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ABSTRACT

Theoretical understanding of the growth of wind-driven surface water waves has been based on two
distinct mechanisms: growth due to random atmospheric pressure fluctuations unrelated to wave amplitude
and growth due to wave coherent atmospheric pressure fluctuations proportional to wave amplitude.
Wave-independent random pressure forcing produces wave growth linear in time, while coherent forcing
proportional to wave amplitude produces exponential growth. While observed wave development can be
parameterized to fit these functional forms and despite broad agreement on the underlying physical process
of momentum transfer from the atmospheric boundary layer shear flow to the water waves by atmospheric
pressure fluctuations, quantitative agreement between theory and field observations of wave growth has
proved elusive. Notably, wave growth rates are observed to exceed laminar instability predictions under
gusty conditions. In this work, a mechanism is described that produces the observed enhancement of growth
rates in gusty conditions while reducing to laminar instability growth rates as gustiness vanishes. This
stochastic parametric instability mechanism is an example of the universal process of destabilization of
nearly all time-dependent flows.

1. Introduction

It has been found in a variety of field studies that the
growth rate of wind-driven water waves depends on the
stratification of the surface boundary layer and the re-
lated gustiness of the wind. For example, Kahma and
Calkoen (1992) found that water wave growth rates
differ depending on the boundary layer stratification
and that the growth rate substantially increases under
unstable conditions. They attributed this increase in
growth rate to increased levels of gustiness in unstably
stratified boundary layers. However, when Janssen and
Komen (1985) investigated modal growth rates that re-
sult under conditions of unstable stratification, they ob-
tained the surprising result that unstable stratification
decreases the predicted growth rate of long water
waves.

While this enhancement of growth rate in gusty con-
ditions is now generally acknowledged, the mechanism
responsible for the increase remains a matter of debate
(Abdalla and Cavaleri 2002). Modal mechanisms for
producing increased wave growth rates in fluctuating
winds were investigated in the studies of Nikolayeva
and Tsimring (1986), Komen et al. (1994; see Jansenn
therein), Miles (1997), and Miles and Ierley (1998). In
his investigation, Komen et al. (1994; see Jansenn
therein) considered the effect of a normally distributed
friction velocity on growth rate using the modal growth
rate parameterization of Snyder et al. (1981). Because
growth rate varies with friction velocity in this param-
eterization, being zero for negative friction velocities
and positive for positive friction velocities, an increase
in the average growth rate proportional to rms friction
velocity variance results when friction velocity fluctua-
tion symmetrically distributed about its mean value is
assumed. Moreover, according to Cavaleri and Burgers
(1992) the velocity fluctuations at the 10-m level rather
than friction velocity are normally distributed. This
leads to skewness in the distribution of friction velocity
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and to further enhancement of the growth rate. In gen-
eral, such mechanisms produce increased growth rates
under gusty conditions owing to the form of the depen-
dence of modal growth rate on wind speed. Cavaleri
and Burgers introduced these effects into a wave-height
prediction model and found faster wave growth and
higher waves in the fully developed sea, the increase
being up to 30% in wave height. It was further found
that model results improved when compared to ob-
servations with the introduction of this gustiness pa-
rameterization (Komen et al. 1994). Ponce and
Ocampo-Torres (1998) introduced high-frequency wind
observations made in the Gulf of California into a
third-generation wave height prediction model and
found an increase in the resulting wave height. Similar
conclusions were obtained by Bauer and Weisse (2000).
An extended investigation of the effect of gustiness on
wave height was undertaken by Abdalla and Cavaleri
(2002) who demonstrated that the increase in the re-
sulting wave fields was larger in the Atlantic Ocean
(where gustiness is more pronounced) than in the
Mediterranean (where gustiness is comparatively re-
duced). Increase in growth rates in these models arises
from the increase in the average of the instantaneous
growth rate and also from the convexity of the expo-
nential function relating wave growth rate to wave
growth.

In this work we propose a new mechanism for en-
hancing wave growth in gusty conditions that involves
the nonnormality of the full spectrum of the underlying
dynamical operator of the coupled air–sea system. This
mechanism is distinct from the aforementioned mecha-
nisms for producing enhanced growth rate under gusty
conditions based on the functional dependence of
modal growth rate on wind speed (Cavaleri and Burg-
ers 1992; Komen et al. 1994; Miles 1997; Janssen 2004).
The enhanced growth mechanism that we propose can
be viewed as an incoherent parametric instability, and it
exemplifies the universal instability arising from the in-
trinsic nonnormality of time-dependent dynamical op-
erators (Zel’Dovich et al. 1984; Farrell and Ioannou
1996b, 1999; Poulin et al. 2003; Hadjiioannou et al.
2006).

To put the stochastic mechanism in context, we now
briefly review theories proposed to explain the phe-
nomenon of wind-driven growth of surface water
waves. These theories in general involve either wave
incoherent stochastic forcing by random atmospheric
pressure fluctuations (Eckart 1953; Phillips 1957) or
wave coherent forcing by wave-induced atmospheric
pressure fluctuations (Helmholtz 1868; Kelvin 1871;
Jeffreys 1925, 1926; Miles 1957, 1959a,b). These mecha-
nisms together with a parameterization of nonlinear

interactions were incorporated by Hasselmann (1960)
into a general prediction equation for the spatial
and temporal distribution of the spectral energy of
the waves. Various empirical versions of this predic-
tion equation are presently used for operational wave
forecasting purposes (WAMDI Group 1988; Komen et
al. 1994; Tolman and Chalikov 1996; Booij et al. 1999;
Janssen 2007). These prediction equations incorporate
a parameterized variance growth linear in time to
account for wave incoherent forcing and a parameter-
ized growth exponential in time to account for wave-
induced coherent forcing. Coherent forcing by wave-
induced atmospheric pressure fluctuations proportional
to wave amplitude is generally accepted as necessary to
account for observed rates, but the growth rate is pa-
rameterized because growth rates obtained from lami-
nar modal instability theory are too small by up to an
order of magnitude for long waves (Abdalla and Cav-
aleri 2002; Janssen 2007). Despite recent progress and
while these parameterized spectral prediction models
provide useful predictions of the sea state, they remain
loosely related to stability theory and are widely ac-
knowledged to need improvement (Komen et al. 1994;
Cavaleri 2006).

The surface water wave generation problem can be
thought of as a shear stability problem in the presence
of a flexible lower boundary. Perhaps the most familiar
example of this class of stability problems is Kelvin–
Helmholtz instability resulting from Bernoulli suction
coherently 180° out of phase with surface elevation.
However, Kelvin–Helmholtz instability requires that
this suction exceed the gravitational restoring force, in
turn requiring wind speeds in excess of those observed
to be associated with wave generation. It follows that
Kelvin–Helmholtz instability is not generally regarded
as an important mechanism for water wave generation.

