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Abstract

The cutwidth of a graph G is the smallest integer k such that the vertices of G can be arranged in
a linear layout [v1, . . . , vn] in such a way that, for every i = 1, . . . , n − 1, there are at most k edges
with one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}. In this paper we provide, for any
constant k, a linear time algorithm that for any input graph G, answers whether G has cutwidth at
most k and, in the case of a positive answer, outputs the corresponding linear layout.
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1. Introduction

Linear layouts (or vertex orderings) of graphs provide the framework for the definition
of several graph theoretic parameters with a wide range of applications [11]. The cutwidth
of a layout is the maximum number of edges connecting vertices on opposite sides of any
of the “gaps” between successive vertices in the linear layout. The cutwidth of a graph is
the minimum cutwidth over all possible layouts of its vertex set. Deciding whether, for
a given G and an integer k, cutwidth(G) ! k, is an NP-complete problem known in the
literature as the MINIMUM CUT LINEAR ARRANGEMENT problem [14]. Cutwidth has
been extensively examined [8,10,12,13,15,17,22] and it is closely related with other graph
theoretic parameters like pathwidth, bandwidth, or modified bandwidth [4,8–10,15,16].
The results of this paper concern the fixed parameter tractability of cutwidth which is

closely related to immersion properties. Recall that a graph H is said to be immersed to
G if a graph isomorphic to H can be obtained from a subgraph of G by a series of lift
operations. A lift operation replaces two adjacent edges {a, b}, {b, c} by the edge {a, c}.
The main motivation of our research were the results of Robertson and Seymour in their
Graph minors series where, among others, they prove that any set of graphs contains a
finite number of immersion minimal elements (see [18]). As a consequence, we have that
for any class C of graphs the set of graphs not in C contains a finite set (we call it immersion
obstruction set of C) of immersion minimal elements. Therefore, we have the following
finite characterization for C: a graph G is in C iff none of the graphs in the immersion
obstruction set of C is immersed to G. Combining this observation with the fact that, for
any fixedH , there exists a polynomial time algorithm deciding, givenG as input, whether a
H is immersed toG (see [12,19]), we imply the existence of a polynomial time recognition
algorithm for any immersion-closed graph class.
Unfortunately, the result of Robertson and Seymour is non-constructive in the sense

that it does not provide any method of constructing the corresponding obstruction set.
Therefore, it only guarantees the existence of a polynomial time algorithm and does not
provide one. However, it gives a strong motivation towards identifying the corresponding
algorithms for a wide range of graph classes and parameters. So far, it appears that the most
popular class (see [12,13]) that is immersion-closed, is the class of graphs with cutwidth
bounded by a fixed constant. A direct consequence is that, for any fixed k, there exists a
polynomial time algorithm checking whether a graph has cutwidth at most k.
The first algorithm checking whether cutwidth is at most k was given by Makedon and

Sudborough in [10] where a O(nk−1) dynamic programming algorithm is described. This
time complexity has been considerably improved by Fellows and Langston in [13] where
they provide, for any fixed k, an algorithm that checks whether a graph has cutwidth at
most k in O(n3). Furthermore, using a technique introduced in [12] (see also [2]) the
bound can be further reduced to O(n2), while in [1] a general method is given to construct
a linear time algorithm that decides whether a given graph has cutwidth at most k, for
k constant. However the methodology in [1] gives only a decision algorithm: it does not
give any method to construct the corresponding layout. In this paper, we give an explicit
description, for any k " 1, of a linear time algorithm that checks whether an input graph
G has cutwidth at most k and, if this is the case, it further outputs a linear layout of G of
minimum cutwidth.
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At this point, we want to give an informal description of our algorithm. It starts com-
puting a “nice” path decomposition of bounded width of the input graph G (for a formal
definition see Section 2.1). The path decomposition allows the definition of an appropriate
sequence of subgraphs and the algorithm proceeds from left to right of the path decomposi-
tion. First, consider the following exponential algorithm, that builds the set of all layouts of
cutwidth at most k. The algorithm goes through the path decomposition from left to right,
at each point having in a data structure the set of all layouts of cutwidth at most k of the
subgraph induced by the vertices encountered so far. When a new vertex is encountered, we
try to insert it at all different spots in all the layouts in the data structure; from the layouts
we thus obtain, we keep those whose cutwidth is at most k. Clearly, this algorithm can use
exponential time, but solves the problem: G has cutwidth at most k, if and only if the data
structure contains at least one layout when the whole path decomposition is scanned (for a
more detailed analysis of this procedure, see [4]).
In order to decrease the running time of the algorithm, we modify it as follows. Instead

of storing entire layouts, we only store that information of the layout that is necessary to
determine whether inserting a vertex at some spot increases the cutwidth to more than k,
and to compute the same type of information for the new sequence again. Layouts which
have the same such structural information can be deemed to be equivalent, and need only
one object to have stored in the data structure. The key notion for this structural information
is the characteristic, used here in a similar fashion as in linear time algorithms for related
parameters, like pathwidth and treewidth in [5], linear-width in [7], and branchwidth in [6].
In a few words, a characteristic serves to filter the main data structure of a parameter to its
essential part, a part that can be constructed from node to node of a path decomposition.
Characteristics consist of the sequence in which the vertices in the current node of the
path decomposition appear in the layout, plus sequences of integers representing numbers
of edges crossing certain gaps in the layout. As we will see, the size of the information
encoded by a characteristic depends on the width of the path decomposition and, therefore,
it is constant for graphs with bounded pathwidth.
A consequence of our result is an algorithm that, for any k, is able to determine the im-

mersion obstruction set for the class of the graphs with cutwidth at most k. We mention that
optimal constructive results exist so far only for minor closed parameters such as treewidth
and pathwidth [3,5], agile search parameters [7], linear-width [7], and branch-width [6].
Besides the fact that our techniques are motivated by those used in the aforementioned
minor-closed parameters, in our knowledge, our results are the first concerning immersion-
closed parameters and we believe that our approach is applicable to other parameters as
well (e.g., MODIFIED CUTWIDTH, 2-D GRID LOAD FACTOR, or BINARY GRID LOAD
FACTOR—see [12]).
The paper is organized as follows. Section 2 contains the definitions of cutwidth and

pathwidth and several definitions and results on sequences of sequences, finishing with the
definition of characteristics. That way, we provide the theoretical framework for the analy-
sis of the algorithm. Section 3 describes the algorithm for deciding whether the cutwidth
of a graph is at most k and Section 4 presents the modification needed to compute also a
layout with small cutwidth when there is one. We conclude with some final remarks on
Section 5.
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2. Definitions and preliminary results

We proceed with a number of definitions and notations, dealing with finite sequences
(i.e., ordered sets) of a given finite set O. For our purposes, O can be a set of numbers,
sequences of numbers, vertices, or vertex sets. Let ω be a sequence of elements from O
with length r . We use the notation [ω1, . . . ,ωr ] to represent ω and we define ω[i, j ] as the
subsequence [ωi, . . . ,ωj ] of ω (in case j < i, the result is the empty subsequence [ ]). We
also denote as ω(i) the element of ω indexed by i and by ω[i] the sequence [ω(i)].
Given a set S containing elements of O, we denote as ω[S] the subsequence of ω that

contains only the elements of ω that are in S, respecting their relative positions in ω. Given
two sequences ω1,ω2, defined on O, where ωi = [ωi

1, . . . ,ω
i
ri
], i = 1,2, we define the

concatenation of ω1 and ω2 as

ω1 · ω2 =
[
ω11, . . . ,ω

1
r1,ω

2
1, . . . ,ω

2
r2

]
.

Unless mentioned otherwise, we consider that the first element of a sequence ω is indexed
by 1, i.e., ω = ω[1, |ω|].
All the graphs of this paper are finite, undirected, and without loops or multiple edges

(our results can be straightforwardly generalized to the case where the last restriction is
altered). We denote the vertex (edge) set of a graphG by V (G) (E(G)) and set n = |V (G)|.
As our graphs will not have multiple edges, we represent an edge e ∈ E(G) by a two vertex
subset.
Let G be a graph and S ⊆ V (G). We call the graph (S,E(G) ∩ {{x, y} | x, y ∈ S})

the subgraph of G induced by S and we denote it by G[S]. For any e ∈ E(G), we set
G − e = (V (G),E(G) − {e}) and for any N ⊆ V (G) and u /∈ V (G), the graph G +u N

is obtained by adding to G the new vertex u and the edges {{u,v} | v ∈ N}. We denote
by EG(S) the set of edges of G that have an endpoint in S; we also set EG(v) = EG({v})
for any vertex v. If E ⊆ E(G) then we denote as V (E) the set of all the endpoints of
the edges in E, i.e., we set V (E) = ⋃

e∈E e. The neighborhood of a vertex v in graph G

is the set of vertices in G that are adjacent to v in G and we denote it as NG(v), i.e.,
NG(v) = V (EG(v)) − {v}. If l is a sequence of vertices, we denote the set of its vertices
as V (l). If x ∈ V (l) then we set l − x = l[V (l) − {x}]. If l is a sequence of all the vertices
of G without repetitions, then we will call it vertex ordering or layout of G. If l is a vertex
ordering of G, the rank of a vertex u ∈ V (l) is its position in the ordering, and we denote
it by rankl(u).

