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200 Unï ersity A¨enue West, Waterloo, Ontario N2L 32G1, Canada

E-mail: sedthilk@plg.uwaterloo.ca

Received December 20, 1997; revised December 28, 1998;
accepted February 9, 1999

In this paper we investigate both the structure of graphs with branchwidth at
most three, as well as algorithms to recognise such graphs. We show that a graph
has branchwidth at most three if and only if it has treewidth at most three and does
not contain the three-dimensional binary cube graph as a minor. A set of four
graphs is shown to be the obstruction set for the class of graphs with branchwidth
at most three. Moreover, we give a safe and complete set of reduction rules for the
graphs with branchwidth at most three. Using this set, a linear time algorithm is
given that verifies if a given graph has branchwidth at most three, and, if so,
outputs a minimum width branch decomposition. Q 1999 Academic Press

Key Words: graph algorithms; branchwidth; obstruction set; graph minors; reduc-
tion rule.

* This paper is the full version of part of the paper titled ‘‘Constructive Linear Time
Ž w x.Algorithms for Branchwidth’’ which appeared in the ‘‘Proceedings of ICALP’97’’ see 7 .
ŽThe research was partially supported by ESPRIT Long Term Research Project 20244 Project

.ALCOM IT: Algorithms and Complexity in Information Technology .
† This research has been done while the second author was working at the Department of

Computer Science of Utrecht University, Netherlands, supported by the Training and
Ž . Ž .Mobility of Researchers TMR Program, EU Contract ERBFMBICT950198 .

167

0196-6774r99 $30.00
Copyright Q 1999 by Academic Press

All rights of reproduction in any form reserved.



BODLAENDER AND THILIKOS168

1. INTRODUCTION

This paper studies the graphs with branchwidth at most three. The
notion of branchwidth has a close relationship to the more well-known
notion of treewidth, a notion that has come to play a large role in many

Žrecent investigations in algorithmic graph theory. See Section 2 for
.definitions of treewidth and branchwidth . One reason for the interest in

this notion is that many graph problems can be solved by linear time
algorithms, when the inputs are restricted to graphs with some uniform
upper bound on their treewidth. Most of these algorithms first try to find a
tree decomposition of small width and then utilise the advantages of the
tree structure of the decomposition.

The branchwidth of a graph differs from its treewidth by at most a
Ž .multiplicative constant factor see Theorem 1.b As branchwidth also

reflects some optimal tree structure arrangement, it is possible to have
algorithmic applications analogous to those of treewidth. Hence, instead of
using tree decompositions, one also can use branch decompositions as the
starting point for linear time algorithms for problems restricted to graphs

Ž .with bounded treewidth and, hence, also bounded branchwidth . In fact,
in some cases, it appears that branchwidth is more convenient to use and
seems to give better constant factors in the implementation of the algo-
rithms; for instance, Cook used branch decompositions as an important
ingredient in a practical approximation algorithm for the Travelling Sales-

w xman Problem 10 and remarked that branchwidth was the more natural
Ž . w xnotion instead of treewidth to use for that problem 9 ; where tree

decompositions primarily are concerned with vertices, branch decomposi-
Ž .tions deal more with edges in a loose sense . We also mention that the

Žbranchwidth of planar graphs can be computed in polynomial time see
w x. Ž19 . As both treewidth and branchwidth are NP-complete parameters see
w x.1, 19 , it appears an interesting task to find algorithms solving the

Ž .following problems k is assumed to be a fixed constant :

Treewidth: Given a graph G, check if G has treewidth at most k.

Branchwidth: Given a graph G, check if G has branchwidth at most k.

Ž .The constructive version of Treewidth Branchwidth is, given a graph with
Ž . Ž .treewidth branchwidth at most k, output a minimum width tree branch

decomposition.
w xAccording to the results of Robertson and Seymour 15, 16 for any class

of graphs that is closed under taking of minors there exists a finite set of
graphs, its obstruction set, such that a graph G belongs to the class iff no
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element of the obstruction set is a minor of G. It is also known that, for
Ž .any k, the class of graphs, where treewidth or branchwidth is bounded by

Ž .a fixed k, is closed under taking of minors see also Theorem 1.a . An
Žimmediate consequence of this fact using results of Robertson and

w x.Seymour and the algorithm from 5 is the existence of a linear time
algorithm solving Treewidth or Branchwidth. Unfortunately, in this way,
we only get a nonconstructive proof of the existence of such an algorithm;
but in order to construct the algorithm, we must know the corresponding
obstruction set. Additionally, we would like to have an algorithm that not
only decides the branchwidth, but which also constructs the corresponding
branch decomposition.

Much research has been done towards the construction of linear time
algorithms solving Treewidth, Branchwidth, and their constructive ver-

w xsions. In 5 , a linear time algorithm for treewidth was constructed. As this
Žalgorithm appears to be heavily exponential on k and thus impractical, at

.least without considerable optimisations in the implementation , practical
‘‘tailor-made’’ algorithms have been presented for small values of k
Ž w x w x w x .treewidths 1 and 2 14, 21 , treewidth 3 3, 12, 14 , treewidth 4 17 . Also,
the obstruction sets for the class of graphs with treewidths 1, 2, and 3 are

w xknown 4, 18, 21 . Recently, a linear time algorithm solving Branchwidth
w xand its constructive version was given in 7 . Unfortunately, the algorithms

w xin 7 appear to be impractical, similarly to the case of treewidth.
In this paper, we provide special ‘‘tailor made’’ results for the cases

where k F 3. As the cases where k F 2 are trivial we focus our attention
on the case k s 3. More specifically, for the class of graphs with branch-
width at most three, we identify the obstruction set and we give a set of
safe and complete reduction rules enabling the construction of a practical
linear time algorithm that checks if a graph has branchwidth at most three
and, if so, outputs a minimum width branch decomposition. The obstruc-
tion set consists of the four graphs K , M , M , Q depicted in Fig. 2 and5 6 8 3
the proof of its correctness is based on a structural lemma asserting that
the graphs of branchwidth at most three are exactly the graphs that have
treewidth at most three and that do not contain the three-dimensional

Ž .binary cube graph i.e. graph Q of Fig. 2 as a minor.3
The paper is organized as follows. In Section 2, the basic definition and

preliminary results are presented. In Section 3, we give the main routine of
our algorithm, along with several graph theoretic results concerning the
obstruction set for the class of graphs with branchwidth at most three. In
Section 4, we identify a complete and safe set of reduction rules leading to
the construction of a practical linear time algorithm solving Branchwidth
and its constructive version when k F 3. Finally, an overall description of
the algorithm is given in Section 5.
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2. DEFINITIONS AND PRELIMINARY RESULTS

ŽWe consider undirected graphs without parallel edges or self-loops. It is
.easy to extend the results to graphs with parallel edges andror self-loops.

