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The Problem of Induction 
The problem of induction has been taken to be the problem of justifying the inference 
from the observed to the unobserved; or from particular instances to generalisations; 
or from the past to the future. The problem of the rational grounds for induction came 
in sharp focus in Hume’s work. What is known as his scepticism about induction is 
the claim that any attempt to infer, based on experience, that a regularity that has held 
in the past will or must continue to hold in the future will be circular and question-
begging. 
 
John Venn 
Venn claimed that ‘it is regular sequence of some kind or other which constitutes the 
whole logical significance of causation’, and that it was Hume who shifted the 
signification of cause and effect to the new track of regularity. For instance, Venn 
argues, Locke took this regularity for granted without asserting it explicitly, whereas 
Hume did exactly the latter.  

Venn distinguishes between Hume’s assertion of the regularity and his question 
concerning the foundation of our belief in such a regularity. This distinction enables 
Venn to associate the problem of causation with the problem of induction. For, as he 
says, to understand the causal relation in a ‘wide sense’, ‘seems nearly equivalent to 
assigning as the ultimate ground for an induction the observed Uniformity of Nature’ 
(1889, 128). What he seems to mean by this ‘wide sense’ of causation is the regularity 
of the constant conjunction between two events. Hence, when Hume speaks of the 
observation of a constant conjunction, he refers to the uniformity of nature.  

Venn takes Hume’s answer to the question of the foundation of our belief in 
regularity to imply that by no process of reasoning is one is entitled to draw a 
conclusion concerning an the occurrence of a past association in the future (op.cit., 
131). For Venn there is no logical solution to the problem of uniformity: ‘It must be 
assumed as a postulate, so far as logic is concerned, that the belief in the Uniformity 
of Nature exists, and the problem of accounted for it must be relegated to psychology’ 
(op.cit., 132). 
 
Bertrand Russell 
Russell’s ‘principle of induction’: ‘The principle of induction as applied to causation, 
says that, if A has been found very often accompanied or followed by B, and no 
instance is known of A not being accompanied or followed by B, then it is probable 
that on the next occasion on which A is observed it will be accompanied or followed 
by B’. 

So the Principle asserts the following: (1) the greater the number of cases in which 
A has been found associated with B, the more probable it is that A is always 
associated with B (if no instance is known of A not associated with B); (2) a sufficient 



 2

number of cases of association between A and B will make it nearly certain that A is 
always associated with B.  
 

Thus stated, the Principle of Induction cannot be refuted by experience, even if an 
A is actually found not to be followed by B. But neither can it be proved on the basis 
of experience. Russell’s claim was that without a principle like this, science is 
impossible and that this principle should be accepted on the ground of its intrinsic 
evidence. 
 
John Maynard Keynes 
According to Keynes, though Hume’s sceptical claims are usually associated with 
causation, the real object of his attack is induction i.e., the inference from past 
particulars to future generalizations. (1921, 302). 

Keynes’s argument is the following: 
(1) A constant conjunction between two events has been observed in the past. This is 
a fact. Hume does not challenge this at all. 
(2) What Hume challenges is whether we are justified to infer from a past constant 
conjunction between two events that it will also hold in the future. 
(3) This kind of inference is called inductive. 
(4) So, Hume is concerned with the problem of induction.  

As he says: ‘Hume showed, not that inductive methods were false, but that their 
validity had never been established and that all possible lines of proof seemed equally 
unpromising’ (ibid.). 
 
Keynes’s answer to the problem of induction 
 
(1) The principle of the limited variety of a finite system.  
Suppose that although C has been invariably associated with E in the past, there is an 
unlimited variety of properties E1, ..., En such that it is logically possible that future 
occurrences of C will be accompanied by any of the Ei’s, instead of E. Then, and if 
we let n (the variety index) tend to infinity, we cannot even start to say how likely it is 
that E will occur given C, and the past association of Cs with Es. The Principle of 
Limited Variety excludes the possibility just envisaged. According to this Principle, 
there are no infinitely complex objects; alternatively, the qualities of an object cannot 
fall into an infinite number of independent groups. For Keynes, the qualities of an 
object are determined by a finite number of primitive qualities; the latter (and their 
possible combinations) can generate all qualities of an object. Given this, any newly 
observed quality does not alter the probability of a certain generalization since it is 
reduced to the already observed. 
 
(2) A generalization of the form ‘All Cs are Es’ should be read thus ‘It is probable 
that any given C is E’ rather than thus ‘It is probable that all Cs are Es. So, the issue is 
the next instance of the observed regularity and not whether it holds generally (op.cit., 
287-288).     
 
(3) To avoid the charge of circularity, Keynes distinguishes between the inductive 
hypothesis and the inductive method.  
(a) Inductive hypothesis: it is the absolute assertion of the finiteness of the system 
under consideration. Obviously, in such a system the principle of limited variety holds 
(op.cit. 282&285). 
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(b) Inductive method: p(c/h&e)> p(c/h), i.e., the process of strengthening a conclusion 
c grounded on a hypothesis h, by taking into account the evidence e. 

Keynes claims that it is not circular to use the inductive method to strengthen the 
inductive hypothesis itself, relative to some more primitive and less far-reaching 
assumption. That is to say, we have a reason to assign an a priori probability to the 
inductive hypothesis H. Then by appealing to experience (and its actual a posteriori 
conformity with what is asserted by H), the probability of H is raised by using the 
inductive method. This inductive hypothesis is neither a self-evident logical axiom 
(op.cit., 291) nor an object of direct acquaintance (op.cit., 294). But nevertheless, he 
insists that it is true of some factual systems (op.cit., 291). 
 
Hans Reichenbach 
According to Reichenbach, we can dispense with the principle of the uniformity of 
nature if we accept an assumption which states that the limit of a relative frequency 
exists. He says: ‘If the inductive conclusion is recognized as being asserted, not as a 
statement maintained true or probable, but as an anticipative posit, it can be shown 
that a uniformity postulate is not necessary for the derivation of the inductive 
conclusion’ (1949, 473). Then he postulates the ‘inductive rule’, being a rule for the 
derivation of statements about the future from statements for the past. That rule is a 
necessary and sufficient condition for finding the limit of a relative frequency, if there 
is indeed such a limit: 
 
If there is a limit of the relative frequency, then to use the inductive rule will be a 
sufficient condition for finding it in a desired degree of approximation.  
 
If we do not know whether there is such a limit, then, if such a limit exists, the rule of 
induction is a necessary condition for finding it.  
 
So, Reichenbach takes it that he found a solution to Hume’s problem: 
(1) Hume is right in asserting that the conclusion of the inductive inference cannot be 
proved to be true or even probable. 
(2) But Hume is wrong in stating that inductive inferences are unjustifiable. They can 
be justified as an instrument that realises the necessary conditions of prediction, to 
which we resort because sufficient predictions are beyond our reach. (op.cit. 475). 

