
Constructive linear time algorithms for small carving-width

Dimitrios M. Thilikos1!, Maria J. Serna1, and Hans L. Bodlaender2

1 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Campus Nord –

Mòdul C5, c/Jordi Girona Salgado, 1-3. E-08034, Barcelona, Spain

{mjserna,sedthilk}@lsi.upc.es
2 Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

hansb@cs.uu.nl

Abstract. Consider the following problem: For any constant k and any input graph G, check whether

there exists a tree Y with internal vertices of degree 3 and a bijection θ mapping the vertices of G to

the leaves of Y such that for any edge of Y , the number of edges of G whose endpoints have preimages

in different components of Y − e, is bounded by k. This problem is known as the Minimum Routing

Tree Congestion problem and is relevant to the design of minimum congestion telephone networks.

Recent results of the Graph Minor series of Robertson and Seymour imply (non-constructively) that

this problem is fixed parameter tractable. In this paper we give a constructive proof of this fact.

Moreover, the algorithms of our proof are optimal and able to output the corresponding pair (Y, θ)

in case of an affirmative answer.

1 Introduction

Let G be a graph where the existence of an edge in G represents a communication demand (i.e. telephone

calls) between its endpoints. A call routing tree (or a carving) of a graph G is a tree T with internal vertices

of degree 3 whose leaves correspond to the vertices of G. We say that T has congestion ≤ k if, for any edge

e of T , the communication demands that need to be routed through e or, more explicitly, the number of

edges of G that share endpoints corresponding to different connected components of T − e, is bounded by

k (we denote as T −e the graph obtained from T after the removal of e). The carving-width of a graph G is

the minimum k for which there exists a call routing tree T with congestion bounded by k. In [9], Seymour

and Thomas proved that computing the carving-width of a graph is NP-complete. Moreover, in the same

paper, they give a O(n4) algorithm computing the carving-with of any planar graph G. Finally, the problem

of designing call routing trees of minimum congestion has been studied in [6] where a polynomial time

algorithm is given, computing a call routing tree T whose congestion is within a O(log n) factor from the

optimal. It is easy to check that the class of graphs with carving-width bounded by k is immersion-closed

for any k. Therefore, the results of Robertson and Seymour in [7, 8, 5] guarantee the existence, for any k,

of a polynomial time algorithm deciding whether an input graph G has carving-width at most k. However,

no such algorithm has been constructed so far even for small values of k. In this paper, we provide, for any

k ≥ 1, a linear time algorithm that checks whether an input graph G has carving-width≤ k and, if this is

the case, outputs a call routing tree of minimum congestion.

! The research of the first author was supported by the Ministry of Education and Culture of Spain, Grant number

MEC-DGES SB98 0K148809.

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός
11th International Symposium on Algorithms and Computation ISAAC 2000, Springer Verlag, Lecture Notes on Computer Science, Vol. 1969, pp. 192–203, 2000.

Dimitrios M. Thilikos - Δημήτριος Μ. Θηλυκός

A consequence of our algorithms is that, for any k, there exists an algorithm able to determine the

immersion obstruction set for the class of the graphs with carving-width at most k.

The key tool in our algorithm is the notion of a set of characteristics used so far for the construction

of a fixed parameter algorithm for minor closed parameters such as treewidth and pathwidth [2, 1], agile

graph searching parameters [4], linear-width [4], and branch-width [3] and, lastly, for the immersion closed

parameter of cutwidth see [10]. In a few words, a characteristic serves to filter the main data structure

of a parameter to its essential part, a part that is able to be constructed from node to node of a tree

decomposition. Moreover, as we will see, the information encoded by a characteristic depends on the width

of the tree decomposition and, therefore, it is constant for graphs with bounded treewidth.

Our algorithm starts with an adequate bounded width tree decomposition of the input graph G. The

tree decomposition allows the definition of an appropriate sequence of subgraphs. The algorithm computes,

in a bottom-up fashion, a set of characteristics that “represent” the carvings that have carving-width ≤ k

for any of the subgraphs.

2 Definitions and preliminary results

All the graphs of this paper are finite, undirected, and without loops or multiple edges (our results can

be straightforwardly generalized in the case where the last restriction is altered). We will denote as V (G)

(E(G)) the vertex (edge) set of a graph G. Given two graphs G1 and G2 we denote G1 ∪ G2 = (V (G1) ∪

V (G2), E(G1) ∪ E(G2)) and G1 ∩ G2 = (V (G1) ∩ V (G2), E(G1) ∩ E(G2)).

We proceed with a number of definitions and notations, dealing with finite sequences (i.e., ordered sets)

of a given finite set O, for our purposes, O can be a set of numbers, sequences of numbers, vertices, or

vertex sets. Let ω be a sequence of elements from O. We use the notation [ω1, . . . , ωr] to represent ω and

we define ω[i, j] as the subsequence [ωi, . . . , ωj] of ω (in case j < i, the result is the empty subsequence

[]). We use the notation ωr to denote the inverse of ω, i.e. sequence [ωr, . . . , ω1]. We also denote as ω(i)

the element of ω indexed by i.

Given a set S containing elements of O, we denote as ω[S] the subsequence of ω that contains only the

elements of ω that are in S. Given two sequences ω1, ω2, defined on O, where ωi = [ωi
1, . . . , ω

i
ri

], i = 1, 2 we

define the concatenation of ω1 and ω2 as ω1⊕ω2 = [ω1
1 , . . . , ω

1
r1

, ω2
1 , . . . , ω

2
r2

]. If n is a non-negative integer,

we set n × ω =

n
︷ ︸︸ ︷

ω ⊕ · · ·⊕ ω. Unless mentioned otherwise, we will always consider that the first element of

a sequence ω is indexed by 1, i.e. ω = ω[1, |ω|].

Let G be a graph and S ⊆ V (G). We call the graph (S, E(G) ∩ {{x, y} | x, y ∈ S}) subgraph of G

induced by S and we denote it by G[S]. For any e ∈ E(G), we set G − e = (V (G), E(G) − {e}) and for

any N ⊆ V (G) and u *∈ V (G), the graph G
u
+ N is obtained by adding the new vertex u and the edges

{{u, v} | v ∈ N}. We denote by EG(S) the set of edges of G that have an endpoint in S; we also set

EG(v) = EG({v}) for any vertex v. If E ⊆ E(G) then we denote as V (E) the set of all the endpoints of

the edges in E i.e. we set V (E) = ∪e∈Ee. The neighborhood of a vertex v in graph G is the set of vertices

in G that are adjacent, in G, with v and we denote it as NG(v), i.e. NG(v) = V (EG(v)) − {v}. We call a

path (t1, . . . , tr) of a graph G poor if r ≥ 2, its internal vertices (if exist) have degree 2, and its first and

last vertices have degree different than 2, i.e. if ∀1<i<r |NG(ti)| = 2 and dG(t1) = dG(tr) *= 2 (notice that

2

any edge with both endpoints of degree different than 2 is a poor path). Observe that two poor paths of

a graph have never common internal vertices. Finally, if G is not a cycle, then the edges of its poor paths

for a partition of E(G).

Given a tree T , we will denote as A(T) the set of leaves of T , i.e. the vertices of T that have degree 1.

Given two vertices v1, v2 of T we will denote as PT (v1, v2) the unique path of T connecting v1 and v2 and

as T (v1, v2) the subtree of T created if, for i = 1, 2, we remove all the connected components of T − vi

that do not contain v3−i. We will use the term spine for the path PT (v1, v2) of T (v1, v2). Finally, if T is a

tree v ∈ V (T) and S ⊂ NT (v) where |S| = |NT (v)|− 1, we define as T (v, S) as the subtree of T created if

we remove all the connected components of T − v that contain vertices in S.

Finally, whenever we deal with a function ϕ : A → B we will use the notation ϕ(S) to denote the set

{ϕ(η) | η ∈ S} for any S ⊆ A. Also, if S is a subset of B we will use the notation ϕ−1(S) = {η | ϕ(η) ∈ S}.

Finally if 〈a, b〉 is a directed pair of elements of A we denote ϕ(〈a, b〉) =〈ϕ(a), ϕ(b)〉.

2.1 Treewidth

A tree decomposition of a graph G is a pair (X, U) where U is a tree whose vertices we will call nodes and

X = ({Xi | i ∈ V (U)}) is a collection of subsets of V (G) such that

1.
⋃

i∈V (U) Xi = V (G),

2. for each edge {v, w} ∈ E(G), there is an i ∈ V (I) such that v, w ∈ Xi, and

3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi| − 1}. The treewidth of a

graph G is the minimum width over all tree decompositions of G.

A rooted tree decomposition is a triple D = (X, U, r) in which U is a tree rooted at r and (X, U) is a

tree decomposition.

Let D = (X, U, r) be a rooted tree decomposition of a graph G. For each node i of T , let Ui be the

subtree of U , rooted at node i. We set Vi = ∪v∈V (Ui)Xv and let Gi = G[Vi]. Notice that if r is the root of

U , then Gr = G. We call Gi the subgraph of G rooted at i. We finally set, for any i ∈ V (U), Di = (X i, Ui)

where X i = {Xv | v ∈ V (Ui)}. Observe that for each node i ∈ V (U), Di is a tree decomposition of Gi.

Let D = (X, U, r) be a rooted tree decomposition of a graph G where X = {Xi | i ∈ V (U)}. D is

called a nice tree decomposition if the following are satisfied

1. Every node of U has at most two children,

2. if a node i has two children j, h then Xi = Xj = Xh,

3. if a node i has one child, then either |Xi| = |Xj | + 1 and Xj ⊂ Xi or |Xi| = |Xj |− 1 and Xi ⊂ Xj .

Notice that a nice tree decomposition is always a rooted tree decomposition. For the following, see e.g. [1].

Lemma 1. For any constant k ≥ 1, given a tree decomposition of a graph G of width ≤ k and O(|V (G)|)

nodes, there exists an algorithm that, in O(|V (G)|) time, constructs a nice tree decomposition of G of width

≤ k and with at most 4|V (G)| nodes.

3

We now observe that a nice tree decomposition ({Xi | i ∈ V (U)}, U) contains nodes of the following

four possible types. A node i ∈ V (U) is called “start” if i ∈ A(U), “join” if i has two children, “forget” if

i has only one child j and |Xi| < |Xj |, “introduce” if i has only one child j and |Xi| > |Xj |. We may also

assume that if i is a start node then |Xi| = 2: the effect of start nodes with |Xi| > 2 can be obtained by

using a start node with a set containing 2 vertices, and then |Xi| − 2 introduce nodes, which add all the

other vertices.

2.2 Carving-width

A carving of a graph G is a pair γ = (Y, θ) where Y is a tree with internal vertices of degree 3 and |V (G)|

leaves and θ : A(Y) → V (G) is a bijection mapping the leaves of Y to the vertices of G.

Given a subset S of A(Y), we define function αG,γ,S : E(Y) → V (G) such that αG,γ,S(e) = EG(V (1))∩

EG(V (2)) where V (i) = θ(S ∩ A(Y (i))), i = 1, 2 and Y (i), i = 1, 2 are the connected components of Y − e.

Moreover, we define the function dG,γ mapping any directed edge e =〈t1, t2〉∈ E(Y) = {〈t1, t2〉 | {t1, t2} ∈

E(Y)} to the one element typical sequence [|αG,γ,A(Y)(e)|], i.e. dG,γ(e) = [|αG,γ,A(Y)(e)|]. Notice that

dG,γ(〈t1, t2〉) = dG,γ(〈t2, t1〉). We insist on this somehow overloaded notation for reasons for consistency

with terminology that will be introduced later.