Ž .Given a graph G s V, E we denote its vertex set V and edge set E with
Ž . Ž . � 4V G and E G , respectively. A triangle t s ¨ , ¨ , ¨ of G is a triple of1 2 3

Ž . �� 4 � 4 � 44 Ž .vertices in V G such that ¨ , ¨ , ¨ , ¨ , ¨ , ¨ : E G . For any ver-1 2 2 3 1 3
Ž . Ž .tex ¨ g V G , we define the neighborhood of ¨ , N ¨ , as the set ofG
Ž . Ž .vertices in V G adjacent to ¨ . Given a set S : V G we denote the graph

induced by S. We also denote the complete graph with r vertices by Kr
and by P we denote the graph consisting of a path on r vertices. Anr
r-clique of G is a subgraph of G isomorphic to K . Let T be a tree and letr

Ž . Ž . w xS : V T , i s 1, 2, be two subsets of V T such that G S , i s 1, 2, arei i
< <connected and V l V F 1. We define the path connecting S and S as1 2 1 2

the shortest path connecting some of the vertices of S with some of the1
Ž .vertices in S notice that such a path is uniquely defined . Finally, we will2

assume that all the graphs we deal with are connected, as this does not
Žinfluence the generality of our results. The branchwidth of a graph equals

.the maximum branchwidth of its connected components.
ŽGiven two graphs G, H, we say that H is a minor of G denoted by

.H U G if H can be obtained by a series of the following operations:
Žvertex deletions, edge deletions, and edge contractions a contraction of an

� 4edge u, ¨ in G is the operation that replaces u and ¨ by a new vertex
.whose neighbours are the vertices that were adjacent to u andror ¨ . Let

GG be a class of graphs. We say that GG is closed under taking of minors
when all the minors of any graph in GG belong also to GG. Given a graph
class GG that is closed under taking of minors, we define the obstruction set
for GG as the set of minor minimal graphs that do not belong to GG.

Ž w x.Robertson and Seymour proved see, e.g., 15 that any class of graphs GG

contains a finite set of minor minimal elements. According to this result,
any graph class that is closed under taking of minors has a finite obstruc-
tion set.

It follows that if GG is closed under taking of minors, then, for any graph
G, G g GG iff there is no graph in H in the obstruction set for GG such that
H U G.

We give now the formal definitions of treewidth and branchwidth.
Ž� < 4 Ž ..A tree decomposition of a graph G is a pair X i g I , T s I, F ,i

� < 4where X i g I is a collection of subsets of V and T is a tree, such thati

v Ž .D X s V G ,ig I i

v � 4 Ž .for each edge ¨ , w g E G , there is an i g I such that ¨ , w g X ,i
and

v � < 4for each ¨ g V the set of nodes i ¨ g X induces a subtree of T.i
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Ž� < 4 Ž ..The width of a tree decomposition X i g I , T s I, F equalsi
� < < 4max X y 1 . The treewidth of a graph G is the minimum width overig I i

all tree decompositions of G.
Ž .A branch decomposition of a graph G is a pair T , t , where T is a tree

with vertices of degree 1 or 3, and t is a bijection from the set of leaves of
Ž .T to E G . The order of an edge e in T is the number of vertices

Ž .¨ g V G such that there are leaves t , t in T in different components of1 2
Ž Ž . Ž . . Ž . Ž .T V T , E T y e with t t and t t both containing ¨ as an endpoint.1 2

Ž .The width of T , t is the maximum order over all edges of T , and the
branchwidth of G is the minimum width over all branch decompositions of

Ž < Ž . <G in the case where E G F 1, we define the branchwidth to be 0; if
< Ž . < < Ž . <E G s 0, then G has no branch decomposition; if E G s 1, then G
has a branch decomposition consisting of a tree with one vertex}the

.width of this branch decomposition is considered to be 0 .
Instead of bijections, we can use different types of functions t . If t is a

Ž .surjective function that maps every leaf of T to an edge e g E G , then we
Ž .have an amplified branch decomposition: for each edge e g E G there

Ž .exists at least one leaf ¨ or T with t ¨ s e.

Ž .LEMMA 1. i One can construct an algorithm that, gï en a branch
Ž .decomposition T , t of a graph G with width at most k, outputs a branch

X Ž < Ž . <.decomposition of any subgraph G of G with width at most k in OO V T
time.

Ž .ii One can construct an algorithm that, gï en an amplified branch
Ž .decomposition T , t of a graph G with width at most k, outputs a branch

Ž < Ž . <.decomposition of G with width at most k, in OO V T time.

Ž .Proof. i The algorithm is as follows: Start with the branch decomposi-
Ž . Ž X.tion T , t . Let W be the set of leaves that are mapped to edges in E G .

Ž .Now, repeat the following steps until none is possible: i remove a leaf not
Ž .in W, and ii remove a vertex of degree two and connects its neighbours.

One easily sees that a branch decomposition of GX results of width not
Ž .larger than the width of T , t .

Ž . Ž .ii Similar. Now, for each edge e g E G , choose an arbitrary leaf
¨ that is mapped to that edge by t , and let W be the collection of thosee
leaves. Then apply the procedure given above with this set W.

Ž < Ž . <.Also, one easily sees the time needed for the procedure is OO V T .

Ž . Ž .For an example of the second statement of Lemma 1 see Figs. 11 iii , iv .
Ž .The grey vertices are those that will be removed during step i and the

Ž .white vertices are those that will be removed during step ii .
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Ž .In what follows we denote as BB TT the obstruction set for the graphsk k
Ž .with branchwidth treewidth at most k.

w xTHEOREM 1 16 . The following statements hold:

a. The class of graphs with bounded branchwidth is closed under taking
of minors.

3Ž . Ž . ? Ž .@b. branchwidth G F treewidth G q 1 F branchwidth G .2

Ž .c. A graph G has branchwidth at most 0 at most 1 , if and only if each
Žconnected component of G contains at most one edge at most one ¨ertex of

.degree at least 2 .

� 4 � 4 � 4d. BB s P , BB s K , P , and BB s K .0 3 1 3 4 2 4

Ž . Ž .A reduction rule R is a triple H, S, f , where H is a graph, S : V H ,
Ž .S / B, and f : V H ª v q 1 is a labelling of vertices in H by ordinals

Ž . Ž .finite ones and v , such that ;¨ g S: f ¨ s 0. We say that a reduction
Ž .rule R s H, S, f occurs in G if H is a subgraph of G and for any

Ž . wŽ Ž . Ž .. � 4x Ž .¨ g V H the degree of ¨ in G V G y V H j ¨ is at most f ¨ .
The result of applying R on G is the graph arising from G if we remove

Ž .the vertices in S and connect as a clique in G all vertices in V H y S
Ž Ž .i.e., add the minimum number of edges so that V H y S will induce an

< Ž . <.r-clique in the resulting graph, r s V H y S .
Given a graph class GG, we say that a set RR of reduction rules is safe if,

for any R g RR and for any G such that R occurs in G, the result of
applying R on G is a graph in GG if and only if G g GG. RR is called
complete for GG, if for every nonempty graph G g GG, there is a reduction
rule in RR occurring in G.

Clearly, if a set RR of reduction rules is safe and complete for a graph
class GG, then, for any graph G, it holds that G g RR if and only if there
exists a sequence of reduction rules in RR that, when successively applied,
can reduce G to the empty graph. These reduction rules are in fact a
special case of a more general form of reduction rules as studied amongst

w xothers in 2 where subgraphs can be rewritten to general graphs, different
from a clique.

� 4We denote as RR the set of reduction rules t.i, t.ii, t.iii, t. ï , t.¨ , t.¨i ,t F 3
Ž .shown in Fig. 1. For any R s H, S, f g RR , S is represented by thet F 3

Ž . Ž .white cycles; when f ¨ - v, f ¨ is shown.

w xTHEOREM 2 3, 12, 14 . RR is a safe and complete set of reduction rulest F 3
for the class of graphs with treewidth F 3. Also, if we replace rule t. ï in
RR by t. ï X the resulting set of rules is also safe and complete for the class oft F 3
graphs with treewidth F 3.
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FIG. 1. The reduction rules for the class of graphs with treewidth F 3.

We define below the notions of k-tree, k-perfect elimination ordering,
minimal separator, and minimal triangulation.