2.1. Pathwidth

A path decomposition of a graph G is defined as a sequence X = [X1, . . . ,Xr ] of sub-
sets of V (G) satisfying the following properties.

(1)
⋃

i,1!i!r Xi ⊆ V (G).
(2) ∀{v,u}∈E(G) ∃i,1!i!r {v,u} ⊆ Xi .
(3) ∀v∈V (G) ∃i,j,1!i!j!r ∀h,1!h!r v ∈ Xh ⇔ i ! h ! j .
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We call the sets X1, . . . ,Xr , the nodes of the path decomposition X. The width of X is
equal to max1!i!r{|Xi | − 1} and the pathwidth of a graph G is the minimum width over
all path decompositions of G. We say that a path decomposition X = [X1, . . . ,Xr ] is nice
if |X1| = 1 and ∀i,2!i!|X| |(Xi −Xi−1)∪ (Xi−1−Xi)| = 1. The following lemma follows
directly from the definitions.

Lemma 1. For some constant k, given a path decomposition of a graphG that has width at
most k and O(|V (G)|) nodes, one can find a nice path decomposition of G that has width
at most k and has at most 2|V (G)| nodes in O(|V (G)|) time.

We distinguish the three types of nodes in a nice path decompositionX = {X1, . . . ,Xr}.
We say that Xi is an introduce node if |Xi − Xi−1| = 1, while Xi is a forget node if
|Xi−1−Xi | = 1. It is easy to observe that any nodeXi , i " 2, of a nice path decomposition
is either an introduce or a forget node. We call the first nodeX1 ofX, start node (recall that
|X1| = 1). Notice that if the last node Xr is a forget node, the node can be removed and we
still have a path decomposition. Hence we may assume that Xr is an introduce node.
Finally, for each node in the path decomposition we associate a graph Gi , 1 ! i ! r ,

as follows. We define Vi = ⋃
j,1!j!i Xj and Gi = G[Vi]. Notice that if Xi , i > 1, is an

introduce node then V (Gi−1) *= V (Gi), and we will call the unique vertex inXi −Xi−1 the
introduced vertex of Gi . Notice that if Xi , i > 1, is a forget node then V (Gi−1) = V (Gi),
and we will call the unique vertex in Xi−1 − Xi the forgotten vertex of Gi .

2.2. Cutwidth

The cutwidth of a graph G with n vertices is defined as follows. Let l = [v1, . . . , vn]
be a layout of V (G). For i = 1, . . . , n − 1, we define the cut at position i, denoted by
θl,G(i), as the set of crossover edges of G that have one endpoint in l[1, i] and one in
l[i + 1, n], i.e., θl,G(i) = EG(l[1, i])∩EG(l[i + 1, n]). The cutwidth of a layout l of V (G)

is maxi,1!i!n−1{|θl,G(i)|}. The cutwidth of a graph is the minimum cutwidth over all the
vertex orderings of V (G). It is easy to see the following (see also [10]).

Lemma 2. For any graph G, cutwidth(G) " pathwidth(G).

If l = [v1, . . . , vn] is a vertex ordering of a graph G, we set

QG,l =
[
[0],

[∣∣θl,G(1)
∣∣], . . . ,

[∣∣θl,G(n − 1)
∣∣], [0]

]
.

The above sequence keeps information on the sequence of cuts at different positions of
a layout. We also assume that the indices of the elements of QG,l start from 0 and finish
on n, i.e.,QG,l =QG,l[0, n]. Moreover, in what follows, we will assume that the indices of
any sequence of sequences will start from 0. Clearly, QG,l is a sequence of sequences of
numbers each containing only one element. We insist on the, somewhat overloaded, defin-
ition of QG,l in order to make its notation compatible with the definition of characteristics
in Section 2.4 (for an example of QG,l , see Fig. 1).
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Fig. 1. An examples of a graph G, a layout and the sequence QG,l .

2.3. Sequences of integers

We denote as S the set of all finite sequences of non-negative integers. For any sequence
A = [a1, . . . , a|A|] ∈ S and any integer t " 0 we set A + t = [a1 + t, . . . , a|A| + t], and
maxA = max1!i!|A| ai . Also, if A = [a1, . . . , ar ] and B = [b1, . . . , br ] are two equal-
size sequences of non-negative integers, we define A + B = [a1 + b1, . . . , ar + br ]. If
A,B ∈ S and A = [a1, . . . , a|A|], we say that B + A if B is a subsequence of A obtained
after applying a number of times (possibly none) the following operations.

(i) If for some i, 1! i ! |A| − 1, ai = ai+1, then set A ← A[1, i] · A[i + 2, |A|].
(ii) If the sequence contains two elements ai and aj such that j − i " 2 and

∀k,i<k<j ai ! ak ! aj or ∀k,i<k<j ai " ak " aj , then set A ← A[1, i] · A[j, |A|].

We define the compression τ(A) of a sequence A ∈ S , as the unique minimum length
element of {B | B + A}. For example,

τ
(
[5,5,6,7,7,7,7,4,4,3,5,4,6,8,2,9,3,4,6,7,2,7,5,4,4,6,4]

)

= [5,7,3,8,2,9,2,7,4].
We call a sequence A typical if A ∈ S and τ(A) = A.
The following lemma is a direct consequences of the definitions.

Lemma 3. For i = 1,2, let Ai , Bi such that Ai + Bi . Then,

(1) A1 · A2 + B1 · B2, and
(2) if |A1| = |A2| and |B1| = |B2| then τ(A1 + A2) = τ(B1 + B2).

The following results have been proved in [5] (Lemmata 3.3 and 3.5 respectively).

Lemma 4. If A ∈ S and maxA ! k, then τ(A) contains at most 2k − 1 elements.

Lemma 5. The number of different typical sequences consisting of integers in {0,1, . . . , n}
is at most 832

2n.

Notice that B = τ(A) is a subsequence [ai1, . . . , ai|B| ] ofA = [a1, . . . , a|A|] such that for
any j , 1! j ! |B|−1 either aij !min{aij +1, . . . , aij+1−1} and max{aij +1, . . . , aij+1−1} !
aij+1 or aij "max{aij +1, . . . , aij+1−1} and min{aij +1, . . . , aij+1−1} " aij+1 . In general we
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may have more than one such subsequence. We fix one of them and define the function
βA : {1, . . . , |τ(A)|} → {1, . . . , |A|} where βA(j) = ij is one of the possible original posi-
tions in A of the j th element in τ(A). Consider the sequence of the previous example

A = [5,5,6,7,7,7,7,4,4,3,5,4,6,8,2,9,3,4,6,7,2,7,5,4,4,6,4],
then we have

βA(1) = 1, βA(2) = 6 (or 4 or 5 or 7), βA(3) = 10,
βA(4) = 14, βA(5) = 15, βA(6) = 16,
βA(7) = 21, βA(8) = 22, βA(9) = 27.

The following lemma is a direct consequence of the definition of β .

Lemma 6. Let A be any sequence in S . Then, for any i, 1 ! i < |τ(A)|, we have
τ(A[βA(i), βA(i + 1)]) = [A(βA(i)),A(βA(i + 1))].

Analogously, we define the function β−1
A : {1, . . . , |A|} → {1, . . . , τ (A)} such that

β−1
A (j) is the unique i such that βA(i) = j .
For any A ∈ S , we define α(A) in the same way as τ(A) with the difference that only

operation (i) is considered, i.e., we remove repetitions of a number on successive positions
in the sequence. If now A is a typical sequence, we define the set of extensions of A as

E(A) =
{
Ã ∈ S | α

(
Ã

)
= A

}
.

