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Abstract. We examine the behavior of two kernelization techniques for
the vertex cover problem viewed as preprocessing algorithms. Specifically,
we deal with the kernelization algorithms of Buss and of Nemhauser &
Trotter. Our evaluation is applied to random graphs generated under the
preferred attachment model, which is usually met in real word applica-
tions such as web graphs and others. Our experiments indicate that, in
this model, both kernelization algorithms (and, specially, the Nemhauser
& Trotter algorithm) reduce considerably the input size of the problem
and can serve as very good preprocessing algorithms for vertex cover, on
the preferential attachment graphs.

1 Introduction

Given a graph G and a non-negative integer k, the Vertex Cover problem asks
whether k of the vertices of G are endpoints of all of its edges. The minimum k
for which a graph G has a vertex cover of size k or less is called the vertex cover
of G and is denoted as vc(G).

Vertex Cover was one of the first problems proven to be NP-complete [14]
and, since then, a lot of efforts have been done in theory and in practice towards
coping with its computational intractability. In this direction, there were sev-
eral advances on the existence of approximation algorithms [15, 13], while lower
bounds to its constant factor aproximability have been proposed in [12].

More recently, Vertex Cover has been extensively studied under the view-
point of fixed parameter complexity. According to the parameterization ap-
proach, some part of the problem is declared as the parameter and reflects the
part of the problem that is expected to be small in most of the “real word”
instances. Parameterized complexity asks whether an algorithm of complexity
O(f(k) · nO(1)) exists, where k is the parameter and n is the problem size. Such
a parameterized algorithm classifies the parameterized problem in the class FPT

and claims that the problem is tractable at least for small values of the param-
eter. For more details on the recent advances and challenges of parameterized
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complexity we refer to [9, 8]. In the case of vertex cover, the parameter is k and
Vertex Cover is known to be in FPT. There is a long time race towards ob-
taining the fastest parameterized algorithm for it; the current champion is [6]
that runs in O(kn + 1.2738k) steps.

One of the main tools for the design of fast parameterized algorithms is
kernelization. This technique consists in finding a polynomial-time reduction of a
parameterized problem to itself in a way that the sizes of the instances of the new
problem —we call it kernel— only depend on the parameter k. The function that
bounds the size of the main part of the reduced problem determines the size of
the kernel and is usually of polynomial (on k) size. If a kernel exists, then we can
apply the fastest available exact algorithm for the problem to the (reduced size)
kernel instead of the initial instance. Several kernelizations have been proposed
for Vertex Cover. A simple kernel of size O(k2) was proposed by Buss [5].
So far, the smallest kernel has size ≤ 2k and its follows from the results of
Nemhauser & Trotter in [16]. More recently a kernel of size ≤ 3k appeared, based
on the “crown decomposition” technique in [10]. An experimental evaluation of
these three kernelization techniques was done in [1]. The graphs used for the
study in [1] were taken from open-source repositories of biological data. We
stress that no random graph model was considered in [1].

Notice that kernelization can also be seen as a preprocessing algorithm. It
essentially provides a way to preprocess the input of a problem and transform it
to an equivalent one of size of provably bounded size. From a practical point of
view, this approach may be useful not only when the parameter k is small, as it is
presumed by the parameterized complexity. Moreover, in many cases of param-
eterized or exact algorithms, actual running times are much better than their
theoretically proven bounds. This brings up the challenge of evaluating their
performance on specific models of inputs. In this paper, we start such an eval-
uation with the Vertex Cover problem. A basic concern for our experiments
was the model of graphs on which they should be applied.