We call a graph G chordal when it does not contain any induced cycle of
Ž . w Ž .xlength at least four. We call a vertex ¨ g V G simplicial if G N ¨ is anG

< Ž . <r-clique of G, where r s N ¨ . Let k be a positive integer. An orderingG
Ž . Ž .¨ , . . . , ¨ of the vertices in V G is a k-perfect elimination ordering if1 <V ŽG. <

< Ž . <for each i, 1 F i F V G ¨ is a simplicial vertex of degree at most k ini
w� 4x Ž .G s G ¨ , . . . , ¨ . We call G s G , G , . . . , G the graph se-i i <V ŽG. < 1 2 <V ŽG. <

quence of the k-perfect elimination ordering.
A k-tree is a graph which is recursively defined as follows. A complete

graph with k q 1 vertices is a k-tree. Given a k-tree G with n ) k
vertices, a k-tree with n q 1 vertices can be constructed by making a new
vertex adjacent to the vertices of a k-clique of G. It is easy to see that
k-trees are chordal graphs with maximum clique size k q 1. A graph is a
partial k-tree if either it has at most k vertices or it is a subgraph of a
k-tree G with the same vertex set as G.

It can be easily proved that a graph has treewidth at most k iff it is a
Ž w x. < Ž . <partial k-tree see, e.g., 20 . Also, if G is a partial k-tree, then E G -

< Ž . <k V G . Finally, a k-perfect elimination ordering of a k-tree can be found
Ž < Ž . <. Ž .in OO V G time k is a fixed constant .

Ž . Ž Ž ..A set S : V G is an s-t-separator in G s, t g V G , if s and t belong
w xto different connected components of G V y S . S is a minimal s-t-sep-

arator, if it does not contain another s-t-separator as a proper subset. S is a
minimal separator, if there exist vertices s, t g V for which S is a minimal
s-t-separator. We call a graph GX a triangulation of G if GX is chordal and
Ž X. Ž .V G s V G . We call a triangulation of G with a minimum number of

Ž w x.edges a minimal triangulation see 22 .

w x XTHEOREM 3 6 . Let G be a minimal triangulation of a graph G. Then
any minimal separator in GX is also a minimal separator in G.

Consider graphs K , M , M , M , and Q as shown in Fig. 2.5 6 8 10 3

w xTHEOREM 4 4, 18 . The obstruction set for the class of graphs with
� 4treewidth at most three, TT , equals K , M , M , M .3 5 6 8 10
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FIG. 2. The graphs K , M , M , M , and Q .5 6 8 10 3

LEMMA 2. The following three statements hold:

a. There are no graphs in BB with treewidth at most 2.3

Ž .b. Q g BB and treewidth Q s 3.3 3 3

� 4c. The set K , M , M contains all the graphs of BB that ha¨e5 6 8 3
treewidth at least 4.

Proof. a. From the first inequality of Theorem 1.b, we have that there
are no graphs with treewidth at most 2 and branchwidth at least 4.

Ž . Ž .b. One can easily verify that treewidth Q s branchwidth Q y 13 3
s 3. Also, any graph obtained by Q by a vertexredge deletion or edge3
contraction has a branch decomposition of width at most 3.

� 4c. We will first prove that K , M , M : BB . From Theorem 4,5 6 8 3
� 4 Ž .SS s K , M , M : TT and thus ;G g SS : treewidth G s 4. From the5 6 8 3

second inequality of Theorem 1.b, we obtain that ;G g SS : branch-
Ž .width G G 4. It is now enough to check, by inspection, that if we apply to

any element of SS a vertexredge deletion or edge contraction the resulting
graph has a branch decomposition of width F 3.

� 4Suppose now that there exists a graph G in BB y K , M , M that has3 5 6 8
treewidth G 4. From Theorem 4, G should contain one of the graphs in TT3

� 4as a minor and thus one of the graphs in K , M , M , Q : BB which is a5 6 8 3 3
Ž .contradiction observe that Q U M and Q g BB .3 10 3 3

Ž . < < � 4Let G be a graph and S : V G , S s 4. We call S s ¨ , ¨ , ¨ , ¨ a1 2 3 4
� 4cross if each of the sets S s S y ¨ , 1 F i F 4, is a minimal separator ofi i

Ž .G for an example, see Fig. 3 . If a graph does not contain any cross then
we call it crossless.

LEMMA 3. Let G be a crossless graph of treewidth at most 3 and let GX be
a minimal triangulation of G. Then, GX is a crossless chordal graph with
maximum clique size at most 4.

Proof. It is known that if GX is a minimal triangulation of a partial
X Žk-tree, then G has maximum clique size at most k q 1 see, e.g., Chapter

w x. X X2 of 13 . What remains to prove is that G is crossless. Suppose that G
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� 4 ŽFIG. 3. A graph G containing a cross S s ¨ , ¨ , ¨ , ¨ notice that S remains a cross1 2 3 4
.even if we remove from G any set of dashed edges .

contain a cross S. Then all the triples of S are minimal separators and, by
Theorem 3, they are also minimal separators of G. We have a contradic-
tion as G is crossless.

ŽWe now introduce the notion of a clique tree of a 3-tree. We mention
that it is possible to extend the definition below}as well as the algorithm

Žfollowing it}for any integer k / 3. For other representations of chordal
w x .graphs in tree structures see 11, 23 .

Let G be a 3-tree G. A tree T is a clique tree of G ifG

Ž . Ž . Ž .i each vertex in V T is a subset of V G inducing a 4-clique inG
G and

Ž . � 4 � 4 Ž .ii if two vertices v s ¨ , ¨ , ¨ , ¨ , u s u , u , u , u g V T1 2 3 4 1 2 3 4 G
� 4 < <are connected by an edge e s v, u in T then v l u s 3, i.e., they haveG

Žexactly three vertices in common notice that each such triple of vertices is
.a minimal separator of G .

Ž .Clearly, a k-tree can have many different clique trees see Fig. 4 . From
now on we will denote the vertices and the edges of a clique tree using
bold characters like v, u, e.

� 4 Ž .Given an edge e s v, u g E T , we define the separation set of e asG
Ž . < Ž . <sep e s v l u. Notice that any clique tree of a 3-tree G contains V G

< Ž . <y 3 vertices, one for each 4-clique of G, and V G y 4 edges, one for
each minimal separator of G.

We omit the proof of the following as it is easy and follows standard
techniques.
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Ž .FIG. 4. A 3-tree and two clique trees of it. For any edge e, the set sep e is depicted.

Ž .LEMMA 4. Let e , e be two edges of T and ¨ g V G such that1 2 G
Ž . Ž .¨ g sep e l sep e . Then, for any edge e of T with both endpoints in1 2 3 2

Ž .the path connecting e and e in T , we ha¨e that ¨ g sep e as well.1 2 G 3

We now give an algorithm constructing a clique tree of a 3-tree in linear
time.

ALGORITHM. Clique-Tree.
input: A 3-tree G.
output: A clique tree T of G.G

Ž . Ž1. Find a 3-perfect elimination ordering ¨ , ¨ , . . . , ¨ of G n s1 2 n
< Ž . <.V G ;

� 42. let a s ¨ , ¨ , ¨ , ¨ ;ny3 ny3 ny2 ny1 n

3. for i s 1 to n y 4 do
Ž . Ž .4. let sim ¨ s N ¨ ;i GwV ŽG.y�¨ , . . . , ¨ 4x i1 iy1

5. for i s n y 3 to n do
Ž . � 46. let sim ¨ s a y ¨ ;i ny3 i

Ž . � 4 Ž .7. let V T s a , E T s B;G ny3 G

8. for i [ n y 4 downto 1 do

9. begin
Ž .10. set C s D sim ¨ ;i ¨ g simŽ¨ .i

Ž . � 4X X X11. find a vertex ¨ g C such that a s sim ¨ j ¨ induces ai i i i i
4-clique in G ;i

Ž . � 412. let a s sim ¨ j ¨ ;i i i

Ž . Ž . � 4 Ž . Ž . �� 44X13. let V T s V T j a , E T s E T j a , a ;G G i G G i i

14. end

15. end

LEMMA 5. Gï en a 3-tree in G, algorithms Clique-Tree constructs the
Ž < Ž . <.clique tree of G in OO V G time.
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Proof. We will first prove that a vertex as required in Step 11 always
Ž . � 4 X Y

X Yexists. Let sim ¨ s ¨ , ¨ , ¨ . W.l.o.g. we assume that j - j , j - j . Wei j j j
� 4 Ž . � 4X X Y Xset ¨ s sim ¨ y ¨ , ¨ and it is enough to notice that ¨ g C andi j j j i j

w� 4x < Ž . <X X YG ¨ , ¨ , ¨ , ¨ is a 4-clique of G . Moreover, as ; sim ¨ s 3, wei j j j i iF iF n i
< < Ž .have that ; C s OO 1 and steps 10 and 11 can be executed in1F iF ny4 i

constant time. Therefore, the overall complexity of Clique-Tree is
Ž < Ž . <.OO V G . Observing now how vertices and edges are added in T in stepsG

12 and 13, during each execution of loop 9]14, we can easily see that T isG
a clique tree of G.

