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ABSTRACT

Perturbation growth in uncertain systems associated with fluid flow is examined concentrating on deriving,
solving, and interpreting equations governing the ensemble mean covariance. Covariance evolution equations
are obtained for fluctuating operators and illustrative physical examples are solved. Stability boundaries are
obtained constructively in terms of the amplitude and structure of operator fluctuation required for existence of
bounded second-moment statistics in an uncertain system. The forced stable uncertain system is identified as a
primary physical realization of second-moment dynamics by using an ergodic assumption to make the physical
connection between ensemble statistics of stable stochastically excited systems and observations of time mean
quantities. Optimal excitation analysis plays a central role in generalized stability theory and concepts of optimal
deterministic and stochastic excitation of certain systems are extended in this work to uncertain systems. Re-
markably, the optimal excitation problem has a simple solution in uncertain systems: there is a pure structure
producing the greatest expected ensemble perturbation growth when this structure is used as an initial condition,
and a pure structure that is most effective in exciting variance when this structure is used to stochastically force
the system distributed in time.

Optimal excitation analysis leads to an interpretation of the EOF structure of the covariance both for the case
of optimal initial excitation and for the optimal stochastic excitation distributed in time that maintains the
statistically steady state. Concepts of pure and mixed states are introduced for interpreting covariances and these
ideas are used to illustrate fundamental limitations on inverting covariances for structure in stochastic systems
in the event that only the covariance is known.

1. Introduction

Dynamical equations for evolution of ensemble mean
fields under uncertain dynamics were obtained in Farrell
and Ioannou (2002, hereafter Part I). Specifically, for
the uncertain linear system

dc
5 Ac 1 ej(t)Bc, (1)

dt

an exact equation for the ensemble mean state ^c(t)&
initialized at t 5 0 was obtained, where the bracket ^·&
denotes the ensemble mean over realizations of the O(1)
random variable j(t). In (1), A is the ensemble mean
operator, e is the amplitude of the operator fluctuations,
and B is the matrix of the fluctuation structure. The
random variable j(t) is assumed to be stationary with
zero mean, unit variance, and autocorrelation time tc 5
1/n, that is, ^j(t 1 t)j(t)& 5 e2nt. For general A and B
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the equation for the ensemble mean state initialized at
t 5 0 is

td^c&
2 s 2 s 2nsA A5 A 1 e B e Be e ds ^c&, (2)E1 2dt 0

which for A and B commuting reduces to

2d^c& e
2n t 25 A 1 (1 2 e )B ^c&. (3)[ ]dt n

Dynamical equations (2) and (3) are exact for Gaussian
j(t) and when the fluctuations are Gaussian we replace
the general random variable j by its Gaussian counter-
part h. It was shown in Part I of this paper that (2) and
(3) remain accurate approximations for the physically
important class of j that are Gaussian up to fluctuation
amplitude J0, with zero probability of values greater
than J0, provided that the Kubo number associated with
the fluctuations, defined as K 5 etc, is less than J0. This
is important because physical quantities are typically
bounded in variation while the Gaussian is not, so that
predictions depending on unbounded variation inherent
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in an assumed Gaussianity of the operator fluctuations
are not physical.

Notable is the short autocorrelation time limit of (2)
(Arnold 1992; Sardeshmukh et al. 2001):

2d^c& e
25 A 1 B ^c&. (4)1 2dt n

This equation is generally valid when the autocorrela-
tion time of the fluctuations is short enough and the
Kubo number K 5 etc K 1 (Van Kampen 1992). In
particular, this equation governs the evolution of ^c&
for fluctuations that are temporally white (Arnold 1992).
For nonwhite fluctuations, (4) may be regarded as an
approximate evolution equation valid for small Kubo
numbers that will be referred to as the equivalent white
noise approximation. It should be noted that Eqs. (2)
and (3) are valid only for evolution from t 5 0 and in
particular cannot be directly used to obtain the response
to continuous forcing, while (4) may be so used.

Having obtained equations for the ensemble mean
field, ^c&, under uncertain dynamics in Part I, we wish
now to obtain equations for the ensemble mean co-
variance, ^C& 5 ^cc†&, under similarly uncertain dy-
namics.

2. Covariance dynamics for operators that are
certain but with uncertain initial conditions or
uncertain additive forcing

We begin with a review of covariance dynamics of
certain systems, which forms the background for ana-
lyzing covariance dynamics of uncertain systems and
provides an opportunity to introduce the tensor product
notation, which greatly facilitates the analysis (cf. Horn
and Johnson 1991). For the reader’s convenience the
basic properties of the tensor product are reviewed in
appendix A.

The instantaneous covariance matrix of the state c is
C 5 cc†, where † denotes hermitian transposition. The
covariance matrix C can be associated with the n2 vector
c 5 c* J c, where * denotes complex conjugation
and J denotes the tensor product, with the convention
that to each n 3 n matrix M, with elements mij, we
associate the n2 vector, m, with elements

Tm [ [m , . . . , m , m , . . . , m , . . . , m , . . . , m ] .11 n1 12 n2 1n nn

(5)

Reversing this process, the elements of an n2 vector are
formed into an n 3 n matrix by breaking the vector into
n equal parts and arranging these as the n columns of
the matrix. With this convention, matrix equations can
be cast as vector equations. For example, AC is written
using tensor products as (I J A)c, where c is the vector
associated with matrix C as described above, I is the
identity matrix, and the tensor product I J A is an n2

3 n2 matrix, the dimension being appropriate for trans-
forming the n2 vector c. Similarly, the matrix product

CA is written (AT J I)c, where T denotes unconjugated
transposition.

Consider a state vector, c, which for each realization
of the forcing, f(t), satisfies the linear time-dependent
equation

dc
5 A(t)c 1 f (t), (6)

dt

in which the linear operator, A(t), is a certain (not ran-
dom) matrix function of time, and c is an n-dimensional
column vector.

We see from (6) using the properties of the tensor
product that each realization of the vector covariance,
c 5 c* J c, satisfies the equation

d(c* J c) dc* dc
5 J c 1 c* J

dt dt dt

5 I J A(t)c* J c 1 A(t)* J Ic* J c

1 f * J c 1 c* J f . (7)

Consider forming the ensemble average of the vector
covariance over forcing realizations, with the ensemble
average indicated by [c]. Notice that the notation [·]
denotes ensembling over forcing realizations rather than
over operator realizations, which is indicated by ^·&. For
delta-correlated stochastic forcing, [ f(t) f †(s)] 5 Qd(t 2
s) with forcing structure matrix Q [ [ f f †], it can be
shown1 that the rhs term, representing correlation of the
state and the forcing in (7), has ensemble average

[ f * J c 1 c * J f] 5 [ f* J f] 5 q, (8)

where q is the covariance vector corresponding to co-
variance matrix Q, so that we obtain from (7) the co-
variance evolution equation,

d[c]
5 I J A(t)[c] 1 A(t)* J I[c] 1 q, (9)

dt

which is the tensor form of the familiar Lyapunov equa-
tion (Farrell and Ioannou 1996, hereafter FI96),

d[C]
†5 A(t)[C] 1 [C]A(t) 1 Q. (10)

dt

The tensor covariance equation (9) makes apparent
that the evolution operator of the covariance matrix is
the certain Lyapunov superoperator

L 5 I J A(t) 1 A(t)* J I.c (11)

The prefix ‘‘super’’ is introduced as a reminder that this
operator acts on matrices associated with the state, albeit

1 If P(t, s) is the propagator of A(t), then c(t) 5 P(t, s) f(s) ds.t#0

The fact that P(t, t) 5 I and [f(t)* J f(s)] 5 d(t 2 s)q implies that
[ f * J c] 5 [ f *(t) J P(t, s)f(s)] ds 5 (1/2)q, where q is thet#0

vector covariance associated with Q 5 [ f f †]. The factor of 1/2 in the
above expression comes from the conventional property of the delta
function: d(t 2 s) ds 5 1/2. Similarly, [c* J f ] 5 (1/2)q and (9)t#0

and (10) follow.
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matrices in vector form, and not on state vectors them-
selves. The superoperator has dimension n2 3 n2 if the
state vector has dimension n. We use the term covariance
to refer to the vector c and to the equivalent matrix C,
as appropriate.

