that essentially “preserves” all
partially connected dominating sets of size at most 3|S|. We define F to be the set of all functions from
A ! {0, 1} encoding all possible guesses on the set of apices with respect to how they are dominated
in every connected dominating set of size at most 3|S| of G. More formally, with every connected
dominating set D, we associate a function f 2 F , such that f(ai) = 0 yields ai 2 D and f(ai) = 1

yields that ai 62 D. For every subset A0 ✓ A, we find a minimum sized Steiner tree with A0 being
terminal nodes and denote it by T (A0

). This can be done in time 2|A0|nO(1)

= 2

hnO(1) by making use of
the algorithm from [4]. We call tree T (A0

) good if the number of non-terminal vertices, that is, non-apex
vertices, is at most 2h. For each subset of A0 ✓ A we select one good tree T (A0

) (if there is such a
tree) to represent A0. Let R be the set of vertices appearing in the representative trees corresponding to
subsets of A.

The definition of a feasible function f and the set of dominated vertices W (f) is exactly the same
as in Section 3 but the definition of irrelevant vertex is significantly different.
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• A vertex w 2 W (f) is called fully dominated if w /2 R and NG(w) \ A ✓ W (f). We denote the
set of vertices fully dominated with respect to f by Fdom(f). A vertex w is called irrelevant with
respect to f , if w is fully dominated and N3h

G (w) \A ✓ W (f).

The irrelevant vertex rule for CDS is exactly the same as in Section 3 for DS but the proof of its
correctness is much more complicated.

Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible function f 2 F , then
delete w from G.

Before we prove correctness of the reduction rule and its impact we prove a crucial lemma which
will be used later.

Lemma 8. Let G be a connected graph and f 2 F . If G contains a connected dominating set of size at
most k, then G has a connected dominating set of size at most k with at most 2h fully dominated vertices
from FDom(f).

Proof. Let Z be a connected dominating set of G of size at most k, F = Z \ FDom(f), and A0 be
the subset of apices A contained in Z. Let us observe that function f assigning 0 to all vertices of A0
is feasible. Graph G[Z \ F ] is not necessary connected because vertices from F can be adjacent to
some vertices from A0, and removal of F can separate these vertices. We claim that in G[Z \ F ] every
connected component of G[Z \ F ] contains a vertex from A0. Indeed, every connected component of
G[Z \ F ] contains a neighbor of some vertex in F , and since F is fully dominated, we have that each
such neighbor of F is also adjacent to some apex vertex in A0. Hence every connected component of
G[Z \F ] contains a vertex from A0. Furthermore since F is the set of fully dominated vertices, we have
that Z \ F is also a dominating set such that G[Z \ F ] has at most |A0|  h connected components.
Every dominating set with at most h connected components in a connected graph can be turned into a
connected set by adding at most 2h vertices. Thus by adding at most 2h vertices, one can turn Z \ F
into a connected dominating set.

Given a set Z ✓ V (G), we associate a function f 2 F that assigns 1 to vertices of a 2 A \Z and 0

to A\Z. We call such function f canonically associated to Z. We need to define faithful and companion
sets.

Definition 1. Let G be a graph, G0 be its induced subgraph and S ✓ V (G) \ V (G0
).

• A set Z in G (or Z 0 in G0) is called semi faithful if it dominates everything but S, and every
connected component of G[Z] (or G[Z 0

]) contains at least one vertex of S.
• A set Z in G is called faithful if it is semi faithful and every connected component of G[Z] contains

at most 2h fully dominated vertices with respect to the function f canonically associated to Z.
• A set Z 0 in G0 is called companion to a set Z in G, if Z 0 dominates all the vertices of N [Z] in G0;

(Z\S) ✓ Z 0 and for every connected component C 0 of G0
[Z 0

] there exists a connected component
C in G[Z] such that C \ S ✓ C 0 \ S.

• A set Z in G is called companion to a set Z 0 in G0, if it dominates all the vertices of N [Z 0
] [

(V (G) \ V (G0
)) in G, (Z 0 \ S) ✓ Z and every connected component C of G[Z] there exists a

connected component C 0 in G0
[Z 0

] such that C 0 \ S ✓ C \ S.