We call a sequence A dense if A ∈ E(τ (A)). If A is dense then all the sequences in
E(A) are dense. Finally, notice also that if A is dense and B + A then B ∈ E(τ (A)). For
example, the sequences [5,7,7,7,4,8,8,8,8] and [1,7,2,6,4,4,4,4,4] are dense.
Notice that for any typical sequence A, if B ∈ E(A), B(i) *= B(i + 1), and β−1

B (i) = j ,
then the subsequence B[i, i + 1] represents the j th number change in B .
The results in the following two lemmata are direct consequences of the definitions of

β and β−1.

Lemma 7. Let A be a sequence in S, and B ∈ E(τ (A)) then, for any i,1! i ! |B|,

(1) A(βA(β−1
B (j))) = B(j),

(2) B(j) *= B(j + 1) ⇒ β−1
B (j + 1) = β−1

B (j) + 1, and
(3) B(j) = B(j + 1) ⇒ β−1

B (j + 1) = β−1
B (j).

Let A = [a1, . . . , ar1] and B = [b1, . . . , br2] be two sequences in S . We say that A ! B
if r1 = r2 and ∀1!i!r1 ai ! bi . In general, we say that A ≺ B if there exist exten-
sions Ã ∈ E(A), and B̃ ∈ E(B) such that Ã ! B̃ . For example if A = [1,7,2,6,4] and
B = [5,7,4,8] then A ≺ B because B̃ = [5,7,7,7,4,8,8,8,8] is an extension of B ,
Ã = [1,7,2,6,4,4,4,4,4] is an extension of A, and Ã ! B̃ .
The following lemma corresponds to Corollary 3.11 of [5].

Lemma 8. If A and B are two sequences then A ≺ B if and only if τ(A) ≺ τ(B).
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The following lemma follows directly from Lemmas 8 and 3.13 of [5].

Lemma 9. Let A and B be two integer sequences where |A| = |B| and let Y = A + B . Let
A0 ≺ A and B0 ≺ B . Then there exists two sequences A∗

0 ∈ E(A0) and B∗
0 ∈ E(B0) where

τ(A∗
0 + B∗

0 ) ≺ τ(Y ).

The following three lemmata establish basic properties of typical sequences. They fol-
low directly from the definitions.

Lemma 10. Given R ∈ S , if we set A = τ(R) then, for any m, 1 ! m ! |A|, there exists
an i, 1! i ! |R| such that A[1,m] = τ(A[1, i]) and A[m, |A|] = τ(R[i, |R|]).

Lemma 11. Let A1,A2 be two typical sequences where A2 ≺ A1. Then, for any m1,
1 ! m1 ! |A1|, there exists an m2, 1 ! m2 ! |A2|, such that A2[1,m2] ≺ A1[1,m1] and
A2[m2, |A2|] ≺ A1[m1, |A1|].

Lemma 12. Let Ai , Bi , i = 1,2, be four typical sequences where Ai ≺ Bi , i = 1,2. Then
τ(A1 · A2) ≺ τ(B1 · B2).

The next result reveals a property of typical sequences that is crucial for the correctness
of our algorithm.

Lemma 13. Given R ∈ S , if we set A = τ(R) then, for any r , 1! r ! |R|, there exists an
integer i, 1! i ! |A|, such that A[1, i] ≺ τ(R[1, r]) and A[i, |A|] ≺ τ(R[r, |R|]).

Proof. In the case where, for any r , there exists an integer i, 1 ! i ! |A|, such that
A[1, i] = τ(R[1, r]) and A[i, |A|] = τ(R[r, |R|]) we have a stronger version of the re-
quired and we are done.
Otherwise, for any r , 1 ! r ! |R|, let k and l, 1 ! k < r < l ! |R|, be the indices of

the two local extremes closest to r (i.e., R[k, l] is a maximal monotone subsequence). Let
j = β−1

A (k), 1 ! j < |A|, be the local maximum of A corresponding to R(k). Observe
that A[1, j ] = τ(R[1, k]) and A[j + 1, |A|] = τ(R[l, |R|]). Furthermore, as A is a typical
sequence, we have that A(j) *= A(j + 1) and therefore, R(k) *= R(l).
Let us show that, in case R(k) > R(l), the lemma holds taking i = j + 1. When R(k) >

R(l)we have thatA(j) = R(k) and thatA[j +1] = R[l] ≺ R[k+1, r]. Therefore,A[j, j +
1] ≺ τ(R[k, r]) and A[j + 1] ≺ τ(R[r, l]). Using the fact that A[1, j ] = τ(R[1, k]) and
Lemma 12, we get

A[1, j + 1] = τ
(
A[1, j ] · A[j + 1]

)
≺ τ

(
τ
(
R[1, k]

)
· τ

(
R[k + 1, r]

))

= τ
(
R[1, k] · R[k + 1, r]

)
= τ

(
R[1, r]

)
.

Now using the fact that A[j + 1, |A|] = τ(R[l, |R|]) and Lemma 12, we get

A
[
j + 1, |A|

]
= τ

(
A[j + 1] · A

[
j + 1, |A|

])
≺ τ

(
τ
(
R[r, l]

)
· τ

(
R

[
l, |R|

]))

= τ
(
R[r, l] · R

[
l, |R|

])
= τ

(
R

[
r, |R|

])
.
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In the case where R(k) < R(l) a symmetric argument shows that A[1, j ] ≺ τ(R[1, |R|]
and A[j, |A|] ≺ τ(R[r, |R|]), so the lemma holds taking i = j . !

As an example illustrating Lemma 13, we consider the sequences

R = [2,6,7,8,5,4,3,5,2,4,6,4,4] and A = τ(R) = [2,8,2,6,4].
If we choose r = 7, we have that j = 2, k = 4, and l = 9. Notice that,

[2,8] = τ
(
[2,6,7,8]

)
,

[8,2] ≺ τ
(
[8,5,4,3]

)
,

[2] ≺ τ
(
[3,5,2]

)
,

[2,6,4] = τ [2,4,6,4,4],
[2,8,2] ≺ τ

(
[2,6,7,8,5,4,3]

)
,

[2,6,4] ≺ τ
(
[3,5,2,4,6,4,4]

)
.

Now we extend the definitions to sequences of typical sequences. Suppose now that
A = [A0, . . . ,Ar ] and B = [B0, . . . ,Br ] are two sequences of typical sequences (recall
that such sequences are indexed starting by 0). We say that A≺ B if ∀i,0!i!r Ai ≺ Bi . For
any integer t we set A+ t = [A0 + t, . . . ,A|A| + t] and max(A) =maxi,0!i!|A|{maxAi}.
Finally, for any sequence of typical sequences A we set τ(A) = τ(A(0) · · · · ·A(|A|)). As
an example,

τ
([

[5,2,8,1], [4,9,3], [3], [3,9,2,5,3]
])

= τ
(
[5,2,8,1,4,9,3,3,3,9,2,5,3]

)

= [5,2,8,1,9,2,5,3].
Given two typical sequences A,B and an integer j , 1! j ! |τ(A · B)|, we define

δ(A,B, j) =
{

(0, βA·B(j)) if βA·B(j) ! |A|,
(1, βA·B(j) − |A|) otherwise.

As an example we have that if A = [1,3,2] and B = [8,5,9], we have that τ(A · B) =
[1,9], δ(A,B,1) = (0,1), and δ(A,B,2) = (1,3). Function δ will be used in Section 4.

2.4. Characteristics

We now define the notion of characteristic of a vertex ordering of a graph with respect
to a small subset of its vertices. Characteristics will serve as key-tools for our algorithm.
Several other versions of characteristics have been used for the computation of other pa-
rameters like pathwidth and treewidth [5], linear-width [7], and branchwidth [20]. As
mentioned before, a characteristic serves to filter the main data structure of a parameter
to its essential part, a part that is able to be constructed from node to node of the path de-
composition. Moreover, the information encoded by a characteristic certifies the existence
of small cutwidth layouts, furthermore it depends only on the width of the path decompo-
sition and, therefore, its size is bounded by a fixed constant w.
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Procedure Com(l,R, S).

Input: A characteristic (l,R) and a set S of elements in l = [v1, . . . , v|l|].
Output: A characteristic (λ,A).

1: λ ← l[S] and assume the notation λ = [vi1 , vi2 , . . . , viρ ].
2: A← [τ(R[0, i1 − 1]), τ (R[i1, i2 − 1]), . . . , τ (R[iρ−1, iρ − 1]), τ (R[iρ , |l|])].
3: Output (λ,A).
4: End.

Fig. 2. Procedure Com.

We call a characteristic any pair (λ,A) where λ is a layout of a graph and A is a
sequence of typical sequences in S such that |A| = |λ| + 1. Notice that for any graph G

and any vertex ordering l of V (G) the pair (l,QG,l) is a characteristic.
To give an example of a characteristic, consider the pair

(
[a, b, c, d, e],

[
[0,3], [4], [3,7,2], [3], [8,1,3], [3,8,4,6]

])
.