As he puts it: ‘The rule of induction is justified as an instrument of positing 
because it is a method of which we know that if it is possible to make statements 
about the future we shall find them by means of this method’ (ibid.). 
 

The Mathematical Theory of Probability 
The theory of Probability is a mathematical theory first introduced in the seventeenth 
century in connection with games of chance and fully axiomatised by the Russian 
mathematician Andrei Nikolaevich Kolmogorov (1903-1987) in his Foundations of 
the Theory of Probability (1933). Apart from its use in the sciences, probability theory 
has become very important to the philosophy of science especially in relation to the 
theory of confirmation and the problem of induction. 
 
Suppose there is an experimental model M, and a sample of space S of possible 
outcomes (events): {A1,…, An}S 
 
P(Ai) is the probability of an event Ai in S 
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A probability function on S (P: S  [0,1]) is an assignment of real numbers P(Ai) 
which satisfy the following axioms 

1. For any outcome Ai, P(Ai)0 
2. P(S)=1 
3. For any infinite sequence of disjoint events A1,…, An 
4. P(i=1 to  Ai) =  i=1 to  P(Ai) 

 
Theorems 
P()=0 
For any finite sequence of disjoint events A1,…, An 

P(i=1 to nAi) =  i=1 to nP(Ai)  For any event A, P(AC) = 1 – P(A) 
For any event A, 0  P(A)   1 
For any two events A and B, P(AB) = P(A) + P(B) –P(AB)  
 
Independent events: Two events A and B are independent if the occurrence or non-
occurrence of one of them has no influence on the occurrence or non-occurrence of 
the other. 
Two events A and B are independent if P(AB) = P(A)P(B). 
n events A1, …, An are independent if  

P(A1A2 …An) = P(A1)P(A2)…P(An) 
Conditional probabilities tell us how the probability of an event A is affected by the 
occurrence of another event B. 
The occurrence of B reshapes the sample space B 
If A and B are two events such that P(B) > 0, then: P(A/B)=P(AB)/P(B) 
 
Example: What is the probability that a card drawn from a deck is an Ace given that 
it is black?  
P(Ace/Black)=P(Ace & Black)/P(Black)= (2/52)/(1/2)=2/13 
Theorems for conditional probabilities 
For any events A and B, if P(A/B) is defined, then 0  P(A/B)   1 
If A is a subset of B, then P(A/B)=1 
If A and B are two mutually exclusive events, then: P(AB/C)=P(A/B)+P(B/C) 
(Multiplication rule): P(AB/C)=P(A/C)P(B/CA) 
If And B are independent events given C, then P(AB/C)=P(A/C) + P(B/C) 
P(-B/A)=1-P(B/A) 
 
Since we shall be dealing with propositions, it is convenient to reformulate the 
axioms so that they hold for propositions. 
An algebra is a collection of propositions such that for any two propositions p, q in 
the collection 
p & q 
p  q 
-p 
-q  
are in the collection. 
  
T is a tautology 
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A probability function on an algebra is an assignment of real numbers P(h) which 
satisfy the following axioms 

5. For any proposition h, P(h)0 
6. P(T)=1 
7. If h1 and h2 are inconsistent, then P(h1  h2) = p(h1) + p(h2) 

 
Theorems 
P(┴)=0 
For any finite sequence of mutually inconsistent propositions h1,…, hn 
P(i=1 to n hi) =  i=1 to nP(hi) For any proposition hi, P(-hi) = 1 – P(hi) 
For any proposition hi, 0  P(hi)   1 
For any two propositions h1 and h2, P(h1h2) = P(h1) + P(h2) –P (h1h2)  
 
Probabilistic Independence:  
E is independent of H iff P(h&e) = P(h) P(e). 
 
Equivalently: P(h/e)=P(h) (Informational irrelevance) 
Proof: Suppose P(h/e)=P(h) 
P(h&e) = P(h/e) P(e)=P(h) P(e) 
Suppose P(h&e) = P(h) P(e) 
P(h/e) P(e)=P(h) P(e) 
P(h/e)=P(h) 
 
Definition of conditional probability 
P(h/e)=P(h&e)/P(e), if P(e) > 0 
 
Theorems for conditional probabilities 
For any propositions A and B, if P(A/B) is defined, then 0  P(A/B)   1 
If A logically entails B, then P(A/B)=1 
If A and B are two mutually exclusive, then: P(AB/C)=P(A/B)+P(B/C) 
(Multiplication rule): P(A&B/C)=P(A/C)P(B/C&A) 
If A and B are independent given C, then P(A&B/C)=P(A/C) + P(B/C) 
P(-B/A)=1-P(B/A) 
 
Bayes’s theorem 
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Proof:  
P(e/h)=P(e&h)/P(h) 
P(e/h)P(h)=P(e&h) 
P(h/e)=P(h&e)P(e) 
P(h/e)=P(e/h)P(h)/P(e) 
 
Theorem of total probability 
P(e)= i P(e/hi)P(hi), where hi’s are mutually exclusive and exhaustive. 
Special case: 
 
P(e)=P(e/h)P(h)+P(e/-h)P(-h) 
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Alternative formulation of Bayes’s Theorem 
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Issues in the Interpretation of Probability 
Though there has been little disagreement in relation to the mathematical formalism, 
there has been considerable controversy regarding the interpretation of the 
formalism—and in particular the meaning of the concept of probability.  

There have been two broad strands in understanding probability: an epistemic and 
a physical. According to the first, probability is intimately connected with knowledge 
or belief in that it expresses degrees of knowledge, or degrees of belief, or degrees of 
rational belief. According to the second strand, probabilities, like masses and charges, 
are objective features of the world.  

The epistemic strand is divided into two camps according to whether priori 
probabilities express rational (objective) or merely subjective degrees of belief. Both 
camps agree that the probability calculus is a kind of an extension of ordinary 
deductive logic, but the subjectivists deny that there are logical or quasi-logical 
principles (like the principle of indifference) which ought to govern the rational 
distribution of prior probabilities.  

The physical strand is divided into two camps according to whether there can be 
irreducible single-case probabilities (or chances). The advocates of the view that 
probabilities are relative frequencies take the concept of probability to be meaningful 
only if it is applied to a collective of events, while the advocates of chances take it to 
be meaningful that probabilities can be attributed to single unrepeated events. 
Historically, the epistemic conception of probability came first, as exemplified in the 
classical interpretation, and the conception of physical probability was developed as a 
reaction to the continental rationalism of Laplace and his followers. Richard von 
Mises (1883-1953) who was one of the founders of the view that probabilities are 
limiting relative frequencies, argued that probability theory was an empirical science 
(like mechanics and geometry) which deals with mass phenomena (e.g., the behaviour 
of the molecules of a gas) or repetitive events (e.g., coin tosses). He then tried to 
develop the theory of probability on the basis of empirical laws, viz., the law of 
stability of relative frequencies and the law of randomness. As we shall see later on, 
Carnap aimed to bring together the epistemic and the physical strands under his two-
concept view of probability.  
 