Consider evolution of the covariance c(0) 5 c(0)* J
c(0) associated with a sure (not random) initial state c(0)
and for simplicity take the certain (not random) operator
A to be autonomous. At time t, the covariance is

c(t) 5 exp(L t) c(0).c (12)

If the initial conditions are uncertain with ensemble av-
erage initial covariance [c(0)], then the ensemble av-
erage covariance at time t is

[c(t)] 5 exp(L t)[c(0)].c (13)

If A is time independent and stable, the ensemble
average covariance approaches asymptotically:

21[c(`)] 5 2(I J A 1 A* J I) q. (14)

In matrix notation, (14) is the familiar Lyapunov equa-
tion (cf. FI96),

†A[C ] 1 [C ]A 5 2Q.` ` (15)

Pure and mixed states and the interpretation of EOF
analysis

When the state of the system, c, is known exactly
the system is said to be in a pure state. In this case the
associated covariance c 5 c* J c has rank one. Con-
versely, covariances of rank one are associated with
systems in a pure state, and this state can be determined
within a phase by singular value decomposition (SVD)
of the covariance matrix. Because physical states are
real, the arbitrariness in the phase of the state is resolved,
and rank one covariances can be inverted for a pure
structure, within a sign; and association of a covariance
with a state is unambiguous if the system is in a pure
state.

However, covariances with rank exceeding one can
not be inverted for structure and we say that the state
of the system is mixed and that the rank of the covari-
ance identifies the number of states involved in pro-
ducing the covariance. When the covariance of the sys-
tem is mixed there does not exist an unambiguous prep-
aration of the system with the given covariance and a
large set of structures c could equally well have been
responsible for producing the covariance.

The familiar empirical orthogonal function (EOF)
analysis into orthonormal structures is obtained from
singular value decomposition of the covariance matrix.2

It is tempting to regard the resulting EOF basis as iden-
tifying the states that produced the covariance or at least
to regard the EOFs and the singular values of the co-

2 Singular values and vectors of the necessarily hermitian covari-
ance matrices can be obtained by eigenanalysis.

variance matrix as having special significance among
the possible ensembles of states that could have pro-
duced the covariance. Although this is valid for our
examples, it is unfortunately not the case in general; for
example, consider the 2 3 2 covariance with EOFs e1

with eigenvalue a1 and its orthogonal e2 with eigenvalue
a2 and with a1 ± a2. The resulting covariance matrix is

† †C 5 a e e 1 a e e ,1 1 1 2 2 2 (16)

or in tensor product notation,

c 5 a e* J e 1 a e* J e .1 1 1 2 2 2 (17)

Consider now the quite different states:

e 5 Ïa e 1 Ïa e (18a)1 1 1 2 2

e 5 Ïa e 2 Ïa e . (18b)2 1 1 2 2

It can be verified that an ensemble in which e1 and e2

appear with equal probability produces the same co-
variance matrix C,

1 1
† † † †C 5 e e 1 e e 5 a e e 1 a e e , (19)1 1 2 2 1 1 1 2 2 22 2

demonstrating the ambiguity inherent in associating
states with covariances. Note, however, that the assumed
orthogonality of the original states e1 and e2 has not
been preserved by the transformation forming e1 and
e2, as is immediately verified by forming the dot product

e2 5 a1 2 a2 ± 0.†e1

In general, EOFs are one basis out of an infinity of
possible bases that give rise to the same covariance
matrix. The EOF’s are special in that they form the only3

orthogonal basis, and also in that the EOFs form the
optimal basis for C in the least squares sense.4 However,
there is generally no a priori reason based solely on the
covariance to suppose that the EOF basis in fact pro-
duced a given covariance matrix.5 Accepting this am-
biguity in identifying the states producing a given C,
one may inquire if there exist restrictions on the class
of candidate bases for a given covariance.

We can construct an infinity of nonorthogonal states
that produce the same covariance matrix C by gener-
alizing the simple example given earlier. Consider6 ei

to be the ith EOF with associated singular value ai and
define the orthogonal but not orthonormal set c i 5

ei (no summation). Then the covariance C can beÏai

written in vector form as
i tc 5 c * J c . (20)O

i

Consider now a unitary matrix U (U†U 5 I) that as-
sociates the set of states c i with a new set of states

3 Unless the covariance is the identity.
4 This is due to the Eckart–Young–Mirsky property of singular

value decomposition (cf. Van Huffel and Vandewalle 1991).
5 For an interesting example of this see Ambaum et al. (2001).
6 Superscripts will be used here to distinguish specific vectors of

the base from their components.
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by f i 5 Sj Uijc j (note that the sum acts on the the
states themselves and not their components, so that f i†

5 Sj ). Then the states c i and f i form the same†U*cij j

covariance C. Indeed,

i i j kf * J f 5 U*U c * J cO O O O i j ik1 2i i j k

j k5 c * J c U*UO O O i j ik1 2j k i

j k5 c * J c d 5 c. (21)O O jk
j k

This unitary matrix of coefficients is the maximum al-
lowed freedom in the choice of the ensembles (Schrö-
dinger 1936; Hughston et al. 1993). Also, it is easily
seen that c i form the only orthogonal basis because the
states fi cannot be orthogonal as

i† j k† lf f 5 U*U (c c ) 5 a U*U ± 0, (22)O Oik j l k ik jk
kl k

unless the c i are orthonormal and C is the identity.
We conclude that there is a unique orthogonal basis

for C that is the EOF’s, and another nonorthogonal can-
didate basis for every possible unitary transformation.
While in general there is no a priori reason based on
the covariance alone to conclude that the orthogonal
basis produced a given C, if the additional assumption
is made of Gaussianity of the pdf of states, based, for
example, on observation or on the system being linear
and forced by a spatially and temporally white noise
process, then the EOF basis is required for represen-
tation of the Gaussian pdf in EOF coordinates. On the
other hand, we may have observational evidence for
systematic occurrence of preferred states associated with
one of the possible nonorthogonal bases; however, this
would imply a non-Gaussian pdf for the states.

Advancing the covariance matrix under certain dy-
namics does not alter the initial rank of the covariance.
This follows from the uniqueness of solutions of certain
differential equations. To each sure initial covariance
c(0) 5 c(0)* J c(0) produced from the pure state c(0)
corresponds at a time later, t, the covariance c(t) 5 c(t)*
J c(t), which is also rank one. Similarly, if the initial
covariance has rank r # n, it can be expanded in its
EOF basis:

r

c(0) 5 l e (0)* J e (0), (23)O i i i
i51

where ei(0) are the orthogonal eigenfunctions of c(0)
and all li . 0. At time t, c(t) becomes

r

c(t) 5 l e (t)* J e (t), (24)O i i i
i51

where all the ei(t) 5 P(t)ei(0) are distinct, because of
the uniqueness of the solutions, and as a result the rank
of the covariance is preserved under certain dynamics.

It may prove useful for the development that follows
to isolate the property of the certain superoperator (11),

L 5 I J A(t) 1 A(t)* J I,c (25)

that leads to the invariance of rank. Consider again the
rank one initial covariance c(0) 5 c(0)* J c(0), which
at t is advanced to c(t) 5 P (t)c(0), where P (t) is the
propagator associated with the certain superoperator L c.
Because c(t) 5 c(t)* J c(t) we can express the prop-
agator of the superoperator P (t) in terms of the prop-
agator P(t), which advances c(0) as

P (t) 5 P(t)* J P(t). (26)

This is true because

c(t) 5 c(t)* J c(t) 5 (P(t)c(0))* J (P(t)c(0))

5 (P*(t) J P(t))(c(0)* J c(0))

5 P (t)c(0) (27)

The property of the certain superoperator that makes
possible the splitting (26) of the propagator of the co-
variance dynamics as the tensor product of the propa-
gators of the dynamics P(t) is the commutation7 of I J
A and A* J I. Under uncertain dynamics the superoper-
ator cannot be split into commuting parts and as a result
the propagator P (t) is not the tensor product of the prop-
agators as in (26) with the consequence that the rank
of the covariance is not preserved. As a result under
uncertain dynamics, if initially we start with a pure state,
at a later time the state of the system will become mixed.