The proof of the following lemma is very simple and is omitted from this
paper. We just mention that the algorithm involved is based on a traversal
of the graph using a 3-perfect elimination ordering of G.

LEMMA 6. Let G be a chordal graph with maximum clique of size at most
Ž < Ž . <.4. One can construct an algorithm that in OO V G time computes all the

triconnected components of G.

LEMMA 7. Let G be a crossless chordal graph G with maximum clique size
4. Then there exist a crossless 3-tree GX such that G is a subgraph of GX and
Ž X. Ž .V G s V G . Moreo¨er, one can construct an algorithm that outputs such a

Ž < Ž . <.subgraph in OO V G time.

Proof. We will give a procedure that adds edges to G so that the
resulting graph is a crossless 3-tree. As a preprocessing step we apply the
following operation until it is not possible any more:

v w Ž . Ž .If G contains an articulation points ¨ then set G ¤ G V G , E G
�� 44xj ¨ , u , where ¨ , u are two neighbours of ¨ that belong to different

w Ž . � 4xconnected components of G V G y ¨ .

Ž < Ž . <.Clearly, the above preprocessing can be done in OO V G time and
outputs a crossless chordal graph G with maximum clique size at most 4
and with no articulation points.

It is easy to see that, using a 3-perfect elimination ordering, we can
compute, in linear time, two functions f , g such that, for any 3-tree H,H H
f takes as input a triangle t of H and outputs a boolean value indicatingH
whether t is a minimal separator of H or not and g takes as input anH
edge e of H and outputs a 4-clique of H containing it. Using the
algorithm of Lemma 6, we compute, in linear time, all the triconnected
components of G. We also compute for each triconnected component Gi

Ž .that is a crossless 3-tree the corresponding functions f and g .G Gi i

Suppose now that G and G are two triconnected components of G. Iti j
Ž .is enough to show that in constant time, we can i add an edge in

w Ž . Ž .xG V G j V G so that the resulting graph G is a crossless 3-tree andi j i j
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Ž .ii compute the functions f and g using f , f and g , g . As GG G G G G Gi j i j i j i j

Ž .does not contain any articulation points we may assume that V G li
Ž . � 4 Ž .V G s a, b . We distinguish the following three cases see also Fig. 5 .j

Ž . Ž� 4. �Case i . G and G are both crossless 3-trees. Let g a, b s a,i j G i
4 Ž� 4. � 4 Ž� 4.b, c, d and g a, b s a, b, f , e . If f a, b, c s 0 then set ¨ s d;G Gj i

Ž� 4.otherwise set ¨ s c. Also, if f a, b, e s 0 then set u s f ; otherwise setG j
� 4 w Ž . Ž .xu s e. Now, construct G by adding the edge ¨ , u in G V G j V G .i j i j

Ž� 4.One can now easily verify that G is a crossless 3-tree. We set f a, ¨ , ui j G i j

Ž� 4. Ž� 4. Ž� 4. Ž� 4.s f b, ¨ , u s 0, f a, b, ¨ s f a, b, u s 1, and g ¨ , u sG G G Gi j i j i j i j
� 4a, b, ¨ , u .

Ž . Ž . � 4 Ž� 4.Case ii . G is a crossless 3-tree and V G s a, b, e . Let g a, bi j G i

� 4 Ž� 4.s a, b, c, d . If f a, b, c s 0 then set ¨ s d; otherwise set ¨ s c. Now,G i

� 4 w Ž . Ž .xconstruct G by adding the edge ¨ , e in G V G j V G . One cani j i j

Ž� 4.now easy verify that G is a crossless 3-tree. We set f a, ¨ , ei j G i j

Ž� 4. Ž� 4. Ž� 4. Ž� 4.s f b, ¨ , e s f a, b, e s 0, f a, b, ¨ s 1, g a, eG G G Gi j i j i j i j

Ž� 4. Ž� 4. � 4s g b, e s g ¨ , e s a, b, ¨ , u .G Gi j i j

Ž . Ž . � 4 Ž . � 4Case iii . V G s a, b, ¨ , V G s a, b, u . In this case we con-i j
� 4 w Ž . Ž .xstruct G by adding ¨ , u in G V G j V G . Clearly, G is a crosslessi j i j i j

� 4 Ž .3-tree. Finally, for any triple t of a, b, ¨ , u we set f t s 0 and for anyG i j
� 4 Ž . � 4edge e : a, b, ¨ , u we set g e s a, b, ¨ , u .G i j

Ž . Ž . Ž .FIG. 5. Examples for cases i , ii , and iii of the proof of Lemma 7.
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3. OBSTRUCTIONS FOR GRAPHS WITH BRANCHWIDTH
AT MOST 3

In this section we will identify the obstruction set for the class of graphs
with branchwidth at most three. Unless stated otherwise, we consider a
clique tree T of a crossless 3-tree G.G

Ž .Given a k-tree, a clique tree T of G, and a vertex v g V T , we defineG G
� Ž . 4E s e g E T : v belongs to e . The following lemma defines the notionv G

of the 3-labelled clique tree of a crossless 3-tree.

LEMMA 8. Let G be a crossless 3-tree G and T a clique tree of G. Then,G
Ž . � 4 Ž .there exist a function l: E T ª 1, 2, 3 such that ;v g V T : ;e , e g E :G G 1 2 v

Ž Ž . Ž . Ž . Ž ..sep e s sep e iff l e s l e ; i.e., edges in E with the same separa-1 2 1 2 v
tion set ha¨e the same label. Moreo¨er, one can construct an algorithm that,

Ž < Ž . <.gï en T , computes such a function l in OO V G time.G

Proof. Since G is crossless, we have that, for any 4-clique of G, at most
Ž .three of its triples are minimal separators and therefore ;v g V T :G

<� Ž . < 4 <sep e e g E F 3. It is now possible, for any vertex v of T , to computev G
Ž < Ž . <.in OO N v time, a partition of E into the minimum number of setsT vG

Žcontaining edges with the same separation set we call such a partition a
.separating partition of v . We can now label the edges of T as follows. WeG

first label arbitrarily an edge containing a leaf of T . Suppose now that weG
X Ž .have labelled all the edges containing vertices in some set V ; V T . AsG

Ž . XT is connected, there must exists at least one vertex v g V T y V suchG G
that one of the edges containing it has already been labelled. Now, using
the separating partition of v, we can label its edges such that edges
belonging to the same set of the partition have the same label. It is now

Ž < Ž . <.clear that such a labelling can be computed in OO V T time.G

We call a clique tree of a chordless 3-tree that is labelled as in Lemma
Ž .8, 3-labelled, and we denote it as T , l . Given a 3-labelled clique treeG

Ž . <� Ž .T , l , we define the span-degree of a vertex v to be equal to l e :G
4 <e g E . As an example notice that in both 3-labelled clique trees of Fig. 6v

� 4all the vertices have span-degree 1 except from c, d, f , g that has span-
degree 3.