As for DS, we apply the irrelevant vertex rule as long as possible. Let the set of vertices deleted in
this process be B and let G0

= G \ B be the resulting graph. The following lemma is the analog of
Lemma 1. It is the most important part of the proof—as far as Lemma 9 is settled, the remaining part of
the proof follows almost the same lines as the proof in Section 3.

Lemma 9. [?]1 Let G be a graph, S be the dominating set of G and G0 be the induced graph obtained
after deleting B from G. Then for every faithful Z in G there is a companion set Z 0 of size at most |Z|
in G0. Similarly for every semi faithful set Z 0 in G0 there is a companion set Z in G of size at most |Z 0|.
Furthermore one can find the desired G0 in polynomial time.

1The proofs marked with [?] have been moved to the appendix due to space restrictions.
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As for DS, it is possible to prove that after removing all irrelevant vertices, the treewidth of each
torso in the reduced graph is O(

p|S|). The most important difference is that instead of 2-dominating
set we construct a (3h+ 1)-dominating set in the proof.

Lemma 10. [?] Let L0
t = Lt \B then tw(L0

t) = O(

p|S|).
Lemma 10 is used in the recursive phase to bound the treewidth. Now we apply Lemma 9 recursively

to obtain O(k)-sized treewidth deletion set. That is given a graph G excluding a fixed graph H as a
minor and a positive integer k, in polynomial time we output a graph G0 such that (a) G has a connected
dominating set of size at most k if and only if G0 has a connected dominating set of size at most k; and
(b) G0 has treewidth deletion set of size at most k.

We proceed as follows. Given a connected graph G and a positive integer k, we first apply factor
2-approximation algorithm given in [14, 25] for DS on G and obtain a dominating set S. If the size of S
is more than 2k then we return that G does not have a connected dominating set of size at most k. If the
size of S is at most 2k, we proceed further. To prove Lemma 11, we need an additional property of S,
namely that every dominating set contains at least one vertex from S. To ensure that S has this property,
we choose a vertex v of minimum degree and add N [v] to S. Since G excludes a fixed graph H as a
minor there exists a constant c such that G is p = c|V (H)|plog |V (H)| degenerate [18]. This implies
that the degree of v in G is at most p and hence |S|  2k + p+ 1 = O(k). This property together with
companionship of sets defined previously allow us to maintain connectivity during recursive applications
of irrelevant vertex rule. The recursive procedure to obtain a treewidth deletion set of size O(k) is
almost identical to the one detailed in Algorithm 1 on (G,S). The only difference is that in step 4
of Algorithm 1, instead of Lemma 3, we use Lemma 9. Let D be the set of vertices returned by this
algorithm. and let B be the set of irrelevant vertices deleted by repeated applications of Lemma 9. Let
G0 be the graph obtained after deleting B from G. The following lemma holds.

Lemma 11. [?] Let G, G0, S, D and B be as above. Then G has a connected dominating set of size at
most k if and only if G0 has a connected dominating set of size at most k. Furthermore tw(G0 \D) =

O(1) and |D| = O(k).

Finally, CDS has finite integer index [6] and the statement similar to Lemma 7 for CDS is a special
case of [26, Lemma 4.1]. Now using Lemmata 6 and 11, we can show the following theorem along the
lines of Theorem 3.

Theorem 4. Let GH be the class of graphs excluding a fixed graph H as a minor then CONNECTED
DOMINATING SET has linear kernel on GH .

Let us observe, that Theorem 4 combined with the standard dynamic programing on graphs of
bounded treewidth implies that CDS on H-minor free graphs is solvable in time 2

O(

p
k log k). To our

knowledge, this is the first subexponential parameterized algorithm for CDS on H-minor free graphs.

5 Conclusions

We conclude with several open questions. It is tempting to ask if the kernelization framework on apex-
minor free graphs developed in [26] for contraction bidimensional problems with separation properties
can be extended to minor free graphs. This question remains open even for r-domination with r > 1.
Another natural question is if the linear kernel for DS can be obtained for more general classes. H-minor
free graphs form a general class of sparse graph but DS is known to be FPT even on more general classes
of sparse graphs like graphs locally excluding some graph as a minor, degenerated graphs, graphs of
bounded expansions, and nowhere dense classes of graphs [9, 10, 35]. A word of caution is appropriate
here: there are classes of sparse graphs where existence of a linear kernel for DS is highly unexpected.
For example, an easy reduction from the result of Dell and van Melkebeek from [11] that d-HITTING
SET has no kernel of size kd�" for any " > 0 unless coNP is in NP/poly, shows that DS has no kernel
of size kd�" on d-degenerate graphs. For CDS the situation is even worse, by the recent result of Cygan
et al. [8], the problem does not have a polynomial kernel on d-degenerated graphs unless coNP is in
NP/poly.
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6 Appendix

6.1 Definitions of treewidth, clique sums, and almost embeddable graphs

A tree decomposition of a graph G is a pair (X , T ) where T is a tree and X = {Xi | i 2 V (T )} is a
collection of subsets of V such that:
1.