3. Covariance dynamics of uncertain systems

Consider an uncertain mean flow with ensemble mean
operator A, and fluctuation operator eh(t)B, with h(t)
a Gaussian zero mean, unit variance process with au-
tocorrelation time tc. According to (9) with A(t) 5 A 1
eh(t)B for each realization of the uncertain flow the
covariance formed after averaging over the realizations
of the (additive) forcing evolves as

dc
5 Ac 1 eh(t)Bc 1 q, (28)

dt

in which the symbol [·], denoting the ensemble average
over (additive) forcing realizations, has been sup-
pressed. The mean and fluctuation superoperators in
(28) are

A 5 I J A 1 A* J I,

B 5 I J B 1 B* J I. (29)

The ensemble average evolution equation for the co-
variance, c over realizations of h, indicated by ^·&, and
valid for evolution from t 5 0, is obtained by an ar-
gument similar to that leading to (2) with result

7 Because (I J A)(A* J I) 5 A* J A 5 (A* J I)(I J A).
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d^c&
25 {A 1 e BD (t)}^c&, (30)

dt

where
t0

As 2As 2nsD (t) 5 e Be e ds. (31)E
Repeated application of the tensor product property [Eq.
(A2)] gives

BD(t) 5 (I J B 1 B* J I){D*(t) J I 1 I J D(t)}

5 D*(t) J B 1 B* J D(t) 1 I J BD(t)

1 B*D*(t) J I, (32)

where
t

s 2 s 2nsA AD(t) 5 e Be e ds, (33)E
0

and the ensemble average covariance evolution equation
can be written

d^c&
5 L ^c&, (34)

dt

in which appears the generalized Lyapunov superoper-
ator L :

2L 5 I J A 1 A* J I 1 e {I J B 1 B* J I}

3 {I J D(t) 1 D(t)* J I}. (35)

As was previously demonstrated in the argument leading
to (4), for short autocorrelation times (35) reduces to
the familiar equivalent white noise superoperator:

2e
2L 5 I J A 1 A* J I 1 (I J B 1 B* J I)w n

2 2e e
225 I J A 1 B 1 A* 1 B* J I1 2 1 2n n

22e
1 B* J B. (36)

n

In matrix notation the ensemble covariance dynamical
equation corresponding to (34), which is valid for any
fluctuation autocorrelation time, tc 5 1/n, and for evo-
lution from t 5 0 is

d^C&
2 2† † †5 {A 1 e BD(t)}^C& 1 ^C&{A 1 e D (t)B }

dt
2 † †1 e {B^C&D (t) 1 D(t)^C&B }. (37)

The short autocorrelation limit of (37) is (Arnold 1992:
Sardeshmukh et al. 2001)

2 2d^C& e e
2 † 2†5 A 1 B ^C& 1 ^C& A 1 B1 2 1 2dt n n

22e
†1 B^C&B . (38)

n

In the following the ^·& symbol indicating ensemble av-
erage over operator realizations is also suppressed, so
that when C appears it is understood to be the ensemble
average covariance with the ensemble average taken
over the forcing realizations and/or operator realizations
as appropriate.

a. Steady-state covariance maintained by stochastic
forcing

Under the ergodic assumption the asymptotic ensem-
ble average covariance, when it exists, equals the co-
variance obtained by taking a long time average of a
single realization of the flow. It exists when the uncer-
tain superoperator L is asymptotically decaying in which
case the forced covariance is

t

c 5 lim P (t, s) ds q, (39)` E5 6t→` 0

where P (t, s) is the propagator associated with the un-
certain ensemble mean covariance dynamics.

In the short autocorrelation time limit if the gener-
alized Lyapunov operator, Lw, is asymptotically stable
and the ensemble mean operator, A, is time independent,
then (39) converges to

c 5 2L q. (40)` w

In equivalent matrix notation the equilibrium covariance
satisfies the generalized Lyapunov equation for steady
state C (Arnold 1992):

2 2 2e e 2e
2 † 2† †A 1 B C 1 C A 1 B 1 BCB 5 2Q.1 2 1 2n n n

(41)

Note that the familiar Lyapunov equation (15) has been
modified in two ways: the mean operator has been aug-
mented by a term proportional to B2, and the term BCB†

appears.

b. Examples of covariance dynamics

The streamfunction for the barotropic flow with
fluctuating wind example introduced in Part I is gov-
erned by

dc
5 2ik(U 1 eh(t))c 2 rc. (42)0dt

Consider a single wave with wavenumber, k, in which
case the mean operator is A 5 2ikU0 2 r, the fluctuation
operator is B 5 2ik, and B commutes with A. In this
case both superoperators B 5 I J B 1 B* J I and D
5 I J D(t) 1 D*(t) J I vanish in (35), so the mean
covariance evolves as in the certain problem, and the
asymptotic covariance maintained by the fluctuating op-
erator is identical to that maintained by the mean op-
erator. From a physical perspective the reason is that
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wind fluctuations in this example change the phase of
the waves but do not affect the wave structure or growth.
As a result each realization has the same square am-
plitude and the moment growth rates are identical. From
the point of view of the covariance equation, phase av-
eraging in the ensemble mean equation accounted for
by the B2 term in (37) or (38) is exactly canceled by
the BCB† term.

The effect of the fluctuations is clarified by consid-
ering the equation for the variance, which is trace (C)
5 trace(cc†) 5 c†c:

†d^c c &
† † †5 c [A + A + eh(t)(B + B )]c. (43)

dt

If the operator B 1 B† vanishes identically, as is the
case for barotropic wind fluctuation, then the evolution
of cc† is not influenced by the fluctuations. Consider
the ensemble average of (43) obtained by taking the
trace of (37):

†d^c c&

dt
2† † † †5 trace{[A 1 A 1 e ((B 1 B )D 1 D (B + B ))]^C&},

(44)

which has the short autocorrelation limit

†d^c c&

dt
2e

† † † †5 trace A 1 A 1 [(B + B )B + B (B + B )] ^C& .1 2[ ]n

(45)

It is important to notice that the influence of operator
fluctuations on the ensemble mean variance depends on
the symmetrized operator B 1 B† rather than on B itself,
indicating that the fluctuations contribute to second-mo-
ment perturbation growth through the hermitian part of
the fluctuation operator. Through this term fluctuations
of sufficient amplitude generically render the covariance
equation asymptotically unstable. For example, if fluc-
tuation in the coefficient of Rayleigh friction were ac-
counted for by B 5 21, then the ensemble average
covariance equation in the short autocorrelation time
limit becomes

2d^C& e
5 2ikU 2 r 1 ^C&01 2dt n

2 2e 2e
1 ^C& ikU 2 r 1 1 ^C&01 2n n

24e
5 22r 1 ^C&, (46)1 2n

making the second moment unstable for fluctuations of

rms magnitude e . (rn/2)1/2, with second-moment ex-
ponent l2 5 2r 1 2e2/n.

Consider two waves, with wavenumbers k1 and k2,
and fluctuation operator

2ik 01B 5 . (47)1 20 2ik2

In this example the fluctuation superoperators B and B2

do not vanish, but the variance remains the same as that
maintained by the mean operator, A, because B 1 B†

5 0 and the second-moment exponent is equal to the
growth rate of the mean operator. However, the fluc-
tuations may result in EOFs differing from those ob-
tained in the absence of fluctuations.

c. Further properties of the Lyapunov superoperator

We wish to further analyze second-moment stability
and gather tools needed to obtain optimal excitation
structures for both deterministic and stochastic forcing
of uncertain systems. First, we must collect some prop-
erties of the Lyapunov superoperator.