At the end of the decade of 90’s, several empirical studies showed that the
degree distribution of large dynamic graphs seem to follow a power-law tail.
Among those graphs studied were the WWW, Internet, metabolic networks and
others (see, for example, [3] or the surveys [17, 2]). Those results gave a push
to the theoretical study of new random graph models with power law tail, as
the classical Erdős-Rényi-Gilbert model have a bell-shaped degree distribution,
and an exponetially decreasing tail, which did not fit the experimental evidence
of power law degree distribution. Recently, it has been showed that the same
experimental techniques used on the WWW, namely Traceroute sampling, when
applied to the classical Gn,p model also follow a power law with exponent 1 [7]. In
any case, the experimental work on power-law distribution graphs, gave a fruitfull
research on dynamic random graph models to fit the experimental evidence,
observed for power-law graphs, like the clustering coefficient and small diameter.
The more basic model of heavy tailed degree distribution random graphs is the
preferential attachement model (PAM) given implicitly in [3] and made rigorous
in [4].



For the above reasons, we adopt here a model of random graphs generated
using the preferred attachment criterion. In this model, a random graph is gen-
erated by adding vertices one by one, and the selection of their neighbors is done
in a way that favorites vertices that have already big degree. In this sense, the
vertices of the graph are organized around “clusters” of high degree vertices.
Apart from the WWW, such models resemble graphs emerging by distinct ap-
plications such as collaboration networks (i.e. in biology, in science, or in film
actors), word co-occurrences, or neural networks; see [17].

We base our experiment on the kernelizations of Buss and of Nemhauser
& Trotter and we call them Buss- and NT-kernelization respectively. In both
preprocessing algorithms the input is a pair (G, k) and the output is either a
definite answer (YES or NO) or a new equivalent instance (G∗, k∗) of the problem.
In case no definite answer is given by the kernelization, the returned equivalent
instance (G∗, k∗) is the input for an exact algorithm for the vertex cover problem.

Let n denote the number of the vertices of the input graph. Currently, the
fastest exact algorithm for Vertex Cover has running time O∗(1.19n) [18];
A much simpler (and easier to implement) algorithm for the same problem was
given in [11] and has running time O∗(1.221n).

Clearly, a preprocessing algorithm is good if it achieves a good reduction of
the input size. A measure of this reduction could be the ratio |V (G∗)|/|V (G)|.
Instead, we suggest a more realistic measure based on the fact that vc(G) =∑

H∈G(G) vc(H), where G(G) is the set of the connected components of a graph
G. This implies that the size of the biggest component of G will dominate the
running time of the (exponential time) search for a vertex cover of minimum size.
Thus, it reasonable to choose as measure of the input size reduction the ratio
maxH∈G(G∗) |V (H)|/maxH∈G(G) |V (H)| where G∗ is the output graph when we
apply kernelization K to an input graph G. As the graphs generated by our
model will always connected, we redefine the reduction measure as

ρ(K, G) =
maxH∈G(G∗) |V (H)|

|V (G)|

and we refer to it as the component reduction ratio for kernelization K applied
to the graph G (in this paper K∈ {Buss, NT}).

In the following, we evaluate the algorithms for several values of k, with the
following criteria:

1. The percentage of cases where the kernelization gives a definite answer.
2. The component reduction ratio (given that the kernelization does not give

a definite answer).
3. The comparative performance of the two algorithms according to criteria 1

and 2.
4. The comparative performance of the two algorithms according to their run-

ning times.



The most remarkable result of our experiments is that both kernelization
algorithms achieve a very good reduction on graphs generated under the prefer-
ential attachment model. In particular, we observe reductions approaching the
9% in the case of Buss-kernelization and the .35% in the case of NT-kernelization
(for any value of k ≤ 100 and for graphs with 2000 vertices). This indicates that
the NT-kernelization does not only provide the smallest (so far) kernel for pa-
rameterized Vertex Cover but can also serve as a very good preprocessing
algorithm for the same problem when applied to graphs emerging from the pre-
ferred attachment model.

The paper is organized as follows. In Section 2 we present the two kernel-
ization algorithms and the way we implemented them. In Section 3 we detail
the model of random graphs that we use. In Section 4 we present and comment
the results of our experiments. Finally, in Section 5, we give some remarks and
research directions.