S

i2V (T )

Xi = V (G),
2. for each edge xy 2 E(G), {x, y} ✓ Xi for some i 2 V (T );
3. for each x 2 V (G) the set {i | x 2 Xi} induces a connected subtree of T .

The width of the tree decomposition is maxi2V (T )

|Xi| � 1. The treewidth of a graph G is the
minimum width over all tree decompositions of G. We denote by tw(G) the treewidth of graph G.

Definition 1 (CLIQUE-SUMS). Let G
1

= (V
1

, E
1

) and G
2

= (V
2

, E
2

) be two disjoint graphs, and
k � 0 an integer. For i = 1, 2, let Wi ⇢ Vi, form a clique of size h and let G0

i be the graph obtained
from Gi by removing a set of edges (possibly empty) from the clique Gi[Wi]. Let F : W

1

! W
2

be a
bijection between W

1

and W
2

. We define the h-clique-sum of G
1

and G
2

, denoted by G
1

�h,F G
2

, or
simply G

1

� G
2

if there is no confusion, as the graph obtained by taking the union of G0
1

and G0
2

by
identifying w 2 W

1

with F (w) 2 W
2

, and by removing all the multiple edges. The image of the vertices
of W

1

and W
2

in G
1

�G
2

is called the join of the sum.

Note that some edges of G
1

and G
2

are not edges of G, because it is possible that they were added
by clique-sum operation. Such edges are called virtual.

We remark that � is not well defined; different choices of G0
i and the bijection F could give different

clique-sums. A sequence of h-clique-sums, not necessarily unique, which result in a graph G, is called
a clique-sum decomposition of G.

Definition 2 (h-nearly embeddable graphs). Let ⌃ be a surface with boundary cycles C
1

, . . . , Ch, i.e.
each cycle Ci is the border of a disc in ⌃. A graph G is h-nearly embeddable in ⌃, if G has a subset X of
size at most h, called apices, such that there are (possibly empty) subgraphs G

0

= (V
0

, E
0

), . . . , Gh =

(Vh, Eh) of G \X such that

• G \X = G
0

[ · · · [Gh,

• G
0

is embeddable in ⌃, we fix an embedding of G
0

,

• graphs G
1

, . . . , Gh (called vortices) are pairwise disjoint,

• for 1  · · ·  h, let Ui := {ui1 , . . . , uimi
} = V

0

\ Vi, Gi has a path decomposition (Bij), 1 
j  mi, of width at most h such that

– for 1  i  h and for 1  j  mi we have uj 2 Bij

– for 1  i  h, we have V
0

\ Ci = {ui1 , . . . , uimi
} and the points ui1 , . . . , uimi

appear on
Ci in this order (either if we walk clockwise or anti-clockwise).

6.2 Proof of Lemma 9

Proof. It is sufficient to prove both statements for the case when G0
= G\{w}, where w is an irrelevant

vertex and then to apply this proof inductively.
We start from the first statement. We show how to find the corresponding Z 0 when the size of

|Z| � 3|S|. Let G
1

, . . . , G` be the connected components of G and Si = S \ V (Gi) be the dominating
set of Gi. Since Gi is connected and Gi[Si] has at most |Si| connected components we can make it
connected by adding at most 2|S| vertices, at most 2 per component, from outside. Let S0

i be the set
of vertices we selected this way. Clearly each of S0

i is a connected dominating set of Gi. Now we take
Z 0

= [S0
i. Clearly |Z 0|  P`

i=1

|S0
i|  3

P`
i=1

|Si|  3|S|  |Z|. Since S ✓ Z 0 and each Si is a
connected dominating set of Gi, it is easy to see that Z 0 satisfies the desired requirements.
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From now onwards we assume that |Z| < 3|S|. Suppose w /2 Z then clearly taking Z itself as Z 0
does the work. So we assume that w 2 Z. Let Zw be the connected component of G[Z] containing w
and Gi be the connected component of G that conatins Zw. By assumption we know that Zw contains
at most 2h fully dominated vertices. Let F be the set of fully dominated vertices contained in Zw

and A0 be the subset of A (apices) contained in Zw. Let the connected components of G[Zw \ A0
] be