The width of a carving γ = (Y, θ) of G is defined as max{max(dG,γ(e)) | e ∈ E(Y)} (i.e. the maximum

number appearing in the sequences corresponding to the edges of Y). The carving-width of a graph is the

minimum width over all of its carvings.

Lemma 2. For any graph1 G, treewidth(G) ≤ 3 · carving-width(G).

Proof. Let γ = (Y, θ) be a carving of a graph G where ∀e∈E(Y) max(dG,γ(e)) ≤ k. We construct a tree-

decomposition D = ({Xt, t ∈ V (t)}, Y ′) of G as follows. Let Y ′ = Y [V (Y) − A(Y)] and, for any vertex

t ∈ Y ′ we set Xt = V (αG,γ,V (G)(e1) ∪ αG,γ,V (G)(e2) ∪ αG,γ,V (G)(e3)) where e1, e2, e3 are the edges of Y

that share t as a common endpoint. Notice that any vertex that appears in Xt will belong to at least two

of the sets V (αG,γ(ei)), i = 1, 2, 3 and therefore |Xt| ≤ 3k. It is easy to see that D is a tree decomposition

of width ≤ 3k. 01

2.3 Sequences of integers

We denote as S the set of all the sequences of non-negative integers. For any sequence A = [a1, . . . , a|A|] ∈ S

and any integer t ≥ 0 we set A + t = [a1 + t, . . . , a|A| + t]. If A, B ∈ S and A = [a1, . . . , a|A|] we say that

A 2 B if B is a subsequence of A obtained after applying a number of times (possibly none) the following

operations

(i) If for some i, 1 ≤ i ≤ |A|− 1 ai = ai+1, then set A ← A(1, i) ⊕ A(i + 2, |A|).

(ii) If the sequence contains two elements ai and aj such that j − i ≥ 2 and ∀i<k<j ai ≤ ak ≤ aj or

∀i<k<j ai ≥ ak ≥ aj , then set A ← A(1, i) ⊕ A(j, |A|).

1 Actually, we are able to prove the more tight relation 1
∆(G)carving-width(G) − 1 ≤ treewidth(G) ≤ 2·carving-

width(G) where ∆(G) is the maximum degree of G. However, the relation of Lemma 2 is sufficient for the

purposes of our paper.

4

We define τ(A) as the unique minimum length element of the set {B | B 2 A}.

For example, τ([5,5,6,7,7,7,4,4,3,5,4,6,8,2,9,3,4,6,7,2,7,5,4,4,6,4]) = [5,7,3,8,2,9,2,7,4]. We call a se-

quence A typical if A ∈ S and τ(A) = A (i.e. if none of (i) or (ii) can be applied any more).

The following results has been proved in [2] (Lemma 3.5 and Lemma 3.3 respectively).

Lemma 3. The number of different typical sequences consisting of integers in {0, 1, . . . , n} is at most
8
322n.

Notice that B = τ(A) is a subsequence [ai1 , . . . , ai|B|
] of A = [a1, . . . , a|A|] such that for any j, 1 ≤

j ≤ |B| − 1 either aij
≤ aij+1 ≤ · · · ≤ aij+1−1 ≤ aij+1

or aij
≥ aij+1 ≤ · · · ≥ aij+1−1 ≥ aij+1

. We can

now define a function βA : {1, . . . , |τ(A)|} → {1, . . . , |A|} where βA(j) = ij is one of the possible original

positions in A of the j-th element in τ(A). Consider the sequence of the previous example

A = [5, 5, 6, 7, 7,7, 7, 4, 4,3, 5, 4, 6,8,2,9, 3, 4, 6, 7,2,7, 5, 4, 4, 6,4],

then we have

βA(1) = 1, βA(2) = 6 (or 4 or 5 or 7), βA(3) = 10,

βA(4) = 14, βA(5) = 15, βA(6) = 16,

βA(7) = 21, βA(8) = 22, βA(9) = 27.

Given two typical sequences A, B and an integer j, 1 ≤ 1 ≤ |τ(A ⊕ B)|, we define

α(A, B, j) =

{

(0, βA⊕B(j)) if βA⊕B(j) ≤ |A|

(1, βA⊕B(j) − |A|) otherwise

As an example we have that if A = [1, 3, 2] and B = [8, 5, 9], we have that τ(A ⊕ B) = [1, 9], α(A, B, 1) =

(0, 1), and α(A, B, 2) = (1, 3)

For any A ∈ S we define η(A) in the same way as τ(A) with the difference that only operation (i) is

considered. If now A is a sequence, we define the set of extensions of A as

E(A) = {Ã ∈ S | η(Ã) = A}.

Let A = [a1, . . . , ar1
] and B = [b1, . . . , br2

] be two sequences in S. We say that A ≤ B if r1 = r2 and

∀1≤i≤r1
ai ≤ bi. In general, we say that A ≺ B if there exist extensions Ã ∈ E(A), and B̃ ∈ E(B) such that

Ã ≤ B̃. For example if A = [1, 7, 2, 6, 4] and B = [5, 7, 3, 8] then A ≺ B because B̃ = [5,7,7,7,4,8,8,8,8] is

an extension of B, Ã = [1,7,2,6,4,4,4,4,4] is an extension of A, and Ã ≤ B̃.

The following three lemmata are easy consequences of the definitions.

Lemma 4. Given R ∈ S, if we set A = τ(R) then, for any m, 1 ≤ m ≤ |A|, there exists a i, 1 ≤ i ≤ |R|

such that A[1, m] = τ(R[1, i]) and A[m, |R|] = τ(R[i, |A|]).

Lemma 5. Let A1, A2 be two typical sequences where A2 ≺ A1. Then, for any m1, 1 ≤ m1 ≤ |A1|, there

exists a m2, 1 ≤ m2 ≤ |A2| such that A2[1, m2] ≺ A1[1, m1] and A2[m2, |A2|] ≺ A1[m1, |A1|].

Lemma 6. Given R ∈ S, if we set A = τ(R) then, for any r, 1 ≤ r ≤ |R|, there exists an integer

i, 1 ≤ i ≤ |A| such that A[1, i] ≺ τ(R[1, r]) and A[i, |R|] ≺ τ(R[r, |A|]).

5

As an example of Lemma 6 we consider the sequences

R = [2, 6, 7,8, 5, 4, 3, 5,2, 4,6, 4,4] and A = τ(R) = [2, 8, 2, 6, 4].

If we choose r = 7 we have that j = 2, k = 4, and l = 9. Notice that,

[2, 8] = τ([1, 6, 7, 8]),

[8, 2] ≺ τ([8, 5, 4, 3]),

[2] ≺ τ([3, 5, 2]),

[2, 6, 4] = τ [2, 4, 6, 4, 4],

[2, 8, 2] ≺ τ([1, 6, 7, 8, 5, 4, 3]) and

[2, 6, 4] ≺ τ([3, 5, 2, 4, 6, 4, 4]).

Let two sequences A, B of S where A = [a1, . . . , ar], B = [b1, . . . , br]. We define A+B = [a1+b1, . . . , ar+

br] and we say that A ∼ B iff ∀1≤i<r ai *= ai+1 ⇔ bi = bi+1 (and, therefore, bi *= bi+1 ⇔ ai = ai+1). As an

example we mention that

[1, 1, 8, 5, 5, 6, 7] ∼ [3, 6, 6, 6, 9, 9, 9].

The interleaving A⊗B of two typical sequences A and B is a set of typical sequences defined as follows

A ⊗ B = {τ(Ã + B̃) | Ã ∈ E(A), B̃ ∈ E(B) and, Ã ∼ B̃}.

Notice that the length of the resulting sequences is at most |A| + |B|− 1

For example if A = [2, 9, 5] and B = [3, 2, 6] we have that

A ⊗ B = {τ([2, 9, 5, 5, 5] + [3, 3, 3, 2, 6]), τ([2, 9, 9, 5, 5] + [3, 3, 2, 2, 6]),

τ([2, 9, 9, 9, 5] + [3, 3, 2, 6, 6]), τ([2, 2, 9, 9, 5] + [3, 2, 2, 6, 6]),

τ([2, 2, 9, 5, 5] + [3, 2, 2, 2, 6]), τ([2, 2, 2, 9, 5] + [3, 2, 6, 6, 6])}

= {τ([5, 12, 8, 7, 11]), τ([5, 12, 11, 7, 11]), τ([5, 12, 11, 15, 11]),

τ([5, 4, 11, 15, 11]), τ([5, 4, 11, 7, 11]), τ([5, 4, 8, 15, 11])}

= {[5, 12, 7, 11], [5, 12, 7, 11], [5, 15, 11], [5, 4, 15, 11], [5, 4, 11]}

We will need the following lemmata.

Lemma 7. Let Bi, Ci, i = 1, 2 be sequences where B1 2 B2 and C1 2 C2 and |Bi| = |Ci|, i = 1, 2. Then

τ(B1 + C1) = τ(B2 + C2).

Lemma 8. Let Ai, Bi, i = 1, 2 be four typical sequences where Ai ≺ Bi, i = 1, 2. Then τ(A1 ⊕ B1) ≺

τ(A2 ⊕ B2).

Lemma 9. Let A, B, C be sequences such that |B| = |C| and A = B + C. Then there exists a sequence

A′ ∈ τ(B) ⊗ τ(C) such that τ(A′) ≺ τ(A).

Lemma 10. Let A, B be two typical sequence and C a sequence such that C ∈ A ⊗ B. Suppose also that

A′, B′ be two typical sequence such that A ≺ A′ and B ≺ B′. Then there exists a sequence C′ ∈ A′ ⊗ B′

such that C ≺ C′.

6

3 Characteristics and overview of the algorithm

In this section, we will describe the general structure of our algorithm along with their basic mathematical

concepts. A key tool that has already been used in the bibliography for other parameters like pathwidth

and treewidth in [2], linear-width in [4], branchwidth in [3], and cutwidth in [10] is the notion of a set

of characteristics. In a few words, a characteristic serves as a mathematical tool that filters the data

of the main structure of a parameter to its essential part, that is, the part able to reproduce it with

respect to a node i of the tree decomposition. Moreover, as we will see, the information encoded by a

characteristic depends on the width of this decomposition and, therefore, it is constant for graphs with

bounded treewidth.

Our algorithms roughly work as follows. Given a tree decomposition of the input graph G, we transform

it in a nice tree decomposition as it is indicated in Lemma 1. We correspond to any of the subgraphs Gp a

set of characteristics that “represent” the carvings of Gp that have width ≤ k. Our algorithms are based

on a bottom up procedure that is able to compute a set of characteristics of Gp using the information of

the set of characteristics corresponding to the children of p. The procedure starts from the leaf nodes of

the tree decomposition. In the rest of this section we will specify these characteristics for the parameter of

carving-width and we will demonstrate the main theorems supporting their use in our algorithms.

3.1 Characteristic pairs

We call tree arrangement over O any pair (Y, θ) where Y is a tree with all internal vertices of degree 3 and

θ is a bijection mapping the leaves of Y to distinct elements of a set O (notice that if O is the vertex set

of a graph G, then (Y, θ) is a carving of G).

Let γ = (Y, θ) be a tree arrangement over O. If e = {t1, t2} is any edge of Y and v is an element of

O − θ(A(Y)) then we will denote as Add(γ, e, v) the tree arrangement γ′ = (Y ′, θ′) where Y ′ and θ′ are

defined as follows:

Y ′ = (V (Y) ∪ {t, l},

E(Y) ∪ {{t1, t}, {t2, t}, {tt, l}}− {{t1, t2}})

(we assume that t and l are not vertices of Y and that e = {t1, t2})

and θ′ = θ ∪ {l, v}.