2 Kernelizations for Vertex Cover

We consider undirected graphs without loops nor multiple edges. Given a graph
G, its vertex and edge set are denoted as V (G) and E(G) respectively. A con-
nected component of a graph is called non-trivial if it contains at least 2 vertices.
Given a vertex v ∈ V (G) we denote by degG(v) the degree of v in G, i.e. the
number of vertices adjacent to v in G. We also denote by G − v the graph ob-
tained by G after we remove vertex v and all its incident edges. If S ⊆ V (G)
we define the subgraph of G induced by S as G[S] = (S, {e ∈ E(G) | e ⊆ S}).
Finally, we use the notation I(G) for the set of isolated vertices in G.

2.1 The kernelization of Buss

The first kernelization we study in this paper follows from the results in [5] and
is sketched below:

def Buss(G, k) :
1. if k = 0 and I(G) = V (G): return YES

2. if k = 0 and I(G) %= V (G): return NO1

3. if ∃v ∈ V (G) : degG(v) > k: return Buss(G − v, k − 1)
4. if |V (G)| > k(k + 1): return NO2

5. if G has more than k non-trivial connected components: return NO3

6. return (G[V (G) − I(G)], k)

The correctness of the algorithm is based on the three following facts: a)
any vertex of degree more than k should be in any vertex cover of size ≤ k,
b) a graph with max degree ≤ k and a vertex cover of size ≤ k cannot have
more than k + k2 non-isolated vertices, and c) any graph with more than k non-
trivial connected components has no vertex cover of size less than k. The time
complexity of Buss(G, k) is O(k · |V (G)|).



In order to refine the analysis of our experiments, we distinguish between the
three ways that the algorithm may return a negative answer. The first negative
answer (NO1) appears is the case when, after the deletion of k high degree vertices,
there still remain edges in the graph. The second (NO2) appears when no high
degree vertices exist and the graph has big size (more than k + k2 vertices). The
last one (NO3) is when the current graph has more than k non-trivial connected
components.

We would like to stress that Step 6 (corresponding to NO3) is not a part of the
classic kernelization of Buss. However, we added it because in our experiments
it behaves rather well as a filter of NO-instances.

2.2 The kernelization of Nemhauser & Trotter

The kernelization of Nemhauser & Trotter follows from the results in [16] and is
sketched bellow:

def NT(G, k) :
1. let U1 = V (G) and let U2 be a new set of vertices where |U1| = |U2|
2. let σ : U1 → U2 be a bijection from U2 to U1

3. let H = (U1 ∪ U2, {{x, y} | x ∈ U1, y ∈ U2, and {x, σ(y)} ∈ E(G)})
4. let S be a vertex cover of H
5. let V1 = {x | x ∈ S ∩ U1 and σ−1(x) ∈ S}
6. let V0 = {x | x ∈ U1 − S and σ−1(x) %∈ S}
7. let V 1

2
= U1 − V1 − V0

8. if |V1| > k: return NO1

9. if |V1| = k and E(G[V 1
2
]) %= ∅: return NO2

10. if |V1| = k and E(G[V 1
2
]) = ∅: return YES

11. if |V 1
2
| > 2(k − |V1|): return NO3

12. return (G[V 1
2
], k − |V1|)

NT(G, k) first constructs a bipartite graph H where one of its parts has the
vertices of G and the other copies of the vertices of G. An edge from one part to
the other is placed if the corresponding vertices are adjacent to the original graph
G. This construction takes place in steps 1–3. In step 4, the algorithm finds a
minimal vertex cover S of H . Such a vertex cover can be computed in polynomial
time because H is bipartite. Specifically, we have done so adding a source and
sink vertex to H and computing a max-flow min-cut using the Edmonds-Karp
algorithm (its running time is O(|V ||E|). In steps 5–7 the algorithm partitions
the vertices of G into three sets V1, V0, and V 1

2
: those that both themselves

and their copies belong in S, those than neither themselves nor their copies
belong into S, and those that either themselves or their copies belong to S
(but not both). From [16], it follows that a) vc(G) = vc(G[V 1

2
]) + |V1| and b)

|V 1
2
| ≤ 2 ·vc(G[V 1

2
]). These relations justify the answers provided in steps 8–12.