E
1

, . . . , E`. Let Ei be the connected component that contains w. We claim that every vertex in Ei is
fully dominated. Suppose not then there exists a vertex u that is not fully dominated. But since Ei is
a connected component there exists a path P from w to u. Now since w is irrelevant, we have that the
first 3h vertices on P are fully dominated. In fact, every path from w to any non fully dominated vertex
will have first 3h vertices as fully dominated. But then it is a contradiction, as Zw has at most 2h fully
dominated vertices. This also implies that the size of Ei is bounded above by 2h. Let A⇤ ✓ A0 be the
set of vertices in A0 that has a neighbor in Ei. Now from Zw we remove the vertices of Ei. Observe
that every connected component contains a neighbor of some vertex in Ei, but the neighbors of Ei are
precisely A⇤ and hence every connected component of G[Zw] \ Ei contains a vertex from A⇤. Note
that A⇤ [ Ei is connected and hence the minimum steiner tree T (A⇤

) on A⇤ can only contain at most
|Ei| non-terminal vertices. Now since Ei only contains fully dominated vertices, we have that Zw \ Ei

dominates N [Zw] and hence Z 0
= (Z \ Ei) [ V (T (A⇤

)) dominates everything but S in G, does not
contain w and has size at most |Z|. Now we need to show that for every connected component C 0 of
G[Z 0

] there exists a connected component C in G[Z] such that C \ S ✓ C 0 \ S. Observe that by our
process we never delete any vertices from S, only could decrease the number of connected components
in G[Z 0

] and every vertex in S that is present in Z is also present in Z 0. So for any connected component
C 0 of G[Z 0

] we just associate a connected component C of G[Z] such that C 0 \C 6= ;. This association
satisfies our final requirement for Z 0 being companion to Z.

Now we prove the second statement of the lemma. Let Z 0 in G0 be a semi faithful set. We show that
Z 0 itself is its companion set in G. To show that Z 0 is the desired set the only thing we need to prove is
that Z 0 also dominates w. We prove it by contradiction. So assume that w is not dominated by a vertex
in Z 0. Let g 2 F be the function canonically associated to Z 0. Clearly g is a feasible as (Z 0 \A) [ {w}
is of size at most |S| + 1 and dominates V (G) \ (A [ W (f) [ S). This implies that w 2 W (f), as a
vertex is deleted only if it is irrelevant with respect to every feasible function g 2 F . Hence there exists
a vertex in A0

= A \ Z 0 that is a neighbor of w. This concludes the proof.

6.3 Proof of Lemma 10

Let L0
t = Lt \ B. The proof that tw(L0

t) = O(

p|S|) is almost identical to the proof of Lemma 2. The
most important difference is that instead of 2-dominating set we construct a (3h+ 1)-dominating set.

Proof. Let L⇤
t = L0

t \ A. We first show that there exists a (3h + 1)-dominating set of size O(|S|) for
L0
t \A. Towards this consider the following set

Q =

[

f2F,
f is feasible

D(f) [R [ S.

We first show that there exists X 0 corresponding to X that forms (3h+1)-dominating set of size O(|S|)
of L0

t \A.
Let Q⇤

= Q \ V (L⇤
t ) be the intersection of X with the vertices in L⇤

t . Let t0 be a neighbor of t in
T , such that ((Xt \ Xt0) \ B) 6= ; and there is no vertex from (Xt \ Xt0) \ B in Q⇤. Furthermore if
there is a vertex q 2 Q such that it appears in one of the bags corresponding to the subtree containing
t0 in T \ {t} then we add an arbitrary vertex from Xt \ Xt0 \ B to Q⇤. We do this for every child t0
of t. Let the resulting set be Q0. Observe that for every vertex that we add this way, we can associate a
distinct element from Q. This implies that the size of Q0 is at most the size of Q. Hence |Q0|  |Q| 
2