Epistemic Accounts 
The Classical Conception 
The classical conception of probability, advocated by most of the founders of the 
probability calculus and most notably by Bernoulli and Laplace, defines probability as 
the ratio of favourable to equally possible instances. For instance, the probability that 
a fair coin will land tails in a toss is the ratio of the number favourable instances 
(tails) over the number of all equally possible instances (heads and tails); that is, it is 
one half. The classical interpretation takes it that the probabilities are measures of 
ignorance, since equal possibility of occurrence is taken to imply that there is no 
reason to favour one possible outcome over the others. If, for instance, we know that 
exactly one of three mutually exclusive and exhaustive events A, B and C will (or 
must) occur, but we have no idea which one (or no reason to expect one more than the 
others), then the probability of each of them is one third. The principle that operates 
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behind the classical interpretation is the Principle of Indifference (see below). Given 
this, the classical interpretation can be seen as a species of the logical interpretation, 
since it takes it that probabilities express degrees of credibility or degrees of rational 
certainty.  
 
The Logical Conception 
The logical interpretation of probability conceives of the probability calculus as a 
branch of logic, and of probability itself as a logical relation that holds between 
propositions. This logical relation is taken to be a relation of partial entailment—for 
instance, it is said that though the proposition p does not (deductively) entail the 
conjunction (p and q), it entails it partially, since it entails one of its conjuncts 
(namely p). The probability calculus is then used to calculate the probability of a 
proposition (say a hypothesis) in relation to another proposition (say, a proposition 
expressing the evidence) that partially entails it. On this approach, the degree of 
partial entailment is the degree of rational belief. That is, it is the degree of belief a 
rational agent ought to have in the truth of the hypothesis in light of the evidence that 
confirms it. This interpretation was defended by Keynes and Carnap. Keynes claimed 
that rational agents possess a kind of logical intuition by means of which they see the 
logical relation between the evidence and the hypothesis. But Frank Ramsey famously 
objected to Keynes’ claim that he could not see these logical relations and that he 
expected to be persuaded by argument that they exist. As we shall see in detail below, 
Carnap developed the logical interpretation into a quantitative system of inductive 
logic, which relied on the principle of indifference for the assignment of prior 
probabilities, that is of prior rational degrees of beliefs. (Because of its current 
popularity, we shall deal with the subjective conception of probability in detail 
below.) 
 
Physical Accounts 
The Relative Frequency Conception 
According to this frequency interpretation of probability, probability is about the 
relative frequency of an attribute in a collective. As von Mises (one of the founders of 
this interpretation) put it, first the collective, then the probability. A collective is a 
large group of repeated events, e.g., a sequence of coin-tosses. Suppose that in such a 
collective of n tosses, we have m heads. Then, the relative frequency of heads is m/n. 
Probability is then defined as limiting relative frequency, that is the limit of the 
relative frequency m/n, as n tends to infinity.  
 
P(E)=limn m/n 
 
A consequence of this account is that either probabilities cannot be meaningfully 
applied to single events or to attribute some probability to a single event is to transfer 
a probability associated with an infinite sequence to a member of this sequence.  

However, being properties of sequences of events, probabilities become fully 
objective. There is no guarantee, of course, that the limit of the relative frequency 
exists. That relative frequencies converge in the limit is a postulate of the frequency 
interpretation. It is noteworthy that even if the limit of the relative frequency does 
exist, any finite relative frequency might well be arbitrary far from the limiting 
relative frequency. Hence, making short-term predictions on the basis of actual 
relative frequencies is very hazardous. What is guaranteed is that if the limit of the 
relative frequency does exist, there will be convergence of the actual relative 
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frequencies to it in the long run. This fact has been used by Reichenbach (another 
leading advocate of the frequency interpretation) in his attempt to offer a pragmatic 
vindication of induction—and in particular of the straight rule of induction. It turns 
out, however, that this property of convergence is possessed by any of a class of 
asymptotic rules, which nonetheless yield very different predictions in the short run. 
 
The Propensity Conception 
Based on the problem of single-case probabilities, Popper developed the propensity 
interpretation of probability, according to which probabilities are objective properties 
of single (and unrepeated) events. In the version defended by Popper, propensities are 
properties of experimental conditions (chance set-ups). Hence, a fair coin does not 
have an inherent propensity one half to land heads. If the tossing takes place in a set-
up in which there are slots on the floor, the propensity of landing heads is one third, 
since there is the (third) possibility that the coin sticks in the slot. This account of 
probability is supposed to avoid a number of problems faced by the frequency 
interpretation. In particular, it avoids the problem of inferring probabilities in the 
limit. But, especially in Popper’s version, it faces the problem of specifying the 
conditions on the basis of which propensities are calculated.  

Given that an event can be part of widely different conditions, its propensity will 
vary according to the conditions. Does it then make sense to talk about the true 
objective singular probability of an event? Even if this problem is not taken seriously 
(after all, the advocate of propensities may well argue that propensities are the sort of 
thing that varies with the conditions), it has been argued that probabilities cannot be 
identified with propensities. The problem is this. There are the so-called inverse 
probabilities, but it does not make sense to talk about inverse propensities. Suppose, 
for instance, that a factory produces red socks and blue socks and uses two machines 
(Red and Blue) one for each colour. Suppose also that some socks are faulty and that 
each machine has a definite probability to produce a faulty sock, say one out of ten 
socks produced by the Red machine are faulty. We can meaningfully say that the Red 
machine has an one tenth propensity to produce faulty socks. But we can also ask the 
question: given an arbitrary faulty sock, what is the probability that it has been 
produced by the Red machine? This question is meaningful and has a definite answer. 
But we cannot make sense of this answer under the propensity interpretation. We 
cannot meaningfully ask: what is the propensity of an arbitrary faulty sock to have 
been produced by the Red machine?    
 

Carnap’s Inductive Logic: A Presentation 
 
Explication of concepts as a philosophical task. 
 
1. Explication of the pre-scientific concept of probability.  
Carnap distinguished between two explicata for the explicandum ‘probability’. The 
first, what he calls ‘probability(1)’, is logical probability which interprets the 
probability calculus as stating (rational) degrees of beliefs in the certainty of 
propositions. The second, what he calls ‘probability(2)’, is the so-called objective 
probability, which identified probability with the relative frequency of an event in a 
certain sample.  
The logical probability is meant to capture the degree of confirmation of a hypothesis 
in the light of some evidence.  
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2. Carnap makes ‘degree of confirmation’ the basic concept in his programme. There 
are actually three (semantic) concepts:  
classificatory: ‘e confirms or supports h’; 
comparative: ‘e confirms h1 more strongly than e’ confirms h2’; and,  
quantitative: the degree of confirmation of h by e is r; or to put it symbolically,  
c(h/e) = r , where ‘r’ stands for a real number. 
 