We also use a different notation for characteristics, e.g.:

[0,3] a [4] b [3,7,2] c [3] d [8,1,3] e [3,8,4,6].
The procedure Com, described in Fig. 2, defines the compression of a characteristic rela-

tive to a subset of vertices. Intuitively, it compresses the concatenations of the sequences of
R delimited by the positions of the elements of S (recall that the indices of the sequences
of R start from 0).
The compression of the previous example of characteristic to the set S = {a, c} is the

characteristic

[0,3] a [4,3,7,2] c [3,8,1,8,4,6].
Let us start by defining a characteristics associated to a vertex ordering of a graph.

Given a graph G with n vertices, a vertex ordering l of G and S ⊆ V (G), the
S-characteristic of l is CS(G, l) = Com(l,QG,l, S). Notice that, from the definition of
the S-characteristic of a vertex ordering l of a graph G we have CV (G)(G, l) = (l,QG,l),
taking into account that Com(l,QG,l,V (G)) = (l,QG,l).
As an example we mention that, for the graph and ordering l given in Fig. 5, taking

N = {b, e, g}, the characteristics CN(G, l) and CV (G)−N(G, l) are:

[0,3] b [3,4,3] e [3,2] g [0], [0] a [3] c [4] d [3] f [2,0].
Given the S-characteristics (λi,Ai ), i = 1,2, of two different vertex orderings l1 and l2

of G we say that (λ1,A1) ≺ (λ2,A2) when λ1 = λ2 and A1 ≺A2.
The following result is an easy consequence of the definition of compression and the

obvious fact that for a sequence of typical sequences A, if A = τ(R), then A + 1 =
τ(R+ 1).

Lemma 14. Given a graph G, a vertex ordering l of G, and a vertex subset S. Assume
that CS(G, l) = (λ,A). For any two vertices a, b of S, let i = rankl (a), i′ = rankλ(a),
j = rankl(b), and j ′ = rankλ(b), then we have
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(
λ,A

[
1, i′ − 1

]
·
(
A

[
i′, j ′ − 1

]
+ 1

)
·A

[
j ′, |A|

])

= Com
(
l,QG,l[1, i − 1] ·

(
QG,l[i, j − 1] + 1

)
·QG,l

[
j, |QG,l |

]
, S

)
.

Given a graph G and a vertex subset S, we say that a characteristic (λ,A) is a
S-characteristic when (λ,A) = CS(l,G) for some ordering l of the vertices of G.

3. A decision algorithm for cutwidth

In this section, we give for any pair of integer constants k, w, an algorithm that, given
a graph G and a nice path decomposition X = [X1, . . . ,Xr ] of width at most w, decides
whether G has cutwidth at most k.
Using now Lemma 5 and working in a similar way as in the proof of Lemma 3.1 in [5]

we can prove that for any i, the number of Xi -characteristics of Gi depends only on k
and w.

Lemma 15. Let G be a graph and let X = [X1, . . . ,Xr ] be a nice path decomposition of
G with width at most w. Let Xi , 1 ! i ! r , be some node in X. The number of different
Xi -characteristics of all possible vertex orderings of Gi = G[⋃i

j=1Xj ] with cutwidth at
most k, is bounded by (w + 1)!( 8322k)w+1.

Proof. Let (λ,A) be aXi -characteristic of some vertex ordering ofGi . Clearly, V (λ) = Xi

and, as |Xi | ! w + 1, there are at most (w + 1)! ways to choose λ. For each one of them,
there are ! w + 1 typical sequences in A to be chosen. From Lemma 5, there are at most
8
32
2k different ways to choose each of these sequences and the lemma follows. !

Finally, we introduce the latest component of our algorithm. Assume from now on that
w and k are fixed constants and that we have a graph G and that X = [X1, . . . ,Xr ] is
a nice path decomposition of G, with width at most w. A full set of characteristics for
Gi is a set FS(i) of Xi -characteristics of vertex orderings of the graph Gi with cutwidth
at most k, such that for each vertex ordering l of Gi with cutwidth at most k, there is a
vertex ordering l′ of Gi such that CXi (Gi, l

′) ≺ CXi (Gi, l) and CXi (Gi, l
′) ∈ FS(i), i.e.,

the Xi -characteristic of l′ is in FS(i). The following lemma can be derived directly from
the definitions.

Lemma 16. A full set of characteristics for the graph Gi is non-empty if and only if the
cutwidth of Gi is at most k. If some full set of characteristics forGi is non-empty, then any
full set of characteristics for Gi is non-empty.

An important consequence of Lemma 16 is that the cutwidth of G is at most k, if and
only if any full set of characteristics of Gr = G is non-empty. The general lines of the
algorithm Check-Cutwidth are given in Fig. 3. In what follows, we complement the schema
showing how to compute a full set of characteristics at a node Xi inO(1) time, when a full
set of characteristics for Gi−1 is given (i " 2). Therefore the algorithm Check-Cutwidth
finishes in O(n) time.
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Algorithm Check-Cutwidth(G,X,k).

Input: A graph G, a path decomposition X of G with width w, and an integer k.
Output:Whether cutwidth(G) ! k.

1: Compute a full set F1 of X1-characteristics for G1.
2: For any i, 1< i ! r , compute a full set of Xi -characteristics Fi for Gi using Fi−1 and Xi ’s type.
3: If Fr *= ∅ then output “cutwidth(G) ! k”, otherwise output “cutwidth(G) > k”.
4: End.

Fig. 3. Algorithm Check-Cutwidth.

3.1. A full set for a start node

We first give a full set of characteristics for G1. Clearly, G1 consists only of the unique
vertex in X1 = {xstart} and a full set of characteristics is {[xstart], [[0], [0]]}.

3.2. A full set for an introduce node

We will now consider the case where Xi is an introduce node. The procedure Ins,
depicted in Fig. 4, is the basis to compute a Xi -characteristic after the insertion of the
introduced vertex and the additional edges that appear inGi at some point j of a layout for
Gi−1.
The following lemma is a direct consequence of the definitions of QG,l , QG′,l′ and the

insertion procedure. Recall that the sequences in QG,l and QG′,l′ are sequences consisting
of only one element counting the number of “crossing edges” in the “gaps” of l and l′

respectively.

Lemma 17. LetG be a graph, let l be a layout ofG, and let γ be an integer where 0! γ !
|l|. If G′ = G +u N for some N ⊆ V (G) and u /∈ V (G), then Ins(G,u,V (G),N, l,QG,l,

γ,1) is the V (G′)-characteristic of the layout l′ = l[1, γ ] · [u] · l[γ + 1, |l|] of G′, that
is Ins(G,u,V (G),N, l,QG,l, γ,1) = (l′,QG′,l′), where Ins is the procedure described in
Fig. 4.

Procedure Ins(G,u,S,N,λ,A, j,m).

Input: A graphG, a vertex u /∈ V (G), two sets S andN ,N ⊆ S ⊆ V (G), a S-characteristic (λ,A) of some layout
of G, an integer j , 0! j ! |λ|, and an integer m, 1! m ! |A(j)|.

Output: An (S ∪ {u})-characteristic (λ′,A′) of some vertex ordering of G′ = G +u N where 0! γ ! |l|.
Assume that λ = [u1, . . . , uρ ], and λ[N ] = [uj1 , . . . , ujσ ].

1: (Insertion of u) Set λ′ = λ[1, j ] · [u] · λ[j + 1, ρ] and A′ = A[0, j − 1] · [A(j)[1,m]] · [A(j)[m, |A(j)|]] ·
A[j + 1, ρ].

2: (Insertion of the edges from u) for h = 1 to σ do
(i) If jh ! j then set A′ ←A′[0, jh − 1] · (A′[jh, j ] + 1) ·A′[j + 1, ρ + 1].
(ii) If jh " j + 1 then set A′ ←A′[0, j ] · (A′[j + 1, jh] + 1) ·A′[jh + 1, ρ + 1].

3: Output (λ′,A′).
4: End.

Fig. 4. Procedure Ins.
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Fig. 5. Examples of Lemma 17 where G is the graph depicted in Fig. 1, G′ = G +u N , l = [a, b, c, d, e, f, g],
and N = {b, e, g}. Layouts l′ and l′′ correspond to γ = 4 and γ = 1 respectively.

In Fig. 5 we give two examples illustrating Lemma 17 for γ = 4 (see layout l′) and
γ = 1 (see layout l′′).
The following lemma supports the correctness of the output of the procedure Ins and

constitutes the main tool for the construction of a full set of characteristics for an introduce
node.