h
(2|S| + 2) + (2h)2h + |S|  O(|S|). Now we show that Q0 forms the desired (3h + 1)-dominating

set of L0
t \A. Let V 0

= V (L0
t) \A and let C = ([t0Xt \Xt0) \ (A [B), where t0 is a neighbor of t in
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T , that is, C is the set of vertices in L⇤
t that also appears in other torsos. Any vertex v 2 (V 0 \S) that is

not dominated with respect to at least one feasible f is clearly dominated by a vertex in D(f). If v /2 C
then there is a vertex of D(f) in V 0 that dominates v and hence it is contained in Q0. So suppose that
v 2 C. If there is a vertex of D(f) in V 0 that dominates v then again we are done. This implies that the
v is dominated by a vertex from outside. But by our procedure we have selected a vertex from X 0

t \Xt

that contains v. Now we know that X 0
t \Xt is a clique and hence the selected vertex dominates v. So let

us assume that v is dominated in every feasible f . Now the very reason v is not deleted from the graph
is because there is some feasible g 2 F such that v is not irrelevant with respect to g. Hence there is a
vertex in N3h

G (v) \ A, say u, that is not dominated with respect to g. By earlier argument we know that
there exists a vertex w 2 Q0 that dominates u and hence the vertex w (3h+1)-dominates v. This shows
that Q0 is the desired (3h+ 1)-dominating set for L0

t \A.
The graph L0

t \ A excludes an apex graph as a minor (see discussion after Theorem 1) and it has a
(3h + 1)-dominating set of size at most O(|S|), and hence we have that tw(L⇤

t ) = O(

p|S|) [13, 24].
Now even if we add all the apices in A to all the bags corresponding to the tree-decomposition of L0

t \A,
the treewidth can only increase by h and hence tw(L0

t) = O(

p|S|).

6.4 Proof of Lemma 11

Proof. We first show that G and G0 are equivalent. In fact using induction on |S|, we prove a stronger
result and show the following. For any faithful set Z in G, there is a companion set Z 0 in G0 of size at
most |Z|. Similarly for any semi faithful set Z 0 in G0 there is a companion set Z in G of size at most
|Z 0|. If these conditions hold we say that G and G0 are faithfully S-equivalent.

If the size of |S|  9d2 then G and G0 is same and hence the assertion follows. So we assume
that |S| > 9d2. We first apply Lemma 9 on G and S and obtain G⇤ such that G and G⇤ are faithfully
S⇤-equivalent. Now we find a partitioning of the vertex set V (G⇤

) into V
1

, V
2

and X such that |S⇤|/3 
|Vi\S⇤|  2|S⇤|/3 for i 2 {1, 2}. Let Si = ((S\Vi)[X) for i 2 {1, 2}. Now since d

p|Y |+2|Y |
3

< |Y |
for all |Y | > 9d2 we have that the size of |S

1

| < |S| and |S
2

| < |S|. Observe that a vertex in S is never
irrelevant and hence B = B

1

[B
2

, where B
1

= B \ V
1

and B
2

= B \ V
2

.
By induction hypothesis we have that G⇤

[Vi [X] and G⇤
[(Vi [X) \ Bi], i 2 {1, 2}, are faithfully

Si equivalent. Now we want to show that G⇤ and bG = G⇤ \ (B
1

[ B
2

) are faithfully S equivalent. We
first show that for a faithful set Z in G⇤ there exists a companion Z 0 in bG of size at most |Z|. Let the
intersections of Z to (V

1

[ X) and (V
2

[ X) be Z
1

and Z
2

, respectively. First we show that Z
1

and
Z
2

are faithful in G⇤
[V

1

[ X] and G⇤
[V

2

[ X] respectively. We show it for Z
1

, the arguments for Z
2

is symmetric. Clearly Z
1

dominates all but S
1

in G⇤
[V

1

[ X]. Look at the connected components of
G⇤

[Z
1

]. If a connected component C of G⇤
[Z

1

] is also a connected component in G⇤
[Z] then clearly it

contains a vertex from S
1

. If C is not a connected component in G⇤
[Z] then it must be a part of some

connected component in G⇤
[Z] such that its intersection with X is non-empty and hence C contains a

vertex from X ✓ S
1

. Furthermore since the connected components of G⇤
[Z] contains at most 2h fully

dominated vertices with respect to the function f which is canonically associated to Z, we have that
every connected components of G⇤