If u ∈ θ(A(Y)) then we will denote as Rem(γ, u) the tree arrangement γ′ = (Y ′, θ′) where Y ′ and θ′ are

defined as follows:

Y ′ = (V (Y) − {l, t}, where l = θ−1(u),

E(Y) ∪ {{t1, t2}}− {{t, t1}, {t, t2}})

and θ′ = θ − {l, θ(l)}.

(t, is the unique vertex adjacent to l and

t1, and t2 are two vertices of Y with distance 2 from l)

For an example of the operation of functions Rem and Add see Figure 1.

7

hg

e

f

a b a b

f

e

g h

f

e

a b

d

c

hg

v

u

c

c

a) c)b)

l

t1 t2
t

t1 t2

t1

t2

t t2t1

l

Fig. 1. a) The carving γ, b) The carving γ′ = Rem(γ,uuu), c) The carving γ′′ = Add(γ′, {t1, t2},vvv).

We call characteristic pair any pair (γ, δ) where γ = (Y, θ) as a tree arrangement over some set O

and δ is a function mapping any directed edge e = 〈t1, t2〉 ∈ E(Y) to some typical sequence such that

δ(〈t1, t2〉) = (δ(〈t2, t1〉))r . We stress out that, besides the fact that, in general, the edges of E(Y) are

denote as unordered pairs, in the case where an edge is viewed as the input of function δ, the output

will be sensitive to the ordering that its endpoints are presented. For this reason, whenever we define the

value of δ for some input 〈t1, t2〉 we will automaticaly assume that the value δ(〈t2, t1〉) is defined to be

(δ(〈t2, t1〉))r . As an example we mention that for the characteristic pair of Figure 2, δ(〈l, t〉) = [6, 8, 2, 5]

and δ(〈t, l〉) = [5, 2, 8, 6]. Finally, if e = 〈t1, t2〉 is a directed edge we will denote its unordered version by

removing the “ ” symbol, i.e. e = {t1, t2}.

We define max(γ, δ) = max{max(δ(e)) | e ∈ E(Y)}. Notice that for any graph G, any carving γ = (Y, θ)

of V (G) is a tree arrangement over V (T) and the pair (γ, dG,γ) is a characteristic pair.

The following procedure defines the compression of a characteristic pair relative to a subset S of O (for

an example see Figure 2).

Procedure Com(γ, δ, S).

Input: A characteristic pair (γ = (Y, θ), δ) and a set S.

Output: A characteristic pair (γ̂ = (Ŷ , θ̂), δ̂).

1: Let Ytrunk = Y [(V (Y) − A(Y)) ∪ θ−1(S)], (i.e. Ytrunk is the tree obtained from Y after removing all

the leaves that do not map through θ to vertices in S.)

2: While A′ = A(Ytrunk)−A(Y) *= ∅, set Ytrunk = Ytrunk[V (Ytrunk)−A′], (i.e. remove leaves of Ytrunk that

are not leaves of Y as long as such leaves exist.)

3: Set Ŷ = Ytrunk and δ̂ = ∅.

4: Replace any maximal poor path (t1, . . . , tr), r ≥ 2 of Ytrunk with an edge {t̂1, t̂2} and set δ̂ ← δ̂ ∪

{(〈t̂1, t̂2〉, τ(δ(〈t1 , t2〉) ⊕ · · ·⊕ δ(〈tr−1, tr〉)))}.

5: Let γ′ = (Y ′, θ′), where θ′ is the restriction of θ to the leaves of Y ′ (notice that θ′(A(Y ′)) = θ(A(Y))∩S).

6: Output (γ′, δ′).

7: End.

Notice that the result of the successive compressions of step 4 is independent of the order they are realized.

8

1

[6,
0]

[5,
2,8

,6]

[7,
4,7

]

[6,2]

[4,9,1,2]

[9,2,4]
[8] [4,9,1,2]

[8]

[5,
2,8

,6]

[3,
5]

[2,6,3]

[2,6,3]

[4,9,1,2]

[8]

[2,6,3]

[5,
2,8

,6]

[2,9,1,2]

[3,
5]

[3,
5][5,

2,8
,6] a a

4,52,3

f

e

d

b

c

f f
a

d

f

dd

[3,
5]

a
l

t

Fig. 2. An example of the compression of a characteristic pair relative to the set {fff,aaa,ddd}.

Given two characteristic pairs over S ⊆ O (γ̂i, δ̂i), i = 1, 2 where γ̂i = (Ŷi, θ̂i), i = 1, 2, we say that

γ̂1 ≡φ̂ γ̂2 if φ̂ : V (Ŷ1) → V (Ŷ2) is an isomorphic bijection between Ŷ1 and Ŷ2 whose restriction on A(Ŷ1)

and A(Ŷ2) is the bijection θ̂1 ◦ θ̂−1
2 : A(Ŷ1) → A(Ŷ2). Suppose that γ̂1 ≡φ̂ γ̂2. We define the interleaving of

δ̂1 and δ̂2 as follows.

δ̂1⊗φ̂δ̂2 = {δ̂ | ∀〈t̂,t̂′〉∈E(Ŷ1)
δ̂(〈t̂, t̂′〉) ∈ δ̂1(〈t̂, t̂

′〉) ⊗ δ̂2(〈φ̂(t̂), φ̂(t̂′)〉)}.

We also say that (γ̂1, δ̂1) ≺φ̂ (γ̂2, δ̂2) when, for any〈t̂, t̂′〉∈ E(Ŷ1), δ̂1(〈t̂, t̂′〉) ≺ δ̂2(φ̂(〈t̂, t̂′〉)). Finally, (γ̂1, δ̂1) ≺

(γ̂2, δ̂2) if there exist an isomorphic bijection φ̂ such that (γ̂1, δ̂1) ≺φ̂ (γ̂2, δ̂2).

The following lemma is a direct consequence of Lemma 10.

Lemma 11. Let, for i = 1, 2, (γ̂i, δ̂i) and (γ̂∗
i , δ̂∗i) be characteristic pairs and an isomorphism ψi : V (Ŷ ∗) →

V (Ŷ) where γ̂i ≡ψi
γ̂∗

i and (γ̂∗
i , δ̂∗i) ≺ψi

(γ̂i, δ̂i). Let also γ̂1 ≡φ̂ γ̂2 for some isomorphism φ̂ : V (Ŷ1) →

V (Ŷ2). Then for any δ̂′ ∈ δ̂1⊗φ̂δ̂2 there exists a characterisic pair (γ̂1, δ̂
′∗) and two isomorphisms φ̂∗ :

V (Ŷ ∗
1) → V (Ŷ ∗

2) and ψ : V (Ŷ ∗) → V (Ŷ) such that

1. γ̂∗
1 ≡φ̂∗ γ̂∗

2 .

2. γ̂∗
1 ≡ψ γ̂1.

3. δ̂′∗ ∈ δ̂∗1⊗φ̂∗ δ̂∗2

4. (γ̂∗
1 , δ̂′∗) ≺ψ (γ̂1, δ̂

′).

(γ̂1, δ̂1)

ψ1
#

!!!
!!

!!
!

(γ̂2, δ̂2)

ψ2
#

""""
""

""
(γ̂∗

1 , δ̂∗1)

###
##

##
#

(γ̂∗
2 , δ̂∗2)

$$$$
$$

$$

δ̂1 ⊗ δ̂2

φ̂
%%

δ̂∗
1 ⊗ δ̂∗

2

φ̂∗

%%

(γ̂1, δ̂
′) ψ# (γ̂∗

1 , δ̂′∗)

Fig. 3. The structure of Lemma 11.

9

3.2 Characteristic of a carving of a graph

Let us start by definig a characteristic of a carving of a graph.

Given a graph G, a carving γ = (Y, θ) of G and a set S ⊆ V (G), the S-characteristic of γ is CS(G, γ) =

Com(γ, dG,γ , S). Notice that, from the definition we have that the V (G)-characteristic of carving γ is equal

to (γ, dG,γ), i.e. CV (G)(G, γ) = (γ, dG,γ) (clearly, Com(γ, dG,γ , V (G)) = (γ, dG,γ)).

a

b
[3]

[3
]

[3,
4]

c
d

[3]

[3
]

e
f

g

f

[3,4]
[4,

3]

[4]

[4,3]
[4]

[4]

[4
]

[3]

[4]

[3]
[4]

[3
]

[3
]

h h
g

cb

e

g h

e

f

a b

d

c

g

f

a b

d

c

a) b) c)

t1

t2

d)

Fig. 4. a) A graph G, b) a carving γ of G, c) the characteristic CV (G)(G, γ), and d) the characteristic C{bbb,ccc,ggg,fff}(G, γ).

As an example, in Figure 4, we present CV (G)(G, γ) and C{b,c,g,f}(G, γ), for the carving γ of some

graph G.

From now on we will denote any object refering to an S-characteritic with “hatted” symbols. We will

use “unhatted” symbols exclusively in the cases where we refere to a V (G)-characteristic. Moreover we

will keep on using unhatted symbols when we refer to characteristics pairs in general.

Notice that if (γ̂, δ̂) is an S-characteristic of some carving γ of G, then γ̂ is a carving of G[S].

The following lemma is a direct consequence of Procedure Com(γ, δ, S).

Lemma 12. Let γ be a carving of a graph G, S ⊆ V (G), and set δ = dG,γ. Let also (γ̂, δ̂) be a characteristic

pair on V (G). Then (γ̂, δ̂) = Com(γ, δ, S) iff there exists a function χ : V (Ŷ) → V (Y) such that

1. χ(A(Ŷ)) = θ−1(S) (the leaves of Ŷ map to the leaves of Y corresponding to the vertices of S).

2. The set {E(T (χ(v̂), χ(v̂))) | {v̂, û} ∈ E(Ŷ)} forms a partition of E(Y).

3. ∀〈v̂,û〉∈E(Ŷ) δ̂(ê) = τ(δ(〈t1, t2〉) ⊕ · · ·⊕ δ(〈tρ−1, tρ〉)) where (t1, . . . , tρ) = PY (χ(v̂), χ(û)).

Given a carving γ of a graph G and a set S ⊆ V (G) we call χγ,G tyhe function uniquely defined by the

above lemma. For an example, see Figure 5.

3.3 Analysis of the algorithm

Using now Lemma 3 and Lemma 2 and working in a similar way as in the proof of Lemma 3.1 in [2], we

can prove the following lemma.

Lemma 13. Let D = (X, U, r) be a nice tree decomposition of G, rooted at r, with width at most w. Let

Xp be some node in X. The number of different Xp-characteristics of all possible carvings of Gp with width

at most k, is bounded by a function depending only on k and w.

10

a

d

c

d

c
b

b

a

6po

1 5

2

n

Y Ŷ

3m

4

k

l

Y (d, f)Y (a, e)

Y (c, f)

Y (e, f)

Y (b, e)

Fig. 5. Example of function χγ,S when γ = (Y, θ), S = {a, b, c, d}, and where χ(1) = k, χ(2) = l, χ(3) = m, χ(4) =

n, χ(5) = o, and χ(6) = p.

Lemma 13 is important for the linear time of our algorithms as it ensures that the time cost of algorithmic

steps concerning sets of characteristics is independent of the size of the graph Gp they refer to.

A set FS(p) of Xp-characteristics of carvings of a graph Gp with width at most k is called a full set of

characteristics of carvings for Gp if for each carving γ of Gp with width at most k, there is a carving γ′

of Gp such that CXp
(Gp, γ

′) ≺ CXp
(Gp, γ) and CXp

(Gp, γ
′) ∈ FS(p), i.e. the Xp-characteristic of γ′ is in

FS(p).