A general matrix could be advanced in time with any
of the following: the certain Lyapunov superoperator Lc

given by (11); the generalized Lyapunov superoperator,
L , given by (35); or its white noise form, Lw, given by
(36). The matrices of interest, however, are physically
realizable covariance matrices that have the properties
of being hermitian and positive definite. Care must be
taken in the analysis that only physically realizable so-
lutions to (37) or (38) are retained. Specifically, the
individual eigenfunctions of the Lyapunov superoper-
ator, L, are not necessarily either hermitian or positive
definite, and physically realizable covariances must be
composed of superpositions of eigenfunctions that do
have these properties. For example, consider the optimal
perturbation problem: determine the initial covariance
matrix leading to maximum ensemble mean energy
growth at a chosen time. This optimization is compli-
cated by the fact that it must be done in the set of positive
definite hermitian matrices, a convex subset of the set
of complex matrices that does not form a subspace and
as a result is not spanned by a linear basis.8

We require some basic properties of the superoperator
L. First, L preserves the hermiticity of C. This is easily
seen by noticing that the hermitian transpose of a co-
variance matrix, C(t), obeys the same dynamical equa-

8 That the positive definite (hermitian) matrices do not form a sub-
space is clear on noting that negative multiples of a member of the
set is not in the set. However, it follows immediately that given two
positive definite covariances C1 and C2 we can always construct an-
other covariance as a convex linear combination of the two. Indeed
C 5 lC1 1 (1 2 l)C2, with 1 $ l $ 0, is hermitian, and because
for any state c, c†Cc 5 l(c†C1c) 1 (1 2 l)(c†C2c) . 0, C is
also positive definite given that C1,2 are. (A subset of a vector space
is said to be convex if the set contains the straight line segment
connecting any two points in the set.)
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FIG. 1. Schematic evolution of a sure initial condition c(0) in an
uncertain system. After time t the evolved states c(t) lie in the region
shown. Initially the covariance matrix C(0) 5 c(0)c†(0) is rank one,
but at time t the covariance matrix is of rank greater than one. For
example, if the final states were ci(t)(i 5 1, . . . , 4) with equal
probability, the covariance at time t[C(t) 5 1/4 ci(t) (t)] would4 †S ci51 i

be rank four, representing a mixed state. By contrast, in certain sys-
tems the rank of the covariance matrix is invariant and a pure state
evolves to a pure state.

tion as does the difference Cd(t) 5 C(t) 2 C†(t), so that
if initially C is hermitian, that is, Cd(0) 5 0, then by
necessity Cd(t) 5 0 for all times. Similarly, L preserves
the antihermiticity of an antihermitian matrix. Second,
L (or Lc) preserves the positivity of C. This property is
easy to derive if we step back to the physical origin of
the ensemble average equations. Consider a positive def-
inite initial covariance matrix C(0). Decompose C(0) by
SVD into its EOFs in the form

C(0) 5 l e* J e , (48)O i i i
i

where li can be identified with the positive eigenvalues
of C(0) and ei with the corresponding eigenvectors. Be-
cause the sum of any positive multiple of positive def-
inite matrices is positive definite, it is sufficient to prove
that each J ei evolves to a positive definite matrix.e*i
But this must be so, for if P(t) denotes the propagator
associated with any realization of the flow, the covari-
ance at time t is C(t) 5 ^P(t)* J P(t)ei&, which ise*i
positive definite.

Third, the eigenvalue of L with maximum real part
is necessarily real and as a result L satisfies the principle
of exchange of stabilities (Drazin and Reid 1981). For
if the maximally growing eigenvalue had an imaginary
part a positive definite initial covariance matrix would,
with time, acquire negative diagonal entries, which is
not possible.

A basic difference between the certain superoperator
Lc and its generalized counterparts L is that while the
former preserves the rank of the covariance matrix, the
latter do not. Consider a sure initial state with a (nec-
essarily) rank-one covariance. Each realization of the
operator fluctuations yields a pure state, but under fluc-
tuations the ensemble-averaged state becomes mixed,
with covariance rank greater than one (see Fig. 1). This
property of increase of the rank of the covariance can
be traced to the BCB† term or its finite tc generalization
in the ensemble average covariance equations (37)–(38).

d. Determining second-moment stability boundaries
for an uncertain system

The mechanism underlying second-moment destabi-
lization is transparent in the case of commuting A and
B. Although restrictive, commuting A and B has ex-
ample in the meteorological context: in the midlatitudes
a time modulation of the jet strength is commonly ob-
served and if the mean jet is idealized as a velocity
profile linearly increasing with height and the jet fluc-
tuations are assumed to be of the same form, then the
operator A 1 eBh(t) governing evolution of perturba-
tions commutes with the mean operator, A. That A and
B commute assures that the fluctuations do not change
the sample (Lyapunov) stability of A (Farrell and Ioan-
nou 1999). However, perturbation energy, regarded as
an ensemble average, is a second-moment quantity and
may grow without bound.

For commuting A and B the generalized Lyapunov
superoperator for all autocorrelation times is given by
the asymptotic form of the operator, which is identical
to the short autocorrelation time superoperator (36):

2 2e e
22L 5 I J A 1 B 1 A* 1 B* J Iw 1 2 1 2n n

22e
1 B* J B. (49)

n

Eigenanalysis of this operator is immediate; for if fi

are the eigenfunctions of A and B with eigenvalues li

and mi, respectively, the eigenfunctions of Lw are Jf*i
fj with eigenvalues

2e
2l 1 l* 1 (m 1 m*) . (50)j i j in

It follows that the maximally growing eigenfunction cmax

is composed of the same eigenfunction from each of A
and B and so has this common structure, that is, cmax 5

J fa. The greatest second-moment growth ratef*a
according to (50)9 is

9 That the maximum real part of (50) occurs for i 5 j 5 a for
some a follows because for any two numbers a and b it can be shown
by simple algebraic manipulations that R{a 1 b* 1 (c 1 d*)2} #
max{2R(a) 1 4R(c)2, 2R(b) 1 4R(d)2}. Recall also that the second-
moment growth rate is equal to the maximum eigenvalue of (49)
divided by two.
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FIG. 2. Second-moment exponent as a function of wavenumber in
the Eady model with shear fluctuation amplitude e 5 1/3 and auto-
correlation times tc 5 6 and tc 5 1. For comparison the bottom curve
is the exponent in the absence of fluctuations. The meridional wave-
number is l 5 0.

22e
2l 5 R(l ) 1 [R(m )] . (51)2 a an

This demonstrates the generally valid property that
the eigenvalue of L with greatest real part is itself real,
and that for commuting A and B a stable mean operator
A with R(la) , 0 becomes second-moment unstable
for

2e R(l )a
$ 2 . (52)

2n 2[R(m )]a

This shows that any stable mean operator A is made
second-moment unstable by sufficiently large fluctua-
tions with structure matrix B that commutes with A,
requiring only that B have nonvanishing real eigenvalue.
The structure most second-moment unstable is not nec-
essarily the most unstable eigenfunction of A but rather
the eigenfunction of A for which R(la) 1 2e2/n[R(ma)]2

is maximized.
As an example consider the second-moment stability

of the inviscid Eady model with modulations of the
shear described in Part I. The second-moment exponent
rate as a function of zonal wavenumber, k, for the case
of l 5 0, is shown in Fig. 2 for Gaussian shear fluc-
tuations of rms magnitude e 5 1/3 and autocorrelation
times tc 5 1 and tc 5 6. For comparison the growth rate
of perturbations on the mean wind profile is also shown.
The increase of the second-moment exponent occurs
only in the unstable region of the operator. This is be-
cause for waves shorter than the short-wave cutoff the
perturbation operator has an imaginary spectrum and
from (50) commuting fluctuations cannot increase the
growth rate of the certain operator. In the unstable region

the fluctuating shear varies the growth rate, which pro-
duces an asymptotic second-moment exponent exceed-
ing that of the mean operator. Because this is a com-
muting example, the growth rate of the second moment
is the same for all autocorrelation times as that predicted
by the equivalent white noise operator. The growth rates
increase with autocorrelation time in accord with the
increase of the equivalent white noise variance e2tc.

When A and B do not commute the second-moment
growth rates cannot be directly related to the growth
rates of the constituent operators A and B, and the as-
ymptotic stability of the Lyapunov superoperator de-
pends on the autocorrelation time of the fluctuations [cf.
(33)]. Analysis of such cases requires explicit calcula-
tions of the stability of the generalized superoperator
but in realistic problems this calculation is intractable
because the Lyapunov superoperator for a system of
dimension n has dimension n4. We seek a method to
efficiently estimate the critical fluctuation magnitude
necessary to produce second-moment instability as well
as the structure of the marginally stable covariance.
Such a method is described below and demonstrated for
the short autocorrelation form of the superoperator. With
small adjustments it can be adapted to calculate the
stability of the superoperator for any autocorrelation
time provided that lim t→` D(t) 5 D` exists so that the
superoperator becomes asymptotically autonomous.