LEMMA 9. Any crossless 3-tree G has an amplified branchwidth decompo-
sition of width 3. Moreo¨er, one can construct an algorithm that, gï en a

Ž .3-labelled tree clique T , l of G, outputs an amplified branch decompositionG
Ž < Ž . <.of G with width 3 in OO V G time.

< Ž . <Proof. We examine the non trivial case where E T ) 0. We will giveG
Ž .a construction that, given a 3-labelled clique tree T , l of a crosslessG
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FIG. 6. A 3-tree and two 3-labelled clique trees of it.

Ž .3-tree G, outputs an amplified branch decomposition T , t of G that has
width 3. We will first construct T. Let v be a vertex of T with span-degreeG
d. Using function l we can assume that E s E1 j ??? j Ed, where Ei sv v v v
� i i 4 Ž i.e , . . . , e , i s 1, . . . , d, and ; i, 1 F i F d: ; j, 1 F j F r : l e s i; i.e., we1 r i ji

partition E into a minimum number of sets each containing edges withv
the same label. Notice that to find such a partition for all the vertices of

Ž < Ž . <.T costs OO V T time.G G
Ž . Ž Ž 1. Ž 2 .For any vertex v g V T , we construct the tree T s V T j V TG v v v

Ž 3.. Ž 1. Ž 2 . Ž 3..j V T , E T j E T j E T where, for i s 1, 2, 3;v v v v

v In case i F d and r G 2, then we seti

i � 4 i i i , jT s ¨ j ¨ , . . . , ¨ V T ,� 4� 4 Ž .Dv 0 1 r y1 viž
1FjFri

¨ , ¨ i , ¨ i , ¨ i , . . . , ¨ i , ¨ i E T i , j ,� 4 � 4 � 4� 4 Ž .D½ 50 1 1 2 r y2 r y1 vi i /
1FjFri

where for j s 1, . . . , r y 1,i

T i , j s ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i ,� 4v j j , 1 j , 2 j , 3 j , 4 j , 5 j , 6ž
¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i ,� 4 � 4 � 4 � 4½ j j , 1 j , 1 j , 2 j , 2 j , 3 j , 1 j , 4

¨ i , ¨ i , ¨ i , ¨ i and� 4 � 4 5j , 2 j , 5 j , 3 j , 6 /
T i , r i s ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i ,� 4v r y1 r , 1 r , 2 r , 3 r , 4 r , 5 r , 6ž i i i i i i i

¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i ,� 4 � 4 � 4 � 4½ r y1 r , 1 r , 1 r , 2 r , 2 r , 3 r , 1 r , 4i i i i i i i i

¨ i , ¨ i , ¨ i , ¨ i .� 4 � 4 5r , 2 r , 5 r , 3 r , 6 /i i i i
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Ž i i .The tree T is illustrated in Fig. 7. We call the path ¨ , ¨ , . . . , ¨ thev 0 1 r y1i
� i i 4trunk and the vertices in ¨ , . . . , ¨ the body of the trunk.1 r y1i

v
iIn case i F d and r s 1 we define T by applying the constructioni ¨

given above for r s 1 with the difference that, where in that constructioni
i Ž i¨ is used, now ¨ is used. Clearly, in such a case, the trunk of Tr y1 0 vi

.contains only ¨ .0

v In case i ) d, we set

T i s ¨ , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i , ¨ i .� 4 � 4 � 4 � 4 � 4 � 4� 4Ž .v 0 1 2 3 4 5 0 1 1 2 2 3 1 4 2 5

If i ) d, we call the subtree T i constructed above external; otherwise, ifv
i F d, we call the subtrees T i, 1, . . . , T i, r i internal subtrees of T . We alsov v v
call vertex ¨ the kernel. Observe now that each of the internal subtrees of0
T that comprise T i corresponds to one of the edges in E with label i;v v v
i.e., edge e i corresponds to the tree T i, j for 1 F j F r , 1 F i F d.j v i

For an example illustrating the three cases above see Fig. 8. In the
clique tree of Fig. 8 vertex v has span-degree 2 and belongs to edges

1 1 1 1 2 Ž 1. Ž 2 . 1e , e , e , e , e , where l e s 1, 1 F j F 4, and l e s 2. Clearly, T1 2 3 4 1 j 1 v
� 1 1 14 1, 1 1, 2consists of a trunk ¨ , ¨ , ¨ , ¨ and four internal subtrees, T , T ,0 1 2 3 v v

T 1, 3, and T 1, 4 of T , each corresponding to one of the edges of E labelledv v v v
with 1. As the unique edge labelled with 2 is e2, the subtree corresponding1
to it is T 2 s T 2, 1 which is an internal subtree of T . Finally, the fact thatv v v
there are no edges labelled with 3 implies the existence of subtree T 3 inv
T . Clearly, T 3 is an external subtree.v v

The construction of the tree T of the amplified branch decomposition is
now completed by applying, for any edge e of T , the following operation:G

� 4Suppose that e s v, u . Let also T and T be the subtrees correspondingv u
to v and u, according to the construction described above. We denote as
T iv , jv the internal subtree of T corresponding to edge e and as T iu , ju thev v u
internal subtree of T corresponding to edge e. The construction proceedsu

Ž iv iu . Ž iv iu . Ž iv iu .by identifying the pairs of vertices ¨ , u , ¨ , u , ¨ , u ,j , 1 j , 3 j , 2 j , 2 j , 3 j , 1v u v u v u
Ž iv iu . Ž i v iu . Ž iv iu .¨ , u , ¨ , u , ¨ , u and eliminating the double edges thatj , 4 j , 6 j , 5 j , 5 j , 6 j , 4v u v u v u

FIG. 7. The tree T i.v
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FIG. 8. A vertex v in a clique tree, and the corresponding tree T .¨

Ž .appear see also Fig. 9. We call the above operation the merging operation
and notice that it is applied always to internal subtrees.

Notice now that, applying the merging operation for any edge of T , weG
construct a tree with vertices of degree 1 or 3. Moreover, such a construc-

Ž Ž .. Ž .tion can be done in OO V T time. Notice that each vertex v g V TG G

FIG. 9. Identifying vertices of T iv , jv and T iu, ju towards constructing T .v u e
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v Ž .corresponds to exactly one kernel, say ¨ , in V T . Moreover, each edge0
� 4 Ž .e s v, u g E T , corresponds to exactly one subtree of T that is theG

result of merging two internal subtrees T iv , jv, T iu , ju of T and T , respec-v u v u
tively. We call the product of this merging the merged subtree of T and we
denote it as T . We also call the nonleaf vertices of a merged subtreee
central vertices. Given a trunk L of T we call an L-merged subtree any
merged subtree sharing a common vertex with the body of L. We say that
two merged subtrees T , i s 1, 2, of T are touching if the path connectinge i

their vertex sets contains only vertices of trunks of T. According to the
Ž .construction above, two edges e , e of E T have a common vertex in T1 2 G G

iff T and T are touching. A direct consequence of that is the followinge e1 2

fact.