The instability mechanisms of Jeffreys (1925, 1926),
Miles (1957, 1959a,b), and Belcher and Hunt (1993)
result from the positive momentum flux from the at-
mosphere to the water wave that occurs when a com-
ponent of atmospheric perturbation pressure lags sur-
face water elevation by 90°. The Jeffreys theory postu-
lates that turbulent flow separation produces the
required atmospheric pressure to wave height phase
lag, while Belcher and Hunt attribute the phase shift to
a nonseparated sheltering effect. Similar to nonsepa-
rated sheltering, the Miles theory uses a linear laminar
theory that has no direct role for turbulence in produc-
ing the phase lag required for instability.

Laminar instability theory takes account of the tur-
bulent nature of atmospheric boundary layer pressure
fluctuations only in that the fixed phase lag between
atmospheric pressure fluctuations and wave height aris-
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ing in the theory can be interpreted as the statistical
average of the actual fluctuating pressure. The attrac-
tion of the laminar instability mechanism is that it pre-
dicts an average component of atmospheric pres-
sure fluctuation systematically proportional to wave
amplitude and, as a result, growth exponential in
time. In contrast, wave incoherent turbulence produces
pressure fluctuations unrelated to wave amplitude
and therefore to variance growth linear in time.
Even coherent resonant pressure fluctuations produce
variance growth, at most, quadratic in time (Phillips
1957).

There is no doubt as to the existence in laminar flow
over a flexible boundary of the instability described by
Miles (1957, 1959a,b). However, theory and observa-
tion could be brought into better accord if there existed
in a turbulent shear flow over a flexible boundary an-
other instability mechanism exponential in time and

substantially dominant in growth rate when compared
with the laminar mechanism. A comparison of obser-
vations, laboratory experiments, numerical simulations,
and analytic theories is shown in Fig. 1.1 Inspection of
Fig. 1 suggests that there are two regimes of growth
occurring in the wave generation problem: one in which
observed growth rates roughly follow the predictions of
the Miles theory, while lying in the mean above these
predictions, and another branch in which the observed

1 The data of Shemdin and Hsu (1967), Larson and Wright
(1975), and Wu et al. (1979), and the Bight of Abaco data of
Snyder et al. (1981), were taken from Plant (1982). The data of
Kahma (1981), Barnett and Wilkerson (1967), Snyder and Cox
(1966), Schule et al. (1971), and DeLeonibus and Simpson (1972)
were taken from Kahma (1981). Here u*/U10 � 0.0361 was used
for the conversion of c/U10 to c/u*. For the excellent Bragg scat-
terometer data of Stewart and Teague (1980), this conversion was
made under the assumption that the wind profile was logarithmic.

FIG. 1. Dimensionless wave growth rate � � (103/�) (d lnE/dt) as a function of phase speed c/u* resulting from
stochastic variation of the logarithmic profile (diamonds) compared to observed growth rates and to growth rates
from the laminar stability theory of Miles (1957), the direct numerical simulations of Sullivan and McWilliams
(2002), and our stochastic Kelvin–Helmholtz model (dashed line) with parameters given in the text. This graph
suggests that there are two regimes of growth occurring in the wave generation problem: one in which observed
growth rates roughly follow the predictions of the theory of Miles and another branch in which the observed growth
rates are higher with a functional dependence on wave speed that appears unrelated to extant theory.
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growth rate is higher and follows a functional form that
appears unrelated to extant theory. When different re-
gimes such as these are found in a physical problem, it
is often indicative of a missing variable in the analysis.
Indeed, it has been frequently remarked that the miss-
ing variable in this case is the stability of the airflow
(Kahma and Calkoen 1992). The strongly growing wave
regime is characteristically found in cold air flowing
over warm water, which produces highly turbulent and
gusty conditions (Barnett and Wilkerson 1967; Stewart
and Teague 1980), while the more slowly growing wave
regime is associated with less turbulent laboratory ex-
periments, numerical simulations, and theoretical cal-
culations and also observationally with more stable or,
at most, neutrally stable tropical marine boundary layer
flows (Sullivan and McWilliams 2002; Belcher and
Hunt 1993; Snyder et al. 1981).

In this work we describe a mechanism that uses wave
incoherent atmospheric turbulence to produce an in-
crease over that predicted by laminar instability theory
in the statistically coherent component of atmospheric
pressure fluctuations proportional to and properly
phased with wave height to produce exponential
growth.

We begin by reviewing the formulation of the stabil-
ity problem for the growth of water waves. Then we
demonstrate that the stability problem is highly non-
normal and identify initial perturbations that produce
water waves with greatest amplitude. The universal
mechanism of destabilization time-dependent flows de-
pends on this nonnormality of the fluctuating operator
(Farrell and Ioannou 1996b, 1999). Having demon-
strated the existence of high nonnormal growth in the
wave generation problem, we proceed to the descrip-
tion of the time-dependent stability problem. Then we
introduce the stochastic time-dependent instability
mechanism and apply it to the wave generation prob-
lem for a simplified Kelvin–Helmholtz approximation
to boundary layer flow and, also, for a more realistic
logarithmic boundary layer profile.

2. The linear stability problem for surface water
waves

Consider an inviscid incompressible atmosphere of
constant density in which the mean wind, U (z, t), in the
x direction varies in the vertical direction z and with
time t. Assume that the mean wind at z � 0 is U0(t).
Harmonic perturbations in the atmosphere with x
wavenumber k and streamfunction �a (z, t)e ikx are gov-
erned by the equation

� �

�t
� ikU�z, t���2�a � ikU ��z, t��a � 0, �1�

where D 	 
/
z, �2 	 D2 � k2 is the Laplacian opera-
tor, and U�(z, t) 	 D2U(z, t) denotes the curvature of
the mean wind profile. Equation (1) is assumed to be
valid in the region z 
 0 occupied by the atmosphere,
which has density �a. The streamfunction �a is assumed
to decay to 0 as z → �.

A semi-infinite incompressible fluid of density �w oc-
cupies the region z � 0. This fluid models the water: it
is assumed to have no motion other than that associated
with irrotational small amplitude surface waves2 with
streamfunction form:

�w�x, z, t� � �w
0 �t�ekze ikx �2�

in which �0
w(t) is the streamfunction of the water at the

mean air–water interface, z � 0. The wave height,
which is also assumed to take the harmonic form � �
�̂(t)e ikx, is a material boundary and satisfies in the small
elevation limit the relations

d�̂

dt
� �ikU0�t��̂ � ik�a

0, �3�

d�̂

dt
� ik�w

0 , �4�

where �0
a(t) 	 �a(0, t). Subtracting the two conditions

(3) and (4) we obtain that the streamfunctions in the air
and water are given by

�w
0 � �a

0 � U0�t��̂. �5�

Streamfunction (2) satisfies the momentum equations
for z � 0 with time dependence obtained by imposing
(5) and continuity of normal stress, which on lineariza-
tion at z � 0 takes the form

pw � pa � g��w � �a��̂, �6�

where pw,a are the values of the Fourier coefficients of
the pressure on the water and atmospheric side of the
interface at z � 0. In boundary condition (6) surface
tension has been neglected.

