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a b s t r a c t

We study the parameterized complexity of two families of problems: the bounded length
disjoint paths problem and the bounded length cut problem. From Menger’s theorem both
problems are equivalent (and computationally easy) in the unbounded case for single
source, single target paths. However, in the bounded case, they are combinatorially distinct
and are both NP-hard, even to approximate. Our results indicate that a more refined
landscape appears when we study these problems with respect to their parameterized
complexity. For this, we consider several parameterizations (with respect to themaximum
length l of paths, the number k of paths or the size of a cut, and the treewidth of
the input graph) of all variants of both problems (edge/vertex-disjoint paths or cuts,
directed/undirected). We provide FPT-algorithms (for all variants) when parameterized
by both k and l and hardness results when the parameter is only one of k and l. Our
results indicate that the bounded length disjoint-path variants are structurally harder than
their bounded length cut counterparts. Also, it appears that the edge variants are harder
than their vertex-disjoint counterparts when parameterized by the treewidth of the input
graph.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

We consider finite (directed and undirected) graphs without loops or multiple edges. The vertex set of a graph G is
denoted by V (G) and its edge set by E(G). We denote undirected edges by {u, v}, and directed edges by (u, v). Given a graph
G and a set F ⊆ E(G) (resp. X ⊆ V (G)), we denote by G\F (resp. G\X) the graph obtained by G if we remove from it all edges
in F (resp. vertices in X). The path in a graph G induced by vertices u1, . . . , uk (in the given order) is denoted by ⟨u1, . . . , uk⟩.
Concatenation of the paths P1 and P2 such the last vertex of P1 coincides with the first vertex of P2 is denoted by P1 ⊕ P2. The
distance between two vertices u, v ∈ V (G) (i.e., the length of the shortest (u, v)-path in the graph) is denoted by distG(u, v).

One of themost celebrated problems in discrete algorithms and combinatorial optimization is the disjoint paths problem.
Its algorithmic study dates back to Menger’s theorem [1] (see also [2]), was extended by the work of Ford and Fulkerson [3]
on network flows, and now constitutes (along with its variants) a central algorithmic problem in algorithm design.

According to Menger’s theorem, given a graph G and two terminals s, t ∈ V (G), the maximum number of vertex-
disjoint (s, t)-paths in G is equal to the minimum cardinality of a set of vertices in V (G) \ {s, t} meeting all (s, t)-paths
of G. Interestingly, it appears that such a min–max equality does not hold if we restrict paths to be of bounded length. This
was observed for the first time by Adámek and Koubek in [4]. Lovász et al. proved in [5] that a similar min–max relation

✩ Preliminary extended abstracts of this paper appeared in the proceedings of IWPEC’09 (Golovach and Thilikos (2009) [36]).
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Table 1
Bounded length variants of the disjoint paths problem and the cut problem.

Multi-terminal disjoint Paths (s, t)-disjoint Paths (s, t)-Cut
Directed Undirected Directed Undirected Directed Undirected

Edge BEDMP BEUMP BEDP BEUP BEDC BEUC
Vertex BVDMP BVUMP BVDP BVUP BVDC BVUC

holds only for path lengths equal to 2, 3, or 4. Analogous results were provided for the casewhere the paths are edge-disjoint
in [6,7].

We present below the main decision versions of the problems generated by the bounded length restriction. We need
some definitions. Let G be a graph, s, t ∈ V (G), and let l be a positive integer. We call a set F ⊆ E(G) (resp. X ⊆ V (G) \ {s, t})
a (s, t)-edge (resp. vertex) l-bounded cut if G \ F (resp. G \ X) contains no (s, t)-path of length at most l.
Bounded Edge Directed (s, t)-disjoint Paths (BEDP)

Input: A directed graph G, two positive integers k, l and two distinct vertices s, t of G.
Question: Are there k edge-disjoint (s, t)-paths each of length at most l in G?

Bounded Edge Directed (s, t)-Cut (BEDC)

Input: A directed graph G, two positive integers k, l and two distinct vertices s, t of G.
Question: Is there an (s, t)-edge l-bounded cut F ⊆ E(G) of size at most k?

Also, the first of the above problems has been extended to its multi-terminal version as follows.
Bounded Edge Directed Multi-terminal disjoint Paths (BEDMP)

Input: A directed graph G = (V , E), two positive integers k, l, and two sequences S = (s1, . . . , sk) (sources), T = (t1, . . . ,
tk) (targets) of vertices in G.

Question: Are there k edge-disjoint (si, ti)-paths of length at most l in G for i = 1, . . . , k?

Similar to the above, we can define numerous variants depending on whether the graph is directed or undirected, and
whether the paths are edge-disjoint or internally vertex-disjoint. All variants and the corresponding notations are depicted
in Table 1.

For all multi-terminal disjoint path problems we can assume that all terminals are pair-wise distinct, since otherwise we
can apply the following rule:
Rule (1): for every vertex v that corresponds to r terminals we first subdivide all its incident edges and then replace v by
r vertices (each with one of the terminals corresponding to v) that have the same neighborhood as v (in the directed case,
replacement edges maintain their original directions). The new graph contains k edge(vertex)-disjoint paths of length at
most l + 2 if and only if the original one contains k edge(vertex)-disjoint paths of length at most l.

The first algorithmic results for the above problems were presented by Itai et al. in [8] where they proved that BVUP
and BEUP are polynomially solvable for path lengths 2 or 3 (for BVUP, it was proved also for paths of lengths at most 4),
while they become NP-complete for length values bigger than 4. In the same paper they proved that if, instead of fixing
the length l, we fix the number k of paths, the problem is still NP-complete even for 2 paths. For cut problems, Baier et al.
[9,10] proved that BVUC, BVDC areNP-complete for length values at least 5, and BEUC, BEDC areNP-complete for path length
bounds bigger than 3 (in fact they proved that it is NP-hard to approximate the size of the minimum cut within a factor of
at least 1.1377). The approximability of these problems was studied in [9–12]. Particularly, Bley [11] proved that computing
the maximum number of vertex-disjoint s, t-paths in an undirected graph is APX-complete for any l ≥ 5. Results on the
fractional versions of these problems (in terms of multicommodity flow problems) were given in [13–15]. Finally, for some
applications of the above problems, see [16–18].

Some results for the multi-terminal variants of the bounded-length disjoint paths problem were given in [12]. We just
stress that, when there is no restriction on the length of the paths, BVUMP is NP-complete in general [19] and polynomially
solvable in cubic time for any fixed k [20], while BVDMP is NP-complete even when k = 2 [21].

In this paper, we provide a detailed study of the parameterized complexity of all the bounded length variants of the
problems in Table 1. In a parameterized problem we distinguish some part of the input to be its parameter. Typically, a
parameter is an integer, k, related to the problem input and the question is whether the problem can be solved by an
algorithm (called an FPT-algorithm) of time complexity f (k) · nO(1) where n is the size of the input and f is a (super-
polynomial) function depending only on the parameter (instead of worst time complexities such as O(nf (k)) or O(kf (n))).
When a parameterized problem admits an FPT-algorithm, then it belongs in the parameterized complexity class FPT. Not
all parameterized problems belong in FPT. There are several parameterized complexity classes, such asW[1],W[2], para-NP,
and analogous notions of hardness with respect to parameter-preserving reductions, able to prove that membership in FPT
is rather non-possible (for more details, see the monographs [22–24]). Briefly, if a parameterized problem isW[1]-hard, this
means that a complexity of type O(nf (k)) is the best we may expect unless FPT = W[1], while if a parameterized problem is
para-NP-hard, then we cannot even hope for something better than a kf (n)-algorithm unless P = NP.
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Table 2
Reductions between problems.