Ž .Fact A. Let e g E T , i s 1, 2, 3. Then, both endpoints of e belongi G 3
to the path that connects e and e in T iff the central vertices of T1 2 G e 3

belong to the path that connect the vertex sets of T and T .e e1 2

Ž .What now remains is to define the function t : leaves of T ª E G . We
distinguish two kinds of leaves in T : those that are leaves of merged
subtrees and those that belong to external subtrees. In the first case we
have to define t for leaves appearing in triples of the form ¨ i , ¨ i , ¨ i .j, 4 j, 5 j, 6
Recall that each such triple corresponds to some edge e of the clique tree

Ž . � 4 Ž i . � 4 Ž i .of G. Let sep e s w , w , w . We define t ¨ s w , w , t ¨ s1 2 3 j, 4 1 2 j, 5
� 4 Ž i . � 4 Ž .w , w , and t ¨ s w , w see Fig. 9 . Now, we can observe the2 3 j, 6 1 3
following fact.

Fact B. If p , p , p are the leaves of a merged subtree T of T then1 2 3 e
Ž . Ž .t p ; sep e , i s 1, . . . , 3.i

We claim that, for any edge e that is a subset of a minimal separator S
Ž .of G, there is a leaf ¨ in T where t ¨ s e. Indeed, ¨ should be one of

Ž .the leaves of T where e is the edge of T for which sep e s S.e G
The only leaves of T , where t is still undefined, are the leaves of the

external subtrees of T. Let T i be such an external subtree and letv
¨ i , ¨ i , ¨ i be its leaves. Let d be the span-degree of v. We distinguish the3 4 5

Ž .cases see also Fig. 10 :

Ž . � 4Case i . d s 2: w , w , w , w contains exactly two triples, say1 2 3 4
� 4 � 4t s w , w , w , t s w , w , w that are minimal separators of G.1 1 2 4 2 2 3 4

Ž 3. � 4 Ž 3. � 4Clearly, i s d q 1 s 3 and we set t ¨ s w , w , t ¨ s w , w , and3 1 3 4 1 3
Ž 3. � 4t ¨ s w , w .5 2 3

Ž . � 4Case ii . d s 1: w , w , w , w contains only one triple, say t s1 2 3 4 1
� 4w , w , w , that is a minimal separator of G. Clearly, i s 2 or 3. W.l.o.g.2 3 4
we assume that i s 2 and observe that T contains another externalv

3 � 3 3 34 3 Ž 2 . � 4subtree T . Let ¨ , ¨ , ¨ be the leaves of T . We set t ¨ s w , w ,v 3 4 5 v 3 1 3
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FIG. 10. An illustration of the two cases in the proof of Lemma 9.

Ž 2 . � 4 Ž 2 . � 4 Ž 3. � 4 Ž 3. � 4t ¨ s w , w , t ¨ s w , w , t ¨ s w , w , t ¨ s w , w , and4 1 2 5 2 3 3 1 4 4 1 3
Ž 3. � 4t ¨ s w , w .5 3 4
We now claim that if an edge e of G does not belong to any minimal

separator there will be an external subtree T i containing a leaf ¨ , wherev
Ž .t ¨ s e. Using Lemma 4 one can see that e will be the subset of exactly

one vertex v of T . Let ¨ v be the kernel of T corresponding to v. NoticeG 0
that ¨ v is a vertex of at most two external subtrees of T and, according to0

Ž . Ž .the definition of t in Cases i and ii above, ¨ will be one of their leaves.
We now have that any edge in G is an image of some leaf of T and thus

Ž .T , t is an amplified branch decomposition of G. Moreover, the construc-
Ž < Ž . <.tion of G can be done in OO V G time.

Ž .What now remains is to prove that the width of T , t is 3. Let e be an
edge of T. If e belongs to an external subtree of T , it is trivial that it has
order F 3. Therefore, we can assume that either e is an edge of a merged
subtree of T or that it belongs to a trunk of T. Let p , i s 1, 2, be twoi
leaves of T each belonging to a different connected component of
Ž Ž . Ž . � 4. Ž . Ž .V T , E T y e . Let also ¨ g t p l t p .1 2

If e belongs to a merged subtree of T , we denote it as T , where e is thee
corresponding edge of T . We define as P the path connecting e with pG i i
in T for i s 1, 2. In case e belongs to a trunk L of T , we define T as thee
L-merged subtree of T that has at least one of its central vertices, either

Žin P or in P it is easy to check that such an L-merged subtree always1 2
. < Ž . < Ž .exists . Clearly, as sep e s 3, it is sufficient to prove that ¨ g sep e .

ŽWe may assume that neither p nor p is a leaf of T otherwise, the1 2 e
.required statement follows from Fact B . Notice that p , p belong to1 2

Ž .different subtrees T , T merged or external of T.1 2
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We examine first the nontrivial case, where both T , T are merged1 2
subtrees, and we denote them as T and T , respectively. Notice that alle e1 2

the central vertices of T belong to P or P and, thus, in the path of Te 1 2
that connects p with p . Applying Fact A, we have that both endpoints of1 2
e belong to the path connecting e and e in T . From Lemma 4 we have1 2 G

Ž . Ž . Ž .that sep e l sep e : sep e . Using now Fact B, we have that ¨ g1 2
Ž . Ž . Ž .t p ; sep e , i s 1, 2, and thus ¨ g sep e .i i
We now assume that one, say T , of T , T is an external tree. Notice1 1 2

that, according to the definition of t for the leaves of the external
subtrees, at least one, say T X, of the merged subtrees that touch T should1 i

X Ž X . Xhave a leaf p such that ¨ g t p . If p is a leaf of T then the required1 1 1 e
follows from Fact B; otherwise, it is enough to apply the nontrivial case for

Xp and p . The case where both T , T are external trees is very similar.1 2 1 2

For an example of the construction presented in the proof of Lemma 9,
Ž . Ž .see Figs. 11 i ] iii . We have now the following.

THEOREM 5. The following propositions are equï alent:

a. A graph G has branchwidth at most 3.

b. G has treewidth at most 3 and Q g G.3

c. G has treewidth at most 3 and G is crossless.

Ž . Ž .Proof. a « b Suppose that branchwidth G F 3. Then, from the sec-
Ž .ond inequality of Theorem 1.b, we get that treewidth G F 3. We also

have the Q g G because, otherwise from Theorem 1.a we have that3
Ž . Ž .branchwidth G G branchwidth Q s 4, a contradiction.3

Ž .b « c It is sufficient to prove that if a graph G has a cross, then it
� 4contains Q as a minor. Let S s ¨ , ¨ , ¨ , ¨ be a cross in G. It is now3 1 2 3 4

enough to see that if we contract all edges of G, except those that have at
least one endpoint in S, we obtain Q .3

Ž .c « a From Lemmata 3 and 7, we have that G is a subgraph of a
crossless 3-tree G. Applying now Lemmata 9 and 1, we have the required.

THEOREM 6. The obstruction set for the class of graphs with branchwidth
� 4at most three, BB , equals K , M , M , Q .3 5 6 8 3

Proof. By Lemma 2, it is sufficient to prove that Q is the only element3
of BB with treewidth equal to 3. That statement holds because, according3
to Theorem 5, any graph treewidth at most 3 that does not contain Q as a3
minor, has branchwidth at most 3.
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Ž . Ž . Ž . Ž .FIG. 11. i A crossless 3-tree G, ii its 3-labelled clique tree T , l , iii an amplifiedG
Ž . Ž .branch decomposition T , t as it is constructed by the algorithm of Lemma 9, and iv the

Ž .branch decomposition constructed by T , t , using the algorithm of Lemma 1.

4. REDUCTION RULES FOR GRAPHS WITH
BRANCHWIDTH AT MOST 3

In this section we give a safe and complete set of reduction rules for the
Žgraphs with branchwidth at most three. The same conventions are used as

.in Fig. 1. We denote as RR the set of reduction rules shown in Fig. 12.bF 3
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FIG. 12. The reduction rules for the class of graphs with branchwidth F 3.