Using the linearized momentum equation in the x
direction in both the atmosphere and water layers, the
normal stress boundary condition at z � 0 can be ex-
pressed as

2 The assumption that the water motion arises only from the
inviscid wave constitutes a limitation of our study. The velocities
that arise from the coupling of the two layers by molecular vis-
cosity is known to give rise to a new set of unstable modes
(Hooper and Boyd 1983, 1987); in addition, inclusion of the ex-
tension of the turbulent boundary layer into the water (Bye 1995)
may affect the stability properties of the mean flow.
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d

dt
��D�a�0, t� � k�a

0 � kU0�t��̂� � �ik�U0�t�D�a�0, t�

� ik���t��a
0 � ik�1 � ��g�̂, �7�

where �(t) is the wind shear at z � 0 and � � �a/�w; for
the water–air interface, � � 0.001.

The linear temporal development of perturbations is
determined by (1) together with the far-field boundary
condition �a(z, t) → 0 as z → � and the interface
boundary conditions at z � 0 given by (3) and (7).

3. Nonnormal perturbation growth for
time-independent wind

We first consider the case of time-independent wind
U(z) and U(0) � 0 at the water surface z � 0.

a. Formulation of the normal-mode solution

With the assumption of time independence of the
background wind, eigenstates of (1) with boundary con-
ditions (3) and (7) are found by assuming solution form
�a(z, t)� �(z)e�ikct and solving the resulting eigenvalue
problem:

�U � c��D2 � k2�� � U�� � 0 �8�

with boundary conditions � → 0 as z → � and

D��0� � �k

�
�

U	�0�
c

�
1 � �

�

g

c2���0� �9�

at z � 0. This eigenproblem admits an analytic eigen-
function � with associated eigenvalue c, which can be
identified with an unstable surface water wave. From
the eigenvalue both growth rate, kci� kℑ(c), and phase
speed, cr � ℜ(c), of the surface water wave can be
determined. This eigenproblem can be solved using nu-
merical integration and the shooting method.

Alternatively, following Miles (1957), the growth rate
can be obtained by exploiting the smallness of the den-
sity ratio � to expand the streamfunction and eigen-
value in a regular perturbation series:

� � �0 � ��1 � · · ·, �10�

c � c0 � �c1 � · · ·. �11�

Using these expressions the zero-order balance in (8)
and (9) immediately yields the phase speed c2

0 � g/k,
implying that the zero-order phase speed of the inter-
face wave is the phase speed of surface gravity waves on
a water surface bounded by a motionless atmosphere of

vanishing density. The O(�) correction to the phase
speed is3

c1 �
c0

3

2g �D�0

�0
|
z�0

�
U	�0�

c0
� k� �12�

in which c0 ��g/k is the phase speed of surface grav-
ity waves in the absence of an atmosphere, and D�0/�0

at z � 0 is obtained by solving the Rayleigh equation

�U ��g
k��D2 � k2��0 � U ��0 � 0 �13�

with specification that the regular singularity of the dif-
ferential equation at the critical level U(zc) ��g/k be
resolved by selecting the solution that results in the
limit in which the phase speed c0 has a vanishing posi-
tive imaginary part (Drazin and Reid 1981). In that case
the Wronskian

W�z� � �i�D�0�*0 � �0D�*0� �14�

is constant except at the critical level zc where it under-
goes a jump. Because W(�)� 0, the value of the Wron-
skian at the interface can be obtained:

W�0� � �2�
U��zc�

|U	�zc�|
|��zc�|

2, �15�

which then determines the O(�) growth rate:

kci � �
c0

2
ℑ�D�0

�0
|
z�0

� � O��2�

� �
c0

4
W�0�

|�0�0�|
2 � O��2�

� ��
�c0

2
U��zc�

|U	�zc�|
|��zc�|

2

|��0�|2
� O��2�. �16�

The last equality, obtained by Miles (1957), implies
that all profiles with negative curvature (such as occur
in the atmospheric boundary layer) are unstable with

3 Miles (1957) argues that the linearized boundary condition
should be formulated on the curvilinear surface of the wave and,
consequently, that the shear term in the boundary condition (9)
should be neglected, which has no effect on the growth rate of the
waves at first order in �. It does, however, result in predicted
phase speeds in atmospheric boundary layer flows, for which
U�(0) is O(1/�), that depart O(1) from the phase speed of the
surface gravity waves, in disagreement with observations. The rea-
son is that in (12) the real part of D�0/�0 nearly cancels U�(0)/c0,
giving a correction to the phase speed that is O(�) even for large
shears. If the term U�(0)/c0 were not present in the boundary
condition, then the phase speed correction would be O(1) for
boundary layer flows for which U�(0) is O(1/�). That incorrect
phase speeds are predicted if the mean shear term is not included
in (12) can be verified by numerical solution of the eigenvalue
problem.
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growth rate O(�), even if the velocity profile is not
inflectional. A physical explanation of the instability
mechanism was given by Lighthill (1962). The unstable
waves are prograde (moving in the direction of the
flow) with phase speed c � �g/k � O(�). It is note-
worthy that, according to the above solution, no expo-
nentially growing water waves exist for mean winds
with zero or positive curvature, such as Couette flow,
and presumably there would be no surface waves gen-
erated by such a flow regardless of the wind speed.
Moreover, the predicted growth rates can be shown to
decrease under unstable boundary layer stratification in
contrast to the observed increase (Janssen and Komen
1985).

b. Normal-mode solution for the logarithmic
boundary layer flow

We now present numerical calculations of the growth
rate, phase speed, and structure of the eigenmode for
the logarithmic boundary layer flow

U �
u*
K

log�1 �
z

z0
�, �17�

shown in Fig. 2. In (17) u* is the friction velocity, K �
0.42 is the von Kármán constant, and z0 � �u2

*/g is the
roughness length expressed in terms of the Charnock
constant (� � 0.0144), the friction velocity u*, and the
acceleration of gravity g. This profile is not inflectional

but supports unstable prograde surface waves with the
numerically obtained growth rates shown in Fig. 3 and
phase speeds to O(�) equal to�g/k, the phase speed of
the surface gravity wave in the absence of an atmo-
sphere. The structure in the atmosphere associated with
a typical unstable surface wave is shown in Fig. 4. The
eigenfunction leans against the shear (see also Fig. 9),
extracting energy from the mean flow by interaction
mediated by Reynolds stress divergence. This energy is
transferred to the water waves by pressure forces.