There are three possible ways for the algorithm to return NO: the first appears
when the size of V1 is bigger than k (NO1), the second appears when |V1| = k



and there are edges between vertices in V 1
2

(NO2), and the third appears when

|V 1
2
| > 2(k − |V1|) (NO3).

We did not add the filter of Step 6 of the Buss(G, k) algorithm as our
experiments showed that, for our graph generation model, it does not offer any
additional filtering for the case of NT-kernelization.

3 The model

The graph generation algorithm is depicted bellow; we assume that m is a small
constant (m + n):

def PrefAttach(n, m) :
1. let G be a cycle of m vertices
2. for i = m + 1 to n:

add a new vertex u to G
add m edges from u to v1, . . . , vm,

where each vi is selected with probability degG(vi)
2

P

v∈V (G−u) degG(v)2

3 return G

Function Pref-Attach(n, m) generates graphs incrementally adding one ver-
tex at each step. Each new vertex gets m neighbors that are picked among the
vertices of the already constructed graph. The selection of a neighbor is biased
in a way that vertices of high degree in G are prefered against those with low
degree. This makes the generated graphs look like clusters of vertices positioned
in a way that resembles the adjacency of web graphs. If G is a graph generated
by Pref-Attach(n, m), then |V (G)| = n and |E(G)| = m(n − m + 1).

Our implementation of the above procedure confirms the intuition that the
vast majority of the vertices in G are of low degree while a small minority has
big degree. In Figure 1 one can see the degree distribution of a graph generated
by Pref-Attach(2000, 4).
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Fig. 1. Degree distribution on a Pref-Attach(2000, 4) graph.



4 Experimental results

In this section we present some experimental results to evaluate the Buss and
NT kernelization algorithms for the Vertex Cover problem on the preferred
attachment model. To do so, we have implemented both algorithms as well as the
generation of the random graphs. All our code has been written in C++ using
the STL and compiled with GCC 3.4.1 with the -O3 option. The experiments
have been performed on a machine with a Intel Pentium 4 CPU at 3.20GHz and
with 3GB of memory running a Linux operating system.

We split the presentation of our results in three subsections. First, we present
the distribution of the possible results of the two kernelization algorithms. Af-
terwards, we show the component reduction ratio for each one of them. Finally,
we present some time measurements.

4.1 Distribution of the possible answers

In Figure 4.1, we present the percentages for the appearance of the possi-
ble outputs (NO1, NO2, NO3, and DON’T KNOW) of Buss(G, k) and NT(G, k)
for k ∈ {1, . . . , 100}. Our sample contained 500 graphs, generated by Pref-
Attach(n, m) taking n = 2000 and m = 4. experiments. The curves for other
values of n and m behave similary. We do not include the count of YES answers
in the figures because they never appeared in our experiments.

With regard to the Buss kernelization, we can see that answers NO1, NO2 and
NO3 play a complementary role as k increases: The NO1 criterium is usefull when
k is rather small and vanishes as it increases. At this point, the NO2 criterium
turns to be usefull to report negative answers but, again, vanishes as k keeps
increasing. It is then the turn of the NO3 criterium to report negative answers
until a point where DON’T KNOW answers begin to appear, which happens in more
than a half of the cases for k > 33 on our Pref-Attach(2000, 4) graphs.