While Keynes was in favour of a comparative view, Carnap concentrates his 
attention on establishing a quantitative concept and on defining an adequate measure-
function. 
 
3. The degree of confirmation must satisfy the following desiderata:  
it must be a computable measure function which expresses the degree of confirmation 
of a hypothesis in light of certain evidence;  
it must be justified a priori;  
and it must be applicable to the language of science; 
 
4. Carnap begins with the construction of the language in which inductive logic is to 
be applied. His aim is that inductive logic be adequate for application to the 
comprehensive language of sciences. 

Language systems: L∞, involving one infinite system and L(N), involving finite 
systems and forming an infinite sequence of systems with N running through all 
positive integers: L1,L2,L3, etc. The system L∞ contains an infinite sequence of 
individual constants, which refer to all the individuals in its domain of discourse. It 
contains a finite number of primitive predicates of any degree. Those of degree one, 
e.g. ‘P1’,’P2’, etc. designate properties of individuals and those with degree two, e.g. 
‘R1’, ‘R2’, etc. designate dyadic relations between individuals. Every system, either 
finite or infinite, contains an infinite number of individual variables e.g., ‘x1’, ‘x2’, 
‘x3’ etc. The systems contain universal quantifiers with individual variables, e.g.,  
‘(x)(Px)’, the sign ‘=’ as the customary sign of identity, the sign ‘t’ as a tautological 
sentence. Of the connectives, they contain the signs of negation (‘-‘), of disjunction 
(‘’) and of conjunction (‘&’) 
 
5. Important definitions: 
Molecular Q-predicates = Conjunctions in which every primitive predicate or its 
negation occurs. For instance, if there are only three primitive predicates P1, P2, P3 
then there are 23 (=8) Q-predicates. 
 
Example 
Let us envisage a simple weather-world which has three basic traits, i.e., hot (H), rainy 
(R) and windy (W). Then, there are the following 8 molecular predicates: 
 
 
 
 

 Hot (H) Rainy (R) Windy (W) 
Q1 H R W 
Q2 H R -W 
Q3 H -R W 
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Q4 H -R -W 
Q5 -H R W 
Q6 -H R -W 
Q7 -H -R W 
Q8 -H -R -W 

 
Each predicate expression of the language can be transformed into an equivalent 
expression in terms of the molecular predicates Qis. For example, 
H &R  Q1Q2 
H & -R  Q3Q4 
-H & -W  Q6Q8 
R W  Q1Q2Q3Q5Q6Q7 
 
State Description = a class of sentences which describe completely a possible state of 
the domain of individuals of L (i.e., a possible complete state of affairs) with respect 
to all the attributes (i.e., properties and relations). It consists of the conjunction of 
either i or -i but not both of them, of each atomic sentence i in the system L.  
Example 
Imagine a language with three individual constants and one predicate F. The 8 state 
descriptions are: 
  
D1. Fa1 & Fa2 & Fa3 
D2. Fa1 & Fa2 & -Fa3  
D3. Fa1 & -Fa2 & Fa3  
D4. Fa1 & -Fa2 & -Fa3  
D5. -Fa1 & Fa2 & Fa3  
D6. -Fa1 & Fa2 & -Fa3  
D7. -Fa1 & -Fa2 & Fa3  
D8. -F a1 & -Fa2 & -Fa3  
 
Range of a sentence = the class of those state descriptions in which the sentence 
holds true. 
Example: the range of Fa1 is the set {D1, D2, D3, D4} 
The range of Fa1 Fa2 is the set {D1, D2, D3, D4, D5, D6} 
The range of Fa1& Fa3 is {D1, D2} 
 
L-concepts = logical concepts; these concepts (i.e., L-true, L-false, L-implication 
etc.) are defined on the basis of the foregoing definitions. For instance, L-true is a 
concept with a universal range, i.e., if it holds in every state description; L-
implication is logical entailment. 
 
The requirement of completeness of language: the set of the primitive predicates of 
the language must be sufficient for expressing every qualitative attribute of the 
individuals in the universe of discourse of L.1 Later on Carnap, abandoned this 
                                                 
1 This requirement seemed absolutely necessary for the Carnapian system, since the language systems 
affect the c-values in the theory of inductive logic. For the time being, all we need to stress is that this 
requirement implies that a language L mirrors its universe of discourse. Whatever there is within it can 
be exhaustively expressed within L. Here is Carnap’s example. Take a language L with only two 
predicates, P1 and P2 interpreted as Bright and Hot. Then every individual in the universe of discourse 
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requirement, and he replaced it with the following: The value of the confirmation 
function c(h/e) remains unchanged if further families of predicates are added to the 
language (RAE, 975). According to this requirement, the value of c(h/e) depends only 
on the predicates occurring in h and e. Hence,  the addition of new predicates to the 
language does not affect the value of c(h/e). This new idea amounts to what Lakatos 
called the minimal language requirement (Lakatos 1968, 325), according to which the 
degree of confirmation of a proposition depends only on the minimal language in 
which the proposition can be expressed.  
The requirement of total evidence: in the application of inductive logic to a given 
situation, the total evidence available must be taken as the basis for determining the 
degree of confirmation of a hypothesis. 
Isomorphic expressions = one is constructed from the other by replacing individual 
constants with others. In other words, they are conjunctions which differ from each 
other in the order of the conjuncts.  
 
Structure Description corresponding to a class of state descriptions = the 
disjunction of all the isomorphic state descriptions. Two isomorphic state descriptions 
have the same structure. Simply put, a structure description is the disjunction of all 
state descriptions with the same number of unnegated predicates. If we imagine a 
language L with one primitive predicate A, there are two molecular predicates Q: 
Q1=F and Q2= -F. The class of state descriptions of the n+1 individuals in that 
language is: ±F(a1)&±F(a2)&...&±F(an+1) and consists of 2n+1 sentences. The 
sentences with the same number of unnegated predicate As are isomorphic: if we 
interchange the individual constants, the state description retains the same structure, 
namely the same number of unnegated Fs. Therefore, n+2 structure descriptions can 
be generated out of them in the language L(N+1). If the language has more 
predicates, each molecular predicate Q is a conjunction of the primitive predicates or 
their negation. In this case, a state description looks more complicated. 
 
In the example above there are 4 structure-descriptions: 
D1, D8, (D2D3D5), (D4D6D7) 
In practice, this means that state descriptions that differ only in the names of 
individuals involved in them have the same structure. In words, these four structure 
descriptions state: 

 ‘Everything is F’;  
‘Everything is –F’  
‘Two Fs, one –F’ 
‘One F, two –Fs’ 
 

Logical Width w of an expression M containing molecular predicates = the 
number of the Q-predicates of M. 
 