Departure of the numerical solutions from O(�) per-
turbation theory is O(�2). For example, normalized
growth rates kci /� and phase speeds cr are shown in
Figs. 5 and 6, respectively, for various density ratios �.
Perturbation theory predicts that the growth rates of
the unstable waves should scale with � and that their
phase speeds should be �g/k to O(�2): this is verified
in Figs. 5 and 6. The shape of the growth rate curve
predicted by the Miles equation (16) reflects the loga-
rithmic boundary layer profile: notably, the rapid de-
crease in growth rates for longer waves shown in Fig. 5
disagrees with observations of wave growth (cf. Fig. 1).

c. Optimal excitation of surface gravity waves

Although the solutions above verify the existence of
an exponentially growing eigenstate that asymptotically
dominates perturbation growth for stationary laminar
winds, it does not follow that the growth of surface
gravity waves proceeds exclusively from growth of this

FIG. 2. Vertical structure of the logarithmic boundary layer ve-
locity component U (m s�1) plotted as a function of height (m):
cases of friction velocity u* � 0.3, 0.5, 1 m s�1 are shown. For
friction velocity u* � 0.3 m s�1 the roughness length is 0.13 mm
and the velocity at 10 m is U10 � 8 m s�1; for u* � 0.5 m s�1 the
roughness length is 0.37 mm and the velocity at 10 m is U10 � 12
m s�1; and for u* � 1 m s�1 the roughness length is 1.5 mm and
the velocity at 10 m is U10 � 21 m s�1.

FIG. 3. Growth rates kci (s�1) for the logarithmic boundary
layer profiles shown in Fig. 2 as a function of zonal wavenum-
ber k (m�1). The growth rate is O(�), where � � �a/�w is the ratio
of the density of air to that of water. The cases for friction veloc-
ity u* � 0.3, 0.5, 1 m s�1 are shown. The corresponding phase
speed cr (m s�1) of the unstable surface waves is to O(�), the same
as that of the surface gravity wave in the absence of an atmo-
sphere, �g/k.
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unstable mode even in the case of steady winds. It may
be that a dominant role in wave growth results from
transient growth occurring before the exponential as-
ymptote is attained.

The Rayleigh equation has a continuous spectrum of
nonanalytic modes that are neutral, and while each
does not produce growth in isolation, because they are
not orthogonal, they can cooperate to produce tran-
sient growth. Moreover, there exist initial conditions
comprised of these neutral modes together with the
unstable mode that excite the unstable mode optimally.
In fact, because of the nonorthogonality of the continu-
ous spectrum and the surface mode, the unit energy
initial condition that optimally excites the unstable sur-
face mode is not the mode itself, but rather the associ-
ated adjoint mode (Farrell 1988; Hill 1995; Farrell and
Ioannou 1996a).

Consider introducing at t � 0 a perturbation �. This
perturbation can be expanded in the basis of the eigen-
modes �i as

� ��
i

�i�i. �18�

The adjoint �i of eigenfunction �i can be used to con-
struct a biorthogonal basis such that (�i, �j) � 0 when

i � j. Then perturbation � excites eigenmode �k with
amplitude

�k �
��k, ��

��k, �k�
, �19�

which is maximized when the initial perturbation � is
chosen to be parallel to the adjoint �k of the target
mode, �k. Consequently, the unit norm initial pertur-
bation that optimally excites the unstable mode �u is its
adjoint �u:

�opt �
�u

���u, �u�
, �20�

which will excite the unstable mode magnified by the
factor

�u �
���u, �u�

��u, �u�
. �21�

The adjoint eigenfunctions of the Rayleigh equation
satisfy the equation

�D2 � k2���U � 
��� � U�� � 0 �22�

with the boundary conditions � → 0 at z → � and

FIG. 4. Vertical structure of the real part (continuous line) and the imaginary part (dashed
line) of the streamfunction in the atmosphere of the most unstable eigenfunction with k � 1
for the logarithmic boundary layer velocity profile and u* � 0.5 m s�1 (left; on the right panel
the structure near the interface). The phase speed is cr � 3.126 m s�1, the growth rate is
kci � 0.0008 s�1, and the critical level is at zc � 0.0043 m.
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D��0� � �k

�
�

1 � �

�

g


2���0� �23�

at the air–water interface z � 0.
The adjoint eigenfunction �i with eigenvalue �i asso-

ciated with the eigenfunction �i of the Rayleigh equa-
tion with eigenvalue ci has eigenvalue �i � c*i (the as-
terisk denotes complex conjugation). This adjoint
eigenfunction is the same as the adjoint eigenfunction
of the Rayleigh equation with solid boundary condi-
tions (Drazin and Reid 1981):

�i �
�*i

U � c*i
. �24�

The inner product for this adjoint is that associated
with the square norm of total energy (kinetic plus po-
tential). The inner product of eigenfunction �k with
eigenvalue c*k and eigenfunction �l with eigenvalue cl is

��k, �l� � �k

�
�

1 � �

�

g

ckcl
��*k�0��l�0�

� �
0

�

�D�*kD�l � k2�*k�l� dz. �25�

With this inner product the analytic eigenfunctions and
their adjoints form a biorthogonal basis, and the adjoint
is the unit energy perturbation that maximally excites
the mode.

d. Amplification of wave height resulting from the
adjoint perturbations

If the adjoint of the most unstable mode is intro-
duced with unit energy, the corresponding normalized
unstable mode is excited with amplitude |�u|. Because
the unstable mode dominates growth as t → �, this
perturbation adjoint to the unstable mode is the per-
turbation that leads to optimal excitation of the surface
wave as t → � rather than the unstable mode itself.

This optimal amplification factor is shown as a func-
tion of wavenumber k for the logarithmic profile and
for density ratios � � 0.1, 0.001 in Fig. 7. The time
needed to attain this large amplitude is O[1/(kci)] as
seen in the example integrations shown in Fig. 8. The
time development of the adjoint can be examined in
numerical calculations in which a lid is placed at z � 1
m so as to improve numerical conditioning of the initial
value problem. For that case, the most unstable eigen-
mode and its adjoint are shown in Fig. 9, and the time
development of the surface elevation is shown in Fig.
10. The adjoint perturbation in the neighborhood of the
critical layer leans against the shear, consistent with
extracting energy from the mean flow. The half-width
of the adjoint perturbation variation in the critical-level
neighborhood is seen from (24) to be ci /U�(zc), where
U�(zc) is the background shear at the critical level. The
growth rate kci is proportional to �, so the width of the
adjoint is also proportional to �. The adjoint perturba-
tion can be idealized as a localized wave packet in the
neighborhood of the critical level with central vertical
wavenumber m � �U�(zc)/ci. This perturbation will

FIG. 5. Growth rates normalized by �, kci /� (s�1), as a function
of zonal wavenumber k (m�1) for the logarithmic profile with
u*� 0.5 m s�1. Normalized growth rates for density ratios � � 0.1,
0.001 are shown. Departure from first-order perturbation theory
are O(� 2) [O(�) perturbation theory predicts that all growth rate
curves should coincide when scaled by �]. The growth rates ob-
tained from the Miles perturbation theory are shown in circles.

FIG. 6. Phase speed cr (m s�1) of the unstable surface wave for
the logarithmic profile with u* � 0.5 m s�1 as a function of zonal
wavenumber k (m�1) and density ratios � � 0.1, 0.001. The phase
of the surface gravity wave in the absence of an atmosphere is
indicated by circles.
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shear over (Orr 1907; Kelvin 1887; Farrell 1982; Boyd
1983; Tung 1983; Farrell and Ioannou 1993) and will
assume phase vertical orientation at a time T �
m/[kU�(zc)]. The maximum energy that can be attained
by this perturbation is proportional to (m/k)2, and part
of this energy will be transferred to the unstable surface
wave exciting it with amplitude proportional to m/k,
which is proportional to U�(zc)/(kci). This argument ac-
counts for the scaling and time of development of the
amplification factor obtained by the adjoint initial con-
dition in Fig. 7.