BEUMP ≤
(2) BVUMP ≤

(3) BVDMP ≤
(4) BEDMP

(1) (1) (1) (1)

BEUP ≤
(2) BVUP ≤

(3) BVDP ≤
(4) BEDP

BEUC ≤
(2) BVUC ≤

(3) BVDC ≤
(4

′

) BEDC

Next we define the notion of parameterized reduction. Let Π1 and Π2 be parameterized problems over the alphabets Σ1
and Σ2 respectively. We say that Π1 is (uniformly many-one) FPT-reducible to Π2 if there exist functions f , g : N → N, and
a mapping Φ : Σ∗

1 × N → (Σ2)
∗
× N, which is computable in time f (k)|x|O(1) and if (x′, k′) = Φ(x, k) then k′

≤ g(k), such
that (x, k) ∈ Π1 if and only if Φ(x, k) ∈ Π2. The mapping Φ is called the FPT-reduction or parameterized reduction. It follows
that if a problem Π1 is in FPT and it can be reduced to Π2, then Π2 is in FPT too. To show that a problem is W[1]-hard, it is
enough to give a parameterized reduction from a known W[1]-hard problem.

Table 2 illustrates reductions between all considered problems. Here Π1 ≤
(i) Π2 means that the problem Π1 can be

reduced to the problem Π2 by the reduction rule i. The edge undirected versions are reduced to the vertex undirected
ones by the following rule:
Rule (2): Take the line graph LG of G and for every clique K of LG corresponding to the edges incident with a terminal v of G,
add a new terminal vertex v′ and connect it with all the vertices of the clique. Vertex-disjoint paths of length l + 1 in the
new graph correspond to edge-disjoint paths of length l in the original graph, while it trivially follows that edge cuts become
vertex cuts.
Certainly, vertex undirected versions are reduced to vertex directed ones by the following obvious rule:
Rule (3): Replace every edge by two opposite direction edges.
The following rules reduces all vertex directed versions to their edge directed counterparts. The next rule is given for disjoint
path problems:
Rule (4): Replace every vertex v by a directed edge (vt , vh) (we call such edges new edges) and make vt the head of all
previous edges whose head was v and vh the tail of all previous edges whose tail was v. For each source vertex s, st is a new
source, and for each target vertex t, th is a new target. Notice that every path of length at most 2l + 1 between a source and
the corresponding target in the new graph corresponds to a path of length at most l in the original graph, and edge-disjoint
paths between terminals in the new graph correspond to vertex-disjoint paths in the original graph and vice versa. This
proves the correctness of Rule (4) for disjoint path problems.
For cut problems, the rule should be modified:
Rule (4′): Replace every non-terminal vertex v by a directed edge (vt , vh) and make vt the head of all previous edges whose
head was v and vh the tail of all previous edges whose tail was v. Every path of length at most 2l−1 between the source and
the target in the new graph corresponds to a path of length at most l in the original graph between these terminals. Observe
that every vertex cut of the original graph corresponds to an edge cut in the new graph. For the inverse direction, take an
edge cut of the new graph and replace each non-new edge e in it with some new edge that has a common non-terminal
endpoint with e. This makes every edge cut in the new graph correspond to a vertex cut in the original graph.
Notice that all rules are parameterized reductions when the parameter is k, l, or both.

All problems in Table 1 have two possible parameters k and l in their inputs. Therefore, we consider parameterizations
of them with respect to l, k, or both, indicating which parameterization we pick in each problem. For example, the BEUP
problem is denoted as BEUP(k) when parameterized by the number of paths k, BEUP(l) when parameterized by the
maximum length l of a path and BEUP(k, l) when parameterized by both these quantities. We follow the same notation
for all problems in Table 1.

Weprove that all variants of our problems are in FPTwhenparameterized by both k and l. To do it, we give FPT-algorithms
for BEDMP(k, l) (Theorem1, Section 2.1) andBEDC(k, l) (Theorem2, Section 2.2). Then the claim that all consideredproblems
are in FPT immediately follows from the described reductions between them.

All problems we consider are NP-hard for fixed values of l, bigger than some constant [8,9]. Using standard terminology
from [23], this means that all of them, parameterized by l, are para-NP-complete (i.e. they are NP-hard even for fixed values
of the parameter). Moreover, the problem asking for the existence of two paths of bounded length between two terminals
of a graph is also NP-complete, because of the results in [8,25,26]. This implies the para-NP-completeness of all the disjoint
paths variants when parameterized by k. However, no similar result can be expected (unless P = NP) for bounded cut
problems, as they trivially admit an nO(k)-step algorithm (just check all possible cuts of size at most k). It appears that this
running time cannot really become better: we prove that these four variants are W[1]-hard (Theorem 4, Section 3) and
that for the directed graph variants, this holds even for directed acyclic graphs (Theorem 3, Section 3). This indicates that,
apart from the combinatorial discrepancy between problems on paths and problems on cuts, there is also a discrepancy
on the parameterized complexities of the corresponding problems. We stress that this distinction cannot be made clear
by studying the classic complexity of the two families of problems (they are all NP-complete in general). Our results are
depicted in Table 3.

Our next step is to study the (in general para-NP-complete) parameterized problems BVDP(l) and BVUP(l) for the special
case where their input graphs are sparse. We prove (Theorem 7, Section 4.1) that both problems admit FPT-algorithms for
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Table 3
Summary of our results when parameterizing by l and k.

l k, l k

BEDMP

para-NP-c [8] FPT O(2O(kl)
· m · log n) (Theorem 1) para-NP-c [25,26]BVDMP

BVUMP
BEUMP

BEDP

para-NP-c [8] FPT O(2O(kl)
· m · log n) (Theorem 1) para-NP-c [25,26]BVDP

BVUP
BEUP

BEDC

para-NP-c [9] FPT O(lk+1
· m) (Theorem 2)

W[1]-h for DAGs (Theorem 3)
BVDC W[1]-h for DAGs (Theorem 3)
BVUC W[1]-h (Theorem 4)
BEUC W[1]-h (Theorem 4)

Table 4
Summary of our results for sparse graph families.

l, [bounded ltw] l, [two-apex] tw, l

BVUP FPT (Theorem 7) para-NP-c (Theorem 8), l ≥ 6 FPT (Lemma 6)
BVDP FPT (Theorem 7) para-NP-c for DAGs (Theorem 8), l ≥ 6 FPT (Lemma 6)
BEUP open para-NP-c (Theorem 10), l ≥ 7 W[1]-h for fixed l ≥ 10 (Theorem 11)
BEDP open para-NP-c for DAGs (Theorem 10), l ≥ 7 W[1]-h for DAGs for fixed l ≥ 10 (Theorem 11)

classes of graphs that have bounded local treewidth (typical graph class with bounded local treewidth are planar graphs
or bounded-degree graphs). Moreover, this result can be extended for classes of graphs where the removal of at most one
vertex includes them in some bounded local treewidth class.

On the other side, we prove that this sparsity criterion cannot be relaxed much: BVDP(l) (BVUP(l)) remains para-NP-
complete (Theorem 8, Section 4.2) for l ≥ 6, on undirected (directed acyclic) graphs that can be made planar after removing
2 vertices (we call these graphs 2-apex-graphs).We also prove that the sameholds for the edge variants of the same problems
(Theorem10, Section 4.2) for l ≥ 7. Our results suggest a rapid change on the problem complexitywith respect to theminor-
exclusion sparsity criterion.

Our last result concerns the case where BEUP and BEDP are parameterized by the treewidth of their input graphs.
We prove that BEUP is W[1]-hard when parameterized by the treewidth of the input graph and that BEDP is W[1]-hard
when parameterized by the treewidth of the underlying graph of its input graph even when the input graph is acyclic
(Theorem 11, Section 4.3). This last result indicates that the edge-disjoint variants are harder than the vertex-disjoint ones
(the same parameterization leads to an FPT-algorithm for BVUP and BVDP— Lemma 6). Our results on sparse graph classes
are summarized in Table 4.

2. Parameterized algorithms

2.1. An FPT-algorithm for BEDMP(k, l)

Our algorithm for the BEDMP(k, l) is based on the color-coding technique introduced by Alon et al. in [27]. In particular,
we consider a family F of hash functions, each mapping {1, . . . ,m} to a set of colors {1, . . . , k · l}, such that for every
S ⊆ {1, . . . ,m}, where |S| ≤ k · l, there is a f ∈ F such that its restriction to S is a bijection. As mentioned in [27], such a
family where |F | = 2O(k·l)

· logm can be constructed in 2O(k·l)
· m · logm steps.