                                                                                                                                            
of L should differ only with respect to these two attributes. If a new predicate P3, interpreted as Hard, 
were added, the c-values of hypotheses concerning individuals in L would change. Even if this simple 
scheme holds (or might hold) in a simple language, can it be adequate for the language of natural 
sciences? A similar requirement had been proposed by John Maynard Keynes, in the form of the 
Principle of Limited Variety. According to it,  “...We seem to need some such assumption as that the 
amount of variety in the universe is limited in such a way that there is no one object so complex that its 
qualities fall into an infinite numbers of independent groups” (1921, 287).  
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Relative logical width q= the ratio of the logical width w over the number k of Q-
predicates of the language L, i.e., q=w/k 
 
6. The c-function is defined as follows: c(h/e) = m(e&h)/m(e).  
The regular measure function m amounts to the unconditional prior probabilities of 
the hypothesis and the evidence. It fulfils two requirements:  

(1) for any state description B in the language Ln, m(B)>0;  
(2) the sum of the m-values of all the state descriptions in Ln is 1. 

 
m(e) designates a measure assigned to the range of evidence e, i.e., the class of those 
state descriptions in which e holds.2  
m(e&h) stands for a measure assigned to the intersection of the ranges R(h) and R(e), 
viz., R(h&e). In inductive logic, a part of R(e) is contained in R(h). The degree of 
confirmation function aims to calculate the degree to which R(e) is contained in R(h); 
in other words, it aims to calculate the degree that the evidence e (partially) entails the 
hypothesis h.3   
 
The c-function satisfies the axioms of probability calculus 
(1) L-equivalent pieces of evidences: If e and e' are L- equivalent, then c(h/e)=c(h/e'). 
(2) L-equivalent hypotheses: If h and h' are L- equivalent, then c(h/e)=c(h'/e). 
(3) General Multiplication principle: c(h1&h2/e)=c(h1/e) . c(h2/e&h1) 
(4) Special addition principle: If e, h1&h2 are mutually exclusive, then c(h1h2/e)= 
c(h1/e) + c(h2/e). 
 
Since inductive logic deals with the relations between the ranges of sentences, it does 
not depend, according to Carnap, on the factual status of the sentences involved. It 
depends only on the meaning of the sentences involved, which is determined by the 
semantic rules of the language we use. This is supposed to make inductive logic 
purely analytic and internal to the language we use.  
For Carnap, the sentence:  
 
S: ‘The probability that it will rain tomorrow, given the evidence of the 
meteorological observations, is 1/5’  
 
means that there is a logical connection between these two propositions and this 
logical connection has the value of 1/5 (LFP, 30).  
 
Since this relation is logical, S is (analytically) true.  
 
In his ‘Replies and Systematic Expositions’, Carnap distinguished between the value 
of c(h/e) which is dependent on experience (and, hence, it cannot be a logical 
relation) and the acceptability of the axioms which determine the value of c(h/e) 
which, he claimed, are independent of experience.  

Later on, Carnap took it that inductive logic is concerned with the rational 
degree of belief. Its task is to lead us to degrees of belief, which we can be defended 

                                                 
2 m(e) coincides with the so-called null confirmation of the sentence e, i.e., with the confirmation of e 
on the basis of a tautology. It is easy to see that if the null confirmation is c0(e/t), then it is equal to 
m(e). Hence, m(e) stands for the prior probability of e. 
3 In the case of the deductive logic, where e entails h, the range of e is entirely contained in the range of 
h. We then speak of a relation of total inclusion between ranges. 
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as rational. For this purpose, he defined the so-called credence-function (ILII, 260) to 
designate a system of degrees of beliefs for a given field of propositions. This 
function must satisfy the Ramsey-De Finetti theorem, i.e., to be coherent,4 (see 
above) and furthermore the Shimony theorem, i.e., to be strictly coherent.5 To this 
credence-function corresponds a quantitative credibility-function (pretty much like 
the c- function). As Carnap put it: ‘Any logical function is an adequate c-function if 
and only if it is such that, if it were used as a Cred(ibility)-function, it would lead to 
rational decisions’ (RAE, 971-972)). Its definition is this:  
 

‘The credibility of a proposition H with respect to another proposition A, for a 
person X, means the degree of belief that X would have in H if and when his total 
observational knowledge of the world was A’ (ILII, 262).  

 
This function expresses ‘the underlying permanent disposition for forming and 
changing his beliefs under the influence of his observations’ whereas the credence-
function stands for the temporary beliefs at various times. The requirements for the 
credibility function form the basis of the axioms of the inductive logic. From the 
requirement of coherence, it follows that the logic associated with the credibility 
function must contain the axioms of probability calculus. From the requirement of 
strict coherence, it follows that c(h) >0. Carnap enunciated a further requirement, viz., 
the requirement of symmetry with respect to individuals. According to this, the 
credibility of a function should be invariant with respect to any exchange of 
individuals.6 Hence, the axioms of inductive logic follow from the requirements for 
the rationality of the credibility function.  
 
The various c-functions7 
The c+-function. A possible and plausible candidate for the c-function is the c+. How 
it is constructed? According to Carnap, it might be taken to be plausible to assign 
equal prior probabilities to the set of state descriptions in a language L. Hence, if B is 
the set of them, and b one of them, m+(b)=1/@, where @ is the number of them. c+ is 

                                                 
4 Ramsey and de Finetti used the system of betting quotients to account for the degree of belief of an 
individual in a certain hypothesis. If the system of bets for and against a hypothesis is coherent (de 
Finetti) or consistent (Ramsey) i.e., if it satisfies the axioms of the calculus, then its impossible the bet 
to be unfair (i.e., that one of the bettors will lose whatever the outcome be) or a ‘Dutch Book’ to occur. 
(See Ramsey, 1926) and de Finetti, 1936). 
5 A strictly coherent function is one which fulfils the following regularity condition: it ascribes a non-
zero probability in every non-contradictory (molecular) proposition H (ILII, 261-262). This 
requirement follows from the fact that if the prior probability of a hypothesis H is zero, any 
confirmatory instance (i.e., any finite observational evidence) does not raise it above zero. 
6 The principle of symmetry is a requirement already laid down in his LFP (see 483ff). An m-function 
is symmetrical if it has the same value for any of a set of isomorphic states descriptions. This 
requirement amounts to saying that the c-function must treat on a par all structure descriptions since the 
latter are made out of the disjunction of the isomorphic state descriptions. This requirement compels 
him to take a certain candidate for his c-function, the c*. 
7 The problem of finding a partition, in a language L, to which one can assign equal prior probabilities 
(based on the classical principle of indifference) has given rise to two possible candidates of the c-
function. Keynes named the two possibilities ‘ratio’ and ‘constitution’ cases respectively. He advocated 
the ‘constitution’ case which corresponds to c+, noting, to use Carnapian terminology, that the states 
descriptions are not further decomposable, and therefore satisfy his modified principle of indifference 
(1921 64-65). The ‘ratio’ case (i.e., statistical frequencies) is not valid because there is no symmetry of 
relevance in knowledge. That is to say, if we accept that all possible ratios (i.e., frequencies) are 
equally probable, we can see that our relevant knowledge differ with regard to ratio we adopt. (For an 
elucidating example see Keynes op.cit., 64) 



 14

defined as the c-function based upon m+. But it can be easily shown that c+ is entirely 
inadequate as a concept of degree of confirmation.  
 