A second factor important in the development of the
adjoint is that the perturbation is concentrated near the
critical layer where it is advected with the phase speed
of the surface wave so that a form of resonance is in-
duced with the pressure work building up the wave, as
shown in Fig. 11. If a concentrated initial condition
leaning against the shear is centered above or below the
critical layer, then simulations confirm that, although
the pressure work on the wave reaches the same maxi-
mum at the time the perturbation assumes a vertical
position, it does not remain collocated with the surface
wave and consequently will be unable to excite the
wave to high amplitude.

e. Discussion

In this section we have examined the problem of the
growth of water waves from the point of view of gen-
eralized stability theory. It was demonstrated that in
addition to the slowly growing exponential solutions,
there exist initial perturbations not of modal form that
produce transient growth rates far in excess of the
growth rates produced by the unstable modes. In par-
ticular, unstable modes are shown to be highly subop-
timal structures for the purpose of initiating wave
growth. Nonmodal transient development results from
atmospheric structures not of modal form but with the
property of producing large pressure perturbations
properly configured to produce wave growth.

These transiently growing structures no doubt play a
role in instigating wave growth and certainly dominate
the initial stages of growth. Nevertheless, it may be
thought that to produce a fully developed wave field,
initial perturbations must experience an extended pe-
riod of exponential growth and that this implies that the
role of transient growth is confined to exciting the un-
stable mode. However, it can be shown that transient
growth can be sustained in turbulent flows so that the
resulting growth is exponential in time (Farrell and Io-
annou 1996b, 1999): this is the mechanistic basis for the

FIG. 7. Normalized magnitude of the projection coefficient � |�u|
of the unit energy adjoint of the most unstable eigenfunction on
the normalized, most unstable eigenfunction as a function of zonal
wavenumber k (m�1), for the logarithmic profile with u* � 0.5
m s�1. The magnitude of the projection coefficient is the amplifi-
cation factor in the asymptotic amplitude of the unstable eigen-
mode that results when its adjoint is introduced initially rather
than the mode itself. To facilitate comparison the projection co-
efficient has been multiplied by density ratio � since it is propor-
tional to 1/�. Shown are the cases � � 0.1 and � � 0.001. The
dashed lines are the curves A �/ci, with the constant of propor-
tionality A � 10 for � � 0.1 and A � 2 for � � 0.001. The near
coincidence of these curves demonstrates that the projection co-
efficient scales as �/ci.

FIG. 8. Ratio of the amplitudes of the wave height �a, which
results when the adjoint of the most unstable mode is introduced,
to the wave height �m, which results when the mode is introduced,
both at unit energy for wavenumber k � 1 m�1. The mean flow is
the logarithmic boundary layer flow with u* � 0.5 m s�1 but with
a lid placed at z � 0.5 m to improve numerical conditioning of the
initial value problem. The cases of � � 0.01, 0.05, and 0.1 are
shown. The ratio |�̂a| /| �̂m| asymptotes to the amplitude of the
projection coefficient: for � � 0.01 is |�u| � 121, for � � 0.05 is
|�u| � 42, and for � � 0.1 is |�u| � 18.5. The amplification factor
is proportional to U�(zc)/(kci) (see Fig. 7): it can be verified that
the time required for realization of the adjoint growth is 1/(kci).
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stochastic parametric instability theory for the growth
of surface water waves described below.

4. Exponential perturbation growth for
time-dependent winds

a. Gustiness-induced wave growth modeled as a
generalized Kelvin–Helmholtz stability problem

Consider in (1) the simple time-dependent shear
flow:

U�z, t� � �U0�t� � ��t�z, z � 0

0, z � 0.
�26�

This flow is a generalization of the time-dependent
version of the Kelvin–Helmholtz instability previously
treated by Kelly (1965) with the crucial inclusion of a

time-dependent shear in the atmosphere. The stream-
function in the air,

�a�z, t� � �a
0�t�e�kz, �27�

is consistent with the wave height, which is in turn de-
termined by a single equation with the form of the har-
monic oscillator equation,

d2�̂

dt2
� ��t�

d�̂

dt
� �2�t�� � 0, �28�

in which appears the imaginary time-dependent coeffi-
cient in the place of damping,

��t� � i
�

1 � �
���t� � 2kU0�t��, �29�

and a complex restoring force:

FIG. 9. (left) Structure in the atmosphere of the streamfunction of the most unstable eigen-
function and (right) its adjoint for a logarithmic velocity profile with u* � 0.5 and k � 1. For
this example the density ratio is � � 0.1: a lid is placed at z � 1 (m) to improve numerical
conditioning of the initial value problem. The phase speed is cr � 2.37 m s�1 and the growth
rate is kci � 0.187 s�1. The adjoint of the most unstable mode is concentrated at the critical
level of the wave, which is at height zc � 0.0023 m. The adjoint is the optimal unit amplitude
perturbation for the purpose of exciting the unstable surface wave. Because of the nonnor-
mality of the operator governing perturbation evolution, the structure of the associated ad-
joint mode is very different from that of the most unstable mode. Also, introduction of the
adjoint mode at unit energy excites a wave height 46 times larger than the surface elevation
that would be obtained if the unstable mode were introduced into the flow at unit energy (cf.
Fig. 10).
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�2�t� � �g
2 �

�k

1 � � �i
dU0�t�

dt
� ���t� � kU0�t��U0�t��,

�30�

where

�g
2 � kg

1 � �

1 � �
�31�

is the square frequency of the surface gravity wave in
the absence of flow. With the change of variable

� � �̂ exp�i
�

2�1 � �� � t

���s� � 2kU0�s�� ds�, �32�

the phase-shifted elevation � satisfies the harmonic os-
cillator equation:

d2�

dt2
� �2�t�� � 0 �33�

with complex time-dependent square frequency:

�2�t� � �g
2 �

�

1 � �
kU0�t��kU0�t� � ��t��

�
�2

4�1 � ��2
���t� � 2kU0�t��

2 �
i�

2�1 � ��

d�

dt
.

�34�

In the absence of wind fluctuations instability occurs
for  2 � 0, but this instability requires surface wind

speeds U0 greater than observed to be associated with
exponential growth of the longer water waves (Phillips
1977). The inclusion of sufficiently high shear extends
the domain of the traditional Kelvin–Helmholtz insta-
bility without shear to longer waves, but the required
surface winds remain unrealistically high.