Let F be a family of hash functions as above where {1, . . . ,m} represent the edges of G. Let also χ ∈ F . Given an integer
i ∈ {1, . . . , k}, we define a Boolean function Bχ

i such that, for every set of colors X ⊆ {1, . . . , k · l}, Bχ

i (X) is true if and only
if there exists a collection of i edge-disjoint paths P1, . . . , Pi of length at most l such that

• for j ∈ {1, . . . , i}, the endpoints of Pj are sj and tj,
• the set of the colors assigned to the edges of these paths is a subset of X (i.e. χ(∪j∈{1,...,i} E(Pj)) ⊆ X),
• each color is used on at most one path.

Notice that an instance of BEDMP(k, l) is a YES-instance if and only if there is a χ ∈ F such that Bχ

k ({1, . . . , k · l}) = true.
Let Cχ

i be a Boolean function such that, for X ⊆ {1, . . . , k · l}, the value of Cχ

i (X) is true if and only if the subgraph of G
induced by the edges colored by colors in X contains a path between si and ti of length at most l. Notice that Bχ

1 (X) = Cχ

1 (X).
In general, to compute Bχ

i (X) for some X ⊆ {1, . . . , k · l} and i > 1, we observe that

Bχ

i (X) =


Y⊆X

(Bχ

i−1(Y ) ∧ Cχ

i (X \ Y )).
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The value of Cχ

i (X) for a given set X can be computed in O(m) steps. Therefore, computing Bχ

i (X) for all X ⊆ {1, . . . , l · k}
requires O(3k·l

· m) steps once the values of Bχ

i−1 are known. Hence the above dynamic programming requires in total
O(3k·l

· m · k) steps to compute Bχ

k ({1, . . . , k · l}). Concluding, BEDMP(k, l) can be solved in O(2O(k·l) logm · m · k) steps.
It is easy to observe that the above algorithm can bemodified so that it also would return the requested paths when they

exist. We conclude with the following.

Theorem 1. TheBEDMP(k, l)problem can be solved by an FPT-algorithm that runs inO(2O(k·l) log n·m·k) stepswhere n = |V (G)|
and m = |E(G)|.

2.2. An FPT-algorithm for BEDC(k, l)

Our algorithm for the BEDC problem is called Solve-BEDC. The algorithm is based on the simple observation that, for any
(s, t)-path of length at most l, at least one edge of it has to be included in any (s, t)-edge l-bounded cut. The algorithm’s
input contains the input of the problem and a set X ⊆ E(G). The algorithm returns either an (s, t)-edge l-bounded cut S,
such that X ⊆ S, or returns the answer NO if such a cut does not exist. To solve BEDC for a graph G with terminal vertices s
and t , it is enough to call Solve-BEDC (G, s, t, k, l, ∅).

Algorithm 1 Solve-BEDC(G, s, t, k, l, X).

Input: A graph G, vertices s, t ∈ V (G), k, l and a set X ⊆ E(G).
Output: An (s, t)-edge bounded cut S ⊇ X or NO if such a cut does not exist.

if |X | > k then return NO;
let P be a shortest (s, t)-path in G \ X;
if |E(P)| > l then return X
otherwise
for every edge e ∈ E(P)

set Y = Solve-BEDMP(G, s, t, k, l, X ∪ {e});
if Y ≠ NO then return Y

return NO.

The correctness of the algorithm directly follows from the description. Clearly, if |X | > k then the answer is NO. Then
the algorithm finds the shortest (s, t)-path in G \ X . If the path has a length bigger than l (or does not exist) then X is an
l-bounded cut. Otherwise, at least one edge of the path should be included in any l-bounded cut. We branch by considering
at most l possible choices of an edge. Since at each recursive call of Solve-BEDC, either the cardinality of the parameter X is
increased by one or we stop, the depth of the search tree is k+1 at most. The number of branches at each call of Solve-BEDC
is at most l. So the number of calls is at most O(lk+1). Since we can find the shortest path between two vertices in O(m) for
a graph withm edges, the total running time is O(lk+1

· m). This yields the following result.

Theorem 2. The BEDC(k, l) problem can be solved by an FPT-algorithm that runs in O(lk+1
· m) time where m = |E(G)|.

3. Hardness results for (s, t)-cuts

In this section we proveW[1]-hardness of BVDC(k) and BEUC(k). It can be noted that by the reduction rules (see Table 2)
W[1]-hardness of BVDC(k) follows from a similar result for BEUC(k), but we prove here a stronger result.

Theorem 3. The BVDC(k) problem is W[1]-hard even for acyclic directed graphs.

Proof. We present a reduction from theMulticolored Clique problem, which is defined as follows:
Multicolored clique

Input: A graph G with a proper k-coloring of G.
Question: Is there a clique of size k in G containing exactly one vertex from each color class?

TheMulticolored Clique problem, parameterized by k, was proved to be W[1]-hard by Fellows et al. [28].
Let G be an n-vertex undirected graph. Denote by Xi the i-th color class in the given k-coloring of G. Assume, without loss

of a generality, that k ≥ 4. We assume also that for any pair of sets Xi, Xj, i ≠ j, vertices of these sets are connected by the
same number of edges denoted by m, and m > 0 (otherwise it is possible to add pairs of adjacent vertices to the graph to
ensure this condition). Denote by e(i,j)

1 , e(i,j)
2 , . . . , e(i,j)

m the edges which join sets Xi and Xj. Let l = 5m + 4.
Nowwe consider auxiliary constructions. For every i, j ∈ {1, 2, . . . , k}, i ≠ j, a directed graph Fi,j is constructed as follows

(the graph Fi,j is shown in Fig. 1 for m = 4).
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Fig. 1. Construction of Fi,j for m = 4. Paths are shown by dashed lines.

1. Two vertices s and t are created.
2. For every r ∈ {1, 2, . . . ,m}, vertices ur , a

(1)
r , a(2)

r , a(3)
r and b(1)

r , b(2)
r , b(3)

r are constructed, and for every r ∈ {0, 1, . . . ,m},
a vertex vr is introduced. It is assumed, for convenience, that s = a(1)

0 = a(2)
0 = a(3)

0 , b(1)
0 = a(1)

m , b(2)
0 = a(2)

m , b(3)
0 = a(3)

m

and t = b(3)
m+1 = b(3)

m+1 = b(3)
m+1.

3. For each vertex ur , edges (a(1)
r−1, ur), (a

(2)
r−1, ur), (a

(3)
r−1, ur) and (ur , a

(1)
r ), (ur , a

(2)
r ), (ur , a

(3)
r ) are added.

4. For each vertex vr , edges (b(1)
r , vr), (b

(2)
r , vr), (b

(3)
r , vr) and (vr , b

(1)
r+1), (vr , b

(2)
r+1), (vr , b

(3)
r+1) are added.

5. Pairs of vertices a(f )
r−1, a

(f )
r are joined by paths of length r + 2 for f = 1, 2, 3 and r ∈ {1, 2, . . . ,m}.

6. Pairs of vertices a(f )
r−1, b

(f )
r , f = 1, 2, 3, are joined by paths of length 3m + 4 for r ∈ {1, 2, . . . ,m + 1}.

7. Add vertices w
(i,j)
1 , w

(i,j)
2 , . . . , w

(i,j)
m , and join every vertex vr−1 with w

(i,j)
r by a path of length 3(m + 1 − r).

Some properties of this graph are given in the next claim.

Claim 1. For i, j ∈ {1, . . . , k}, i ≠ j, the following holds:

(a) any (s, t)-vertex l-bounded cut in Fi,j contains at least two vertices;
(b) the set X (i,j)

r = {ur , vr} is an (s, t)-vertex l-bounded cut in Fi,j such that the vertex w
(i,j)
r is joined with s by a path of length at

most l − 2 in Fi,j \ X, and other vertices w
(i,j)
f can be joined with s only by paths of length at least l − 1;

(c) for any two vertex (s, t)-vertex l-bounded cut X in Fi,j, at least one vertex w
(i,j)
r is joined with s by a path of length at most

l − 2 in Fi,j \ X.