Proof 
Let us consider a language L(n+1), with F the only primitive predicate. We want to 
calculate the degree of confirmation of the hypothesis that the n+1th individual will 
have the property F, (h says: ‘Fan+1’) given the evidence that all individuals examined 
so far had the property F (e says: Fa1+Fa2+...+Fan=S). The m+ function assigns equal 
probabilities ti the state descriptions of the individuals of the language. There are n+1 
individuals and hence 2n+1 state descriptions. 
  
 e(S&Fan+1) S&-Fan+1) 
 
 So, m+(e)=1/2n+1+ 1/2n+1= 2/2n+1 
 
 Moreover, m+(e&h)= 1/2n+1, since e&h describes a state description.  
 
 So, c+(h/e)= m+(e&h)/m+(e) = (1/2n+1)/ 2/2n+1=1/2=m+(h) 
 
The evidence adds nothing to the probability of the hypothesis h. Its degree of 
confirmation c+ remains the came, no matter whether one hundred or fifty or even 
zero observations of individuals being F have preceded. Therefore c+ is a strongly 
counter- inductive function. 
 
The c*-function. Carnap went on to attribute equal probabilities to the structure 
descriptions in a language L. If we translate this kind of equiprobability into simpler 
terminology, we can see that what becomes equiprobable is the relative frequency (or 
ratio) of the disjunctions with the same number of isomorphic state descriptions. That 
is, the structure description S with one unnegated predicate (in an one-predicate-
language) has the same initial probability with the structure description S containing 
two unnegated predicates, and so on. Therefore the m*(S)=1/n+2, in a language 
Ln+1. Then c* is defined in accordance with m*. This function amounts to Laplace’s 
measure of probability or rule of succession.  
 
Proof 
Let’s define a language L(n+1) with n+1 individuals and one predicate F, and form 
the hypothesis h that the individual n+1 has the property F (i.e., h=Fan+1). Evidence e 
says that r of the n individual examined, have the property F; i.e.,  
 
e ±Fa1& ±Fa2 &...& ±Fan 
 
where r of them have the property F. We want the degree of confirmation c*(h/e). 
There are 2n+1 states descriptions of the individuals described in this language with 
respect to the two predicates F and - F. They obviously have the form  
 
Qi(x)= ±Fa1& ±Fa2&...&±Fan+1 
 
There are n+2 structure descriptions of the n+1 individuals. Let’s call them Y. r is the 
number of unnegated Fs in each Y and it ranges from 0 to n+2. So Y=0 corresponds 
to the structure description with none unnegated F. Proceeding in the same way we 



 15

see that Y=n+1 corresponds to the structure description with n+1 unnegated Fs. 
 
 m* assigns equal probabilities to each structure description. So m*(Y)=1/n+2. 
  
If Y=r, there are n+1Cr possible ways of getting the number r of the unnegated F’s in a 
disjunction of n+1 individuals. We assume that all these ways are equiprobable. So 
the n+1Cr ways are distributed in n+2 structure descriptions. 
 
c*(h/e)=m*(e&h)/m*(e). 
 
e(e&Fan+1) e&-Fan+1) 
So, m*(e)=(1/n+2 . 1/ n+1Cr ) +(1/n+2. 1/ n+1Cr ) 
h&e is a structure description distributed in n+1Cr+1 possible ways.  
So m*(e&h)=(1/n+2). (1/ n+1Cr+1) 
 
Therefore, c*(h/e)= r+1/n+2 
 
This result amounts to the Laplace’s rule of succession. If r=n, then c*(h/e)=1.  
This rule is strongly inductive, since it tends to unity when r tends to n.  
Its main justification comes from the assignment of equal probabilities structure 
descriptions. As we have just seen, a different application of the principle of 
indifference leads to a radically different—non-inductive—rule. Hence, the principle 
does not have the logical status that is needed for it to justify inductive logic. 
 
Example 

State Descriptions weight Structure 
Descriptions

weight m+ m* 

D1. Fa1 & Fa2 & Fa3 1/8 Everything 
is F  

1/4 1/8 1/4 

D2. Fa1 & Fa2 & -Fa3 1/8   1/8 1/12 
D3. Fa1 & -Fa2 & Fa3 1/8 Two Fs, one 

not-Fs 
1/4 1/8 1/12 

D5. -Fa1 & Fa2 & Fa3 1/8   1/8 1/12 
D4. Fa1 & -Fa2 & -Fa3 1/8   1/8 1/12 
D6. -Fa1 & Fa2 & -Fa3 1/8 One F, two 

not-Fs 
1/4 1/8 1/12 

D7. -Fa1 & -Fa2 & Fa3 1/8   1/8 1/12 
D8. -F a1 & -Fa2 & -
Fa3 

1/8 Everything 
is not F 

1/4 1/8 1/4 

 
 
Let’s first examine the c+-function. Take the hypothesis h=Fa3. Its range is {D1, D3, 
D5, D7} 
m+(h)=1/2 
Let’s suppose that the evidence is 
e=Fa1 

m+(e) =1/2 
 
Then, m+(h&e)=1/4 

Hence, 
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c+(h/e)= m+(h&e)/ m+(e) = 1/4/1/2=1/2 
which is equal to m+(h)—and hence, it does not confirm it. 
 
Take now the c*-function 
h=Fa3 {D1, D3, D5, D7} 
m*(h)=1/2 
e=Fa1 

m*(e) =1/2 
m*(h&e)=1/3 

Hence, 
c*(h/e)= m*(h&e)/m*(e) = 1/3/1/2=2/3. 
On this function, the evidence confirms the hypothesis. 
 
7. Carnap takes it that the rule c* captures his view that the most important inductive 
inference is the predictive inference (LFP, 568). This rule might be interpreted as 
suggesting that the probability of a prediction that an unobserved individual an+1 will 
have the property F is equal to the relative frequency r/n. To avoid this, Carnap 
generalises this rule as follows: 
 
c*(h/e)=c(h/e')= r+w/n+k,  
 
where r/n is the relative frequency of a predicate F in the observed sample and w/k is 
the logical width of F. Hence, c* becomes a semi-logical function. Before any 
observation is available, it yields an a priori probability equal to the logical width of 
F. As the evidence rolls in, the relative frequency (i.e., a factual component) gains 
more influence on the value of c*. The value of c* approaches the value of the 
observed relative frequency as the size of the sample increases. 

In his (1952), Carnap tried to integrate all rules of inductive method, by 
introducing a new logical parameter . As noted already, the c*-function combines 
two factors: one empirical, and one logical. Carnap extends this to every possible c-
function. He introduces a new -function, in which the parameter  captures the 
relative weight given to the logical component of the rule.  