Lemma 18. Let G be a graph, N ⊆ S be two subsets of V (G), l be a vertex ordering of
G, (λ,A) = CS(l,QG,l) be the S-characteristic of l and G′ = G +u N where u /∈ V (G).
Then the following hold.

(i) For any j , 0! j ! |λ|, and m, 1! m ! |A(j)|, there exists an integer γ , 0! γ ! |l|,
such that

Ins(G,u,S,N,λ,A, j,m) = Com
(
Ins

(
G,u,V (G),N, l,QG,l, γ,1

)
, S ∪ {u}

)
.

(ii) For any γ , 0! γ ! |l|, there exist two integers j , 0! j ! |λ|, andm, 1! m ! |A(j)|,
such that

Ins(G,u,S,N,λ,A, j,m) ≺ Com
(
Ins

(
G,u,V (G),N, l,QG,l, γ,1

)
, S ∪ {u}

)
.

Proof. Let us start by proving part (i). Recall that (λ,A) = Com(l,QG,l, S). Let l =
[v1, . . . , v|l|] and λ = [vi1, . . . , viρ ]. From the definition of the procedure Com we have
that ∀h,0!h!ρ A(h) = τ(QG,l[ih, ih+1 − 1]) (for convenience, we set i0 = 0). It is now
easy to verify that

A[0, j − 1] =
[
τ
(
QG,l[0, i1 − 1]

)
, τ

(
QG,l[i1, i2 − 1]

)
, . . . ,

τ
(
QG,l[ij−1, ij − 1]

)]
, (1)

A(j) = τ
(
QG,l[ij , ij+1 − 1]

)
, (2)
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A[j + 1, ρ] =
[
τ
(
QG,l[ij+1, ij+2 − 1]

)
, . . . , τ

(
QG,l[iρ−1, iρ − 1]

)
,

τ
(
QG,l

[
iρ, |l|

])]
. (3)

Applying now Lemma 10 to (2), we have that there exists γ , ij ! γ < ij+1, such that

A(j)[1,m] = τ
(
Q[ij , γ ]

)
, (4)

A(j)
[
m,

∣∣A(j)
∣∣] = τ

(
Q[γ, ij+1 − 1]

)
. (5)

Observe that, as ij ! γ < ij+1, the following hold

l[1, γ ][S] = λ[1, j ], (6)
l
[
γ + 1, |l|

]
[S] = λ[j + 1, ρ]. (7)

Let (λ′,A′) and (l′,R) be the characteristics constructed by step 1 of the procedures
Ins(G,u,S,N,λ,A, j,m) and Ins(G,u,V (G),N, l,QG,l, γ,1) respectively. We will
prove now that (λ′,A′) = Com((l′,R), S). Notice first that λ′ = λ[1, j ] · [u] · λ[j + 1, |ρ|]
and l′ = l[1, γ ] · [u] · l[γ + 1, |l|]. Using now (6) and (7), it follows that λ′ = l′[S ∪ {u}] =
[vi1, . . . , vij , u, vij+1, . . . , viρ ]. Notice now that

A′ =A[0, j − 1] ·
[
A(j)[1,m]

]
·
[
A(j)

[
m,

∣∣A(j)
∣∣]] ·A[j + 1, ρ], (8)

R=QG,l[0, ij − 1] ·QG,l[ij , γ ] ·QG,l[γ, ij+1 − 1] ·QG,l

[
ij+1, |l|

]
. (9)

Taking now in mind (9) and the fact that λ′ = [vi1, . . . , vij , u, vij+1, . . . , viρ ], we can con-
clude that the sequence of typical sequences in the output of Com(l,R, S ∪ {u}) is

[
τ
(
QG,l[0, i1 − 1]

)
, . . . , τ

(
QG,l[ij−1, ij − 1]

)
, τ

(
QG,l[ij , γ ]

)
,

τ
(
QG,l[γ, ij+1 − 1]

)
, . . . , τ

(
QG,l

[
iρ, |l|

])]
. (10)

Using now (1), (3), (4), and (5) we have that the sequence of typical sequences in (10) is
equal to A′ in the form it is presented in (8).
So far, we have seen that (λ′,A′) = Com((l′,R), S ∪{u}). In what follows we will prove

that this relation is invariant under the transformations applied to (λ′,A′) and (l′,R) during
step 2 of the insertion procedure.
Notice that during step 2, no vertex is introduced, only new edges are taken into account

and added, therefore the respective vertex orderings do not change. We will use the nota-
tion (λ′,A(h)) and (l′,R(h)) for the contents of A and R at the end of the hth execution of
the loop in step 2 of Ins(G,u,S,N,λ,A, j,m) and Ins(G,u,V (G),N, l,QG,l, γ,1) re-
spectively. And for convenience we set (λ′,A′) = (λ′,A(0)), and (l′,R) = (l′,R(0)). To see
that for any h (λ′,A(h)) = Com((l′,R(h)), S ∪ {u}) we proceed by induction.
Suppose that (λ′,A(h)) = Com(l′,R(h), S ∪ {u}) for any h, 0 < h < ξ . It remains to

prove that (λ′,A(ξ)) = Com(l′,R(ξ), S ∪ {u}).
Assume that µ1 = l[N ∩ V (l[1, γ ])] and µ2 = l[N ∩ V (l[γ + 1, |l|])]. Then we have

rankl (v) = rankl′(v), for v ∈ V (µ1),

rankl(v) + 1= rankl′(v), for v ∈ V (µ2),

rankλ(v) = rankλ′(v), for v ∈ V (µ1),

rankλ(v) + 1= rankλ′(v), for v ∈ V (µ2),
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rankl′(u) = γ + 1,
rankλ′(u) = j + 1,

λ = µ1 · µ2,
λ′ = µ1 · [u] · µ2.

Assume that the vertex to be taken from N in this step has rank jξ in l and rank ξ in λ. In
the case that jξ ! j we have that

R(ξ) =R(ξ−1)[0, jξ − 1] ·
(
R(ξ−1)[jξ , γ ] + 1

)
·R(ξ−1)[γ + 1, |l| + 1

]
, (11)

A(ξ) =A(ξ−1)[0, ξ − 1] ·
(
A(ξ−1)[ξ, j ] + 1

)
·A(ξ−1)[j + 1, ρ + 1]. (12)

As jξ = rankl′(u), γ + 1= rankλ′(u), ξ = rankl′(ujξ ) and j + 1= rankλ′(ujξ ), Lemma 14
implies that (λ(ξ),A(ξ)) = Com(l(ξ−1),R(ξ), S ∪ {u}). In the case jξ " j + 1 we have that

R(ξ) =R(ξ−1)[0, γ ] ·
(
R(ξ−1)[γ + 1, jξ ]

)
·R(ξ−1)[jξ + 1, |l| + 1

]
, (13)

A(ξ) =A(ξ−1)[0, j ] ·
(
A(ξ−1)[j + 1, ξ ] + 1

)
·A(ξ−1)[ξ + 1, ρ + 1]. (14)

As γ + 1 = rankl′(u), jξ + 1 = rankl′(ujξ ), j + 1 = rankλ′(u), and ξ + 1 = rankλ′(ujξ ),
Lemma 14 implies that (λ(ξ),A(ξ)) = Com(l(ξ−1),R(ξ), S ∪ {u}) and this completes the
proof of (i). The arguments to prove (ii) are exactly the same as in the proof of (i) with
the difference that now weaker versions of (1), (3), (4), and (5) are required. As (λ,A) =
Com(l,QG,l, S), we can assume again that l = [v1, . . . , v|l|] and λ = [vi1, . . . , viρ ]. From
the definition procedure Com there exists j , 0 ! j ! |ρ|, such that ij ! γ < ij+1 (for
convenience, we set i0 = 0 and iρ+1 = |l| + 1). Notice now that for this choice of j , (1)–
(3) hold and (1) and (3) can be rewritten in the following weaker form.

A[0, j − 1] ≺
[
τ
(
QG,l[0, i1 − 1]

)
, τ

(
QG,l[i1, i2 − 1]

)
, . . . ,

τ
(
QG,l[ij−1, ij − 1]

)]
, (15)

A[j + 1, ρ] ≺
[
τ
(
QG,l[ij+1, ij+2 − 1]

)
, . . . ,

(
QG,l[iρ−1, iρ − 1]

)
,

τ
(
QG,l

[
iρ, |l|

])]
. (16)

From Lemma 13 there exists an integer m, 1! m !A(j), where

A(j)[1,m] ≺ τ
(
Q[ij , γ ]

)
, (17)

A(j)
[
m,

∣∣A(j)
∣∣] ≺ τ

(
Q[γ, ij+1 − 1]

)
. (18)

Notice that (15), (16), (17), and (18) are the same as (1), (3), (4), and (5) with the differ-
ence that “=” has been replaced by “≺”. From this fact, using the same proof as in case
(i), it follows that Ins(G,u,S,N,λ,A, j,m) ≺ Com(Ins(G,u,V (G),N, l,QG,l, γ,1), S∪
{u}). !