[Z
1

] also contains at most 2h fully dominated vertices with respect
to the function g which is canonically associated to Z

1

. This proves that Z
1

is faithful.
By induction hypothesis there exists a companion Z 0

i in G⇤
[(Vi [ X) \ Bi], where i 2 {1, 2},

corresponding to Zi. We claim that Z 0
= Z 0

1

[ Z 0
2

is a companion to Z in bG. First notice that since
Z 0
i contains Zi \ Si, |Z 0

i|  |Zi| and that Z
1

\ X = Z
2

\ X we have that |Z 0|  |Z|. Furthermore
since Z \ S = (Z

1

\ S) [ (Z
2

\ S) we have that Z 0 contains Z [ S. Now we need to show that
N [Z 0

] dominates N [Z] in bG but that follows since N [Z] = N [Z
1

] [ N [Z
2

] and Z 0
1

dominates N [Z
1

]

and Z 0
2

dominates N [Z
2

]. Finally we show that for every connected component C 0 of bG[Z 0
] there exists

a connected component C in G⇤
[Z] such that C \ S ✓ C 0 \ S. Let C 0 be a connected component of

bG[Z 0
]. Now let its intersections to Z 0

1

and Z 0
2

be C 0
1

and C 0
2

respectively. By induction hypothesis we
know that there exists a connected component C

1

in G⇤
[Z

1

] such that C
1

\ S
1

✓ C 0
1

\ S
1

and there
exists a connected component C

2

in G⇤
[Z

2

] such that C
2

\ S
1

✓ C 0
2

\ S
2

. For C take any component
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of G⇤
[C

1

[ C
2

]. This completes the proof in one direction.
Now we prove the reverse direction. We show that for a semi faithful set Z 0 in bG there exists a

companion Z in G⇤ of size at most |Z 0|. Let the intersections of Z 0 to (V
1

\B
1

)[X and (V
2

\B
2

)[X
be Z 0

1

and Z 0
2

respectively. Now by induction hypothesis there exists a companion Zi in G⇤
[(Vi [X)],

where i 2 {1, 2}. As in the forward direction we can show that Z
1

[ Z
2

is the required set Z.
Having shown the stronger property, it is now easy to show that G has a connected dominating set

of size k if and only if G0 has a connected dominating set of size k. By Lemma 8, we know that if there
is a connected dominating set Q of G size k, then we have a connected dominating set Q0 containing
at most 2h fully dominated vertices with respect to g 2 F that is canonically associated with Q. Let Z
be such a connected dominating set of size k of G. We know that there exists a companion Z 0 of the
same size that dominates all the vertices of N [Z] present in G0. Since G0 is the induced subgraph of
G and Z is the dominating set we have that N [Z] \ V (G0

) = V (G0
) and hence Z 0 is the dominating

set of size at most k for G0. Now we show that Z 0 is also connected. Observe that Z contains a vertex
from S and every connected component of G0

[Z 0
] contains a vertex from S. Now by the property that

for every connected component C 0 of G0
[Z 0

] there exists a connected component C in G[Z] such that
C \ S ✓ C 0 \ S. This implies that Z 0 is also connected, as Z is connected and hence Z \ S 6= ; is
present in every connected component of G0

[Z 0
]. Similarly given a connected dominating set Z 0 of G0

of size at most k we can show that its companion Z is a connected dominated set of G of size at most k.
This completes the proof of the first part of the lemma.

Now we argue about the size and the properties of D. By our construction of D it is clear that after
we remove D from the graph every connected component contains at most 9d2 vertices from S. Let
us fix a connected component, say C. The graph which after partitioning gives rise to C contains at
most O(d2) = O(1) vertices from S and hence the treewidth of this parent graph and hence its induced
subgraph, C, is O(1). This implies that the set D is indeed the desired treewidth deletion set. The size
of D is estimated via the following recursive formula

µ(|D|)  max

1/3↵2/3

n

µ
⇣

↵|S|+ d
p

|S|
⌘

+ µ
⇣

(1� ↵)|S|+ d
p

|S|
⌘

+ d
p

|S|
o

Using simple induction one can show that the above solves to O(|S|). See for an example [25, Lemma 2].
Hence we conclude that |D| = O(|S|) = O(k). This completes the proof of the lemma.
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