Carnap first equates the c-function with a G-function, which depends on 
a) the number k of the molecular predicates of the language in use;  
b) the number n of the individuals of the sample; and  
c) the number r of the confirming instances of a hypothesis.  

 
So, c(h/e)=G(k, n, r) 
 
Then, he makes G dependent on the two factors mentioned above, namely the relative 
frequency r/n and the logical width w/k of a predicate F. G takes values within the 
interval (r/n, w/k) (1952, 25). In the simple case of a language with one predicate F, 
w=1. Then G-function is constructed as the sum of the weighted mean of the two 
factors. Keeping, by convention the weight of r/n standardized and taking  to be the 
weight of the logical factor 1/k, he constructs the following function: 
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 and solving for (k,r,n), he gets: 
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The advantage of such a function is that  does not depend on n and r (op.cit, 29). 
Hence, instead of (k, r, n), he has (k). 
 
The result of all this, is the following function: 


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where hi is the hypothesis that the next predictive instance of an individual not yet 
observed will have F. 
With one further qualification, these two functions produce all possible inductive 
rules! The qualification is that  can be either independent of k or dependent on it.  
 
In the first case we have:  
(a) If = , we get the c+-function.  
c(hi/ei)=1/k  
 
If we let K be any state description with n individuals, then m(K)=1/kn. This 
function is counter-inductive, since no matter what factual information is obtained, its 
value does not change.  
 
(b) If =0, then get the so-called straight rule of confirmation, viz., the relative 
frequency.  
c(hi/ei)=r /n  
 
The logical factor disappears and c simply takes the empirical value r/n. 
 
(c)  might be given different discrete values. For instance, if we set =2, we get the 
modified Laplace’s rule of succession: 
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Carnap actually modifies this rule because it leads to inconsistencies. He restricts it to 
primitive properties only (which always have width w=k/2 and relative width 
w/k=1/2) (op.cit., 35) 
Carnap tries more small numbers for , and gives a table for the corresponding 
numerical values of c. (op.cit., 37) 
  
In the case in which  depends on k, Carnap gets his own c*-function. * depends on 
k (i.e., *(k)=k) and therefore, 
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Carnap then generates a series of c*- functions:  (k)=Ck, where C is a constant 
coefficient (C=1,2,3...). 
 
 The result of all this is the following. In the first case, where  is independent of k, 
the smaller the value of  , the sooner we learn from experience. But, what we can get 
at best is Laplace’s rule of succession. Moreover, since  does not change with k, any 
change in the language does not affect the values of c. In the second case, where  is 
dependent on k, Carnap’s favourite function c* changew in accordance with k, i.e., in 
accordance with the language (op.cit., 49).  
Hence, there is a multiplicity of inductive rules. Some are (more or less) adequate, 
others are inadequate (c+, or c* with C>2). It is up to the scientists to make up their 
minds and to choose among them the one that they feel are the more appropriate for 
their purposes. They can change them as they change their automobiles (op.cit., 55)! 
To paraphrase Chairman Mao’s dictum, Carnap seems to say ‘Let a hundred 
inductive methods bloom’. 

In any case, Howson and Urbach state, the idea of adjusting the value of  
appropriately, ‘calls into question the fundamental role assigned to his systems of 
inductive logic by Carnap. If their adequacy is itself to be decided empirically, then 
the validity of whatever criterion we use to assess that adequacy is in need of 
justification, not something to be accepted uncritically’ (1989, 55). 
 

Subjective Bayesianism 
Also known as subjective Bayesianism, this conception takes probabilities to be 
subjective degrees of belief. It opposes the objective or logical interpretation of 
probability in denying that there is such thing as rational degree of belief in the truth 
of a proposition. Each individual is taken to (or allowed to) have her or own 
subjective degree of belief in the truth of a certain proposition. Given that the 
probability calculus does not establish any probability values, subjectivists argue that 
it is up to the agent to supply the probabilities. Then, the probability calculus, and 
Bayes’s theorem in particular, is used to compute values of other probabilities based 
on the prior probability distribution that the agent has chosen. The only requirement 
imposed on a set of degrees of beliefs is that they are probabilistically coherent, that is 
that they satisfy the axioms of the calculus. The rationale for this claim is the so-
called Dutch-book theorem.  
 
Bayes’s Theorem is a famous theorem of the probability calculus (see above). Let H 
be a hypothesis and e the evidence. Bayes’s theorem states: P(H/e)=P(e/H)P(H)/P(e), 
where P(e)=P(e/H)P(H)+P(e/-H)P(-H).  
The unconditional prob(H) is called the prior probability of the hypothesis;  
the conditional P(H/e) is called the posterior probability of the hypothesis given the 
evidence; 
the P(e/H) is called the likelihood of the evidence given the hypothesis.  
Note that if e refutes H, then P(e/H)=0; 
If H entails e, then P(e/H)=1 



 19

(The Theorem can be easily reformulated so that background knowledge is taken into 
account.) 
 
Dutch-book theorem. This is a significant mathematical result—proved by Frank 
Ramsey and, independently, by Bruno de Finnetti—which is meant to justify the 
claims that subjective degrees of beliefs (expressed as fair betting quotients) satisfy 
Kolmogorov’s axioms for probability functions. The key idea is that unless the 
degrees of beliefs that an agent possesses, at any given time, satisfy the axioms of the 
probability calculus, she is subject to a Dutch-book, that is, to a set of synchronic bets 
such that they are all fair by her own lights, and yet, taken together, make her suffer a 
net loss come what may. The monetary aspect of the standard renditions of the Dutch-
book theorem is just a dramatic device. The thrust of the Dutch-book theorem is that 
there is a structural incoherence in a system of degrees of belief that violate the 
axioms of the probability calculus. The demand for probabilistic coherence among 
one’s degrees of belief is a logical demand: in effect, a demand for logical 
consistency. 
 
Conditionalisation 
There are have been attempts to extend Bayesianism and the requirement of 
coherence to belief updating. The key thought here is that should update their degrees 
of beliefs by conditionalising on the evidence. Accordingly, the transition from the 
old probability Probold(H) that a hypothesis H has had to a new one Probnew(H) in the 
light of incoming evidence e, is governed by the rule: Probnew(H)=Probold(H/e), where 
e is the total evidence, and Probold(H/e) is given by Bayes’s Theorem. There are two 
forms of conditionalisation: strict conditoinalisation, where the probability of the 
learned evidence is unity; and Jeffrey-conditionalisation, where only logical truths get 
probability equal to unity. Conditionalising on the evidence is purely logical updating 
of degrees of belief. It’s not ampliative. It does not introduce new content; nor does it 
modify the old one. It just assigns a new probability to an old opinion. 
The justification for the requirement of conditionalisation is supposed to be a 
diachronic version of the Dutch-book theorem. It is supposed to be a canon of 
rationality (certainly a necessary condition for it) that agents should update their 
degrees of belief by conditionalising on evidence. The penalty for not doing this is 
liability to a Dutch-book strategy: the agent can be offered a set of bets over time such 
that a) each of them taken individually will seem fair to her at the time when it is 
offered; but b) taken collectively, they lead her to suffer a net loss, come what may. 
In this context, induction, then, is the process of updating already given degrees of 
belief and its justification gives way to the problem of justifying conditionalisation on 
the evidence. 