LEMMA 10. Let G be a graph with branchwidth at most 3. Suppose also
that rule b.¨ or rule b.¨i occurs in G. Then, if we apply b.¨ or b.¨i on G the
resulting graph has also branchwidth at most 3.

Proof. We will examine together the two cases where we apply b.¨ or
Ž .b.¨i. Suppose that for some graph G, where branchwidth G F 3, the

application of rule R, that is either b.¨ or b.¨i, on G results in a graph GX

Ž X.with branchwidth G ) 3. From the second inequality of Theorem 1.b we
Ž . � 4have that treewidth G F 3. Let a, b, c, d be the vertices of the resulting

X Ž . � 4X4-clique of G . W.l.o.g. we can assume that N a s b, c, d . Observe thatG
Xw Ž X. � 4x Ž .H s G V G y a has treewidth at most 3, since treewidth G F 3 and

H is the result of a single application of rule t.¨ , in case R is b.¨ , or of
three successive applications of rule t. ï X, in case R is b.¨i, on G.

X � 4Moreover, G has also treewidth at most 3, as b, c, d induces a 3-clique in
Ž w x w x. XH e.g., see 8 or 13 . Now, from Theorem 5, we have that G contains a

cross S. By the definition of the cross we have that for any vertex ¨ g S
Ž . X

Xthere must exist three vertices in N ¨ forming an independent set of G .G
<� 4 <Therefore a f S. We also claim that b, c, d l S F 1. Suppose to the

� 4 Ycontrary that w.l.o.g. b, c : S. Then, S would be a cross also in G s
Xw Ž X. Ž X. �� 44x YG V G , E G y b, c and this is a contradiction as G U G. We can

� 4 � 4now assume w.l.o.g. that b, c l S s B. Therefore, a, b, c belongs to the
Xw Ž X. xvertex set of one of the connected components of G V G y S . The

� 4same connected component remains connected even if we remove b, c
from GX as a is adjacent to both b, c. Therefore, graph GY s

Xw Ž X. Ž X. �� 44xG V G , E G y b, c contains a cross which is a contradiction as
YG U G.

LEMMA 11. RR is a safe set of reduction rules for the class of graphsbF 3
with branchwidth bounded by 3.

Proof. We have to prove that the application of any reduction rule
from RR to a graph preserves both its membership and nonmember-bF 3
ship. Membership for b.¨ and b.¨i holds immediately from Lemma 10. For
the rest of the rules in RR membership is easy because of Theorem 1.a,bF 3
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as the application of any of them on a graph G with branchwidth F 3
results a graph H, where H U G.

Suppose now to the contrary that there exists a graph G with branch-
width G 4 and a reduction rule R g RR occurring in G, such that if GX

bF 3
is the result of applying R on G, then GX has branchwidth F 3. Notice
that, according to Theorem 5, GX is crossless and has treewidth F 3. We
also have from the same theorem that either G has treewidth G 4 or it
contains a cross. Suppose that G has treewidth G 4. Notice that, as RRt F 3
is safe, there are no rules in RR occurring in G. Clearly R cannot be b.it F 3
Ž . Ž .or b.ii, or b.iii, or b. ï ; otherwise rule t.i t.ii, or t.iii., or t. ï would

. Ž .occur in G . Moreover, it is not hard to see that if R is b.¨ b.¨i , then
Ž .also t.¨ t. ï occurs in G, a contradiction. So, G has treewidth at most 3

and, therefore, contains a cross. Recall that GX has also treewidth at most
� 4 X3 and is crossless. Let S s a, b, c, d be a cross in G but not in G . Notice

that GX cannot result after the application of rules b.i, b.ii, b.iii, or b.¨ on
G, as those applications cannot harm the status of S as a cross. Thus, R is
either b. ï or b.¨i. In the first case G contains one vertex more than GX

� 4which is adjacent to the vertices of a triple, say b, c, d of S. This case
leads to a contradiction because b, c, and d are all adjacent to more than

Ž Xw Ž X. � 4x.one vertex in V G V G y b, d, c and rule b. ï cannot be applied. In
the second case G should contain two vertices more than GX, each one

� 4adjacent to different triples in a, b, c, d . In this case we have again a
contradiction because a, b, c, d are all adjacent to more than zero vertices

X Xw Ž . � 4xin G V G y a, b, c, d and rule b.¨i cannot be applied.

We call a leaf u of T that is adjacent to a vertex v simple if all theG
edges of T connecting v with leaves of T have pairwise different labels.G G
For example, notice that in the first 3-labelled clique tree of Fig. 6 leaves
� 4 � 4d, f , g, h and b, c, d, g are simple. Moreover, in the second 3-labelled
clique tree of Fig. 6 all the leaves are simple.

Ž .LEMMA 12. Let T , l be a 3-labelled clique tree containing at least oneG
edge. Then, one of the following holds:

Ž .i There exists at least one nonsimple leaf.
Ž .ii There exists a simple leaf u in T adjacent to a ¨ertex v ofG

span-degree 1.
Ž .iii There exists a simple leaf u in T adjacent to a ¨ertex v ofG

span-degree 2.
Ž .iv There exist two simple lea¨es u and u in T adjacent to a ¨ertex1 2 G

v of span-degree 3.

Ž .Proof. Let L be the set of leaves of T . Let also L s D N v .0 G 1 v g L T0 G
Ž .Suppose now that L / B; otherwise, ii trivially holds. Moreover, we1
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Ž .assume that all the leaves in T are simple; otherwise i holds. AsG
w Ž . xT V T y L is a nonempty tree, L must contain at least one leaf v.G G 0 1

Clearly, v is adjacent to at most d, 2 F d F 4, vertices in T and only oneG
of them is not a leaf. It is now easy to verify that if the span-degree of v is

Ž . Ž . Ž . Ž .1, 2, or 3; then ii , iii , iv respectively holds see also Fig. 13 .

LEMMA 13. Let G be a crossless 3-tree. Then, there exists one reduction
rule in RR occurring in G.bF 3

Ž .Proof. Let T , l be a 3-labelled clique tree of G. As the lemma isG
obvious for the case where G is isomorphic to K , we may assume that4
Ž . Ž .E T ) 0. Using Lemma 12, we distinguish the cases see also Fig. 13 :G

Case i. T contains a leaf u adjacent to a vertex v that is alsoG 1
Ž� 4. Ž� 4.adjacent to a vertex u and such that l v, u s l v, u . In this case we2 1 2

Ž� 4.can easily see that the two vertices in the set u j u y sep v, u are1 2 1
Ž� 4. Ž� 4adjacent only to the three vertices in sep v, u s sep v, u and, thus,1 2

rule b.¨ can be applied.
Case ii. T contains a simple leaf u adjacent to a vertex v withG

span-degree 1. The case where u is the only vertex of T adjacent to v isG
trivial as both rules b. ï , b.¨ can be applied. If now there exists a vertex

X � 4 � X4u / u adjacent to v and v, u and v, u have the same label, it is clear
Ž� 4.that the only triple of v that is a minimal separator of G is S s sep v, u .

Notice now that the unique vertices in v y S and u y S are adjacent only
to the vertices of S in G and, therefore, rule b.¨ can be applied.

FIG. 13. Examples of the cases of Lemmata 12 and 13.
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Case iii. T contains a simple leaf u adjacent to a vertex v withG
span-degree 2. We observe that v contains exactly two triples S , S that1 2
are minimal separators and one of them, say S , contains vertices that are1
all adjacent to the single vertex in u y v. Observe that, as u is simple, the
single vertex in v y S is adjacent to exactly one vertex not in u and thus2
rule b. ï can be applied.