Proof of Claim 1. Part (a) is proved by checking directly that a single vertex cannot be an (s, t)-vertex l-bounded cut.
Clearly, if we remove a vertex x ∉ {u1, . . . , um} ∪ {v0, . . . , vm} then the obtained graph still has an (s, t)-path of length
4m+2 < 5m+4 = l. For a vertex x ∈ {u1, . . . , um}∪{v0, . . . , vm}, there is an (s, t)-path of length 5m+4 = l in Fi,j \{x}. To
prove (b) and (c), it is sufficient to note that by similar arguments as for (a), if X is a two element (s, t)-vertex cut in Fi,j then
X = {uf , vh} for some f , h ∈ {1, 2, . . . ,m} and f ≤ h. It remains to observe that for such a set X , vertices w

(i,j)
f , . . . , w

(i,j)
h

are joined with s by paths of length at most l − 2 in Fi,j \ X , and other vertices w
(i,j)
l can be joined with s only by paths of

length at least l − 1 in Fi,j \ X . �

Using these gadgets Fi,j, we construct a directed graph H from G as follows.

8. For all pairs {i, j}, i, j ∈ {1, . . . , k}, i ≠ j, graphs Fi,j with common vertices s and t are constructed.
9. Add all vertices of G to H .

10. For every edge e(i,j)
f = {x, y} of G, we add the two directed edges (w

(i,j)
f , x) and (w

(i,j)
f , y) to H .

11. For each vertex x ∈ V (G), an edge (x, t) is added to H .

It is easy to see that H is a directed acyclic graph. The next claim concludes the proof of Theorem 3.

Claim 2. Graph G has a clique of size kwhich contains exactly one vertex from each color class if and only if there is an (s, t)-vertex
l-bounded cut in H with at most k′

= k2 vertices.

Proof of Claim 2. Suppose that C is a clique in G of size k which contains exactly one vertex from each color class. We
construct the (s, t)-vertex l-bounded cut X in H as follows. All vertices of C are included in X . For every edge e(i,j)

f which

joins vertices of C in G, the vertices of X (i,j)
f from Fi,j are included in X . It follows immediately from Claim 1(b) that X is an

(s, t)-vertex l-bounded cut in H . Clearly, |X | = k + 2 k(k−1)
2 = k′.



Author's personal copy

78 P.A. Golovach, D.M. Thilikos / Discrete Optimization 8 (2011) 72–86

Assume now that X is an (s, t)-vertex l-bounded cut in H of size at most k′. By Claim 1(a), at least two vertices of X
belong to every graph Fi,j. Suppose that for some color class Xi, Xi ∩ X = ∅. Then by Claim 1(c), the set X must contain
at least three vertices from graphs Fi,j for j ∈ {1, 2, . . . , k}, j ≠ i. Therefore there is another color class Xr such that
Xr ∩ X = ∅, and X contains at least three vertices from graphs Fr,j for j ∈ {1, 2, . . . , k}, j ≠ r . But in this case X has at
least 2 k(k−1)

2 + 2k − 3 = k2 + k − 3 vertices, and this means that k2 + k − 3 > k′, since k ≥ 4. So, every set Xi has at least
one element of X . It follows that |X | = k′ and X contains exactly two vertices from every graph Fi,j and exactly one vertex
from every set Xi. Using Claim 1(c) we conclude that X ∩ V (G) is a clique in G of size k. Claim 2 follows. �

Notice that the reduction 4 from BVDC(k) to BEDC(k) transforms a directed acyclic graph into another directed acyclic
graph. So, W[1]-hardness of BEDC(k) for directed acyclic graphs follows immediately. What remains to prove is the W[1]-
hardness for the undirected case.

Theorem 4. BEUC(k) is W[1]-hard.

Proof. The proof of this theorem uses the same ideas as the proof of Theorem 3. The reduction is almost the same, we
describe only the modifications of it. Now we let l = 7m + 5. All other changes mainly concern the gadgets Fi,j:

1. Construct graph Fi,j as in the proof of Theorem 3.
2. Replace (a(f )

r−1, a
(f )
r )-paths of length r + 2 by paths of length r + 3.

3. Replace (a(f )
r−1, b

(f )
r )-paths of length 3m + 4 by paths of length 4m + 5.

4. Replace (vr−1, w
(i,j)
r )-paths of length 3(m + 1 − r) by paths of length 4(m + 1 − r).

5. For each r ∈ {1, . . . ,m}, the vertex ur is ‘‘split’’ into two vertices u(1)
r , u(2)

r : replace ur by u
(1)
r , u(2)

r , add the edge (u(1)
r , u(2)

r ),
replace any edge heading in ur by an edge heading in u(1)

r and each edge tailing in ur by an edge tailing in u(2)
r .

6. Similarly, for each r ∈ {0, . . . ,m}, the vertex vr is ‘‘split’’ into two vertices v
(1)
r , v

(2)
r : replace vr by v

(1)
r , v

(2)
r , add the edge

(v
(1)
r , v

(2)
r ), replace any edge heading in vr by an edge heading in v

(1)
r and each edge tailing in vr by an edge tailing in v

(2)
r .

7. Replace all directed edges by undirected ones.

This graphhas the properties summarized in the next lemma.Weomit the proof as it is similar to the first claimof Theorem3.

Lemma 5. For i, j ∈ {1, . . . , k}, i ≠ j, the following holds:

(a) Any (s, t)-edge l-bounded cut in Fi,j contains at least two edges.
(b) For any two-edge (s, t)-edge l-bounded cut Z in Fi,j, at least one vertex w

(i,j)
r is joined with s by a path of length at most l− 2

in Fi,j \ Z.
(c) The set Z (i,j)

r = {{u(1)
r , u(2)

r }, {v
(1)
r v

(2)
r }} is an (s, t)-edge l-bounded cut in Fi,j such that the vertex w

(i,j)
r is joined with s by a

path of length at most l− 2 in Fi,j \ Z (i,j)
r , and all other vertices w

(i,j)
f can be joined with s only by paths of length at least l− 1.

Using these gadgets Fi,j we construct a graph H from G as in the proof of Theorem 3with the only difference that undirected
edges are used instead of directed ones.

The final claim is that the graph G has a clique of size kwhich contains exactly one vertex from any color class if and only
if there is an (s, t)-edge l-bounded cut in H with at most k′

= k2 vertices. This claim is proved in the sameway as the second
claim of Theorem 3 and concludes the proof of Theorem 4. �

4. (s, t)-paths of bounded length for sparse graphs

4.1. FPT-algorithms for sparse graph classes

A tree decomposition of a graph G is a pair (X, T )where T is a tree and X = {Xi | i ∈ V (T )} is a collection of subsets (called
bags) of V (G) such that:

1.


i∈V (T ) Xi = V (G),
2. for each edge {x, y} ∈ E(G), x, y ∈ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}. The treewidth of a graph G (denoted as tw(G))
is the minimum width over all tree decompositions of G. For a directed graph G, tw(G) is the treewidth of the underlying
undirected graph.

We say that a graph class G has bounded local treewidth with bounding function f if there is a function f : N → N
such that for every graph G ∈ G, every v ∈ V (G), and every positive integer i it holds that tw(G[N i

G[v]]) ≤ f (i) where
N i
G[v] = {u ∈ V (G): distG(u, v) ≤ i}.
It appears that many sparse graph classes have bounded local treewidth. Examples are planar graphs and graphs of

bounded genus, bounded max-degree graphs, and graphs excluding an apex graph as a minor (an apex graph is a graph
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that can become planar after removal of one vertex). The purpose of this subsection is to construct an FPT algorithm for the
BVDP(l) and the BVUP(l) problems when their inputs are restricted to graphs that belong to some (almost) bounded local
treewidth graph class. For this, we need the following lemma, which follows directly from the results of Arnborg et al. in [29]
(see also [30]).

Lemma 6. The BVDP problem (and therefore, also BVUP) parameterized by l and the treewidth of the input graph can be solved
by an FPT-algorithm.

We are now ready to prove the following.