As is generally recognised, the penalty is there on a certain condition, viz., that 
the agent announces in advance the method by which she changes her degrees of 
belief, when new evidence rolls in, and that this method is different from 
conditionalisation. Critics of diachronic Bayesianism point out that there is no general 
proof of the conditionalisation rule. In fact, there are circumstances under which 
conditionalisation is an inconsistent strategy. When an agent is in a situation in which 
she contemplates about her Probnew(--), she is in a new and different (betting) situation 
in which the previous constraints of Probold need not apply. A case like this is when 
the learning of the evidence e does upset the conditional probability Prob(--/e). 
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Bayesian theory of Confirmation  
According to Bayesian theories of confirmation  
a) confirmation is a relation of positive relevance, viz., that a piece of evidence 
confirms a theory if it increases its probability;  
e confirms h iff P(h/e)>p(h) 
b) this relation of confirmation is captured by Bayes’s theorem;  
c) the only factors relevant to confirmation of a theory are its prior probability, the 
likelihood of the evidence given the theory; and the probability of the evidence;  
d) the specification of the prior probability of (aka prior degree of belief in) a 
hypothesis is a purely subjective matter;  
e) the only (logical-rational) constraint on an assignment of prior probabilities to 
several hypotheses should be that they obey the axioms of the probability calculus;  
f) hence, the reasonableness of a belief does not depend on its content; nor, ultimately, 
on whether the belief is made reasonable by the evidence;  
and g) degrees of belief are probabilities and that belief is always a matter of degree.  
 

There is still a pervasive dissatisfaction with subjective Bayesianism. This 
dissatisfaction concerns all of the theses (a) to (f) above, but it is centred mostly 
around the point that subjective Bayesianism is too subjective to offer an adequate 
theory of confirmation and of rational belief. It is typically claimed that purely 
subjective prior probabilities fail to capture the all-important notion of rational or 
reasonable degrees of belief. 

Bayesians reply by appealing to the convergence of opinion theorem, which  
shows that the actual values assigned to prior probabilities do not matter much since 
they ‘wash out’ in the long run; that is, they converge to the same value. Suppose, for 
instance, that a number of individuals assign different subjective prior probabilities to 
some hypothesis h. Suppose further that a sequence of experiments is performed and 
the individuals update their prior probabilities by means of conditionalisation. It can 
be proved that after a point, their posterior probabilities converge to the same value. 
This result is supposed to mitigate the excessive subjectivity of Bayesianism. 
 
Successes of the Bayesian theory 
The ravens paradox. This is a paradox of confirmation, first noted by Carl Hempel. 
It concerns the confirmation of universal generalisations, but it took its name from the 
example that Hempel used to illustrate it, viz., all ravens are black. There are three 
intuitively compelling principles of confirmation which cannot be jointly satisfied; 
hence the paradox.  
First, Nicod’s principle (named after the French philosopher Jean Nicod (1893-
1924)): a universal generalisation is confirmed by its positive instances. So, that all 
ravens are black is confirmed by the observation of black ravens.  
Second, the principle of equivalence: if a piece of evidence confirms a hypothesis, it 
also confirms its logically equivalent hypotheses.  
Third, the Principle of relevant empirical investigation: hypotheses are confirmed by 
investigating empirically what they assert.  
Take the hypothesis (H): All ravens are black. The hypothesis (H’) All non-black 
things are non-ravens is logically equivalent to (H). A positive instance of H’ is a 
white piece of chalk. Hence, by Nicod’s condition, the observation of the white piece 
of chalk confirms H’. Hence, by the principle of equivalence, it also confirms H, that 
is that all ravens are black. But then the principle of relevant empirical investigation is 
violated. For, the hypothesis that all ravens are black is confirmed not by examining 
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the colour of ravens (or of any other birds) but by examining seemingly irrelevant 
objects (like pieces of chalk or red roses). So at least one of these three principles 
should be abandoned, if the paradox is to be avoided.  
The Bayesian solution:  
H: All Ravens are Black—All Rs are Bs 
H’: All Non-black things are non-ravens—All -Bs are -Rs 
Positive instances of H: Ra&Ba 
Positive instances of H’: -Ba&-Ra 
Evidence e: Ra&Ba 
Evidence e’: -Ba&-Ra 
 
P(H/e)=P(e/H)P(H)/P(e) 
P(H/e’)=P(e’/H)P(H)/P(e’) 
 
P(e/H)=P(e’/H)=1 
Hence 
P(H/e)/P(H/e’)=P(e’)/P(e) 
 
But P(e’)>>P(e) because there are very many more things which are non-Black &non-
Ravens than Black Ravens. Hence P(e’)/P(e)>1. 
 
Hence, P(H/e) >> p(H/e’).  
Hence e confirms H a lot more than e’ confirms H’.  
 
Surprising predictions 
Predictions whose probability is low given background knowledge confirm more than 
already known evidence. 
The Bayesian account:  
P(H/e)=P(e/H)P(H)/P(e) 
Suppose that P(e) is low and that P(e/H)=1 (H entails e). Then  
P(H/e)= P(H)/P(e) 
The lower the P(e) the higher the P(H/e). 
 
A problem for the Bayesian theory of confirmation, first identified by Glymour, is 
known as the old evidence problem. Suppose that a piece of evidence e is already 
known (it is, that is, an old piece of evidence relative to the hypothesis H under test). 
Its probability, then, is equal to unity (prob(e)=1). Given Bayes’s theorem, it turns out 
that this piece of evidence does not affect at all the posterior probability (prob(H/e)) 
of the hypothesis given the evidence: the posterior probability is equal to the prior 
probability, i.e., prob(H/e)=prob(H). This, it has been argued, is clearly wrong, since 
scientists typically use known evidence to support their theories. Therefore, there 
must be something wrong with Bayesian confirmation. Bayesians have replied by 
adopting a counterfactual account of the relation between theory and old evidence. 
They argue as follows. Suppose that B is the relevant background knowledge and e is 
an old (known) piece of evidence—that is, e is actually part of B. In considering what 
kind of support e confers on a hypothesis H, we subtract counterfactually the known 
evidence e from the background knowledge B. We therefore presume that e is not 
known and ask: what would the probability of e given B-e? This will be less than one; 
hence, the evidence e can affect (that is, raise or lower) the posterior probability of the 
hypothesis. 