While it is well known that harmonic modulations of
 2(t) lead to unstable growth and that this growth can
primarily be traced to the second subharmonic of  2(t)
(Kelly 1965), it is a remarkable fact that even randomly
modulated  2(t), such that every realization of the os-
cillator is stable, can induce a positive Lyapunov expo-
nent for wave height. This universal destabilization pro-
cess arises when the instantaneous operators governing
the dynamics produce transient growth and do not com-
mute (Van Kampen 1976; Zel’Dovich et al. 1984; Far-
rell and Ioannou 1996b, 1999). It is instructive to dem-
onstrate this process by assuming a constant shear �0

and time modulations of the velocity of the air–water
interface of the form:

U0�t� � U0�1 � ���t��, �35�

where !(t) is a zero mean random variable with unit
variance. Assume further an air–water density ratio
� K 1 and that the shear is sufficiently large that ��0 k

kU0; with these assumptions, in the small noise limit,
and retaining only the linear terms in ", (33) is well
approximated by

FIG. 11. Time development of the zonally averaged correlation
between pressure and vertical velocity at the interface pw
exp(�2kci t), for an initial condition consisting of the most un-
stable eigenmode at unit amplitude as shown in Fig. 9 (dashed
line) and for an initial condition consisting of the adjoint of the
most unstable mode (continuous line). The adjoint mode clearly
produces far greater pressure work at the interface than does the
mode.

FIG. 10. Time evolution of the amplitude of the wave height |�̂|
for � � 0.1. The elevation amplitude when the adjoint of the most
unstable mode is introduced at t � 0 with unit energy (continuous
line); the elevation amplitude when the most unstable mode is
introduced with unit energy (dashed line). The parameters are as
in Fig. 9. The adjoint perturbation eventually grows exponentially
at the modal instability rate; however, it excites the most unstable
mode at an amplitude 46 times larger than that obtained by in-
troducing the mode itself.
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d2�

dt2
� ��d

2 � ��0kU0���t��� � 0, �36�

where

�d
2 � �g

2�
�

1� �
kU0��0� kU0� �

�2

4�1� ��2
��0� 2kU0�

2

�37�

is the square frequency of the surface wave with mean
surface velocity U0 and shear �0.

Under these assumptions an estimate of the Lya-
punov exponent can be obtained in the small " limit
(Arnold et al. 1986):


 �
��2�2�0

2k2U0
2

4�d
2 �̂�2�d�, �38�

where

�̂i�2�d� �
1

2� �
��

�

e�2i�d t � �i�t��i�0�� dt �39�

is the power of the random process at twice the unper-
turbed frequency, �d.4

At first glance, this O(�2) mean growth rate is disap-
pointingly slow given that � � 0.001 for the air–water
interface. However, the logarithmic layer that charac-
terizes the mean wind profile near the surface has
shears at the surface on the order of u2

*/# � 104 s�1,
where u* is the friction velocity and # is the molecular
viscosity. Even as the surface becomes rough, shear re-
mains large near the surface, being u*/(K z0) � 103 s�1

here, assuming a roughness length z0 of 1 mm and von
Kármán constant K � 0.42 (Phillips 1977). It follows
that the logarithmic boundary layer has shears that are
at least O(1/�) s�1 in the neighborhood of the air–water
interface: because U0 is O(1) m s�1, the growth rate is
substantial.

The Lyapunov exponent � is associated with the con-
ventionally tabulated nondimensional growth rate per
radian, �, through the relation:

� � 103
2


�
. �40�

For sufficiently long waves, ��0 k kU0 and because the
square of the surface wave frequency �2

d is nearly pro-
portional to wavenumber k, the dependence of nondi-
mensional growth rate on wavenumber is, to good ap-
proximation,

� �
103��2U0

2�2�0
2

2g3
2 �k�̂�2�d�. �41�

Correspondence of this estimate with observed growth
rates for gusty boundary layer wind conditions is shown
in Fig. 1 (dashed line) for friction velocity u* � 0.2
m s�1, U0 � 5u*, normalized rms surface wind fluctua-
tion " � 0.3, mean normalized surface shears �� � 2
s�1, and spectral density !̂1(2�d) � 0.025 m2 s�1.

This is a simple model of wave growth produced by a
fluctuating boundary layer wind. This example demon-
strates that variations in velocity and shear can desta-
bilize a surface wave and that the expected growth rate
is proportional to the product of the density ratio �
squared, the mean shear �0 squared, and the spectral
energy content of the wind fluctuations at twice the
wave frequency. In the next section we consider a more
realistic time-varying wind and show that enhanced
growth rates compared to growth rates obtained for the
mean laminar wind also result in this more realistic
boundary layer wind.

b. Destabilization of surface water waves by
atmospheric turbulence

The atmospheric boundary layer is typically turbu-
lent and the associated characteristic wind field fluctua-
tion is a phenomenon referred to as gustiness. From the
point of view of time-dependent operator stability, this
turbulent gustiness represents a structured time depen-
dence of the operator: the structure being referred to
confines fluctuations to terms in the operator repre-
senting the wind and its derivatives.

For time-dependent background winds we discretize
(1) with the associated boundary conditions and write it
symbolically as

d�

dt
� A�t��, �42�

where �� [�̂, �̂(z1), �̂(z2), · · · , �̂(zn)]T is the state vec-
tor consisting of the surface elevation and the values of
the streamfunction at the discretization points. Let $ be
a small enough time interval that the operator can be
approximated as constant on this interval. Over this
interval the state �(t) advances to exp[A(t)$]%(t) and,
consequently, the state at time N$ is

��N�� � &
k�1

N

eA�k�����0�. �43�

The Lyapunov exponent that specifies the mean expo-
nential growth rate of the wave height is

4 This estimate is a good asymptotic approximation as long as
��0kU0"/�2

d K 1.
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 � lim
N→�

1
N�

ln�|��N��|
|��0�| �. �44�

As discussed in the previous section, this exponent can
be positive even if at each instant the operators A(k$)
have no unstable eigenvalues. Key to this behavior is
the noncommutation of the operators at different time
instants and the nonnormality of the operators A(k$)
(cf. Farrell and Ioannou 1999). This instability resulting
from time dependence of the dynamical operator in-
volves the full spectrum of the operator, and the result-
ing growth rate is therefore mechanistically distinct
from that based solely on the dependence of the modal
instability growth rate on the wind fluctuations (Komen
et al. 1994; Miles 1997; Janssen 2004), although it re-
duces to these results for gusts with sufficiently long
correlation times.

We now examine wave growth arising from gustiness
in a boundary layer model with a logarithmic velocity
profile:

U�z, t� �
u*�t�

K
ln�1 �

z

z0�t�
� �45�

with K � 0.42 the von Kármán constant. The gustiness
can be parameterized using (45) by assuming a distri-
bution for the wind at 10 m, U10(t), and obtaining the
consistent friction velocity u*(t) and time-varying
roughness length

z0�t� �
�u2

*�t�

g
, �46�

expressed in terms of the Charnock constant (� �
0.0144), the friction velocity u*, and the acceleration of
gravity g. We believe this simple model of gustiness to
be adequate for the purposes of illustrating the mecha-
nism of destabilization of waves by time-dependent
winds. A more accurate viscous boundary layer model
will be the subject of future study.