Theorem 7. The BVDP(l) problem (and therefore, also BVUP(l)) can be solved by an FPT-algorithm for graph classes that have
bounded local treewidth. Moreover, let G be a bounded local treewidth graph class, and let G′ be a set of all graphs G such that
there is a set X ⊆ V (G), |X | ≤ 1, for which G \ X ∈ G. Then the BVDP(l) can be solved by an FPT-algorithm in G′.

Proof. Let G be a graph class with bounded local treewidth and let G ∈ G. Notice that any vertex of a path of a possible
solution of the BVDP(l) problem is in distance at most l from s (or t). We set G′

= G[N l
G(s)] andwe observe that the instances

(G, k, l, s, t) and (G′, k, l, s, t) are equivalent for the BVDP(l) problem. As G has a bounded local treewidth, we conclude that
tw(G′) ≤ f (l). The result follows from Lemma 6.

Let now G ∈ G′. If X = ∅ then we can use the first claim of the theorem. Suppose that X = {u} and let H = G \ X . If
u = s (u = t resp.) then we set G′

= G[N l
H(t) ∪ {u}] (G′

= G[N l
H(s) ∪ {u}] resp.) and observe that the instances (G, k, l, s, t)

and (G′, k, l, s, t) are equivalent for the BVDP(l) problem. Clearly, tw(G′) ≤ f (l) + 1, and the result follows from Lemma 6,
Section 4.1. If u ≠ s, t then let G′

= G[N l
H(s) ∪ N l

H(t) ∪ {u}]. Since for any (s, t)-path P in G, all vertices of P \ {u} are at
distance at most l from s or t in H , the instances (G, k, l, s, t) and (G′, k, l, s, t) are equivalent. It remains to note that graphs
G[N l

H(s)] and G[N l
H(t)] are either disjoint or G[N l

H(s)∪N l
H(t)∪{u}] has diameter at most 4l. Hence G′ has bounded treewidth

and we can again use Lemma 6. �

4.2. Vertex-disjoint (s, t)-paths of bounded length for H-minor-free graphs

In this section we show that the restrictions of Theorem 7 are somehow tight. We call a graph G a two-apex graph if there
is a set X of at most two vertices such that G \ X is a planar graph.

Theorem 8. For any fixed l ≥ 6,
(a) BVUP(l) is NP-complete for two-apex graphs,
(b) BVDP(l) is NP-complete for directed acyclic two-apex graphs.

Proof. First, we prove Part (a).We reduce a variant of the 3-Satisfiability problemwhichwas considered by Kratochvíl [31].
Let C be a Boolean formula φ with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm such that each clause contains at most
3 literals. Suppose that H is a bipartite graph with vertices x1, x2, . . . , xn and C1, C2, . . . , Cm such that xi and Cj are adjacent
if and only if clause Cj contains literal xi or xi. It is known (see [31]) that the 3-Satisfiability problem remains NP-complete
even if H is a planar graph and every variable occurs in no more than four clauses. We need here one additional condition.

Lemma 9. The 3-Satisfiability problem remainsNP-complete if H has a plane embedding such that for each xi, if degH(xi) = 4
and xi occurs in exactly two clauses Cj, Cr in a positive form then {xi, Cj} and {xi, Cr} are adjacent edges in the boundary of one
face.

Proof. Let us consider some planar embedding of H . Suppose that our condition is not fulfilled for some vertex xi. Then the
variable xi is used in four clauses. Assume that clauses Cj, Cr contain xi and Cj′ , Cr ′ contain xi. We construct another instance
of 3-Satisfiability. We add a new variable x′

i and replace xi by x′

i in Cr and Cr ′ . Then clauses xi ∨ x′
i and xi ∨ x′

i are added to
φ. Since (xi ∨ x′

i) ∧ (xi ∨ x′

i) = true if and only if xi and x′

i have the same values, these two instances of 3-Satisfiability are
equivalent. It remains to observe that for the new instance, the embedding of H can be replaced by an embedding, for which
our condition for xi and x′

i is fulfilled. �

Notice that if this condition holds, then it is possible to ‘‘split’’ every vertex xi in H into two adjacent vertices xi and xi in
a way that

• xi is adjacent to Cj if the clause Cj contains literal xi, and
• xi is adjacent to Cj if the clause Cj contains literal xi,

in such a way, that after this splitting the graph remains planar.
We also assume that no variable occurs only in positive or only in negations in all clauses.
For every i ∈ {1, 2, . . . , n} we define a graph Fi as follows (the graph Fi for l = 6 is shown in Fig. 2(a)).

1. Introduce three vertices s, t and yi.
2. Add vertices x(1)

i , x(2)
i , x(3)

i and edges {s, x(1)
i }, {x(1)

i , x(2)
i }, {x(2)

i , x(3)
i }, {x(3)

i , yi}.
3. Add vertices x(1)

i , x(2)
i , x(3)

i and edges {s, x(1)
i }, {x(1)

i , x(2)
i }, {x(2)

i , x(3)
i }, {x(3)

i , yi}.
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(a) BVUP(l), l = 6. (b) BEUP(l), l = 7.

Fig. 2. Graphs Fi .

4. Join vertices yi and t by a path Pi of length l − 4.

5. Join swith x(2)
i and x(2)

i by paths Q (2)
i and Q

(2)
i of length 3.

6. Join swith x(3)
i and x(3)

i by paths Q (3)
i and Q

(3)
i of length 4.

Let Q (1)
i = ⟨s, x(1)

i ⟩ and Q
(1)
i = ⟨s, x(1)

i ⟩.
We complete the reduction as follows.

7. For each variable xi, a gadget Fi with common vertices s and t is constructed.
8. Vertices C1, C2, . . . , Cm are added.
9. Assume that for a variable xi, clauses Ci1 , . . . , Cipi

contain the literal xi and clauses Ci′1
, . . . , Ci′qi

contain xi. Notice pi ≤ 3

and qi ≤ 3. The vertices {x(1)
i , . . . , x(p1)

i } are joined by a matching with the vertices Ci1 , . . . , Cipi
and the vertices

x(1)
i , . . . , x(qi)

i are joined with the vertices Ci′1
, . . . , Ci′qi

.
10. Vertices Cj are joined by edges with t .

Denote by H the obtained graph. By Lemma 9 H is a two-apex graph with apices s and t . We claim that there is a truth
assignment for variables x1, x2, . . . , xn such that the Boolean formula is satisfied if and only if H has at least n + m vertex-
disjoint (s, t)-paths of length at most l.

Suppose that variables x1, x2, . . . , xn have a truth assignment which satisfies the formula. For every i ∈ {1, 2, . . . , n},
we chose the path ⟨s, x(1)

i , x(2)
i , x(3)

i , yi⟩ ⊕ Pi if xi = false and the path ⟨s, x(1)
i , x(2)

i , x(3)
i , yi⟩ ⊕ Pi if xi = true. Every clause Cj

contains a literal z that is evaluated true. If z = xi then H has an edge {x(r)
i , Cj} for some r = 1, 2, 3, and we chose the

path Q (r)
i ⊕ ⟨x(r)

i , Cj, t⟩. If z = xi then H has an edge {x(r)
i , Cj} and the path Q

(r)
i ⊕ ⟨x(r)

i , Cj, t⟩ is considered. Clearly, all these
n + m(s, t)-paths are vertex-disjoint and have length at most l.

Assumenow thatH has a collection of at leastn+m vertex-disjoint (s, t)-paths of length atmost l. Since degH(t) = n+m,
all vertices y1, y2, . . . , yn and all vertices C1, C2, . . . , Cm belong to different paths in this collection. The path which contains
yi is either ⟨s, x(1)

i , x(2)
i , x(3)

i , yi⟩ ⊕ Pi or ⟨s, x(1)
i , x(2)

i , x(3)
i , yi⟩ ⊕ Pi because the length of Pi is l − 4. We set xi = false if this

path goes through x(1)
i , x(2)

i , x(3)
i , and xi is set true otherwise. Every path which contains Cj has an edge {Cj, z} for some vertex

z from some graph Fi. If xi = true by our assignment, then x(1)
i , x(2)

i , x(3)
i are included in the path which contains yi. Hence

z ∈ {x(1)
i , x(2)

i , x(3)
i }. Similarly, if xi is set false, then z ∈ {x(1)

i , x(2)
i , x(3)

i }. It means that every clause is satisfied by our truth
assignment.