Denote by L0 the linear superoperator associated with
the certain operator A,

†L C 5 AC 1 CA ,0 (53)

and assume that A is asymptotically stable. Denote by
L1 the linear superoperator associated with the uncertain
fluctuation operator B,

1 1
2 2† †L C 5 B C 1 CB 1 B CB , (54)O i i i i1 [ ]2 2i

and compose from L0 and L1 the generalized Lyapunov
superoperator

2L 5 L 1 a L ,w 0 1 (55)

where a 2 [ 2e2/n. Because the eigenvalue with maxi-
mum real part of (55) is by necessity real, the gener-
alized Lyapunov superoperator L at marginal stability
must have a zero eigenvalue by the principle of ex-
change of stability. Exploiting this fact the noise level,

, necessary for marginal stability can be determined2a c

by eigenalysis of the superoperator 5 2 L1. For21L Lu 0

if lmax is the maximum eigenvalue of Lu (necessarily
real and positive), then the critical ac is given by 52ac

1/lmax. This follows because at marginal stability the
eigenvalue with maximum real part of the superoperator,

I
2L 5 a L 2 L , (56)w 0 u21 2a

is zero, and consequently at marginal stability the ei-
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FIG. 3. Expected optimal energy growth as a function of optimizing
time for the uncertain Eady model with velocity fluctuations of am-
plitude e 5 1/3 and autocorrelation times tc 5 2 and tc 5 6. Shown
are optimal growth given by the equivalent white noise propagator
and by the exact propagator. For comparison the optimal growth from
the mean propagator with no fluctuations is also shown. The fluc-
tuations generally increase perturbation growth and the equivalent
white noise approximation overestimates the growth. The fluctuating
wind has vertical structure u(z) 5 z2. The wavenumbers are k 5 3,
l 5 3. The coefficient of linear friction is r 5 0.3.

genvalue of Lu with maximum real part is lmax 5 1/a2.
The eigenvalues, l, of Lu and its eigenfunctions, C, can
be determined by solving the equation

†l(AC 1 CA )

1 1
2 2† †5 2 B C 1 CB 1 B CB . (57)O i i i i[ ]2 2i

The eigenfunctions of this equation consist of the pos-
itive definite covariances (the positivity is assured by
the stability of A) with the property that the stochastic
forcing of the mean operator [proportional to the lhs of
Eq. (57)] required for statistical equilibrium is equal to
the stochastic forcing produced by the equilibrium co-
variance under the influence of disturbance by fluctu-
ations with structure B [given by the rhs of Eq. (57)].
The marginally unstable eigenfunction can be found by
solving this eigenproblem (it can be readily solved by
the power method) with the advantage that this calcu-
lation does not require knowing the critical value of the
fluctuation magnitude, e 5 (n/2lmax)1/2.

e. Solving the generalized Lyapunov equation for the
statistically steady covariance in an uncertain
system

For fluctuation levels, e, for which the uncertain Lya-
punov operator is stable we can determine the stationary
response covariance, C, maintained by additive sto-
chastic forcing with forcing covariance Q. This station-
ary response covariance satisfies the generalized Lya-
punov equation (cf. 41):

†2 2e e
2 2A 1 B C 1 C A 1 BO Oi i1 2 1 2n ni i

22e
†1 B CB 1 Q 5 0. (58)O i in i

This equation can be written using the definitions of
L0 and L1 introduced earlier as

2L C 1 a L C 1 Q 5 0.0 1 (59)

We proceed to solve (59) by expanding C in the per-
turbation series:

2 4C 5 C 1 a C 1 a C 1 · · · .0 1 2 (60)

The terms in this series can be evaluated recursively by
solving the Lyapunov equations:

L C 1 Q 5 0, L C 1 L C 5 0, . . . ,0 1 00 0 1

L C 1 L C 5 0. (61)n n210 1

The solution of each of these Lyapunov equations is as-
sured to yield physically realizable covariances, that is,
hermitian and positive definite, because A is assumed sta-
ble. Therefore, the stationary covariance obtained by sum-
ming the series, if the series converges, is also hermitian
and positive definite. This stationary covariance is

2 4 2 6 3C 5 (I 1 a L 1 a L 1 a L 1 · · ·)C0u u u

2 215 (I 2 a L ) C , (62)0u

where, as previously, Lu 5 2 L1. The series is as-21L0

sured to converge if the variance of the fluctuations a
satisfies a 2lmax , 1, where lmax is the maximal eigen-
value of Lu, which is real and positive because this
system obeys the principle of exchange of stability. This
expansion confirms that the critical fluctuation magni-
tude leading to marginal stability is 5 1/lmax and2a c

that for a , ac a stationary state can be obtained under
stochastic forcing.

Although the analysis above exploited the assumption
of delta-correlated fluctuations, the methods presented
can be used to obtain similar results for more general
forms of fluctuation.

4. Optimal perturbations and stochastic optimal
forcing for uncertain systems

In order to obtain optimal perturbations under un-
certain dynamics we must first specify a norm to mea-
sure the covariances. A natural norm is the variance

\C\ 5 trace(C). (63)

While the trace of a matrix does not define a norm for
general matrices, it does define a norm for physically
realizable positive definite hermitian matrices for which



2656 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 4. Structure of the optimal perturbation that leads to greatest expected energy at t 5 4
in the uncertain Eady model. The amplitude of the fluctuations is e 5 1/3 and the autocorrelation
time is tc 5 6; other parameters are as in Fig. 3: (top) the optimal of the mean operator, which
produces energy growth 1.14; (middle) the optimal of the equivalent white noise dynamics, which
produces energy growth 3.9; (bottom) the optimal of the exact dynamics, which produces energy
growth 1.4.

it is always true that trace(C) $ 0 with equality only
when C is identically zero. This norm is chosen in part
because for covariances produced by pure states it is
identical with the square of the Euclidean norm of the
state, which in energy coordinates is the perturbation
energy. Because any sum of positive definite covari-
ances is also positive definite, this norm is linear when
it acts on sums of covariances, that is, \C 1 D\ 5 \C\
1 \D\, while for covariance differences this norm sat-
isfies the triangle inequality, \C 2 D\ # \C\ 1 \D\.

Recall that an n2 vector c corresponds to the n 3 n
covariance matrix C. The trace norm on C is evaluated
on the vector covariance c by setting \c\ 5 Tc, where
the trace superoperator T is defined as the 1 3 n2 matrix
T1i 5 di,(k21)n1k for k 5 1, . . . , n. Clearly, the trace norm
of the vector c is distinct from the Euclidean norm. It
is important to note that this linear norm on the co-
variances is not related to an inner product, and as a
result orthogonality between covariances is not defined.

A norm that defines an inner product on the covari-
ances with orthogonality properties is the Frobenius
norm. The Euclidean norm on vector covariances, \c\F

5 , corresponds to the Frobenius norm on co-†Ïc c
variance matrices,

†\C\ 5 Ïtrace(C C). (64)F

For covariance matrices of rank one, the associated vec-

tor covariance is c 5 c* J c for a pure state c, and
in such cases the Frobenius norm of C is equal to the
trace norm of C, and the dot product between two rank-
one covariance matrices is equal to the square of the
magnitude of the dot product of the corresponding state
vectors.

In the previous sections we have determined the
superoperator that advances an initial covariance c(0)
to the covariance t units of time later [c(t) 5 P (t)c(0)]
and also the superoperator that produces the steady-
state covariance c(`) from the stochastic forcing co-
variance q(c(`) 5 {limt→` P (t, s) ds}q), whenevert#0

this is defined. In all cases we have a mapping from
an initial covariance c i to a final covariance c f(c f 5
Mc i), and the optimization problem is to determine
the initial c i of unit magnitude that produces the c f

of largest magnitude. If M is the propagator associated
with the Lyapunov superoperator, we interpret the op-
timal as the initial covariance that produces theic opt

largest final covariance c f. If M is the mapping from
forcing structure matrix q to the equilibrium-main-
tained covariance c(`), then the optimal qopt identifies
the forcing structure matrix producing the largest
maintained variance.