The following lemma can be derived directly from the definitions.

Lemma 14. A full set of characteristics of carvings for Gp is non-empty if and only if the carving-width

of Gp is at most k. If some full set of characteristics of carvings for Gp is non-empty, then any full set of

characteristics of carvings for Gp is non-empty.

An important consequence of Lemma 14 is that the carving-width of G is at most k, if and only if any full

set of characteristics of carvings for Gr = G is non-empty.

In what follows, it remains to show how to compute a full set of characteristics of carvings at a node i

in O(1) time, when a full set of characteristic of vertex carvings for the children of i is given. This will be

demonstrated in section 4 and will make it possible, given any pair of integers constants k, w, to construct

an algorithm that given a graph and a nice tree decomposition of G of width at most w, to decide whether

G has carving-width at most k.

4 Basic subroutines for carving-width

4.1 A full set for a start node

Let Xp be a start node. Clearly, V (Gp) = Xp = {x, x′} and

FS(p) = {((({t, t′}, {{t, t′}}), {(t, x), (t′, x′)}), {(〈t, t′〉, [|E(G[{x, x′}])|])})}.

11

4.2 A full set for an introduce node

We will now consider the case where Xp is an introduce node. Let q be the unique child of p in U . The

following procedure is the basis to compute a characteistic after the insertion of an introduced vertex and

the additional edges that appear in Gp.

Procedure Ins(G, u, S, N, γ̂, δ̂, ê, m).

Input: A graph G, a vertex u *∈ V (G), two sets S, N where N ⊆ S ⊆ V (G), an S-characteristic (γ̂, δ̂) of

some carving γ of G where γ̂ = (Ŷ , θ̂) and γ = (Y, θ), a directed edge ê = 〈t̂left, t̂right〉 ∈ E(Ŷ), and an

integer m, 1 ≤ m ≤ |δ̂(ê)|.

Output: An (S ∪ {u})-characteristic (γ̂′, δ̂′) (γ̂′ = (Ŷ ′, θ̂′)) of the carving γ′ = Add(γ, e, u) of G′ = G
u
+ N

for some e ∈ E(Y).

1: Let {t̂1, . . . , t̂σ} = θ̂−1(NG(u)).

2: (insertion of u)

Set (Ŷ ′, θ̂′) = Add(γ̂, ê, u).

Use the notation V (Ŷ ′) − V (Ŷ) = {l̂, t̂} where l̂ ∈ A(Ŷ ′).

Set θ̂′ = θ̂ ∪ {(l̂, u)}, and

δ̂′ = δ̂ ∪ {(〈t̂1, t̂〉, δ̂(ê)[1, m]), (〈t̂2, t̂〉, δ̂(ê)[m, |δ̂(ê)|]),

(〈t̂, l̂〉, [0])} − {(ê, δ̂(ê))}.

3: (insertion of edges in EG(u))

For h = 1, . . . , σ,

For any edge f̂ in PŶ ′(t̂h, l̂),

Set δ̂′(f̂) ← δ̂′(f̂) + 1.

4: Output (γ̂′, δ̂′) (where γ̂′ = (Ŷ ′, θ̂′)).

5: End.

The following lemma is an easy consequence of Procedure Ins and function Add (as an example, compare

Figures 4.c and 6.c).

Lemma 15. Let G be a graph, γ = (Y, θ) be a carving of G, N a subset of V (G) and e ∈ E(Y). We

set γ′ = Add(γ, e, u) and we define G′ as the graph obtained from G after introducing a new node u and

connecting it to the vertices of N . Then Ins(G, u, V (G), N, γ, dG,γ , e, 1) is the V (G′)-characteristic of γ′,

i.e Ins(G, u, V (G), N, γ, dG,γ , e, 1) = (γ′, dG′,γ′).

Lemma 16. Let G be a graph, γ = (Y, θ) a carving of G, and S ⊆ V (G). We also set G′ = G
u
+ N for

some N ⊆ S and some new vertex v *∈ V (G) and we use the notation δ = dγ,G and (γ̂, δ̂) = CS(G, γ)

where γ̂ = (Ŷ , θ̂). Then the following hold.

(i) For any ê ∈ E(Ŷ) and any m, 1 ≤ m ≤ |δ̂(ê)|, there exists an edge e ∈ E(Y) such that Ins(G, u, S, N, γ̂, δ̂, ê, m) =

Com(Ins(G, u, V (G), N, γ, δ, e, 1), S ∪ {u}).

(ii) For any e ∈ E(Y) there exist an edge ê ∈ E(Ŷ) and an integer m, 1 ≤ m ≤ |δ̂(ê)|,such that

Ins(G, u, S, N, γ̂, δ̂, ê, m) ≺ Com(Ins(G, u, V (G), N, γ, δ, e, 1), S ∪ {u}).

12

c

d f

e

a

b g

u

cb

f

[6]

[6,
4]

[3]

[6]

[3
]

[4]

[4]

[3]

[6][4]

[3
]

[4
][6]

[4][4
]

d

a

[4]

u

g

h

f

e

g h

c
u

bba

g

f

d

c
u

h

e

[3,4]

[4][6]

[6]

[6,
4]

[3,4]

t1

t2

d)a) b) c)

Fig. 6. a) The graph G′, b) the carving γ′ = Add(γ, {t1, t2},uuu) of G′, c) the characteristic CV (G)(G
′, γ′), and d)

the characteristic C{bbb,ccc,ggg,fff,uuu}(G
′, γ′).

Proof. First we prove part (i). As (γ̂, δ̂) = Com(γ, δ, S), there exists a function χ satisfying the conditions

of Lemma 12. Let PY (χ(t̂1), χ(t̂2)) = (t1, . . . , tr), r ≥ 2. As (γ̂, δ̂) = Com((γ, δ), S), there exists a function

χ satisfying the conditions of Lemma 12. Therefore, we get that

δ̂(ê) = τ(δ(〈t1, t2〉) ⊕ · · ·⊕ δ(〈tr−1, tr〉)) (1)

Applying now Lemma 4 on (1), we have that there exists h, 1 ≤ h < r such that

δ̂(ê)[1, m] = τ(δ(〈t1, t2〉) ⊕ . . . ⊕ δ(〈th, th+1〉)) (2)

δ̂(ê)[m, |δ̂(ê)|] = τ(δ(〈th, th+1〉) ⊕ . . . ⊕ δ(〈tr−1, tr〉)) (3)

We set e =〈th, th+1〉. Let (γ′, δ′) and (γ̂′, δ̂′) be the characteristic pairs constructed by step 2 of Procedures

Ins(G, u, S, N, γ̂, δ̂, ê, m) and Ins(G, u, S, N, γ, δ, e, 1) respectively. We set l = V (Y) − V (Y ′), l̂ = V (Ŷ) −

V (Ŷ ′) and we denote as t (t̂) the unique vertex of Y ′ (Ŷ ′) adjacent to l (l̂).

We will prove now that (γ̂′, δ̂′) = Com((γ′, δ′), S∪{u}). Clearly, it is enough to find a function χ satisfy-

ing the condition of Lemma 12. We claim that this function is χ′ = χ∪{(t̂, t), (l̂, l)}. Condition 1 is a direct

consequence of the definition of χγ′,S∪{u} and condition 1 for χ. For Condition 2, we first recall that from the

same condition for χ we have that Pold = {E(T (χ(v̂), χ(v̂))) | {v̂, û} ∈ E(Ŷ)− {{t̂1, t̂2}}} is a partition of

E(Y)−E(T (t1, tr)) which can also be seen as a partition of E(Y ′)−(E(Y ′(t, t1))∪E(Y ′(t, tr))∪E(Y ′(t, l))).

As (Y ′, θ′) = Add(γ̂, ê, u), Pnew = {E(Y ′({χ(t̂), χ(t̂1)})), E(Y ′({χ(t̂), χ(t̂2)})), E(Y ′({χ(t̂), χ(l̂)}))} is a

partition of E(Y ′(t, t1)) ∪ E(Y ′(t, tr)) ∪ E(Y ′(t, l)). Notice now that Pold ∪ Pnew forms a partition of

E(Y ′) and condition 2 holds for χ′. Observe now that because of Condition 3 for χ, the same con-

dition holds also for χ′ as far as it concerns the edges of Ŷ ′ that also edges of Ŷ , i.e. edges not in

Enew = {{t̂, t̂1}, {t̂, t̂2}, {t̂, l̂}}. It remains to see that it holds for edges in Enew as well. This is obvious for

{t̂, l̂}. Finally, it holds for {t̂, t̂1} and {t̂, t̂2}, as a result of 2 and 3.

So far, we have seen that (γ′, δ′) = Com((γ̂′, δ̂′), S ∪ {u}). In what follows we will prove that this

relation is invariant under the transformations applied on (γ̂′, δ̂′) and (γ′, δ′) during the loops of step 3 of

the computation of of Ins(G, u, S, N, γ̂, δ̂, ê, m) and Ins(G, u, S, N, γ, δ, e, 1) respectively.

Notice that, during the execution of step 3, no vertex is introduced or removed and therefore the

carvings γ̂′ and γ′ remain the same. The only changes to (γ̂′, δ̂′) and (γ′, δ′) concern the values of δ̂ and δ.

13

We will use the notation (γ̂′, δ̂(h)) and (γ′, δ(h)) for the results of the h-th execution of the loop of step

3 and, for convenience, we denote (γ̂′, δ̂′) as (γ̂′, δ̂(0)), and (γ′, δ′) as (γ′, δ(0)). Our proof is by induction.

Suppose that (γ̂′, δ̂(h)) = Com(γ′, δ(h), S ∪ {u}) for any h, 0 < h < ξ. It remains to prove that

(γ̂′, δ̂(ξ)) = Com(γ′, δ(ξ), S ∪ {u}). Notice first that Conditions 1 and 2 of Lemma 12 remain invariant as

they concern γ̂ and γ. Moreover, condition 3 is also invariant for all the edges of Ŷ that are not in path

PŶ (t̂h, l̂). Let now ê =〈v̂, û〉 be an edge in PŶ (t̂h, l̂). From the induction hypothesis,

δ̂(ξ−1)(ê) = τ(δ(ξ−1)(〈z1, z2〉) ⊕ · · ·⊕ δ(ξ−1)(〈zρ−1, zρ〉)) (4)

where (z1, . . . , zρ) = PY (χ(v̂), χ(û)). An easy consequence of Condition 2 is that the edges in PY (χ(v̂), χ(û))

are also edges of PY (χ(t̂h), χ(l̂)). Therefore,

∀i=1,...ρ−1 δ(ξ)(〈zi, zi+1〉) = δ(ξ−1)(〈zi, zi+1〉) + 1. (5)

As δ̂ξ(〈v̂, û〉) = δ̂ξ−1(〈v̂, û〉) + 1, 4 and 5 along with the simple observation that for any sequence A

τ(A)+1 = τ(A+1), implies that 4 holds for any ê ∈ E(Ŷ) and condition 3 is satisfied.This completes the

proof of (i)

The flow of the proof for (ii) is exactly the same as in the proof of (i) with the difference that now

weaker versions of (2), (3). In particular, let ξ be a function satisfying the conditions 1–3 of Lemma 12

and we define ê = {v̂, û} as the unique edge of Ŷ where PY (v̂, û) contains e. Respecting the orientation of

e in PY (v̂, û), we can assume that ê =〈v̂, û〉, e =〈tω, tω+1〉, 1 ≤ ω ≤ |PY (v̂, û)| and that

δ̂(ê) = τ(δ(〈t1, t2〉) ⊕ · · ·⊕ δ(〈tω , tω+1〉) ⊕ · · ·⊕ δ(〈tr−1, tr〉)) (6)

From Lemma 6 and 6there exists an integer m, 1 ≤ m ≤ |δ̂(ê)| where

δ̂(ê)[1, m] ≺ τ(〈t1, t2〉) ⊕ · · ·⊕ δ(〈tω, tω+1〉)) (7)

δ̂(ê)[m, |δ̂(ê)|] ≺ τ(δ(〈tω , tω+1〉) ⊕ · · ·⊕ δ(〈tr−1, tr〉)) (8)

Notice that (7), (8), are the same as (2), (3), with the difference that “=” has been replaced by “≺”.