The Part (b) of the theorem is proved by almost the same reduction. The only difference is that we have to replace graph
H by a directed acyclic graph which is obtained by directing all edges ‘‘from s to t ’’. �

Consider the class of Kr -minor free graphs (i.e. none of the graphs in this class contains a subgraph that can be contracted
to Kr ). Notice that K5-free graphs have bounded local treewidth. However this is not true for Kr -minor-free graphs for r ≥ 6.
Since two-apex graphs are K7-minor-free, Theorem 7 provides a nearly optimal estimation on the tractability of BVUP(l)
and BVDP(l) on Kr -minor-free graphs. Actually, the same theorem argues that not even an nf (k) step algorithm can be found
for r ≥ 7 unless P = NP.

We also prove the following theorem.

Theorem 10. For any fixed l ≥ 7,

(a) BEUP(l) is NP-complete for two-apex graphs,
(b) BEDP(l) is NP-complete for directed acyclic two-apex graphs.
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Proof. The proof uses the same ideas as the proof of Theorem 8. So, we describe here only the differences in constructions
of Fi and H for this case (the graph Fi for l = 7 is shown in Fig. 2(b)):

5. Join swith x(1)
i and x(1)

i by paths Q (2)
i and Q

(2)
i of length 2.

6. Join swith x(2)
i and x(2)

i by paths Q (3)
i and Q

(3)
i of length 4.

9. Let Ci1 , . . . , Cipi
be clauses which contain xi (note that pi ≤ 3). Join x(j)

i and Cij by a path of length l− 2j for j ∈ {1, . . . , pi}.

Similarly, let now Ci′1
, . . . , Ci′qi

be clauses which contain xi. Join x(j)
i and Ci′j

by a path of length l − 2j for j ∈ {1, . . . , qi}.

The second part of the theorem is proved by the same reduction by replacing graph H by a directed acyclic graph which
is obtained by directing edges of H in the obvious way. �

4.3. Edge-disjoint (s, t)-paths of bounded length for graphs of bounded treewidth

By reduction rules (see Table 2) BEUP can be reduced to BVUP, but Reduction rule (2) does not preserve the treewidth of
the graph. The following theoremmakes a contrast to Lemma 6: it shows that edge-disjoint path problems are harder than
their vertex-disjoint counterparts, when parameterized by the treewidth.

Theorem 11. For every fixed l ≥ 10,

(a) BEUP is W[1]-hard when parameterized by treewidth, and
(b) BEDP is W[1]-hard for directed acyclic graphs when parameterized by the treewidth of the underlying graph.

Proof. The parameterized complexity of the Capacitated Dominating Set was considered in [32], and it was proved that
this problem is W[1]-hard when parameterized by both the size of the capacitated dominating set and the treewidth of the
input graph. Here we reduce a special variant of this problem. A red–blue capacitated graph is a pair (G, c), where G is a
bipartite graph with the vertex bipartition R and B and c: R → N is a capacity function such that 1 ≤ c(v) ≤ dG(v) for every
vertex v ∈ R. The vertices of the set R are called red and the vertices of B are called blue. A set S ⊆ R is called a capacitated
dominating set if there is a domination mapping f : B → S which maps every vertex in B to one of its neighbors such that
the total number of vertices mapped by f to any vertex v ∈ S does not exceed its capacity c(v). The Red–Blue Capacitated
Dominating Set problem is formulated as follows:
Red–Blue Capacitated Dominating Set

Input: A red–blue capacitated graph (G, c) and a positive integer k.
Question: Does there exist a capacitated dominating set S for G containing at most k vertices?

It follows from the results of [33] (see [34]) that the Red–Blue Capacitated Dominating Set problem isW[1]-hard when
parameterized by the treewidth t of the input graph and the solution size k.

At first we proveW[1] hardness for the BEUP. To simplify the reduction we describe it for l = 10. To extend the proof for
l > 10, it is enough to replace all edges incident with t in the graph constructed here by paths of length l − 9. Let R and B
sets of red and blue vertices of G respectively. Let also n = |R|, m = |B| and r = maxv∈R c(v). We start the description of
our reduction with some auxiliary gadgets.

For i ∈ {1, . . . , n} and j ∈ {1, . . . , r}, we define the graph F (j)
i as follows.

1. Introduce vertices s, x(i,j), y(i,j), z(i,j), t , and add edges {s, x(i,j)
}, {y(i,j), z(i,j)

} and {z(i,j), t}.
2. Add vertices a(i,j)

1 , a(i,j)
2 , c(i,j)

1 , c(i,j)
2 , e(i,j)

1 , e(i,j)
2 , and edges {x(i,j), a(i,j)

1 }, {a(i,j)
1 , a(i,j)

2 }, {a(i,j)
2 , c(i,j)

1 }, {c(i,j)
1 , c(i,j)

2 }, {c(i,j)
2 , e(i,j)

1 },

{e(i,j)
1 , e(i,j)

2 } and {e(i,j)
2 , y(i,j)

}. We call the path ⟨s, x(i,j), a(i,j)
1 , a(i,j)

2 , c(i,j)
1 , c(i,j)

2 , e(i,j)
1 , e(i,j)

2 , y(i,j), z(i,j), t⟩ the lower path for F (j)
i .

3. Add vertices b(i,j)
1 , b(i,j)

2 , d(i,j)
1 , d(i,j)

2 , f (i,j)
1 , f (i,j)

2 , and edges {x(i,j), b(i,j)
1 }, {b(i,j)

1 , b(i,j)
2 }, {b(i,j)

2 , d(i,j)
1 }, {d(i,j)

1 , d(i,j)
2 }, {d(i,j)

2 , f (i,j)
1 },

{f (i,j)
1 , f (i,j)

2 } and {f (i,j)
2 , y(i,j)

}. We call the path ⟨s, x(i,j), b(i,j)
1 , b(i,j)

2 , d(i,j)
1 , d(i,j)

2 , f (i,j)
1 , f (i,j)

2 , y(i,j), z(i,j), t⟩ the upper path for F (j)
i .

The next step is the construction of graphs Fi for i ∈ {1, . . . , n} (see Fig. 3).

4. Construct graphs F (1)
i , . . . , F (r)

i with common vertices s and t .
5. – For each j ∈ {1, . . . , ⌊r/2⌋}, add two vertices g(i,2j−1), h(i,2j−1) and edges {s, g(i,2j−1)

}, {h(i,2j−1), t}.
– Join g(i,2j−1) and a(i,2j−1)

1 by a path of length 2, add an edge {a(i,2j−1)
2 , a(i,2j)

1 }, and join a(i,2j)
2 with h(i,2j−1) by a

path of length 3. Denote the unique (s, t)-path which contains the two paths constructed here and the edges
{s, g(i,2j−1)

}, {a(i,2j−1)
1 , a(i,2j−1)

2 }, {a(i,2j−1)
2 , a(i,2j)

1 }, {a(i,2j)
1 , a(i,2j)

2 }, and {h(i,2j−1), t} by P (i,2j−1)
l .

– Join g(i,2j−1) and b(i,2j−1)
1 by a path of length 2, add an edge {b(i,2j−1)

2 , b(i,2j)
1 }, and join b(i,2j)

2 with h(i,2j−1) by a
path of length 3. Denote the unique (s, t)-path which contains the two paths constructed here and the edges
{s, g(i,2j−1)

}, {b(i,2j−1)
1 , b(i,2j−1)

2 }, {b(i,2j−1)
2 , b(i,2j)

1 }, {b(i,2j)
1 , b(i,2j)

2 }, and {h(i,2j−1), t} by P (i,2j−1)
u .

6. – For each j ∈ {1, . . . , ⌊(r − 1)/2⌋}, add two vertices g(i,2j), h(i,2j) and edges {s, g(i,2j)
}, {h(i,2j), t}.
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Fig. 3. The construction of Fi for r = 6.