If covariances are measured in the Frobenius norm,
\C\F , then the optimization problem is solved by sin-
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FIG. 5. Structure of the first EOF evolved from the sure optimal initial state shown in Fig. 4:
(top) the sure evolved optimal of the mean dynamics; (middle) the first EOF of the covariance
obtained using the equivalent white noise dynamics; the first EOF accounts for 96% of the evolved
optimal covariance; (bottom) the first EOF of the covariance obtained using the exact dynamics.
Note that despite the exaggerated growth factor obtained using the equivalent white noise dynamics,
the structure of the evolved covariance is well approximated.

gular value decomposition of the mapping from initial
to final covariances in which the mapping is factored
as M 5 USV†. If the diagonal elements of S, si, are
ordered in descending magnitude, then the first column
of V is the optimal covariance (or qopt for the sto-icopt

chastic optimal) in the Frobenius norm and the optimal
amplification is the first singular value:

i\Mc \Fs [ \M \ 5 max . (65)1 F i\c \F

Note that this optimal covariance is not necessarily rank
one so that the covariance need not be associated with
a pure state and the optimal growth need not be real-
izable by a single integration of the model. Such a mixed
optimal covariance can be physically prepared only by
separate initializations of the system with the pure states
that give rise to this covariance and subsequently form-
ing the ensemble covariance of these simulations. Al-
though obtaining the optimal covariance in the Froben-
ius norm is straightforward, operationally this norm is
less physically relevant as a measure of the covariance
than is the trace because it maximizes the square sum
of all the elements of the covariance matrix, which is
not commonly associated with a physical quantity, while
the trace of the covariance matrix is the square sum of

the diagonal elements and can be identified with the
physical quantity variance.

It is useful to consider SVD of the composite operator
formed by the mapping M and the trace superoperator
T (T M, rather than of the mapping M alone). Because
T M projects n2-dimensional covariances to the reals it
has only one nonzero singular value; we denote this
nonzero singular value by s, and the associated singular
vector by y, so that T M 5 sy†. This SVD reveals that
the action of T M is just taking the inner product with
y. The covariance matrix corresponding to y, V, almost
succeeds in identifying the optimal initial covariance,
as it is among initial covariances with unit Frobenius
norm (\Ci\F 5 1) the one producing maximum final
variance max (\C f \). However, it does not succeed in
identifying the positive definite hermitian covariance of
unit variance (\Ci\ 5 1) leading to maximum final var-
iance. Remarkably, this optimal covariance is the rank-
one covariance formed from the first EOF of V and the
growth is sa1 with a1 the first singular value of V. This
result, which does not obtain unless V is both hermitian
and positive definite, is proven in appendix B. In ap-
pendix C an alternative proof by construction of the
optimal covariance is given that has the advantage of
being suitable for computation of the optimals in large
systems.
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FIG. 6. Optimal expected energy growth as a function of wave-
number, k, for the uncertain Eady model with fluctuation amplitude
e 5 1/3 and autocorrelation time tc 5 6. Shown are the optimal growth
at t 5 4 obtained from the equivalent white noise propagator, the
exact propagator, the propagator of Eq. (66), which would have been
exact if A and B commuted, and the optimal growth from the mean
propagator. The fluctuating wind has vertical structure u(z) 5 z2. The
wavenumbers are k 5 3, l 5 3. The coefficient of linear friction is
r 5 0.3.

In certain dynamics optimal perturbations can be or-
dered according to growth, or stochastic optimals ac-
cording to contribution to variance, but such an ordering
cannot be performed with covariances, as orthogonality
is not defined for the trace norm because the trace norm
is not associated with an inner product. However, we
can form an orthogonal set of optimal perturbations aris-
ing from pure state covariances and in this way identify
a set of optimal perturbations for uncertain dynamics.
The second pure state initial condition, orthogonal to
the first, that produces the second largest growth is the
second EOF of V and its growth is sa 2. Proceeding in
this way we obtain an orthonormal basis ordered ac-
cording to variance amplification, analogous to that ob-
tained for deterministic propagators by SVD of the de-
terministic propagator. However, note that we do not
obtain in this way a second optimal covariance matrix,
but only the second optimal pure initial state, because
as previously mentioned there is no meaning to a second
optimal covariance as the set of positive definite her-
mitian matrices do not form an inner product space in
the trace norm.

Consider the statistically steady ensemble average co-
variance of a stochastically forced system, which, as
discussed earlier, is equal under the assumption of er-
godicity to the time average covariance of a single re-
alization of the system as would be accumulated by a
time-averaging instrument. We have seen that the struc-

ture of stochastic forcing producing the largest main-
tained variance is a pure state given by the first EOF
of T M with M 5 limt→` P (t, s) ds.t#0

Consider the problem of determining ensemble fore-
cast perturbations when the tangent linear forecast error
system is uncertain, perhaps because of parameter un-
certainty (Palmer 2001). One method for choosing en-
semble members is to take optimal perturbations (Mol-
teni et al. 1996; Ehrendorfer and Tribbia 1997). In the
presence of uncertainty we have shown that the optimal
producing greatest expected growth is a covariance of
rank one. This implies that there is a single optimal
perturbation for the uncertain forecast system that pro-
duces the greatest expected error growth; subsequent
pure state optimals could be chosen to complement the
basis set of optimal perturbations that compose the en-
semble.

5. Second-moment growth and stochastically
maintained variance: Optimals and stochastic
optimals in the uncertain Eady problem

Consider the Eady problem presented in Part I, but
for simplicity with wind fluctuations confined to the
form u(z) 5 z2 and rms amplitude e 5 1/3. Take au-
tocorrelation times tc 5 2 and tc 5 6 in order to assess
the role of finite correlations and the range of validity
of the equivalent white noise approximation (36) to the
exact uncertain Lyapunov superoperator (35). For sim-
plicity take Rayleigh damping with damping timescale
chosen to stabilize the model so that it reaches a sta-
tistically steady state under stochastic forcing.

Consider first determining the perturbation producing
the largest expected variance (trace) of C(t) over all
matrices C(0) with unit initial variance. The map that
connects C(t) and C(0) is the uncertain propagator P (t)
and the optimal initial covariance matrix we seek is the
rank-one initial covariance formed by the first EOF of
the covariance associated with right singular vector, V,
of T P (t), where T is the trace superoperator. The vari-
ance growth over t achieved by this optimal perturbation
has magnitude sa1, where s is the singular value of
T P (t) and a1 is the largest eigenvalue of the covariance
associated with the singular vector V. The remaining
set of mutually orthogonal optimal perturbations each
produces variance growth of sai, where ai are the re-
maining eigenvalues of V. While the optimal initial co-
variance matrix is of rank one, at later times the evolved
optimal covariance matrix becomes mixed and its struc-
ture can be described using EOF analysis.

Optimal variance growth as a function of optimizing
time for the Eady model is shown in Fig. 3. The optimal
growth obtained using the exact covariance dynamics
[Eq. (37)] is compared with that obtained using the
equivalent white noise dynamics [Eq. (38)] that is for-
mally valid for sufficiently short autocorrelation times,
tc. A further comparison with the optimal growth at-
tained by the mean zonal flow Eady operator in the
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FIG. 7. (left) Expected energy growth achieved by the optimal perturbations in four time units. Shown are the growth
achieved by optimal perturbations obtained using the exact ensemble mean square dynamics (circles), the growth
achieved by the optimal perturbations obtained using the equivalent white noise dynamics (crosses), and the growth
achieved by the optimals of the mean dynamics in the absence of fluctuations (stars). (right) EOF decomposition of
the covariance at t 5 4 arising from evolution of the rank-one initial covariance of the top optimal perturbation. Shown
are the variance percentage accounted for by the EOFs of the covariance evolved by the exact dynamics (circles), the
variance accounted for by the EOFs of the equivalent white noise dynamics (crosses), and the variance accounted for
by the EOFs of the mean dynamics (stars). The covariance evolved with the mean dynamics remains rank one and a
single EOF accounts for 100% of its variance. The evolved covariance under uncertain dynamics is mixed and spanned
by approximately two states. The amplitude of the fluctuations is e 5 1/3 and the autocorrelation time is tc 5 10; the
model and the other parameters are as in Fig. 3.

absence of fluctuations is also shown. Note that fluc-
tuations increase the expected variance growth. While
the equivalent white noise approximation overestimates
the growth potential, it identifies the correct structure
both for the optimal perturbation and the evolved op-
timal covariance. This is shown for the t 5 4 optimal
and the first EOF of the evolved optimal covariance at
the optimizing time in Figs. 4 and 5, respectively. Note
that optimals in the fluctuating Eady model are con-
centrated near the upper boundary where fluctuations of
the shear are largest.