It is now easy to check that repeating the steps of the proof of case (i) it follows that Ins(G, u, S, N, γ̂, δ̂, ê, m) ≺

Com(Ins(G, u, V (G), N, γ, δ, e, 1), S ∪ {u}). 01

Lemma 17. Let (γ̂i, δ̂i) be two characteristics of a graph G where (γ̂1, δ̂1) ≺ψ (γ̂2, δ̂2) for some bijection

ψ : V (T̂1) → V (T̂2) (we use the notation γ̂i = (T̂i, θ̂i), i = 1, 2). Let also N ⊆ S be subsets of V (G), and

G′ = G
u
+ N for some new vertex u *∈ V (G). We use the notation γ̂i = (Ŷi, θ̂i), i = 1, 2. Then for any

ê ∈ E(Ŷ1) and any m1, 1 ≤ m1 ≤ |δ̂1(ê)| there exists an m2, 1 ≤ m2 ≤ |δ̂2(ψ(ê))| and a function ψ′ such

that

Ins(G, u, S, N, γ̂1, δ̂1, ê1, m1) ≺ψ′ Ins(G, u, S, N, γ̂2, δ̂2, φ̂(ê), m2).

Proof. We apply Lemma 5 on the typical sequence δ̂1(ê) and δ̂2(ψ(ê)) and we have that there exists an

m2, 1 ≤ m2 ≤ |δ̂2(ψ(ê))| such that

δ̂1(ê)[1, m1] ≺ δ̂1(ê)[1, m2] (9)

δ̂1(ê)[m1, |δ̂1(ê)|] ≺ δ̂1(ê)[m2, |δ̂2(ψ(ê))|] (10)

14

We run, in parallel Ins(G, u, S, N, γ̂1, δ̂1, ê1, m1) and Ins(G, u, S, N, γ̂2, δ̂2, φ̂(ê), m2) and we assume that, for

i = 1, 2, during the computation of (Ŷ ′
i , θ̂′i) = Add(γ̂i, êi, u) in step 2 the notation used is V (Ŷ ′

i)−V (Ŷi) =

{li, ti}. We define ψ′ = ψ ∪ {(l1, l2), (t1, t2)}. We also assume that ê = 〈t̂1, t̂2〉. Using now the fact that

γ̂1 ≡ψ γ̂2, it is easy to see that γ̂′
1 ≡ψ γ̂′

2.

We now claim that if (γ̂′
i, δ̂

′
i), i = 1, 2 are the characteristics constructed after step 2 of , i = 1, 2 then

(γ̂′
1, δ̂

′
1) ≺ψ′ (γ̂′

2, δ̂
′
2) (11)

For this, we need to show that ∀
ê∈E(Ŷ ′) δ̂′1(ê) ≺ δ̂′2(ψ

′(ê)) Clearly, this is obvious if ê is an edge in

E(Ŷ ′)∩E(Ŷ) = E(Ŷ)− {{t̂, t̂1}, {t̂, t̂2}, {t̂, l̂}}. In the cases where ê = {t̂, t̂1} and ê = {t̂, t̂2}, the required

is a direct consequence of 9 and 10 respectively. The case where ê = {t̂, l̂} is trivial.

It now remains to prove that 11 holds after the application of step 3 as well. Clearly, we have to fix

our attention to the modifications applied to δ̂′1 and δ̂′2 as γ̂′
1 and γ̂′

2 do not change during step 3.

We will denote δ̂′i as δ̂
(0)
i , i = 1, 2 and we will use the notation δ̂(h) for the results of the h-th execution

of the loop in step 3 during the computation of Ins(G, u, S, N, γ̂i, δ̂i, φ̂(ê), mi), i = 1, 2. Suppose that

(γ̂′
1, δ̂

(h)
1) ≺ψ (γ̂′

2, δ̂
(h)
2 for any h, 0 < h < ξ. It remains to prove that (γ̂′

1, δ̂
(ξ)
1) ≺ (γ̂′

2, δ̂
(ξ)
2) or, equivalently,

that ∀
ê∈E(Ŷ ′

1) δ̂
(ξ)
1 (ê) ≺ δ̂

(ξ)
2 (ψ′(ê)). Observe that ψ′(PŶ ′

1
(t̂ξ, l̂)) = PŶ ′

2
(ψ′(t̂ξ), ψ′(l̂)). This means that, for

i=1,2, δ̂
(ξ)
i is different than δ̂

(ξ−1)
i only for the edges of paths PŶ ′

1
(t̂ξ, l̂) and PŶ ′

2
(ψ′(t̂ξ), ψ′(l̂)) respectively.

Therefore it is enough to examine the case where ê is an edge of PŶ ′
1
(t̂ξ, l̂). Clearly, δ̂

(ξ)
1 (ê) = δ̂

(ξ−1)
1 (ê)+ 1

and δ̂
(ξ)
2 (ψ′(ê)) = δ̂

(ξ−1)
2 (ψ′(ê)) + 1. Combining the last two relations with the fact that δ̂

(ξ−1)
1 (ê) ≺

δ̂
(ξ−1)
2 (ψ′(ê)), gives δ̂

(ξ)
1 (ê) ≺ δ̂

(ξ)
2 (ψ′(ê)) and this completes the proof of the lemma. 01

We now give an algorithm that, if Xp is an introduce node, computes a full set of characteristics FS(p)

for Gp, given a full set of characteristics FS(q) of carvings for Gq where q is the (unique) child of p in U .

Algorithm Introduce-Node

Input: A full set of characteristics FS(q) of carvings for Gq.

Output: A full set of characteristics FS(p) of carvings for Gp.

1: Initialize FS(p) = ∅ and set N = NGp
(u) where {u} = Xp − Xq.

2: For any Xq-characteristic (γ̂, δ̂) ∈ FS(q) where γ̂ = (Ŷ , θ̂) apply step 3.

3: For any edge ê ∈ E(Ŷ) apply step 4.

4: For any m = 1, . . . , |δ(ê)|, apply step 5.

5: Let (γ̂′, δ̂′) = Ins(Gq, u, Xq, N, γ̂, δ̂, ê, m) and

if max(γ̂′, δ̂′) ≤ k, then set FS(p) ← FS(p) ∪ {(γ̂′, δ̂′)}.

6: Output FS(p).

7: End.

Lemma 18. If FS(q) is a full set of characteristics of carvings for Gq and p is an introduce node with

child q, then the set FS(p) constructed by Algorithm Introduce-Node is a full set of characteristics of

carvings for Gp.

15

γ &&

Add(γ,e,u)

%%

(γ̂, δ̂) ψ;

Ins(Gq,u,Xq,N,γ̂,δ̂,ê,m)

%%

(γ̂∗, δ̂∗)

Ins(Gq,u,Xq,N,γ̂∗,δ̂∗,ê∗,m∗)

%%

γ∗''

Add(γ∗,e∗,u)

%%
γ′ && (γ̂′, δ̂′) ψ′; (γ̂′∗, δ̂′∗) γ′∗''

Fig. 7. The structure of Lemma 18.

Proof. We will prove first that the set FS(p) computed by the algorithm Introduce-Node is a set of Xp-

characteristics of carvings for Gi. To avoid overloaded expressions, whenever we refer to a carving or to a

characteristic, we will insist that its width is bounded by k. We will show that for any (γ̂′, δ̂′) ∈ FS(q) there

exists a carving γ′ of Gp where (γ̂′, δ̂′) = CXp
(Gp, γ

′). Clearly, as (γ̂′, δ̂′) was constructed by Algorithm

Introduce-Node, there must be a characteristic (γ̂, δ̂) ∈ FS(q) an edge ê = E(Ŷ) (we denote γ̂ = (Ŷ , θ̂))

and an integer m, 1 ≤ m ≤ |δ̂(ê)| such that

(γ̂′, δ̂′) = Ins(Gq, u, Xq, N, γ̂, δ̂, ê, m) (12)

As (γ̂, δ̂) ∈ FS(q), it will be a Xq-characteristic for Gq and therefore, there exists a carving γ = (Y, θ) of

Gq where (γ̂, δ̂) = CXq
(Gq, γ). From Lemma 16(i) we have that there exists an edge e ∈ E(Y) such that

Ins(Gq , u, Xq, N, γ̂, δ̂, ê, m) = Com(Ins(Gq, u, V (Gq), N, γ, dGq,γ , e, 1), Xq ∪ {u}) (13)

From Lemma 15, we have that Ins(Gq, u, V (Gq), N, γ, dGq,γ , γ, 1) is the V (Gp)-characteristic of γ′ =

Add(γ, e, u) and therefore,

Com(Ins(Gq, u, V (Gq), N, γ, dGq,γ , e, 1), Xp) = Com(γ′, dG′,γ′ , Xp) (14)

Combining now (12), (13), and (14), we have that (γ̂′, δ̂′) = Com(γ′, dG′,γ′ , Xp) = CXp
(Gp, γ

′).

It remains now to prove that FS(p) is a full set of characteristics of carvings for Gp. Let γ′ = (Y ′, θ′)

be a carving of Gp. We will show that there exists a carving γ′∗ of Gp such that

CXp
(Gp, γ

′∗) ≺ CXp
(Gi, l

′) and CXp
(Gi, γ

′∗) ∈ FS(p).

Set now γ = Del(γ′, θ′−1(u)) and let e be the unique edge of Y ′ that contains θ
′−1(u) as an endpoint. From

Lemma 15, we have that

Ins(Gq, u, V (Gq), N, γ, dGq,γ , e, 1) = (γ′, dGp,γ′)

and therefore,

Com(Ins(Gq, u, V (Gq), N, γ, dGq,γ , e, 1), Xp) = Com(γ′, dGp,γ′ , Xp) = CXp
(Gp, γ

′) (15)

Set now (γ̂, δ̂) = CXq
(Gq, γ) where γ̂ = (Ŷ , θ̂). From Lemma 16.ii we have that there exists an edge

ê ∈ E(Ŷ) and and integer m, 1 ≤ m ≤ |δ̂(ê)| such that

Ins(Gq , u, Xq, N, γ̂, δ̂, ê, m) ≺ Com(Ins(Gq, u, V (Gq), N, γ, dGq,γ , e, 1), Xq ∪ {u}) (16)

As FS(q) is a full set of characteristics, we have that there exists a carving γ∗ of V (Gq) such that

CXq
(Gq, γ

∗) ≺ CXq
(Gq , γ) and CXq

(Gq , l
∗) ∈ FS(q).