Case iv. There exist two simple leaves u , u in T connected with1 2
the same vertex v that has span-degree 3. In this case, v contains exactly 3
triples S , S , S that are minimal separators and two of them, denote1 2 3
them S , S , contain vertices that are all adjacent to the single vertex in1 2
u y v and to the single vertex u y v, respectively. It is easy to see that,1 2
as u is simple, the single vertex in v y S is adjacent only to the vertices in3
v j u j u and thus rule b.¨i can be applied.1 2

LEMMA 14. If there exists some reduction rule in RR occurring in abF 3
X Ž X. Ž .graph G, then, for any subgraph G of G such that V G s V G , there

exists some rule in RR occurring in GX as well.bF 3

Proof. It is sufficient to prove that if some reduction rule R occurs in a
Ž .graph G then for any e g E G there exists some rule in RR occurringbF 3

X Ž Ž . Ž . � 4.in G s V G , E G y e . If the removal of e does not harm the
occurrence of R, then R occurs in GX as well. If this is not the case we
claim that, whatever the rule R is, the removal of e implies the occurrence
of another rule RX g RR in GX. Indeed, it is not difficult to check thatbF 3
any removal of an edge in rule b.ii, b.iii, b. ï , b.¨ , produces rule b.i, b.ii,
b.iii, b.iii, respectively and any removal of an edge in rule b.¨i, produces
either rule b.iii or rule b. ï .

LEMMA 15. RR is a complete set of reduction rules for the class ofbF 3
graphs with branchwidth F 3.

Proof. Let G be a nonempty graph with branchwidth F 3. We will
prove that there is a reduction rule in RR occurring in G. FrombF 3
Theorem 5, G has treewidth bounded by 3 and is crossless. Let GX be a
minimal triangulation of G. According to Lemma 3, GX is also crossless.
From Lemma 7, we have that G is a subgraph of a crossless 3-tree GY such

Ž Y . Ž .that V G s V G . Applying now Lemma 13 we know that there exists a
reduction rule in RR occurring in GY. The result now follows immedi-bF 3
ately from Lemma 14.

Now, from Lemma 11 and 15 we have the following.

THEOREM 7. RR is a safe and complete set of rules for rewriting graphsbF 3
of branchwidth at most 3.
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5. THE ALGORITHM

The results of the previous sections lead to the construction of a linear
time algorithm testing whether a graph has branchwidth at most 3 and, if
so, computes a branch decomposition of minimum width. In this section we
present this algorithm.

LEMMA 16. Let G be a graph with branchwidth at most 3. Let also
Ž .R , . . . , R be a sequence of reduction rules in RR that reduces G to the1 r bF 3
empty graph. Then, one can construct an algorithm that, gï en G and
Ž . Ž < Ž . <. XR , . . . , R , outputs in OO V G time a crossless chordal graph G with1 r
maximum clique size at most 4, such that G is a subgraph of GX and
Ž X. Ž .V G s V G .

Proof. Let G , . . . , G be a sequence of graphs such that G s1 rq1
G , G is the empty graph, and G occurs after the application of R to1 rq1 iq1 i

Ž < Ž . <.G for i s 1, . . . , r. Clearly, we can compute, in OO V G time the seti
Ž . X Ž Ž . .E s D E G . It is now easy to see that G s V G , E is theq is1, . . . , r i q

required crossless chordal graph and such a graph can be constructed in
Ž < Ž . <.OO V G time.

LEMMA 17. One can construct a linear time algorithm that, gï en a graph
Ž . Ž < Ž . <.G, checks whether branchwidth G F 3 and, if so, outputs, in OO V G

Ž .time, a sequence R , . . . , R of reduction rules in RR that can reduce a1 r bF 3
graph G to the empty graph.

Proof. According to Theorem 7, a graph has branchwidth at most 3 iff
we can find a sequence of reduction rules in RR that, when successivelybF 3
applied, reduce G to the empty graph. Clearly, it is enough to prove that
there exists a way to check, in constant time, whether a reduction rule in
RR occurs in a graph G or not. Indeed, it is enough to observe that,t F 3

Ž .given a reduction rule H, S, f g RR , every edge of H contains a vertexbF 3
w xof degree F 5 and then to use the same approach as the one used in 14

Žby Matousek and Thomas their algorithm is based on the same observa-ˇ
. Ž .tion about the set RR . See, however, the note added in proof.t F 3

We are now in position to present the main algorithm of this paper.

ALGORITHM. Branchwidth-3.
input: A graph G.
output: A branch decomposition of G with width F 3 or a report that

Ž .branchwidth G ) 3.

1. Use G and the algorithm of Lemma 17 and create sequence
Ž .R , . . . , R . If such a sequence does not exist then report that branch-1 r

Ž .width G ) 3 and stop.
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Ž .2. Use G, T , . . . , R , and the algorithm of Lemma 16 to construct1 r

a crossless chordal graph GX with maximum clique at most 4 that contains
G as a subgraph.

3. Use GX and the algorithm of Lemma 7 and construct a crossless
Y X Ž .k-tree G that contains G and therefore G as a subgraph.

4. Use GY and algorithm Clique-Tree to construct a 3-clique tree
T Y of GY.G

5. Use T Y and the algorithm of Lemma 8 to construct a labelledG
Ž . Y

Y3-tree clique T , l of G .G

Ž .Y6. Use T , l , and the algorithm of Lemma 9 to construct anG

amplified branch decomposition BU of GY with width 3.

7. Use BU and the algorithm of the second statement of Lemma 1
to construct a branch decomposition BY of GY with width at most 3.

8. Use BY and the algorithm of the first statement of Lemma 1 to
construct a branch decomposition B of G with width at most 3.

9. Output B.

10. end

Notice that each of the nine steps of algorithm Branchwidth-3 can be
Ž < Ž . <.done in OO V G time. Notice also that, according to Theorem 1.d, one

can check, in linear time, if a graph has branchwidth at most 2 or not.
Moreover, from Theorem 1.c, it is trivial to check, in linear time, if G has
branchwidth at most 1 or not. Therefore, it is easy to know if G has
branchwidth 2. In this special case, the corresponding branch decomposi-
tion can be computed using a straightforward modification of our algo-

Ž .rithm. Finally, if branchwidth G s 1 then, using Theorem 1.c, it is trivial
to construct the minimal branch decomposition. Concluding, we sum up
the results of this paper as follows.

THEOREM 8. The following three statements hold:

a. A graph has branchwidth at most 3 if and only if it does not contain
� 4any of the graphs in the set BB s K , M , M , Q as a minor.3 5 6 8 3

b. A graph has branchwidth at most 3 if and only if there exists a
sequence of reduction rules in RR that can reduce G to the empty graph.bF 3

c. One can construct an algorithm that tests if a gï en graph G has
branchwidth at most 3 and, if so, outputs a branch decomposition of

Ž < Ž . <minimum width in OO V G time.
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6. OPEN PROBLEMS

We believe that the methodology applied in this paper may be useful in
identifying obstruction sets andror reduction rules for other problems as
well. In this direction, the study of the graphs with branchwidth at most
four appears to be an interesting problem.
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w xNote Added in Proof. Upon recent inspection of 14 , we became uncertain whether the
Žtechnique used to find occurrences of the rule t.v s b.v i.e., find pairs of vertices of degree 3

.with the same neighbors in a dynamically changing graph works as required. Using a more
w xthan linear space, similarly to techniques used in 2 , can in any case resolve the problem,

assuming the RAM with uniform cost measure computation model. Thus, while the time
Ž 3.needed for the algorithm is linear, the space used is O n . Techniques such as that described

Ž .in T. Hagerup, On Saving Space in Parallel Computation, Inform. Process. Lett. 29 1988 ,
Ž 1q e .327]329, could help to bring the space requirements down, e.g., to O n . It is also not

Ž . Ž .difficult to see that an implementation exists that uses O n log n time and O n space.
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