– Join g(i,2j) and c(i,2j)
1 by a path of length 4 and add edges {c(i,2j)

2 , c(i,2j+1)
1 }, {c(i,2j+1)

2 , h(i,2j)
}. Denote the

unique (s, t)-path which contains the path constructed here and edges {s, g(i,2j)
}, {c(i,2j)

1 , c(i,2j)
2 }, {c(i,2j)

2 , c(i,2j+1)
1 },

{c(i,2j+1)
1 , c(i,2j+1)

2 }, {c(i,2j+1)
2 , h(i,2j)

}, and {h(i,2j), t} by P (i,2j)
l .

– Join g(i,2j) and d(i,2j)
1 by a path of length 4 and add edges {d(i,2j)

2 , d(i,2j+1)
1 }, {d(i,2j+1)

2 , h(i,2j)
}. Denote the

unique (s, t)-path which contains the path constructed here and edges {s, g(i,2j)
}, {d(i,2j)

1 , d(i,2j)
2 }, {d(i,2j)

2 , d(i,2j+1)
1 },

{d(i,2j+1)
1 , d(i,2j+1)

2 }, {d(i,2j+1)
2 , h(i,2j)

}, and {h(i,2j), t} by P (i,2j)
u .

We call the paths P (i,j)
l (resp. P (i,j)

u ) lower (resp. upper) synchronizing paths for Fi. Note that the total number of lower
(upper) synchronizing paths for Fi is r − 1. Also lower (resp. upper) paths for F (1)

i , . . . , F (r)
i are called lower (resp. upper)

paths for Fi.
We need the following properties of the graph Fi constructed during the first 6 steps of the reduction.

Lemma 12. The graph Fi has 2r − 1 edge-disjoint (s, t)-paths of length at most l, and any collection of such paths in Fi either
contains r lower paths and r − 1 upper synchronizing paths for Fi or contains r upper paths and r − 1 lower synchronizing paths
for Fi.

Moreover, let Fi and a graph Q be induced subgraphs of a graph Q ′
= Fi ∪ Q such that

• V (Fi) ∩ V (Q ) = {s, t} ∪
r

j=1{e
(i,j)
1 , e(i,j)

2 , f (i,j)
1 , f (i,j)

2 },

• for every v ∈
r

j=1{e
(i,j)
1 , e(i,j)

2 , f (i,j)
1 , f (i,j)

2 }, distQ (v, t) > 5.

Then any collection of 2r − 1 of edge-disjoint (s, t)-paths of length at most l in Q ′ which contain all edges of
{{s, x(i,1)

}, . . . , {s, x(i,r)
}} ∪ {{s, g(i,1)

}, . . . , {s, g(i,r−1)
}} either contains r lower paths and r − 1 upper synchronizing paths for

Fi or contains r upper paths and r − 1 lower synchronizing paths for Fi.

Proof. Observe at first that r lower paths and r − 1 upper synchronizing paths for Fi (resp. r upper paths and r − 1 lower
synchronizing paths for Fi) are edge-disjoint (s, t)-paths of length at most l.
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Fig. 4. The filter L6(u, v).

To prove the first claim of the lemma, note that for any collection P of 2r − 1 edge disjoint (s, t)-paths of length at most
l in Fi, these paths go through all edges in the set {{s, x(i,1)

}, . . . , {s, x(i,r)
}} ∪ {{s, g(i,1)

}, . . . , {s, g(i,r−1)
}}.

Consider (s, t)-paths in P which contain edges {s, g(i,1)
}, . . . , {s, g(i,r−1)

}. We show inductively that for each j ∈

{1, . . . , r − 1}, the (s, t)-path of length at most l which goes through {s, g(i,j)
} is either path P (i,j)

l or path P (i,j)
u . If P is an

(s, t)-path of length at most l which contains {s, g(i,1)
} then either P = P (i,1)

l or P = P (i,1)
u , since all other paths have bigger

length. Let j > 1 and assume that paths in P which go through edges {s, g(i,1)
}, . . . , {s, g(i,j−1)

} are paths from the set
{P (i,1)

l , . . . , P (i,j−1)
l } ∪ {P (i,1)

u , . . . , P (i,j−1)
u }. Since the first j − 1 paths contain all edges {h(i,1), t}, . . . , {h(i,j−1), t}, the path

P ∈ P which goes through {s, g(i,j)
} cannot contain these edges and vertices h(i,1), . . . , h(i,j−1). Hence, P is either P (i,j)

l or
P = P (i,j)

u .
We proved that paths in P which include edges {s, g(i,1)

}, . . . , {s, g(i,r−1)
} are synchronizing paths, and they contain all

edges from the sets {{s, g(i,1)
}, . . . , {s, g(i,r−1)

}} and {{h(i,1), t}, . . . , {h(i,r−1), t}}. Therefore for each j ∈ {1, . . . , r}, the (s, t)-
path of length at most lwhich goes through {s, x(i,j)

} cannot contain vertices g(i,1), . . . , g(i,r−1) and h(i,1), . . . , h(i,r−1). Hence,
if P is a path in P which goes through {s, x(i,j)

}, then P is either the lower path for F (j)
i or the upper path for F (j)

i . It remains
to note that all 2r − 1 paths in P are edge-disjoint if and only if P either contains r lower paths for graphs F (1)

i , . . . , F (2)
i

and r − 1 upper synchronizing paths P (i,1)
u , . . . , P (i,r−1)

u or contains r upper paths for graphs F (1)
i , . . . , F (2)

i and r − 1 lower
synchronizing paths P (i,1)

l , . . . , P (i,r−1)
l .

The second claim of the lemma is proved by the same arguments. It should only be noted that any (s, t)-path of
length at most l in Q which goes through one of the edges of {{s, x(i,1)

}, . . . , {s, x(i,r)
}} ∪ {{s, g(i,1)

}, . . . , {s, g(i,r−1)
}} is

a path in Fi. Suppose that P is an (s, t)-path of this type which contains edges of E(Q ′) \ E(Fi). Since V (Fi) ∩ V (Q ) =

{s, t} ∪
r

j=1{e
(i,j)
1 , e(i,j)

2 , f (i,j)
1 , f (i,j)

2 }, P contains as a segment an (s, u)-path P ′ in Fi for some u ∈
r

j=1{e
(i,j)
1 , e(i,j)

2 , f (i,j)
1 , f (i,j)

2 }.
By the construction of Fi, P ′ has length at least 6. The (u, t)-subpath of P should contain as a segment a (v, t)-path P ′′ for
a vertex v ∈

r
j=1{e

(i,j)
1 , e(i,j)

2 , f (i,j)
1 , f (i,j)

2 } such that either P ′′ is a path in Q or a path in Fi. In the first case, P ′′ has length at
least 6, by the conditions of the lemma, and therefore P has length at least 12. Assume that P ′′ is a path in Fi. Clearly, P ′′ has
length at least 3. Since Fi is an induced subgraph of Q ′ and P contains edges of E(Q ′) \ E(Fi), the (u, v)-subpath of P includes
at least two edges. Hence P has length at least 11. �

Let h be a positive integer. Denote by Lh(u, v) the graph constructed from vertices u and v by joining them by h paths of
length 2 as is shown in Fig. 4. Clearly, this graph has at most h edge-disjoint (u, v)-paths. Denote by P (Lh(u, v)) the set of
all these paths. We call Lh(u, v) h-filter.

Let k be a positive integer. The next step of the reduction is the construction of the selection gadget H .

7. Construct graphs F1, . . . , Fn with common vertices s and t .
8. Add a vertex x, and construct a filter Ln−k(s, x).
9. Add edges {x, f (1,1)

1 }, . . . , {x, f (n,1)
1 }.

10. Add a vertex y, and construct a filter Ln−k(y, t).
11. Join y with vertices f (1,1)

2 , . . . , f (n,1)
2 by paths Q1, . . . ,Qn of length 4.

We call a path P ⊕ ⟨x, f (i,1)
1 , f (i,1)

2 ⟩ ⊕ Qi ⊕ P ′ where P ∈ P (Ln−k(s, x)) and P ′
∈ P (Ln−k(y, t)) are the selection path for Fi.

The next lemma concerns some properties of H .