16

Let CXq
(Gq, γ

∗) = (γ̂∗, δ̂∗). We use the notation γ̂∗ = (Ŷ ∗, θ̂∗), notice that ψ maps the vertices of Ŷ to the

vertices of Ŷ ∗. From Lemma 17 we have that there exists a bijection ψ′ and an integer m∗, 1 ≤ m∗ ≤ |δ̂(ê∗)|

(we set ê∗ = δ̂(ψ(ê))) such that

Ins(Gq, u, Xq, N, γ̂∗, δ̂∗, ê
∗, m∗) ≺ψ′ Ins(Gq, u, Xq, N, γ̂, δ̂, ê, m) (17)

From Lemma 16.i, we have that there exists an edge e∗ ∈ E(Y ∗) such that

Com(Ins(Gq, u, V (Gq), N, γ∗, dGq,γ∗ , e∗, 1), Xp) = Ins(Gq, u, Xq, N, γ̂∗, δ̂∗, ê∗, m∗) (18)

We set γ′∗ = Add(γ∗, e∗, u) and after applying Lemma 15 we have that

(γ′∗, dGp,γ′∗) = Ins(Gq, u, V (Gq), N, l∗, dGq,l∗ , ê
∗, 1)

and therefore,

CXp
(Gp, γ

′∗) = Com(γ′∗, dGp,γ′∗ , Xp) = Com(Ins(Gq, u, V (Gq), N, γ∗, dGq,γ∗ , ê∗, 1), Xp) (19)

From (18) and (19) we have that CXp
(Gp, γ

′∗) = Ins(Gq, u, Xq, N, γ̂∗, δ̂∗, e∗, m∗). Since (dGq,γ∗) ∈

FS(q) algorithm Introduce-Node makes that CXp
(Gp, γ

′∗) ∈ FS(p). Moreover, combining (15)–(19) we

conclude that CXp
(Gp, γ

′∗) ≺ CXp
(Gp, γ

′). (For a diagram depicting the structure of the proof see Figure 7)

01

4.3 A full set for a forget node

We will now consider the case where Xp is a forget node. We will provide an algorithm that given a full set

of characteristics FS(q) for Xq, computes a full set of characteristics FS(p) for Xp. We start by defining

a deletion procedure that, when applied to characteristics of carvings, operates inversely to procedure Ins.

Procedure Del(γ, δ, u).

Input: A characteristic pair (γ, δ) where γ = (Y, θ) and an element u ∈ θ(A(Y)).

Output: A characteristic pair (γ′, δ′).

1: γ′ = Rem(γ, u).

2: δ′ = δ∪{(〈t1, t2〉, τ(δ(〈t, t1〉) ⊕ δ(〈t, t2〉)))}−

{(〈t, l〉, δ(〈t, l〉),

(〈t, t1〉, δ(〈t, t1〉)),

(〈t, t2〉, δ(〈t, t2〉)}.

3: Output (γ′, δ′).

4: End.

The following lemma is a direct consequence of the definitions of the procedures Com and Del.

Lemma 19. Let (γ, δ) be a characteristic pair of a given set O where γ = (Y, θ) and let V ⊆ θ−1(A(Y)).

Then, for any v ∈ V the following holds.

Com(γ, δ, V − {v}) = Del(Com(γ, δ, V), v)

17

Observe that Lemma 19 can provide an alternative, recursive definition of procedure Com, based on

procedure Del.

The following monotonicity result is a direct consequence of Lemma 8

Lemma 20. Let (γi, δi), i = 1, 2 be two characteristic pairs of a given graph G. If (γ2, δ2) ≺ (γ1, δ1), then

for any u ∈ V (γ1), Del(γ2, δ2, u) ≺ Del(γ1, δ1, u).

Now we can give an algorithm that, given a tree decomposition D of the graph G, for any forget node

Xp, computes a full set of characteristics FS(p) for the graph Gp, given a full set of characteristics FS(q)

for the graph Gq.

Algorithm Forget-Node

Input: A full set of characteristics FS(q) for Gq.

Output: A full set of characteristics FS(p) for Gp.

1: Initialize FS(p) = ∅ and let u be the forget vertex of Gp.

2: For any (γ̂, δ̂) ∈ FS(q) do

3: FS(p) ← FS(q) ∪ {Del(γ̂, δ̂, u)}.

4: Output FS(p).

5: End.

Lemma 21. If FS(q) is a full set of characteristics of carvings for Gp and q is a forget node with child

q, then the set FS(p) constructed by Algorithm Forget-Node is a full set of characteristics of carvings for

Gp.

Proof. As Gp = Gq we will use the notation G for both of them. We will also denote as u the forget vertex

of Gp. We will prove first that FS(p) is a set of Xp-characteristics for G. We need to prove that there

exists a carving γ of G where

CXp
(γ, G) = Com(γ, dG,γ , Xp) = (γ̂′, δ̂′)

for any (γ̂′, δ̂′) ∈ FS(p). As (γ̂′, δ̂′) has been constructed by procedure Forget-Node there must exists a

Xq-characteristic (γ̂, δ̂) ∈ FS(q) such that

(γ̂′, δ̂′) = Del(γ̂, δ̂, u). (20)

As (γ̂, δ̂) ∈ FS(q), there exists a carving γ of G such that

(γ̂, δ̂) = Com(γ, dG,γ , Xq) (21)

and therefore, from (20) and (21) we have

(γ̂′, δ̂′) = Del(Com(γ, dG,γ , Xq), u) (22)

and using (22) and Lemma 19 we have that CXp
(γ, G) = Com(γ, dG,γ , Xp) = (γ′, δ′).

18

We will now prove that FS(i) is a full set of Xp-characteristics for G. Let γ be a carving of G of

cutwidth at most k. We will show that there exists a carving γ∗ of G such that

CXp
(G, γ∗) ≺ CXp

(G, γ) and CXp
(G, γ∗) ∈ FS(p).

From Lemma 19 we have that

CXp
(G, γ) = Com(γ, dG,γ , Xp) = Del(Com(γ, dG,γ , Xq), u) (23)

As FS(q) is a full set of characteristics, there exists a carving γ∗ of V (G) such that CXq
(G, γ∗) ∈ FS(q)

and CXq
(G, γ∗) ≺ CXq

(G, γ) or, equivalently,

Com(γ∗, dG,γ∗ , Xq) ≺ Com(γ, dG,γ , Xq) (24)

Using now Lemma 20 we can rewrite (24) as follows.

Del(Com(γ∗, dG,γ∗ , Xq), u) ≺ Del(Com(γ, dG,γ , Xq), u) (25)

Applying again Lemma 19 we have that

CXp
(G, γ∗) = Com(γ∗, dG,γ∗ , Xp) = Del(Com(γ∗, dG,γ∗ , Xq), u) (26)

Combining now (23), (25), and (26), we have that CXp
(G, γ∗) ≺ CXp

(G, γ). Finally as

CXq
(G, γ∗) = Com(γ∗, dG,γ∗ , Xq) ∈ FS(q),

the output of Del(Com(γ∗, dG,γ∗ , Xq), u) will be one of the characteristics included in FS(p). Therefore,

CXp
(G, γ∗) ∈ FS(p) and this completes the proof of the lemma.

4.4 A full set for a join node

We will now consider the case where Xp is a join node and qi, i = 1, 2 are the two children of p in U . We

observe that V (Gq1
) ∩ V (Gq2

) = Xp, Gq1
∪ Gq2

= Gp and we may assume that E(Gq1
) ∩ E(Gq2

) = ∅.

Given a full set of characteristics FS(q1) for Xq1
and a full set of characteristics Fq2

for Xq2
, the following

algorithm computes a full set of characteristics FS(p) for Xp.

Algorithm Join-Node

Input: A full set of characteristics FS(q1) of carvings for Gq1
and a full set of characteristics FS(q2) of

carvings for Gq2
.

Output: A full set of characteristics FS(p) of carvings for Gp.

1: Initialize FS(p) = ∅.

2: For any pair of Xqi
-characteristics (γ̂i, δ̂i) ∈ FS(qi), i = 1, 2, apply step (3).

(we use the notation γ̂i = (Ŷi, θ̂i))

3: For any bijection φ̂ : V (Ŷ1) → V (Ŷ2) where γ̂1 ≡φ̂ γ̂2 apply step (4).

4: For any δ̂′ ∈ δ̂1⊗φ̂δ̂2 apply step (5).

5: If max(γ̂1, δ̂
′) ≤ k, set FS(p) ← FS(p) ∪ {(γ̂1, δ̂

′)}.

6: Output FS(p).

7: End.

19

Procedure Construct-Join-Carving(G1, G2, S, γ1, γ2, φ̂
′, δ̂′).

Input: Two graphs G1, G2 and a set S where G1 ∩ G2 = (S, ∅).

Two carvings γ1 and γ2, and a bijection φ̂ where CS(G1, γ1) ≡φ̂ CS(G2, γ2).

A function δ̂′ ∈ δ̂1⊗φ̂δ̂2 where (γ̂i, δ̂i) = CS(Gi, γi), i = 1, 2.

Output: A V (G)-characteristic (γ, δ) of G = G1 ∪ G2 where CS(G, γ) = (γ̂1, δ̂
′).

(Assume the notations δi = dG,γi
, γi = (Yi, θi) and γ̂i = (Ŷi, θ̂i), i = 1, 2.)

1: Define σi : V (Ŷ1) → V (Yi)), i = 1, 2 such that σ1 = χγ1,S and σ2 = χγ2,S ◦ φ̂.

2: For any ê =〈v̂, û〉∈ Ê(Ŷi)

(a) For i = 1, 2

Set (ti1, . . . , t
i
ri

ê

) = PYi
(σi(v̂), σi(û)).

Set Ai = [δi(〈ti1, t
i
2〉), . . . , δi(〈tiri

ê
−1

, ti
ri

ê

〉)]. (Notice that τ(Ai) = δ̂i(ê)).

(b) Let δ̂′(ê) = τ(Ã1 + Ã2) where Ã1 ∼ Ã2, and Ãi ∈ E(δ̂i(ê)), i = 1, 2.

(c) For i = 1, 2

For j = 1, . . . , |δ̂i(ê)|− 1

Set si
j = βAi

(j), f i
j = βAi

(j + 1), and πi
j = Ai[si

j + 1, f i
j − 1].

Let Ãi = [ãi
1, . . . , ã

i
ν] where ν = |δ̂1(ê)| + |δ̂2(ê)|− 1.

(d) For i = 1, 2

For j = 1, . . . , ν − 1

If ãi
j = ãi

j+1 and ã3−i
j , ã3−i

j+1 is the h-th number change in Ã3−i then

set xi
j,j+1 = |π3−i

h |× [ãi
j], Yj,j+1 = T 3−i

Y (t3−i

s3−i
h

, t3−i

f3−i
h

),

es
j = {t3−i

s3−i
j

, t3−i

s3−i
j +1

}, and el
j = {t3−i

f3−i
j

, t3−i

f3−i
j +1

}.

If ãi
j *= ãi

j+1 and ãi
j , ã

i
j+1 is the h-th number change in Ãi then

set xi
j,j+1 = πi

h, Yj,j+1 = T i
Y (ti

si
h

, ti
fi

h

),

es
j = {ti

si
j

, ti
si

j+1
}, and el

j = {ti
fi

j

, ti
fi

j+1
}.

Set A′
i = [ãi

1] ⊕ xi
1,2 ⊕ [ãi

2] ⊕ · · ·⊕ [ãi
ν−1] ⊕ xi

ν−1,ν ⊕ [ãi
ν].

(e) Set A′
ê = A′

1 + A′
2 and set Yê =

⋃

j=1,...,ν−1 Yj,j+1.

(f) For j = 1, . . . , ν − 1, identify el
j and es

j+1 in Yê.

(g) Let têstart and têfin be the endpoints of es
1 and el

ν−1 that are leaves of Yê.

(Notice that têstart = σ1 or 2(v̂) and têfin = σ1 or 2(û))

(h) For any edge e ∈ E(Yê)

if e is the j-th edge of PYê
(têstart, t

ê
fin) then δê(e) = [A′(j)],

otherwise, if e ∈ E(T1) then δê(e) = δ1(e),

otherwise, δê(e) = δ2(e).