As an example for Lemma 18, we consider the graphs G and G′ and their vertex or-
derings l, l′ and l′′ as depicted in Fig. 5. If we set S = N ∪ {d} = {b, d, e, g} we have that
CS(G, l) = (λ,A) is the characteristic [0,3] b [3,4] d [3] e [3,2] g [0]. Notice that in l′, if
j = 2 and m = 1, Lemma 18(i) gives γ = 4. Moreover, in l′′, if γ = 1, Lemma 18(ii) gives
j = 0 and m = 2.
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We will now prove some monotonicity properties of the insertion procedure.

Lemma 19. Let (λ,Ai ), i = 1,2, be two characteristics of a graph G where (λ,A2) ≺
(λ,A1). Let N,S be subsets of V (G) and let G′ = G +u N for some u /∈ V (G). Then for
any j , 0 ! j ! |A1|, and any m1, 1 ! m1 ! |A1(j)|, there exists m2, 1 ! m2 ! |A2(j)|,
such that

Ins(G,u,S,N,λ,A2, j,m2) ≺ Ins(G,u,S,N,λ,A1, j,m1).

Proof. As (λ,A2) ≺ (λ,A1), for any j , we have A2(j) ≺ A1(j). Therefore, Lemma 11
implies that there exists m2, 1! m2 ! |A2(j)|, such that

A2(j)[1,m2] ≺A1(j)[1,m1] and A2(j)
[
m2,

∣∣A2(j)
∣∣] ≺A1(j)

[
m1,

∣∣A1(j)
∣∣].

Moreover, ∀i,0!i!j−1 A2(i) ≺A1(i) and ∀i,j+1!i!ρ A2(i) ≺A1(i). Therefore, if
A′

i =Ai[0, j − 1] ·
[
Ai (j)[1,mi]

]
·
[
Ai (j)

[
m1,

∣∣Ai (j)
∣∣]] ·Ai[j + 1, ρ],

for i = 1,2, then A′
2 ≺ A′

1. Observe that, A
′
1 and A

′
2 are the sequences of typical

sequences created after step 1 of the computation of Ins(G,u,S,N,λ,A1, j,m1) and
Ins(G,u,S,N,λ,A2, j,m2) respectively. Moreover, the vertex orderings constructed after
step 1 of Ins(G,u,S,N,λ,A1, j,m1) and Ins(G,u,S,N,λ,A2, j,m2) are both identical
and we denote them λ′. It now remains to prove that after step 2, A′

2 ≺A′
1. We proceed by

induction.
For i = 1,2 let A(h)

i denote the value of A′
i after the hth execution of the loop in step

2 of the computation of Ins(G,u,S,N,λ,Ai , j,mi), i = 1,2, and set A(0)
i =A′

i . Suppose
that A(h)

2 ≺ A(h)
1 for any h, 0 < h < ξ . It remains to prove that A(ξ)

2 ≺ A(ξ)
1 . Assume that

the vertex of N considered in this step has rank jξ in l and ξ in λ′. We examine only the
case where jξ ! j as the case where jξ " j + 1 is analogous. By induction hypothesis
A(ξ−1)
2 ≺A(ξ−1)

1 , therefore

A(ξ−1)
2 [0, jξ − 1] ≺A(ξ−1)

1 [0, jξ − 1], (19)

A(ξ−1)
2 [jξ , j ] ≺A(ξ−1)

1 [jξ , j ], (20)

A(ξ−1)
2 [j, ρ + 1] ≺A(ξ−1)

1 [j, ρ + 1]. (21)

Clearly, (20) is equivalent to

A(ξ−1)
2 [jξ , j ] + 1≺A(ξ−1)

1 [jξ , j ] + 1. (22)

Taking into account that, for i = 1,2,

Aξ
i =A(ξ−1)

i [0, jξ − 1] ·
(
A(ξ−1)

i [jξ , j ] + 1
)
·A(ξ−1)

i [j, ρ + 1],

we conclude A(ξ)
2 ≺A(ξ)

1 as a consequence of (19), (22), and (21). !

We now give an algorithm (algorithm Introduce-Node) given in Fig. 6 that, for any
introduce node Xi , computes a full set of characteristics for the graph Gi , given a full
set of characteristics for the graph Gi−1. Now we prove the correctness of the previous
algorithm.
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Algorithm Introduce-Node.

Input: A full set of characteristics FS(i − 1) for Gi−1.
Output: A full set of characteristics FS(i) for Gi .

1: Initialize FS(i) = ∅ and set ρ = |Xi−1|, {u} = Xi − Xi−1, and N = NGi
(u).

2: For any Xi−1-characteristic (λ,A) ∈ FS(i − 1) do
3: for j = 0 to ρ do
4: for m = 1 to |A(j)| do
5: Let (λ′,A′) = Ins(Gi ,u,Xi−1,N,λ,A, j,m).

If max(A′) ! k, then set FS(i) ← FS(i) ∪ {(λ′,A′)}.
6: Output FS(i).
7: End.

Fig. 6. The algorithm to compute a full set of characteristics for an introduce node.

Lemma 20. Given a nice path decomposition X = [X1, . . . ,Xr ] of a graph G. If Xi is
an introduce node and FS(i − 1) is a full set of characteristics for the graph Gi−1 =
G[⋃1!j!i−1Xj ], then the set FS(i) constructed by the Introduce-Node algorithm is a full
set of characteristics for the graph Gi = G[⋃1!j!i Xj ].

Proof. We prove first that FS(i) is a set of Xi -characteristics for the graph Gi . We show
that for any (λ′,A′) ∈ FS(i) there exists a vertex ordering l′ of Gi where (λ′,A′) =
CXi (Gi, l

′). Clearly, as (λ′,A′) was constructed by the algorithm Introduce-Node, there
must be a characteristic (λ,A) ∈ FS(i − 1) and two integers j , 0 ! j ! |λ|, and m,
1! m ! |A(j)|, such that

(
λ′,A′) = Ins(Gi−1, u,Xi−1,N,λ,A, j,m). (23)

As (λ,A) is a Xi−1-characteristic for Gi−1, there exists a vertex ordering l of Gi−1 of
cutwidth at most k where (λ,A) = CXi−1(Gi−1, l). From part (i) in Lemma 18, we have
that there exists an integer γ , 0! γ ! |l|, such that

Ins(Gi−1, u,Xi−1,N,λ,A, j,m)

= Com
(
Ins

(
Gi−1, u,V (Gi−1),N, l,QGi−1,l , γ,1

)
,Xi−1 ∪ {u}

)
. (24)

From Lemma 17, we have that Ins(Gi−1, u,V (Gi−1),N, l,QGi−1,l , γ,1) is the V (Gi)-
characteristic of l = l(1, γ ) · [u] · l(γ + 1, |l|) and therefore,

Com
(
Ins

(
Gi−1, u,V (Gi−1),N, l,QGi−1,l , γ,1

)
,Xi

)
= Com

(
l′,QG′,l′ ,Xi

)
. (25)

Combining now (23), (24), and (25), we have that (λ′,A′) = Com(l′,QG′,l′ ,Xi) =
CXi (Gi, l

′). It remains to prove that FS(i) is a full set of characteristics for Gi . Let l′

be a vertex ordering of Gi with cutwidth at most k. Let us show that there exists a ver-
tex ordering l′∗ of Gi such that CXi (Gi, l

′
∗) ≺ CXi (Gi, l

′) and CXi (Gi, l
′
∗) ∈ FS(i). Setting

γ = rankl′(u) − 1 and l = l′[1, γ ] · l′[γ + 2, |l|], from Lemma 17, we have that
Ins

(
Gi−1, u,V (Gi−1),N, l,QGi−1,l , γ,1

)
=

(
l′,QGi,l′

)

and therefore,
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Com
(
Ins

(
Gi−1, u,V (Gi−1),N, l,QGi−1,l , γ,1

)
,Xi

)

= Com(l,QGi,l′ ,Xi) = CXi

(
Gi, l

′). (26)
Set now (λ,A) = CXi (Gi, l). From part (ii) of Lemma 18 we have that there are values j
and m, 0! j ! |λ| and 1! m ! |A(j)|, such that