For U10(t) we follow the wind model of Cavaleri and
Burgers (1992) and Janssen (2004). There is good evi-
dence that U10 is an approximately Gaussian random
variable (Munn 1966; Smith et al. 1990; Cavaleri and
Cardone 1994; Janssen 2004) with U10 (bar denotes
time mean) normalized root-mean-square velocity
variations, ", that can exceed 0.3 for highly turbulent
conditions (Cavaleri et al. 1981). Abdalla and Cavaleri
(2002) plot the correlation between " and the differ-
ence between water and air temperature and find that
for a temperature difference between atmosphere and
ocean of 10°C, the fluctuation level is " � 0.3: analysis
of North Atlantic wind records indicate " values in ex-
cess of 0.3. They report similar recorded values from
the oceanographic tower of the Instituto Studio Di-

namica Grandi Massi. The calculations that we report
are made with U10 normalized rms velocity fluctuations
of " and assume

U10�t� � U10�1 � ���t�� �47�

in which !(t) is a red noise process with zero mean, unit
variance, and correlation time '. Most calculations, pre-
sented here, use ' � 5 s. Calculations with different
correlation times show that the results do not depend
sensitively on ', provided ' is not too long compared to
the wave period. This is consistent with the analysis in
the previous section in which the growth rate was
shown to depend on the spectral energy content of the
stochastically varying background flow at double the
frequency of the surface. The stochastic forcing that we
use is generated by the red noise process:

d� � �
�

�
dt ��2

�
dW, �48�

where dW is a Weiner process. This red noise process
produces power at frequency � with the following de-
pendence on the correlation time ' :

P��� �
1
�

�

1 � �2�2 . �49�

In general, wind fluctuations that are sufficiently broad-
band will have spectral power at the required frequen-
cies. The dependence of growth rate on correlation
time for 6-m waves with " � 0.25 and � � 0.1 is verified
in Fig. 12 to follow the theoretically predicted depen-
dence given by (49).5

As an example, consider wind fluctuations U10(t)
from (47) with U10 � 10 m s�1 corresponding to mean
friction velocity u* � 0.4 and U10-normalized rms vari-
ance " � 0.15, which is the mean level of fluctuation
observed when the temperature difference is just 6°C.
As shown in Fig. 13, with this gustiness model the
height of a 2.5-m wave grows exponentially with non-
dimensional growth rate � � 2.5, which is approxi-
mately three times greater than the corresponding rate
for the constant logarithmic profile with U10 � U10.
Growth rates obtained for other wavenumbers and for
various u* are shown in Fig. 1 where for comparison
growth rates predicted from the Miles laminar instabil-
ity theory and growth rates from observations are also
shown. The growth rate increases rapidly with the level

5 The stochastic fluctuations of the operator A(t) are dominated
by the fluctuations of the curvature of the wind near the surface,
which from (45) and (46) varies as O(1/u3

*), resulting for the cho-
sen level of U10 fluctuation in correlation time for the curvature-
dominated wave forcing, approximately 1⁄4 of the correlation time
of U10.
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of gustiness starting from the laminar instability value
at " � 0, as shown in Fig. 14. The calculation was done
for a 6-m wave and c/u* � 12.25 (u* is the friction
velocity of the time mean wind) and for � � 0.1. After
scaling, the growth rate for � � 0.001 is approximately
two orders of magnitude smaller. Note the rapid in-
crease of the growth rate with the gustiness parameter
". For this case the growth rate increases from the lami-
nar growth rate with increasing gustiness approximated
as (� � 0.1"2 � 15"4 � · · · , implying that for gustiness
levels " � 0.35 the wave height growth rate is O("4)
larger than the laminar growth rate. This higher power
dependence, obtained when the correlation time of the
gusts is on the order of the wave period, contrasts with
the linear dependence on " that results from the modal
quasi-static approximation of the effect of gustiness on
wave height growth, valid when the correlation time of
the gusts is considered to be long compared to the wave
period (Janssen 2004).

c. The lognormal distribution of wave heights and
the occurrence of overshoots and rogue waves

Note that the wave height shown as a function of
time in Fig. 13 fluctuates around its mean exponential

growth rate, sometimes growing at a greater rate while
at other times at a lesser rate. Realizations of wave
height over 1500-s integrations for 3.14-m waves with
density ratio � � 0.001 are shown in Fig. 15. Realiza-
tions of wave height over 100-s integrations of a 6-m
wave for density ratio � � 0.1 sampled at 1-s intervals

FIG. 13. Wave height as a function of time for the gustiness
model with U10 � 10 m s�1 and U10-normalized rms variance " �
0.15 for � � 0.001. This 2.5-m wave grows at rate � � 2.5, reaching
the breaking height of 17 cm in approximately 15 min. If the wave
were growing at the mode rate, it would reach breaking amplitude
in 45 min.

FIG. 14. Dimensionless wave growth rate � � (103/�) (d ln E/dt)
as a function of U10 normalized rms variance " for 6-m waves. The
points represent the mean growth rate obtained from integrating
over 150 wave periods. The phase velocity of the waves normal-
ized by the mean friction velocity u* is c/u*� 12.25. The intercept
at " � 0 recovers the growth rate from laminar instability theory.
The calculations were performed with density ratio � � 0.1; scal-
ing gives a corresponding growth rate for density ratio � � 0.001
approximately two orders of magnitude smaller.

FIG. 12. Dimensionless wave growth rate � � (103/�) (d lnE/dt)
of 6-m water waves as a function of correlation time ' normalized
by the wave period 'g . The U10-normalized rms variance is " �
0.25 and the density ratio is � � 0.1; scaling gives a corresponding
growth rate for density ratio � � 0.001, approximately two orders
of magnitude smaller. The points represent the mean growth rate
obtained from individual integrations over 150 wave periods. The
phase velocity of the waves normalized by the mean friction ve-
locity u* is c/u

*
� 12.25. The growth rate as a function of corre-

lation time ' approximately follows the spectral power of the red
noise (49) at the subharmonic frequency, '/'g � 1⁄2 for correlation
time '/4. The dashed line indicates the growth rate in the absence
of fluctuations.
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are shown in Fig. 16. These figures demonstrate the
variation among realizations as well as the occurrence
of large excursions in the amplitude of individual real-
izations of wave height. This provides an explanation
for an important observed wave growth phenomenon
referred to as overshooting by Liu and Ross (1980). It
also provides an explanation for the occurrence of
rogue waves with greater probability than would be
predicted by a Gaussian fit to the ensemble of wave
heights.