3: Set δ =
⋃

ê∈E(Ŷ1)
δê, θ = {(v, (θ1 ∪ θ2)(v)) | v ∈ A(Y)}, and Y =

⋃

ê∈E(Ŷ1)
Yê.

4: For any v̂ ∈ A(Ŷ1),

Let ê1, ê2, and ê3 be the edges of Ŷ1 incident to v̂.

For h = 1, 2, 3, let têh

start or fin be the leaf of Yêh
where têh

start or fin = σ1 or 2(v̂).

Identify in Y vertices têh

start or fin, h = 1, 2, 3.

5: Output (γ, δ) where γ = (Y, θ)

6: End.

20

Fig. 8. Example of the operation of the loop of step 2. The first and the third tree are Y1(t
1
1, t

1
r1

ê
) and Y2(t

2
1, t

2
r2

ê
)

respectively. The second tree is Yê.

The algorithm starts setting up (step 1) the correspondences σ1 and σ2 of the vertices in Ŷ1 to the

vertices of Y1 and Y2 respectively. The main part of the algorithm is the loop applied in step 2 for any

edge ê = {v̂, û} of Ŷ1 (an example is displayed in Figure 8). The integers corresponding to the spines

of these trees form the sequences A1 and A2 computed in loop 2(a) and make it possible to calculate in

step 2(b) the sequences Ãi, i = 1, 2. Each of TYi
(ti1, t

i
ri

ê

), i = 1, 2 is decomposed into parts delimited by

the portions of Ai that need to be removed towards extracting τ(Ai). This information is stored to the

sequences [si
1, . . . , s

i
|δ̂i(ê)|

] and [f i
1, . . . , f

i
|δ̂i(ê)|

] computed in loop 2(c). The crucial part of the algorithm is

step 2:(d) where these portions are interleaved following the way δ̂i(ê), i = 1, 2 are expanded in order to

create Ãi, i = 1, 2 respectively. This interlieving is represented by an arrangement of all these portions into

a sequence Y = [Y1,2, . . . , Y|Ãi−1|,|Ãi|
] and by the definition of sequences A′

i, i = 1, 2 where |A′
1| = |A′

2|.

The union of the graphs in Y and the identification of the extreme edges of the spines of its consecutive

members is accomplished in steps 2(e) and 2(f). Moreover the extremes of the spine of the constructed

tree are distinguished in step 2(g). The calculation of the values of δ for the edges of this graph is done

in step 2(h) where the values of the non spine edges remain the same and the the values of the spine

edges are defined by the sum of A′
1 and A′

2. After the calculation of the values of δ and the subtrees of

Y corresponding to each of the edges ê of Ŷ1 the algorithm assembles all of them (step 3,4) to the output

pair (γ, δ) using the information calculated in step 2(g). The correctness of the algorithm is supported by

the following lemma.

Lemma 22. Let G, G1 and G2 be graphs such that G1 ∪ G2 = G and G1 ∩ G2 = (S, ∅). For i = 1, 2,

let γi be a carving of Gi and let (γ̂i, δ̂i) = CS(Gi, γi). Then, for any bijection φ̂ : V (Ŷ1) → V (Ŷ2) where

γ̂1 ≡φ̂ γ̂2 (we assume that γ̂i = (Ŷi, θ̂i), i = 1, 2) and any δ̂′ ∈ δ̂1⊗φ̂δ̂2 there exists a carving γ of G such

that CS(G, γ) = (γ̂1, δ̂
′).

Proof. It is enough to prove that if (γ̂1, δ̂
′) is the output of the procedure Construct-Join-Carving then

CS(G, γ) = (γ̂1, δ̂
′). In order to prove this it is crucial to show first that δ = dG,γ . For this, it is enough to

show that if e =〈t, t′〉 is an edge of E(Y) then δ(e) = |αG,γ,V (G)(e)|.

21

(γ̂1, δ̂1)
σ1

((φ̂ &&

σ2

))

**

CS(G, γ1)

##%
%%

%%
%

(γ̂2, δ̂2)
++

CS(G, γ2)

$$&&
&&

&&

(γ1, δ1)

,,'
''

''
'

(γ2, δ2)

--((
((

((

Join-Node

φ̂
%%

Join-Carving

%%
(γ̂1, δ̂

′) ''
CS(G, γ)

(γ, δ)

Fig. 9. The structure of Lemma 22.

In the case where e is not an edge of some spine PYê
(têstart, t

ê
fin) we have, from step 2(h), that either

e ∈ E(Y1) or e ∈ E(Y2). W.l.o.g. we assume that e ∈ E(Y1). Notice that in this case, one, say Y (1), of

the two connected components Y (1) and Y (2), of Y − e is exactly the same as one, say Y
(1)
1 , of the two

connected components Y
(1)
1 and Y

(2)
1 of Y1 − e. From the way θ is defined during step 3, the preimages of

θ that are leaves of Y (1) are exactly the same as the preimages of θ1 that are leaves of Y
(1)
1 . Therefore,

θ(A(Y) ∩ A(Y (1))) = θ(A(Y1) ∩ A(Y (1)
1)). Combining this with the fact that E(G1) ∩ E(G2) = ∅, we

conclude that αG,γ,S(e) = αG1,γ1,S(e). As δ(e) = |αG1,γ1,S(e)|, we have the required.

What now remains is the case where e is the edge of some spine P = PYê
(têstart, t

ê
fin). From the way Y

is assembled during steps 2(e) and 2(f), we have that either e is an edge of Y1, or an edge of Y2 or the

result of the identification of two edges el
j , es

j+1 ∈ E(T1) ∪ E(T2).

We examine first the case where, for some i = 1, 2, e1 is an edge of Yi or the result of the the

identification of two edges el
j, e

s
j+1 ∈ E(Ti). W.l.o.g. we will only examine the case where i = 2. Notice

that the removal of e from spine P brakes it into two parts each containing at least one edge. In each of

these parts we detect the edges eleft, eright that are closest (in each direction) to e and with the property

that are products of some of the the identifications of step 2(f). In particular steps 2(d)–d(f) indicate that,

eleft and eright are the results of the identification of the pairs (el
j−1, e

s
j) and (el

j′ , e
s
j′+1) respectively, where

2 ≤ j ≤ j′ ≤ |δ̂1(ê)| + |δ̂2(ê)| − 2. Notice now that el
j−1 and es

j+1 are the same edge of Y1. From now on

we will call this edge e1.

Let now Y (1) (Y (1)
i , i = 1, 2) and Y (2) (Y (2)

i , i = 1, 2) be the connected components of Y −e (Yi−ei, i =

1, 2) where the indices are assigned with respect to the sence of direction defined by edges e, e1, and e2.

Observe that, for j = 1, 2,

A(Y (j)) = (A(Y1) ∩ A(Y (j)
1)) ∪ (A(Y2) ∩ A(Y (j)

2)) and (27)

θ(A(Y) ∩ A(Y (j))) = θ(A(Y1) ∩ A(Y (j)
1)) ∪ θ(A(Y2) ∩ A(Y (j)

2)) (28)

Using now (27), (28), and the fact that E(G1) ∩ E(G2) = ∅ we observe that

αG1,γ1,S(e1) ∪ αG2,γ2,S(e2) = αG,γ,S(e) (29)

αG1,γ1,S(e1) ∩ αG2,γ2,S(e2) = ∅ (30)

Using (29) and (30) we conclude that |αG,γ,S(e)| = |αG1,γ1,S(e1)| + |αG1,γ2,S(e2)| = dG1,γ1,S(e1) +

dG2,γ2,S(e2) = δ1(e1) + δ2(e2) = δ(e).

22

Ã1

Ã2

Ã1

Ã2

=

=

∈

∈

[6 6 9 9 9 1 1 1]

[1 8 8 2 7 7 3 5]

δ̃1(ê) = [6 9 1]

δ̃2(ê) = [1 8 2 7 3 5]

E(δ̃1(ê))

E(δ̃2(ê))

Ã1 ∼ Ã1

δ̂′(ê) = τ (Ã1 + Ã2) = τ ([7, 14, 17, 11, 16, 8, 4, 6]) = [7, 17, 6] ∈ δ̂1(ê)⊗δ̂2(ê)

A1 = [6

π1
1

z }| {

8 7 6 6 8 9 7 9

π1
2

z }| {

6 7 3 4 7 3 8 1]

A2 = [1 5 2 3 6
| {z }

π2
1

8 5 6 6 5 6
| {z }

π2
2

2 5 2 2 3
| {z }

π2
3

7 7 5 4 6
| {z }

π2
4

3 4 5 5 5 4 5
| {z }

π2
5

5]

A′
1 = [6

|π2
1 |×[6]

z }| {

6 6 6 6 6

π1
1

z }| {

8 7 6 6 8 9 7 9

|π2
2 |×[9]

z }| {

9 9 9 9 9 9

|π2
3 |×[9]

z }| {

9 9 9 9 9

π1
2

z }| {

6 7 3 4 7 3 8 1

|π2
4 |×[1]

z }| {

1 1 1 1 1

|π2
5 |×[1]

z }| {

1 1 1 1 1 1 1]

A′
2 = [1 5 2 3 6

| {z }

π2
1

8 8 8 8 8 8 8 8
| {z }

|π1
1
|×[8]

8 5 6 6 5 6
| {z }

π2
2

2 5 2 2 3
| {z }

π2
3

7 7 7 7 7 7 7 7
| {z }

|π1
2
|×[7]

7 7 5 4 6
| {z }

π2
4

3 4 5 5 5 4 5
| {z }

π2
5

5]

A′
ê = [7, 11, 8, 9, 12

| {z }

π2
1
+(|π2

1
|×[6])

, 14, 16, 15, 14, 14, 16, 17, 15
| {z }

π1
1
+(|π1

1
|×[8])

, 17, 14, 15, 15, 14, 15
| {z }

π2
2
+(|π2

2
|×[9])

, 11, 14, 11, 11, 12
| {z }

π2
3
+(|π2

3
|×[9])

,

16, 13, 14, 10, 11, 14, 10, 15
| {z }

π1
2
+(|π1

2
|×[7])

, 8, 8, 6, 5, 7
| {z }

π2
4
+(|π2

4
|×[1])

, 4, 5, 6, 6, 6, 5, 6
| {z }

π2
5
+(|π2

5
|×[1])

, 6].

τ (A′) = [7, 17, 6]

Fig. 10. Example of the operation on sequences during the loop of step 2.

The remaining case is the case where e is the result of the identification of two edges el
j ∈ E(T1) and

es
j+1 ∈ E(T2). This case is exactly the same as the previous one if we define e1 = el

j and e2 = es
j+1. This

completes the proof of the fact that δ = dG,γ .

We return now to the proof of CS(G, γ) = (γ̂1, δ̂
′). Clearly, if we insist that the identifications of step

4 are all favorable to vertices that were vertices of γ̂, the only remaining is to show that for any edge

ê ∈ E(Ŷ1), δ̂′(ê) = τ(A′
ê). Notice that

A′
ê = A′

1 + A′
2, (31)

δ̂′(ê) = τ(Ã1 + Ã2), (32)

Ãi 2 A′
i, i = 1, 2. (33)

(31) follows from step 2(e), (32) follows from step 2(b), and (33) follows from the last line of step 2(d) and

fact that for any i = 1, 2 and any j = 1, . . . , |δ̂i(ê)|− 1, either [Ai(si
j)] ≺ πi

j ≺ [Ai(f i
j)] or [Ai(si

j)] ; πi
j ;

[Ai(f i
j)].