Lemma 13. The graph H has n(2r − 1) + n − k edge-disjoint (s, t)-paths of length at most l, and for any collection P of
n(2r − 1) + n − k such paths, there is I ⊆ {1, . . . , n}, |I| ≤ k, such that

• all edges incident with s (resp. t) belong to different paths of P ,
• for i ∈ I, P contains r upper paths for Fi and r − 1 lower synchronizing paths for Fi,
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Fig. 5. The construction of the graph G′ .

• for i ∉ I, P contains r lower paths for Fi and r − 1 upper synchronizing paths for Fi,
• P contains n − k selection paths for Fi such that i ∉ I .

Moreover, let H and a graph Q be induced subgraphs of a graph Q ′
= H ∪ Q such that

• V (H) ∩ V (Q ) = {s, t} ∪
n

i=1({e
(i,1)
1 , . . . , e(i,r)

1 } ∪ {e(i,1)
2 , . . . , e(i,r)

2 }),

• for every v ∈
n

i=1({e
(i,1)
1 , . . . , e(i,r)

1 } ∪ {e(i,1)
2 , . . . , e(i,r)

2 }), distQ (v, t) > 5.

Then any collection of n(2r − 1) + n − k edge-disjoint (s, t)-paths of length at most l in Q ′ which go through all edges incident
with s in H satisfies the conditions listed above.

Proof. It is easy to check that for any I ⊆ {1, . . . , n}, such that |I| ≤ k, any collection of paths described in the lemma is
a collection of n(2r − 1) + n − k edge-disjoint (s, t)-paths of length at most l in H . Assume now that P is a collection of
n(2r − 1) + n − k edge-disjoint (s, t)-paths of length at most l in H . Note that degH(s) = degH(t) = n(2r − 1) + n − k
and therefore all edges incident with s and all edges incident with t belong to different paths from P . By Lemma 12 there
is I ⊆ {1, . . . , n} such that, for i ∈ I, P contains r upper paths and r − 1 lower synchronizing paths for Fi, and, for i ∉ I, P
contains r lower paths and r − 1 upper synchronizing paths for Fi. The remaining n − k paths go through Ln−k(s, x) and
Ln−k(y, t). It follows immediately that every such path is a selection path for some Fi. This path has to be edge-disjoint with
upper paths for Fi. So, i ∉ I and |I| ≤ k.

The second claim of the lemma is proved by the same arguments. It should be noted only that (s, t)-paths in Gwhich go
through the filter Ln−k(s, x) can only be selection paths. �

We complete our reduction as follows. Assume that R = {u1, . . . , un} and B = {w1, . . . , wm}.

12. Construct G and H .
13. Join each vertex wi with t by a pathWi of length 2 for i ∈ {1, . . . ,m}.
14. For each i ∈ {1, . . . , n}, vertex pi is introduced and filters Lc(ui)(pi, ui) are constructed.

15. Add the edges {e(i,1)
2 , pi}, . . . , {e

(i,r)
2 , pi} for all i ∈ {1, . . . , n}.

16. Construct the filter Lm(s, z) and add the edges {z, e(i,1)
1 }, . . . , {z, e(i,r)

1 } for all i ∈ {1, . . . , n}.

Denote the obtained graph by G′ (see Fig. 5).We call the path P⊕⟨z, e(i,h)
1 , e(i,h)

2 , pi⟩⊕P ′
⊕⟨ui, wj⟩⊕Wj the i, j-dominating

path where P ∈ P (Lm(s, z)), P ′
∈ P (Lc(ui)(pi, ui)), and h ∈ {1, . . . , r}.

The correctness of our reduction is based on the following lemma.

Lemma 14. The red–blue capacitated graph (G, c) has a capacitated dominating set of size at most k if and only if G′ has
k′

= 2rn + m − k edge-disjoint (s, t)-paths of length at most l.
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Proof. Let S ⊆ R be a capacitated dominating set in G of size at most k, and let f be a corresponding domination mapping.
Set I = {i ∈ {1, . . . , n}: ui ∈ S}. We construct n(2r − 1) + n− k edge-disjoint (s, t)-paths as described in Lemma 13, i.e. we
chose the collection of paths P such that for i ∈ I, P contains r upper paths and r − 1 lower synchronizing paths for Fi,
for i ∉ I, P contains r lower paths and r − 1 upper synchronizing paths for Fi, and P contains n − k selection paths for Fi
such that i ∉ I . Now we add m dominating paths as follows. For each j ∈ {1, . . . ,m}, suppose that f (wj) = ui and we add
an i, j-dominating path. Such paths can be constructed since the number of paths which go through each pair of vertices ui
and pi is at most c(ui) ≤ r .

Assume now that G′ has a collection P of k′ edge-disjoint (s, t)-paths of length at most l. Since degG′(s) = degG′(t) = k′,
all edges incident with s (resp. t) belong to different paths. By Lemma 13, n(2r − 1) + n − k paths are paths in H which
satisfy conditions given in the lemma, i.e. there is I ⊆ {1, . . . , n}, |I| ≤ k such that for i ∈ I, P contains r upper paths
for Fi and r − 1 lower synchronizing paths for Fi, for i ∉ I, P contains r lower paths for Fi and r − 1 upper synchronizing
paths for Fi and P contains n − k selection paths for Fi such that i ∉ I . We set S = {ui ∈ R: i ∈ I}. It is easy to see that the
remaining m paths can only be dominating ones. Observe also that since these paths have to be edge-disjoint with lower
paths for Fi in P , dominating paths can only go through vertices pi for i ∈ I . Let j ∈ {1, . . . ,m}, and consider the dominating
path P ∈ P which contains subpath Wj. The path P is an i, j-dominating path for some i ∈ I , and it goes through the filter
Lc(ui)(pi, ui). Clearly, G′ contains the edge {ui, wj}. We define a domination mapping for wj by setting f (wj) = ui. It remains
to note that we defined a domination mapping for all wj ∈ B, and since at most c(ui) dominating paths can go through the
filter Lc(ui)(pi, ui), at most c(ui) vertices are mapped to any vertex ui ∈ S. �

To complete the proof of the theorem it remains to show that G′ has bounded treewidth.

Lemma 15. Let tw(G) ≤ t. Then tw(G′) ≤ max{2(t + 1) + 4, 43}.

Proof. Suppose that D = ({Xi | i ∈ V (T )}, T ) is a tree decomposition of G of width at most t . We construct a tree
decomposition of G′ starting from it.

1. For each vertex uj ∈ V (G), add the vertex pj to all bags of the tree decomposition which contain uj. Note that the size of
each bag after this operation is at most 2(t + 1).

2. For each j ∈ {1, . . . , n}, choose bag Xi which contains pj and do the following:
– Construct bags Y (j)

1 , . . . , Y (j)
r−1 such that Y (j)

h contains pj, all vertices of V (F (h)
j ) ∪ V (F (h+1)

j ) \ {s, t}, and all vertices of

paths in Fj − {s, t} with endpoints in V (F (h)
j ) ∪ V (F (h+1)

j ) \ {s, t}. Note that |Y (j)
h | ≤ 39.

– Add a path of length r − 1 to T with one endpoint in i, and assign to other vertices of these paths bags Y (j)
1 , . . . , Y (j)

r−1.
3. Include vertices s, t, x, y, z in all bags.
4. Note that all remaining vertices which are not included to any bag belong to paths with endpoints in one bag and length

of each path is at most 4. For each such a path we add to our tree a new leaf which contains all vertices of this path.

It can be easily verified by direct check that the obtained tree decomposition is indeed a tree decomposition of G′, and it has
width at most max{2(t + 1) + 4, 43}. �

Part (b) of the theorem is proved by a similar construction. The only thing we have to do is to replace all undirected
edges by direct ones using the rule that all lower, upper, synchronizing, selecting and dominating paths should be directed
(s, t)-paths. �

5. Conclusions

A natural question about the parameterized complexity of the variants of the bounded length disjoint path and the
bounded length cut problems parameterized by k and l is whether they admit polynomial kernels. In fact, using techniques
from [35], we can prove that this is not the case for all the disjoint path variants unless the polynomial hierarchy collapses.
We believe that the existence of polynomial kernels for the edge cut variants as well as the planar restrictions of the disjoint
path variants is an interesting open problem.
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