The NT kernelization exhibits a similar behaviour with respect to the com-
plementary role of the different negative criteria as k increases. However, an
immediate comparison of the two diagrams implies that the NT kernelization
gives much more information than the Buss kernelization. For instance, we can
report a negative answer on more than one half of the instances for values of k
up to 65 (rather than 33 with Buss).

To have a clearear view of when certain percentages of NO answers can be
expected, see Figure 4.1. The horizontal axis represents distinct values of n (the
number of vertices of the generated graphs) and each of the lines represents
the biggest k for which the percentage of the DON’T KNOW answer was grater
than 0%, 20% or 50% for the Buss and the NT kernelizations. In this case, the
experiment shows the averages computed over 200 graphs for each size.

Again it is clear that the NT-kernelization is more powerfull and scales bet-
ter with the graph size than its Buss counterpart. No only that, Figure 4.1
also induces us to conjecture that if G is a random graph generated by Pref-
Attach(m, n) then, with high probability, vc(G) ≥ cm logO(1) n where ck is a
constant depending on m.
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Fig. 2. Behaviour of Buss and NT kernalizations on Pref-Attach graphs with n = 2000
and m = 4 for k ∈ {1, . . . , 100}.
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ative answer in p% of the cases for p ∈ {0, 20, 50} on Pref-Attach graphs with
n ∈ {100, . . . , 2000} and m = 4.
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4.2 Component reduction ratio

We consider now the reduction that is achieved in the cases where the answer is
unknown and a kernel is computed. We are interested in the component reduc-
tion.

Figure 4.1 presents the percentual values of ρ(Buss, k) and ρ(NT, k). Again,
our sample contained 500 graphs, generated by Pref-Attach(n, m) for n = 2000
and m = 4. The horizontal axis represent the values of k up to 100, and the
vertical axis represents the percentage of the component reduction. The curve is
not shown for values of k where a definite answer was found.

The results are quite positive for the capacity of the Buss kernelization as a
preprocesing algorithm: even when k = 100, the Buss kernelization achieves a
reduction to equivalent instances where the maximum component has size that
is no bigger than the 9% of the size of the original input.

News are even better in the case of the NT kernelization, because it achieves
a maximum component size reduction arround a 0.35% for any k ≤ 100. This
means that the brute force algorithm shall only have to solve vertex covers for
components with an average of 7 vertices. Such a performance clearly indicates
that the NT kernelization is indeed an excellent preprocessing algorithm for
graphs generated by the preferred attachment model.

4.3 Running times

So far NT kernelization beats the Buss kernelization by any means. However,
we should mention that on the preferred attachment model, the opposite holds
as far as the running time is concerned. Time measures for the previous experi-
ments show that our implementation for NT is about 10 times slower than our
implementation for Buss. However, the actual running times are so small (tenths
of seconds for NT and hundredths of seconds for Buss) that these do not seem
to matter. Moreover, we should stress that these are just preprocessing times:
the main running times would still be dominated by the time required by the
exact (exponential) algorithm. We thus conclude that the relative speed of both
algorithms is not that big.

5 Discussion

This paper attempts a first study of the performance of kernelization algorithms
when treated as preprocessing algorithms to hard problems, on the family of
random graphs that we have used. Especially for the Vertex cover, it re-
mains an open project to see whether the optimistic results of this paper can
be extended for other models of random graphs generated by several proposed
variations on the preferred attachment mechanism. Aa the PAM is a model for
the web graph, it would be useful to confirm that the same results come up when
the experiments are applied to a sufficiently large part of the main component
of the web (or the internet graph). This could have a potential for a new way to



identify big hubs in those graphs. Finally, we believe that the potential of the
kernelization idea can offer experimental results that are really better than the
formally proven bounds. It is an open project to examine this for kernelization
algorithms provided by the parameterized complexity context for other problems
as well.
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2. Albert-László Barabási. Emergence of scaling in complex networks. In Handbook
of graphs and networks, pages 69–84. Wiley-VCH, Weinheim, 2003.

3. Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.
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