The inaccuracy in the optimal growth estimate made
by the white noise approximation is not due primarily
to overestimation of the fluctuation operator magnitude,
e2B2/n, but rather to assuming that this value is attained
from the start. We know from the discussion of the
ensemble mean dynamics [cf. Eq. (3)] that the ensemble
mean correction requires a time of order tc to attain its
asymptotic form. A more accurate approximation of op-
timal growth for short times is obtained if the ensemble

mean fluctuation correction is allowed to build up over
time according to

2dc e
2n t 25 A 1 (1 2 e )B c, (66)5 6dt n

which would be exact if A and B commuted. Remark-
ably, the optimal growth obtained from the propagator
associated with the equivalently commuting (66) ac-
curately tracks the optimal growth obtained from the
propagator of exact superoperator (35) (cf. Fig. 3). The
accuracy of the growth calculated from (66) can also
be seen in Fig. 6, which shows the expected optimal
energy growth attained in four time units as a function
of wavenumber.

While in an uncertain system we cannot determine a
set of orthogonal covariances ordered according to
growth potential, we can determine a set of orthogonal
optimal perturbations ordered according to growth po-
tential. The growth resulting from these optimal per-
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FIG. 8. Structure of the first EOF of maintained variance in the Eady model. (top) The first
EOF produced by temporally and spatially white noise additive forcing of the mean operator;
the maintained energy is 2.2, and the first EOF accounts for 13.9% of the variance. (middle)
The first EOF produced in the equivalent white noise approximation by temporally and spatially
white noise forcing of the operator associated wind fluctuating about the mean; the fluctuating
wind is u(z) 5 z2, the rms amplitude of the fluctuations is e 5 1/3, and the autocorrelation time
is tc 5 6; the maintained energy is 2.7, and the first EOF accounts for 26% of the variance.
(bottom) The exact first EOF for the operator associated with the same fluctuating wind as in
the middle panel but with the assumption that the fluctuations are Gaussian with Kubo number
K 5 2; the maintained energy is 2.6, and the first EOF accounts for 23.8% of the variance; the
wavenumbers are k 5 3, l 5 3; the coefficient of linear friction is r 5 0.3.

FIG. 9. (top) Structure of the first stochastic optimal, which is responsible for producing 11.1%
of the total variance when the mean operator of the Eady model is stochastically forced with
temporally white additive noise with the spatial structure of the stochastic optimal. (bottom)
The structure of the first stochastic optimal in the fluctuating Eady model in the equivalent white
noise approximation; the fluctuating wind is u(z) 5 z2, the rms amplitude of the fluctuations is
e 5 1/3, and the autocorrelation time is tc 5 6; this stochastic optimal is responsible for producing
20.6% of the total variance. The wavenumbers are k 5 3, l 5 3; the coefficient of linear friction
is r 5 0.3.
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FIG. 10. (left) Variance maintained by the first 10 stochastic optimals of the uncertain Eady model: the variance
maintained by the equivalent white noise approximation (crosses), and for reference the variance maintained by the
mean operator without fluctuations (stars). (right) The percentage of the variance of the uncertain Eady model arising
from the first 10 EOFs with stochastic forcing white in space and time: variance explained by the equivalent white
noise approximation (crosses), variance explained by the mean operator (stars); the fluctuating wind is u(z) 5 z2, the
rms amplitude of the fluctuations is e 5 1/3 and the autocorrelation time is tc 5 10; the wavenumbers are k 5 3, l
5 3; the coefficient of linear friction is r 5 0.1.

turbations is shown for the t 5 4 optimization in the
left panel of Fig. 7.

While the optimal covariance has rank one, and there-
fore can be identified within a phase with a pure optimal
perturbation, the evolved covariance is mixed by the
uncertain dynamics. The rank of the covariance is ap-
proximately equal to the number of EOFs of the co-
variance with appreciable variance. In the right panel
of Fig. 7 the EOF spectrum of the evolved optimal co-
variance for the t 5 4 optimal is shown at the optimizing
time. Under uncertain dynamics the sure initial covari-
ance becomes mixed with approximately rank two.

We turn now to the steady-state variance maintained
in the uncertain Eady problem under spatially and tem-
porally white forcing. Although in this example operator
fluctuations only marginally increase the variance, the
variance structure shifts markedly to the upper level
(Fig. 8). The origin of upper-level short waves in the
atmosphere lacks persuasive theoretical explanation and
we are pursuing this mechanism of stochastic destabi-
lization.

We seek the optimal forcing covariance matrix with
the property that when the associated structure is forced
white in time the maximum variance is maintained; this
structure is called the stochastic optimal. Finding the
stochastic optimal requires, according to (40), obtaining
the optimal for the map M 5 2Lw

21, where Lw is the
asymptotic superoperator of the covariance dynamics
for short autocorrelation times. The structure of the first
stochastic optimal for the exact operator and for the
equivalent white noise approximation to this operator
is shown in Fig. 9. The stochastic optimals in this un-
certain Eady model have largest amplitude at upper lev-
els where shear fluctuations are largest. The variance
maintained by the stochastic optimals is shown in Fig.
10 (left panel), and the decomposition of the maintained
covariance matrix into its EOF components is shown
Fig. 10 (right panel).

While in this example the stochastic optimals were
obtained by singular value decomposition of L21, this
is computationally expensive and there is an alternative
method for finding these optimals by eigenanalysis of
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the generalized back Lyapunov equation in direct anal-
ogy with the method of solution used for certain dy-
namics. This method and the back Lyapunov equation
for uncertain dynamics are described in appendix C.

6. Discussion and conclusions

In Part I of this paper we examined ensemble mean
stability of uncertain systems from the perspective of
generalized stability theory (GST) and in Part II we
addressed second-moment stability properties of uncer-
tain systems from this perspective. We first expressed
the equations governing covariance dynamics of certain
operators in tensor product notation and then extended
these to uncertain operators. We obtained stability
boundaries for second-moment growth in uncertain sys-
tems in terms of the amplitude and structure of operator
fluctuations. A physical implication of these results is
that for a stochastically forced linear system to have
finite maintained variance its parameter fluctuations
must lie within these bounds.

Analysis of the stochastically forced uncertain system
allows extension of previous results on the variance,
fluxes, and structures in statistically steady turbulent
flows (cf. Farrell and Ioannou 1994, 1995, 1998) to take
account of uncertainty in the operator.

The time mean covariance of a stochastically forced
uncertain system can be obtained from second-moment
analysis if an ergodic assumption connecting the en-
semble and time means of stable forced systems is made.
From this perspective second-moment ensemble mean
stability can be interpreted as a necessary condition for
the existence of a bounded forced state in an uncertain
system. This is because second-moment unstable sys-
tems, even if sample stable, support unbounded excur-
sions in variance that prevent establishing a finite forced
variance regime.

Optimal perturbations play a major role in GST and
for uncertain systems we obtain a method for finding
the initial condition leading to greatest expected vari-
ance growth at any chosen time as well as the stochastic
forcing structures that maintain the greatest variance.
Remarkably, one pure initial condition is found con-
structively that maximizes expected growth in an un-
certain system and an analogous pure forcing structure
is found that maximizes the expected variance.

One application of this work is a method for taking
account of forecast error system uncertainty in choosing
forecast ensembles by substituting uncertain optimals
for certain optimals in the ensemble. Another applica-
tion is to the problem of explaining the origin of upper-
level short waves in the midlatitude jet, which are dy-
namically similar to the upper-level structures in the
fluctuating jet example (Fig. 8).
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APPENDIX A

Basic Properties of the Kronecker (Tensor)
Product

The tensor or Kronecker product of the k 3 l matrix
A with the m 3 n matrix B is the km 3 ln matrix A J
B defined as follows:

 A B · · · A B11 1l

· · · · · 
 A J B [ · · · · · . (A1)

· · · · · 
A B · · · A B k1 kl

Two properties of the tensor product will be used re-
peatedly:

(A J B)(C J D) 5 (AC) J (BD) and (A2)
† † †(A J B) 5 A J B . (A3)

APPENDIX B

Construction of the Optimal Covariance

Consider singular value decomposition of the com-
position of the trace superoperator T with the mapping
M: T M 5 USV†, in which V is a single column. We
will show that the first singular vector V is the optimal
initial covariance that results in maximum variance after
mapping by M. This shows that the optimal is physically
realizable and necessarily rank one.