(31)–(33) along with Lemma 7 imply that δ̂′(ê) = τ(A′
ê) and this completes the proof of the lemma. 01

Lemma 23. Let G, G1, and G2 be graphs where G1 ∪ G2 = G and G1 ∩ G2 = (S, ∅) and and let γ be a

carving of G. We set (γi, δ
!
i) = CV (Gi)(G, γ), i = 1, 2, (γ̂i, δ̂i) = CS(Gi, γi), i = 1, 2, and CS(G, γ) = (γ̄, δ̄).

23

(γ1, δ1)

CS(G, γ1)

..

//

)
)

)
)

)
(γ2, δ2)

CS(G, γ2)

00

11

*
*
*
*
*

(γ̂1, δ̂1)

22+
++

++
+

φ̂ &&

σ1

33

ω

%%

(γ̂2, δ̂2)

44,,
,,

,,

σ2

55

γ1, γ266 Join-Node

φ̂
%%

(γ, δ)
CS(G, γ)

&& (γ̄, δ̄) ω# (γ̂1, δ̂
′)

ω

77

Fig. 11. The structure of Lemma 23.

We also denote γ̄ = (Ȳ , θ̄) and (γ̂1, δ̂i) = (Ŷi, θ̂i), i = 1, 2. Then there exist two bijections ω : V (Ŷ1) →

V (Ȳ), φ̂ : V (Ŷ1) → V (Ŷ2) and a characteristic pair (γ̂1, δ̂
′) where

1. γ̂1 ≡φ̂ γ̂2,

2. γ̂1 ≡ω γ̄,

3. δ̂′ ∈ δ̂1⊗φ̂δ̂2, and

4. (γ̂1, δ̂
′) ≺ω (γ̄, δ̄).

Proof. We use the notations CS(G, γ) = (γ̄, δ̄), δ = dG,γ , δi = dGi,γi
, i = 1, 2, γ = (Y, θ) γi = (Yi, θi), i =

1, 2, and γ̂i = (Ŷi, θ̂i), i = 1, 2. Notice first that, from procedure Com, Ŷi, i = 1, 2 is isomorphic to the minor

of Y obtained if we first remove leaves not in S until no such leaves exist any more and then replace any

poor path with an edge. This means that there is an isomorphic bijection φ̂ : V (Ŷ1) → V (Ŷ2) between Ŷ1

and Ŷ2. Observing now the way θi, i = 1, 2 are created, it is easy to see that if v̂i ∈ A(Ŷi), i = 1, 2 and

v̂2 = φ̂(v̂1), then v̂1 and v̂2 map, via θ̂1 and θ̂2 respectively, to the same vertex of S. Therefore, γ̂1 ≡φ̂ γ̂2.

Define σi : V (Ŷi) → V (Y), i = 1, 2 such that σi = χγ,V (Gi) ◦ χγi,S , i = 1, 2 and notice that φ̂ = σ−1
2 ◦ σ1.

Similarly, one can see that ω = χ−1
γ̄,S ◦ σ1 is a bijection mapping the vertices of Ŷ1 to Ȳ such that γ̂1 ≡ω γ̄.

We now fix an edge ê1 = 〈û1, v̂1〉 of Ŷ1 and set ê2 = 〈û2, v̂2〉 = 〈φ̂(û1), φ̂(v̂1)〉 and (ē) = 〈ū, v̄〉 =

〈ω(û1), ω(v̂1)〉. Let σ1(v̂1) = t1 and σ1(v̂1) = tr where (t1, . . . , trê1,ê2
) = PY (t1, tr). We define A =

[δ(〈t1, t2〉), . . . , δ(〈trê1,ê2
−1, trê1,ê2

〉)] and we notice that

τ(A) = δ̄(ē). (34)

We also set Ai = [ai
1, . . . , a

i
r−1] where ai

j = |αG,γ,V (Gi)({tj , tj+1})|, 1 ≤ j < r. It is easy to see that

τ(Ai) = δ̂i(êi), i = 1, 2. (35)

Notice that the definitions of αG,γ,S and δ = dG,γ along with the fact that (E(G1), E(G2)) is a partition

of E(G), implies that for any j, 1 ≤ j < r,

(αG,γ,V (G1)({tj , tj+1}), αG,γ,V (G2)({tj , tj+1}))

is a partition of δ(〈tj , tj+1〉) = αG,γ,V (G)({tj , tj+1}). Therefore, we have that

A = A1 + A2. (36)

24

From (34)–(36) and Lemma 9, we have that there exists a sequence Â′ ∈ τ(A1)⊗ τ(A2) = δ̂1(ê1)⊗ δ̂2(ê2)

such that Â′ ≺ τ(A) = δ̄(ē1).

It is now straightforward that by defining δ̂′ so that for any edge ê1 , δ̂′ is equal to the corresponding

sequence Â′ we have a characteristic pair (γ̂1, δ̂
′) where δ̂′ ∈ δ̂1⊗φ̂δ̂2 and (γ̂1, δ̂

′) ≺σ̄ (γ̄, δ̄) (a diagram

illustrating the proof is depicted in Figure 11). 01

Lemma 24. If, for i = 1, 2, FS(qi) is a full set of characteristics of carvings for Gqi
and p is a join

node with children qi, i = 1, 2, then the set FS(p) constructed by Algorithm Join-Node is a full set of

characteristics of carvings for Gp.

Proof. We will prove first that FS(p) is a set of characteristics. To avoid overloaded expressions, whenever

we refer to a carving or to a characteristic, we will insist that its width is bounded by k. For this, it is

enough to show that for any (γ̂1, δ̂
′) ∈ FS(p), there exists a carving γ of G such that CXp

(G, γ) = (γ̂1, δ̂
′).

By algorithm Join Node we can assume that, for i = 1, 2, there exist a Xqi
-characteristic (γ̂i, δ̂i) ∈ FS(qi)

of some carving γi for GXqi
and a bijection φ̂ : V (Ŷ1) → V (Ŷ2) where

γ̂1 ≡φ̂ γ̂2 and (37)

δ̂′ ∈ δ̂1⊗φ̂δ̂2. (38)

Clearly,

(γ̂i, δ̂i) = GXqi
(Gi, γi), i = 1, 2. (39)

Using now (37)–(39), we can apply Lemma 22 and conclude that there exists a carving γ of Gp such that

CXp
(G, γ) = (γ̂1, δ̂

′). Therefore, FS(p) is a set of characteristics.

It remains now to prove that FS(p) is a full set of characteristics. To prove this we have to show that,

for any carving γ of Gp there exists a carving γ∗ of Gp such that CXp
(Gp, γ

∗) ∈ FS(p) and CXp
(Gp, γ) ≺

CXp
(Gp, γ

∗). (For a diagram of the structure of the proof that follows, see Figure 12.)

Let (γi, δ
!
i) = CV (Gqi

)(Gp, γ), i = 1, 2 and notice that γi = (Yi, θi) is a carving of Gqi
, i = 1, 2. We now

set (γ̂i, δ̂i) = CXqi
(Gqi

, γi), i = 1, 2 and (γ̄, δ̄) = CXp
(Gp, γ). From Lemma 23, there exists two bijections

φ̂ : V (Ŷ1) → V (Ŷ2), φ̂ : V (Ŷ1) → V (Ȳ), and a characteristic pair (γ̂1, δ̂
′) where

γ̂1 ≡φ̂ γ̂2, (40)

γ̂1 ≡ω γ̄, (41)

δ̂′ ∈ δ̂1⊗φ̂δ̂2, and (42)

(γ̂1, δ̂
′) ≺ω (γ̄, δ̄). (43)

Recall now that, for i = 1, 2, that FS(qi) is a full set of characteristics of carvings for Gqi
and therefore

there exists a carving γ∗
i of Gqi

where

CXqi
(Gqi

, γ∗
i) ∈ FS(qi) and (44)

CXqi
(Gqi

, γ∗
i) ≺ CXqi

(Gqi
, γi). (45)

25

Let (γ̂∗
i , δ̂∗i) = CXqi

(Gqi
, γ∗

i), i = 1, 2. We can now assume that, for i = 1, 2, there exists a function

ψi : V (Ŷ ∗
i) → V (Ŷi) such that (45) can be rewritten as follows.

(γ̂∗
i , δ̂∗i) ≺ψi

(γ̂i, δ̂i). (46)

(40), (42), (46), and Lemma 11, imply that there exists a characteristic pair (γ̂∗
1 , δ̂′∗) and two bijections

φ̂∗ : V (T̂ ∗
1) → V (T̂ ∗

2) and ψ : V (Ŷ ∗) → V (Ŷ) such that

γ̂∗
1 ≡φ̂∗ γ̂∗

2 , (47)

γ̂∗
1 ≡ψ γ̂1, (48)

δ̂′∗ ∈ δ̂∗1⊗φ̂∗ δ̂
∗
2 and (49)

(γ̂∗
1 , δ̂′∗) ≺ψ (γ̂1, δ̂

′). (50)

Notice now that, from (47), (49), and Lemma 22, there exists a carving γ∗ of G such that CXp
(Gp, γ

∗) =

(γ̂∗
1 , δ̂′∗). The fact that CXp

(Gp, γ
∗) ∈ FS(p) follows from (44), (49), (47) and Algorithm Join-Node.

Finally, (41), (43), (48), and (50) imply that CXp
(Gp, γ

∗) = (γ̂∗
1 , δ̂′∗) ≺ω◦ψ (γ̄, δ̄) = CXp

(Gp, γ) and this

completes the proof of the lemma. 01

!!

""
!!

!
!

##

$$

" "
" "

!!#
##

##

%%$ $
$ $
$

&&

''%
%%

%%

&&

((& &
& &
&

))'
''

''

**((
((
(

++

,, ,, ,,
-- ..

Fig. 12. The structure of Lemma 24.

5 Conclusions

Notice that, because of Lemma 3, both versions of the algorithms Introduce-node and Forget-node run in

O(1) time when k and w are fixed.

We resume the results of sections 3–4 in the following.

Theorem 1. For all k, w ≥ 1 there exists an algorithm that, given a graph G and a m-node tree decom-

position X of G with width at most w, computes whether the carving-width of G is at most k and, if so,

constructs a carving of G with width at most k and that uses O(V (G) + m) time.

Lemma 2 and Theorem 1, along with the results in [2] and [1], yield our central result:

Theorem 2. For all k, there exists an algorithm, that given a graph G, computes whether the carving-width

of G is at most k, and if so, constructs a carving of G with minimum width in O(|V (G)|) time.

26

References

1. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput.,

25(6):1305–1317, 1996.

2. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of

graphs. J. Algorithms, 21:358–402, 1996.

3. H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth. In P. Degano,

R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings 24th International Colloquium on Automata,

Languages, and Programming, pages 627–637. Springer Verlag, Lecture Notes in Computer Science, vol. 1256,

1997.

4. H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in linear time. Technical Report

UU-CS-1998-05, Dept. of Computer Science, Utrecht University, 1998.

5. M. R. Fellows and M. A. Langston. On well-partial-order theory and its application to combinatorial problems

of VLSI design. SIAM J. Disc. Math., 5:117–126, 1992.

6. S. Khuller, B. Raghavachari, and N. Young. Designing multicommodity flow trees. Information Processing

Letters, 50:49–55, 1994.

7. N. Robertson and P. D. Seymour. Graph minors. XXII. The Nash-Wiliams immersion conjecture. To appear

in J. Combin. Theory Ser. B.

8. N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Series

B, 63:65–110, 1995.

9. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241, 1994.

10. D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. A constructive linear time algorithm for small cutwidth.

Technical Report LSI-00-48-R, Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de

Catalunya, Barcelona, Spain, 2000.

27