Ins(Gi−1, u,Xi−1,N,λ,A, j,m)

≺ Com
(
Ins

(
Gi−1, u,V (Gi−1),N, l,QGi−1,l , γ,1

)
,Xi−1 ∪ {u}

)
. (27)

As FS(i − 1) is a full set of characteristics, there exists a vertex ordering l∗ of V (Gi−1) for
which

CXi−1(Gi−1, l∗) ≺ CXi−1(Gi−1, l) and CXi−1(Gi−1, l∗) ∈ FS(i − 1).
Let (λ∗,A∗) = CXi−1(Gi−1, l∗). From Lemma 19, we have that there exists a m∗ such that

Ins(Gi−1, u,Xi−1,N,λ∗,A∗, j,m∗) ≺ Ins(Gi−1, u,Xi−1,N,λ,A, j,m). (28)
From part (i) of Lemma 18, there exists γ∗, 0! γ∗ ! |l∗|, such that

Com
(
Ins

(
Gi−1, u,V (Gi−1),N, l∗,QGi−1,l∗ , γ∗,1

)
,Xi

)

= Ins(Gi−1, u,Xi−1,N,λ∗,A∗, j,m∗). (29)
Defining l′∗ = l∗[1, γ∗] · [u] · l∗[γ∗ + 1, |l∗|] and applying Lemma 17 we have that

(
l′∗,QGi,l′∗

)
= Ins

(
Gi−1, u,V (Gi−1),N, l∗,QGi−1,l∗ , γ∗,1

)

and therefore,

CXi

(
Gi, l

′
∗
)
= Com

(
l′∗,QGi,l′∗ ,Xi

)

= Com
(
Ins

(
Gi−1, u,V (Gi−1),N, l∗,QGi−1,l∗ , γ∗,1

)
,Xi

)
. (30)

From (29) and (30) we have that CXi (Gi, l
′
∗) = Ins(Gi−1, u,Xi−1,N,λ∗,A∗, j,m∗).

Since (QGi−1 , l∗) ∈ FS(i − 1) we obtain CXi (Gi, l
′
∗) ∈ FS(i). Finally, combining rela-

tions (26)–(30) we conclude that CXi (Gi, l
′
∗) ≺ CXi (Gi, l

′). !

3.3. A full set for a forget node

We now consider the case whereXi is a forget node. We provide an algorithm that given
a full set of characteristics FS(i − 1) for Xi−1, computes a full set of characteristics FS(i)
for Xi . We start by defining the deletion procedure Del (see Fig. 7) that operates inversely
to the insertion procedure Ins.
The following lemma is a direct consequence of the definitions of the procedures Com

and Del.

Lemma 21. Let (l,R) be a characteristic of a given graph G and let V ⊆ V (l). Then, for
any v ∈ V , Com(l,R,V − {v}) = Del(Com(l,R,V ), v).

Observe that Lemma 21 provides an alternative recursive definition of the procedure
Com, based on the procedure Del.
The following monotonicity result is a direct consequence of Lemma 12.
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Procedure Del(G,v,S,λ,A).

Input: A graph G, a vertex v, a set S ⊆ V (G) an S-characteristic (λ,A), where v ∈ V (λ),
of some vertex ordering of G.

Output: An S-characteristic (λ′,A′).

Assume that λ = [u1, . . . , uρ ] and j = rankλ(v).

1: λ′ ← λ(1, j − 1) · λ(j + 1, ρ).
2: A′ ←A[0, j − 2] · [τ(A(j − 1) ·A(j))] ·A[j + 1, ρ].
3: Output (λ′,A′).
4: End.

Fig. 7. Procedure Del.

Lemma 22. Let (li ,Ri ), i = 1,2, be two characteristic of a given graph G. If (l2,R2) ≺
(l1,R1), then for any u ∈ V (l1), Del(l2,R2, u) ≺ Del(l1,R1, u).

Now we can give an algorithm (algorithm Forget-Node given in Fig. 8) that, for any
forget node Xi , computes a full set of characteristics for the graph Gi , given a full set of
characteristics for the graph Gi−1.

Lemma 23. If FS(i − 1) is a full set of Xi−1-characteristics then the set FS(i) constructed
by the Forget-Node algorithm is a full set of Xi -characteristics for Gi .

Proof. Let u ∈ Xi−1 be the forgotten vertex. As Gi = Gi−1 we will use the unifying
notation Ĝ for both of them. We start proving that FS(i) is a set of Xi -characteristics
for Ĝ. We need to prove that, for any (λ′,A′) ∈ FS(i), there exists a vertex ordering l of Ĝ
where

CXi

(
l, Ĝ

)
= Com(l,QĜ,l ,Xi) =

(
λ′,A′).

As (λ′,A′) has been constructed by the procedure Forget-Node there must exists a Xi−1-
characteristic (λ,A) ∈ FS(i − 1) such that

(
λ′,A′) = Del(λ,A, u). (31)

As (λ,A) ∈ FS(i − 1), there exists a vertex ordering l of Ĝ such that

(λ,A) = Com(l,QĜ,l ,Xi−1) (32)

Algorithm Forget-Node.

Input: A full set of characteristics FS(i − 1) for Gi−1.
Output: A full set of characteristics FS(i) for Gi .

1: Initialize FS(i) = ∅ and let u be the forget vertex of Gi .
2: For any (λ,A) ∈ FS(i − 1) do
3: FS(i) ← FS(i) ∪ {Del(λ,A, u)}.
4: Output FS(i).
5: End.

Fig. 8. The algorithm to compute a full set of characteristics for a forget node.
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and therefore, from (31) and (32) we have
(
λ′,A′) = Del

(
Com(l,QĜ,l ,Xi−1), u

)
(33)

and using (33) and Lemma 21 we have that CXi (l, Ĝ) = Com(l,QĜ,l ,Xi) = (λ′,A′).
We will now prove that FS(i) is a full set of Xi -characteristics for Ĝ. Let l be a vertex

ordering of Ĝ of cutwidth at most k. We will show that there exists a vertex ordering l∗ of
Ĝ such that

CXi

(
Ĝ, l∗

)
≺ CXi

(
Ĝ, l

)
and CXi

(
Ĝ, l∗

)
∈ FS(i).

From Lemma 21 we have that

CXi

(
Ĝ, l

)
= Com(l,QĜ,l ,Xi) = Del

(
Com(l,QĜ,l ,Xi−1), u

)
. (34)

As FS(i − 1) is a full set of characteristics, there exists a vertex ordering l∗ of V (Ĝ) such
that CXi−1(Ĝ, l∗) ∈ FS(i − 1) and CXi−1(Ĝ, l∗) ≺ CXi−1(Ĝ, l) or, equivalently,

Com(l∗,QĜ,l∗ ,Xi−1) ≺ Com(l,QĜ,l ,Xi−1). (35)

Using now Lemma 22 we can rewrite (35) as follows.

Del
(
Com(l∗,QĜ,l∗ ,Xi−1), u

)
≺ Del

(
Com(l,QĜ,l ,Xi−1), u

)
. (36)

Applying again Lemma 21 we have that

CXi

(
Ĝ, l∗

)
= Com(l∗,QĜ,l∗ ,Xi) = Del

(
Com(l∗,QĜ,l∗ ,Xi−1), u

)
. (37)

Combining now (34), (36), and (37), we have that CXi (Ĝ, l∗) ≺ CXi (Ĝ, l). Finally as

CXi−1
(
Ĝ, l∗

)
= Com(l∗,QĜ,l∗ ,Xi−1) ∈ FS(i − 1),

the output of Del(Com(l∗,QĜ,l∗ ,Xi−1), u) will be one of the characteristics included in
FS(i). And we conclude CXi (Ĝ, l∗) ∈ FS(i). !

4. Computing a vertex ordering

Suppose now that, given a path decomposition X = [X1, . . . ,Xr ] of G with bounded
width, after running the algorithm Check-Cutwidth, described in the previous section, we
know that a graph G has cutwidth at most k, i.e., the computed set FS(r) is not empty. We
describe now a way to further construct a vertex ordering of G with cutwidth at most k,
and the modifications and additions needed to perform to the algorithm Check-Cutwidth,
we refer to the extended algorithm as Layout-Cutwidth. By observing the execution of
the Check-Cutwidth algorithm, it follows that there exist a sequence of characteristics,
(λ1,A1), (λ2,A2), . . . , (λr ,Ar ), that we call a witness path, such that

(1) (λ1,A1) = ([xstart], [[0], [0]]) is the unique characteristic of the unique vertex ordering
of G1.