First, we establish that V is hermitian. If V were not
hermitian, it could be decomposed into its hermitian and
antihermitian parts. Because the antihermitian part has
zero trace under the mapping M, a nonhermitian V
would produce the same variance as its hermitian part
but would have larger Frobenius norm. Therefore, the
optimal V is hermitian.

Second, we establish that V must be positive definite.
Consider the eigendecomposition of V in the orthonor-
mal basis of its eigenvectors e i ordered descending in
the magnitude of their real eigenvalue ai. In vector form
this eigendecomposition can be written as

v 5 a e* J e ; (B1)O i i i
i

if V were not positive definite, some of the a i would
be negative, and y could then be written as the difference
of two positive definite matrices V 5 V1 2 V2, by
partitioning the summation over the positive and neg-
ative eigenvalues. The action of the linear dynamics
does not affect this partitioning, because each positive
definite hermitian matrix is mapped to a positive definite
hermitian matrix. But then we reach a contradiction: V
is the covariance that produces the largest growth; if it
were not positive definite, then a higher energy would
be attained by either V1 or V2 (because the diagonal
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elements of a positive definite matrix are by necessity
positive). We conclude that the optimal initial covari-
ance that maximizes the final covariance is by necessity
hermitian and positive definite.

Third, we show that the optimal covariance is nec-
essarily a rank-one covariance, that is, a covariance pro-
duced by a sure initial condition, and that the optimal
is the leading EOF of V. Moreover, the EOFs can be
shown to order all pure state covariances according to
the variance that each produces in the final state.

That the optimal must be a pure state is clear from
an argument based on superposition.B1 A general unit
variance realizable initial covariance Ci(\Ci\ 5 1) can
be decomposed into its orthonormal EOFs, fi, in the
vector form c i 5 Sk gkck, where ck, is the rank-one vector
covariance associated with each EOF, that is, ck 5 f *k
J fk. Because trace(Ck) 5 1, it follows that Sk gk 5 1.
The final covariance c f will be c f 5 Sk gk Mck and its
total variance will be the linear sum of the corresponding
trace (Mck). Out of the covariances formed by the EOFs,
let ca 5 J fa be the initial covariance of unit variancef *a
that leads to the largest final variance, trace (Mca); then
because Si gi 5 1, a higher growth is obtained by ca 5

J fa rather than Ci itself.f *a
Having established that the optimal initial condition

is rank one, consider a general rank one realizable initial
covariance produced by the sure state c i 5 Sm bmem,
where em are the orthonormal EOFs of V, and bm un-
determined but such that Sm | bm | 2 5 1, so that the
initial covariance,

i i ic 5 c * J c 5 b*b e* J e , (B2)O O m l m l
m l

that is generated from it has unit trace. Consider the
action of T M on c i. Using (B1) and the identity (A J
B)† 5 A† J B†, the mapping T M can be written as

n

† †T M 5 s a e* J e , (B3)O k k k
k51

because the EOF coefficients ak are real (and positive).
Note that because of the orthonormality of the eigen-
vectors, ek, we have for any k ± l that the vectors e*k
J el are perpendicular to y in the Euclidean vector inner
product [cf. Eq. (B1)]. We thus obtain

There is an alternative way to see that the optimal covariance is by
necessity rank one. As discussed earlier the positive definite covari-
ances form a convex subset, that is, any convex combination of C1

and C2, C 5 lC1 1 (1 2 l)C2 with 1 $ l $ 0, produces a positive
definite hermitian covariance. The pure states are the ‘‘vertices’’ of
this subset in the sense that they cannot be written as convex com-
binations of covariances. The measure we have introduced is a linear
measure on the covariances and consequently the optimum is attained
at a vertex, that is, for a pure state covariance (cf. Farrell and Ioannou
2000).

i † †T Mc 5 s a e* J e b*b e* J eO O Ok k k m l m l1 2k m l

25 a |b | # a , (B4)O k k 1
k

because Sk | bk | 2 5 1 and for all k, ak . 0, and the
maximum growth is attained by choosing bk 5 0 for k
. 1 and b1 5 1. Therefore, it is attained by the first
EOF of V and the variance growth is sa1.

APPENDIX C

The Back Lyapunov Equation for Uncertain
Dynamics and Construction of the Optimals

Consider the system

dc
5 A(t)c 1 Fj(t), (C1)

dt

in which the asymptotically stable certain operator A(t)
is stochastically forced by a temporally white scalar
noise process j(t). The stochastic optimal is the forcing
vector F of unit Euclidean norm that produces the great-
est mean variance. First, notice that because c(t) 5 t#0

P(t, s)Fj(s) ds where P(t, s) is the propagator, the var-
iance at time t is

t

† † †^c c& 5 F P (t, s)P(t, s) ds F. (C2)E5 6
0

It is apparent from this expression that the eigenvector
of the hermitian matrix

t

†S(t) 5 P (t, s)P(t, s) ds (C3)E
0

with largest eigenvalue is the forcing structure that pro-
duces the greatest variance at time t. The other eigen-
vectors of S(t) complete the set of mutually orthogonal
forcings that can be ordered according to the variance
that each produces at time t.

The stochastic optimal is obtained by eigenanalysis
of S` 5 limt→` S(t). This limit can be easily obtained
by noting that S(t) satisfies the equation

dS
†5 I 1 A (t)S 1 SA(t). (C4)

dt

If A is autonomous and asymptotically stable, the steady
state S` satisfies the back Lyapunov equation

†A S 1 S A 5 2I.` ` (C5)

From this equation, S` can be easily determined and the
stochastic optimals obtained.

The advantage of (C5) is that it is often computa-
tionally easier to obtain the optimals of an operator rath-
er than the optimals of a superoperator. We wish to
determine the appropriate back Lyapunov equations for
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an uncertain system. Because each realization satisfies
the back Lyapunov equation

dS
†5 I 1 {A 1 eh(t)B}S 1 S{A 1 eh(t)B}, (C6)

dt

we can obtain the ensemble average equation by the
same method that was used to obtain the ensemble av-
erage covariance in section 3. The resulting steady-state
back Lyapunov equation for the noncommuting case is
in the short autocorrelation limit:

†2 2 2e e 2e
2 2 †A 1 B S 1 S A 1 B 1 B S B 5 2I.` ` `1 2 1 2n n n

(C7)

The steady state S` in high-dimension systems can
be obtained using (C7) through the series procedure
described in section 3e. Eigenanalysis of S` then pro-
vides the stochastic optimals. This development shows
constructively that the stochastic optimals are rank-one
covariances.

Analogously and as an alternative to the procedure
used in section 4 for obtaining the optimal initial con-
dition that leads to the greatest expected perturbation
growth at any time t, we can proceed in the following
manner. At time t the perturbation square amplitude for
each realization of the fluctuations is

† † †c c 5 c {P (t, 0)P(t, 0)}c .0 0 (C8)

It is apparent from this expression that the eigenvector
of the hermitian matrix

†H(t) 5 P (t, 0)P(t, 0) (C9)

with largest eigenvalue is the initial condition that leads
to the greatest amplitude at time t. The other eigenvec-
tors of H(t) complete the set of mutually orthogonal
initial conditions ordered according to their growth at
time t. To obtain the expected optimal perturbation we
first form the ensemble average of equation

dH
†5 A (t)H 1 HA(t), (C10)

dt

which is satisfied by each realization. For example, the
ensemble mean equation in the white noise approxi-
mation is

d^H&
† T5 I J A 1 A J I5dt

2e
2† T T1 (I J B 1 B 1 B J I) ^H&, (C11)6n

which determines ^H&. Eigenanalysis of ^H& determines
the pure optimal initial state that leads to the largest
square amplitude growth at time t.
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