The emergence of overshoots, and subsequently of
rogue waves, is a universal characteristic of multiplica-
tive growth processes because such processes produce
deviations from the mean that grow at a rate faster than
the mean (Molčanov 1978; Arnold 1984; Kadanoff
2000; Farrell and Ioannou 2002). The rms fluctuation of
the wave height, �)�2(t)*, increases exponentially at
rate �2, which is greater than the asymptotic growth
rate �1 of the magnitude of the wave height, )|�(t)|*,
which is in turn greater than the Lyapunov exponent
(cf. Farrell and Ioannou 2002). In Fig. 16 the exponen-
tial growth of the wave height according to the
Lyapunov growth rate, � � 0.0982 s�1 for this example,
is shown in a log plot of wave height. The rms wave-
height growth, shown in Fig. 16 by the curve with
squares, is dominated by extreme wave heights and

grows exponentially at the much higher estimated
growth rate.6 In Figure 16 the theoretical estimated ex-
ponential growth of the rms at rate �2 � 0.2128 s�1 is
also shown. This estimate is based on the accurate ap-
proximation that ensemble member growth rates over a
sufficient interval have a normal distribution. In a plot
such as Fig. 16 the points representing the wave heights
of any finite number of simulations converge, almost
surely, to growth at the Lyapunov rate as time pro-
gresses [this is the multiplicative ergodic theorem of
Oseledec (Arnold 1998)]. For example, the wave height
evolution of the realization (shown with crosses in Fig.
16) has outstanding growth initially but eventually re-
gresses to growth at the mean Lyapunov rate. As time
increases, the width of the distribution of the esti-
mated Lyapunov growth rates narrows so that, in the
limit t → �, its probability density function (pdf) be-
comes an infinitely narrow distribution about the
Lyapunov exponent. This allows accurate calculation of
the Lyapunov exponent from a finite number of en-
semble simulations but makes it difficult to estimate
with accuracy from a limited number of ensemble simu-
lations the growth rate of higher moments of this dis-
tribution that increasingly depends, as the moment or-
der increases, on extreme events. This is the reason
why the rms growth of the ensemble (curve with
squares) cannot capture, as time progresses, the theo-
retical rms growth from the accurate approximation of
Gaussian distribution for the growth rate (dashed
curve) in Fig. 16.

This model predicts that under gusty conditions local
groups of waves that have experienced different real-

6 The pdf of wave height for an ensemble of simulations is
approximately lognormal for large enough times because the
Lyapunov growth rates estimated at time t,


�t� �
1
t

ln� |��t�|
|��0�|�, �50�

approach a normal distribution

Pt �
� �
1

��t��2�
exp�� �
 � )
�t�*�2

�2�t�
�, �51�

with mean )�(t)* that converges to the Lyapunov exponent and
the rms variance, "(t), which decreases as 1/�t. Knowing the pdf
of �(t) allows calculation of the pth moment exponent:


p�t� �
1
pt

ln��
��

�

e pt
Pt �
� d
� �52�

from which the growth rate of the rms wave height can be calcu-
lated as �2(t) � )�(t)* � t"2(t), which asymptotically approaches a
constant (cf. Farrell and Ioannou 2002). That the Lyapunov
growth rates become normally distributed is verified in Fig. 16 in
which the �(t)t for the ensemble is shown along with the curve of
one standard deviation in growth that is seen itself to grow as �t.

FIG. 15. Five realizations of surface wave height for waves with
wavelength 3.14 m. These waves grow in a logarithmic wind pro-
file that fluctuates about U10 � 10 m s�1 with U10-normalized rms
variance " � 0.15 for � � 0.001. The nondimensional growth rate
is � � 1.13 (Lyapunov exponent � � 0.0025 s�1) and the realiza-
tions exhibit pronounced overshoots. The dashed curve shows the
wave-height growth at the Lyapunov growth rate.
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izations of gusts over time along their group path will
have substantially different amplitudes tending toward
a lognormal distribution with individual packets over-
shooting and then regressing to the mean, only to be
overtaken by still larger overshoots in the limit produc-
ing the lognormal distribution. Although neighboring
wave packets mix in the physical system to produce a
mean observed wave field with less variation than that
found in these idealized calculations, the implication of
this calculation is that the probability of finding a rogue
wave increases rapidly as the gustiness level increases.

5. Discussion

Excitation of surface water waves by wind is a famil-
iar phenomenon of great theoretical and practical im-
portance that continues to present challenges to our
understanding (Liu et al. 2002; Cavaleri 2006; Janssen
2007). The atmospheric boundary layer is clearly tur-
bulent, but incoherent pressure forcing from atmo-
spheric pressure fluctuations produces variance growth

linear in time (Phillips 1957) while growth exponential
in time appears to be required by observations. The
required exponential growth rate implies coherent and
properly phased pressure fluctuations proportional to
wave amplitude. The laminar critical layer instability
mechanism of Miles (1957) produces exponential
growth rates by maintaining this phase relationship but
fails to correspond with observations of growth rates in
general (Abdalla and Cavaleri 2002).

It has been found that the scatter in observed growth
rates can be reduced by taking atmospheric stability
into account (Kahma and Calkoen 1992). Data col-
lected during strong offshore flow of cold air over warm
water in winter (Barnett and Wilkerson 1967; Dobson
1971; Stewart and Teague 1980; Kahma 1981; Kahma
and Calkoen 1992), which is expected to produce highly
turbulent winds, exhibits enhanced wave growth rates
compared with the growth rates found in data obtained
in relatively stable tropical marine boundary layer flows
(Snyder et al. 1981), which sustain much less turbu-
lence. We argue here that this increased growth rate in

FIG. 16. Wave height for 100 realizations of waves with wavelength 6 m sampled over time
(dots). The ensemble Lyapunov exponent is � � 0.0982 s�1 (shown by the thick straight line)
and the realizations exhibit pronounced overshoots (a typical example wave height evolution
is shown by the line with crosses). The rms variance of these overshoots increases exponen-
tially with time at the theoretical estimated rate of 0.2180 s�1 (dashed line); for this ensemble
the rms is indicated by the line with squares. The ensemble one standard deviation growth
curve follows nearly exactly exp(�t + 0.3�t). These results are consistent with a Gaussian
distribution of growth rates resulting from multiplicative noise processes. The waves grow in
a logarithmic wind profile that fluctuates about U10 � 6.9 m s�1 with U10-normalized rms
variance " � 0.25 and correlation time ' 5 s for � � 0.1.
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unstable air arises from the enhancement of turbulent
fluctuations in statically unstable boundary layers. In
contrast to predictions of laminar stability theory in
which growth rates rapidly decrease with wavelength,
in this theory long waves can have high growth rates
that increase as the gustiness level increases.

In this work we have demonstrated an essentially
turbulent exponential instability, the fundamental ex-
planation of which can be traced to the universal insta-
bility of time-dependent flows arising from the neces-
sary nonnormality of time-dependent operators that
are not at all times commuting. Returning to the clas-
sical mechanisms of wave growth: stochastic forcing by
the turbulent surface pressure field associated with the
boundary layer turbulent wind, and laminar modal in-
stability; the stochastic parametric mechanism is essen-
tially a result of the turbulence of the boundary layer,
like the first mechanism. However, while the stochastic
forcing enters additively in the Phillips theory, it enters
multiplicatively in this theory and, thus, crucially pro-
duces exponential growth reducing to and extending
the Miles theory as the turbulence level increases. This
stochastic parametric instability dominates the laminar
critical layer instability for sufficiently turbulent bound-
ary layers and provides a mechanism for explaining the
observed enhancement of surface water wave growth
rate in gusty conditions as well as the occurrence of
overshoots and rogue waves.
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