(2) (λr ,Ar ) is some characteristic in FS(r), and
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(3) for any h, 1! h ! n − 1, the characteristic (λh+1,Ah+1) was constructed after a call
of either Introduce-Node or Forget-Node with input (λh,Ah).

Let us show how to compute a layout with cutwidth at most k, in linear time, given a
witness path

(λ1,A1), (λ2,A2), . . . , (λr ,Ar ).

For any h, 1< h < r , let lh be a vertex ordering such that CXh(Gh, lh) = (λh,Ah). Assume
that

lh =
[
vh
1 , . . . , v

h
|lh|

]
and

Ah =
[
Ah
0, . . . ,A

h
|Ah|

]
where Ah

j =
[
a

h,j
1 , . . . , a

h,j
|Ah|

]
.

Notice that any element a
h,j
m of Ah

0 · · · · · Ah
|Ah| is determined by a pair (j,m) of indices

where 0! j ! |Ah| and 1! m ! |Aj |. We denote as Ph the set containing all these pairs.
Let κ be the minimum number such that h < κ ! r and Xκ is an introduce node (κ is

well defined as Xr is an introduce node and h < r = |X|). We set {uh} = Xk − Xh and
Nh = NGκ (u

h). Now we define a mapping φh :Ph → {0,1, . . . , |lh|}} such that φh(j,m) =
γ implies that

Ins
(
Gh,u

h,Xh,Nh,λh,Ah, j,m
)

= Com
(
Ins

(
Gh,u

h,V (Gh),Nh, lh,QGh,lh , γ,1
)
,Xh

)
. (38)

Our definition is recursive. We assume that for some h, 1! h ! r −1, lh and φh are known.
We will show that lh+1, φh+1 can be defined recursively and computed in O(1) time.
We first examine the case where (λh+1,Ah+1) was computed after a call of Introduce-

Node. This means that κ = h + 1 and that {uh} = Xh+1 − Xh and Nh = NGh+1(u
h).

Clearly, (λh+1,Ah+1) = Ins(Gh,u
h,Xh,Nh,λh,Ah, j,m) for some choice of j and m

where 0! j ! |λh| and 1! m ! |A(j)|. From (38) and the proof of Lemma 20, we derive
the following:

If γ = φh(j,m), then by setting lh+1 = lh[1, γ ] · [uh] · lh[γ + 1, |lh|], we get
CXh+1(Gh+1, lh+1) = (λh+1,Ah+1).

If we now take in mind the rearrangement of the indices occuring during step 1 of the
procedure Ins as it is applied on (λh,Ah) and (lh,QGh,lh) to (38) we have that

Ph+1 =
{
(0,1), . . . ,

(
0,

∣∣Ah
0
∣∣)} ∪ · · · ∪

{
(j − 1,1), . . . ,

(
j − 1,

∣∣Ah
j−1

∣∣)}

∪
{
(j,1), . . . , (j,m)

}
∪

{
(j + 1,1), . . . ,

(
j + 1,

∣∣Ah
j

∣∣ − m + 1
)}

∪
{
(j + 2,1), . . . ,

(
j + 2,

∣∣Ah
j+1

∣∣)} ∪ · · ·
∪

{(
|Ah| + 1,1

)
, . . . ,

(
|Ah| + 1,

∣∣Ah
|Ah|

∣∣)}
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and, we can define φh+1 as

φh+1(ν, ξ) =






φh(ν, ξ) if ν < j + 1,
γ + 1 if ν = j + 1 and ξ = 1,
φh(j,m + ξ − 1) + 1 if ν = j + 1 and ξ > 1,
φh(ν − 1, ξ) + 1 if ν > j + 1

and, therefore the required condition holds.
Suppose now that (λh+1,Ah+1) was computed after a call of Forget-Node. Assume

λh = [v1, . . . , vj , . . . , v|λh|]
where vj is the forgotten vertex. Clearly, the new vertex ordering lh+1 is the same as lh.
Taking now in mind the outputs of Del(λh,Ah, vj ) and Del(lh,QGh,lh , vj ), the new index
set is

Ph+1 =
{
(0,1), . . . ,

(
0,

∣∣Ah
0
∣∣)} ∪ · · · ∪

{
(j − 2,1), . . . ,

(
j − 2,

∣∣Ah
j−2

∣∣)}

∪
{
(j − 1,1), . . . ,

(
j − 1,

∣∣τ
(
Ah(j − 1) · Ah(j)

)∣∣)}

∪
{
(j,1), . . . ,

(
j,

∣∣Ah
j+1

∣∣)} ∪ · · · ∪
{(

|Ah| − 1,1
)
, . . . ,

(
|Ah| − 1,

∣∣Ah
|Ah|

∣∣)}

and the function φh+1 is obtained by setting

φh+1(ν, ξ) =
{
φh(ν, ξ) if ν < j − 1,
φh(j − 1+ σ,ψ) if ν = j − 1,
φh(ν + 1, ξ) − 1 if ν > j − 1

where (σ,ψ) = δ((Ah(j − 1),Ah(j)), ξ)). Clearly, the function φh+1 verifies the required
conditions.
If at each time a new characteristic is computed, we set up a pointer to the characteristic

it was constructed from, we obviously have a suitable structure for constructing also a
witness path in linear time. We will also maintain a data structure associating the position
(determined by the pair (j,m)) of each element a

h,j
m of a typical sequence Ah

j of Ah with
the value γ = φh(a

h,j
m ), 0 ! γ |lh|. Furthermore, from the definitions, lh+1 and φh+1 can

be computed in O(1) time from lh and φh. Therefore, as l1 = [xstart] and φ1(0,1) = 0 and
φ1(1,1) = 1, we are able to construct in time linear in |X|, a vertex ordering l = lr such
that CXr (Gr, lr ) ∈ FS(r).
Notice that, because of Lemma 15, the algorithms Introduce-Node and Forget-Node run

inO(1) time when k andw are fixed.We summarize the results of the previous subsections
in the following.

Theorem 24. For all k, w " 1, the Layout-Cutwidth algorithm, with input a graph G and
a path decomposition X = [X1, . . . ,Xr ] of G with width at most w, computes whether the
cutwidth of G is at most k and, if so, constructs a vertex ordering of G with cutwidth at
most k, in O(n + r) time.

According to the results in [7] and [3], one can construct, for any k, a linear time algo-
rithm that decides whether the pathwidth of a graph is at most k and, in case of a positive
answer, outputs the corresponding path decomposition. Combining this fact with Lemma 2
and Theorem 24, we derive the following:



D.M. Thilikos et al. / Journal of Algorithms 56 (2005) 1–24 23

Theorem 25. For all k " 0, it is possible to construct an algorithm, that given a graph G,
computes whether the cutwidth of G is at most k and, if so, constructs a vertex ordering of
G with minimum cutwidth in O(n) time.

5. Final remarks

It is known (e.g., see [9]) that graphs with maximum degree bounded by ∆ and path-
width bounded by w have cutwidth bounded by w∆. Therefore, our result implies a linear
time algorithm for computing the cutwidth for graphs where both maximum degree and
pathwidth are bounded by a constant.
Moreover, one can easily observe that, in the more general case where pathwidth(G) is

at most w and the maximum degree of G is at most β · logn, for some β " 0, Lemma 15
bounds the number of different characteristics byO((w+1)!( 83 )w+1n2βw(w+1)). The com-
plexity of the algorithm Introduce-Node is O(w3w!( 83 )w+1n2βw(w+1)+1) as step 2 requires
O((w+1)!( 83 )w+1n2βw(w+1)) repetitions, step 3 requiresO(w) repetitions, step 4 requires
O(n) repetitions, and the call of the procedure Ins in step 5 requiresO(w) steps. Similarly,
the complexity of the algorithm Forget-Node is O(w2w!( 83 )w+1n2βw(w+1)). Therefore, we
can conclude that for any constants w and β there exists a polynomial time algorithm (i.e.,
O(w3w!( 83 )w+1n2βw(w+1)+2 logn)) that outputs a minimum cutwidth linear layout of any
graph G with maximum degree β · logn, β " 0 and pathwidth ! w, w " 0.
In the second part of this work [21] we provide a polynomial time algorithm that outputs

a minimum cutwidth linear layout of any graph G where the maximum degree and the
treewidth are fixed constants. The algorithm uses as subroutines the algorithms Introduce-
Node and Forget-Node and its analysis is based on the definitions and the results of this
paper. For an analogous result concerning the computation of pathwidth for graphs with
bounded degree, see Section 7 of [5].
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