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Abstract. The strong mean shear in the vicinity of the boundaries in turbulent boundary layer flows prefer-
entially amplifies a particular class of perturbations resulting in the appearance of coherent structures and in
characteristic associated spatial and temporal velocity spectra. This enhanced response to certain perturba-
tions can be traced to the nonnormality of the linearized dynamical operator through which transient growth
arising in dynamical systems with asymptotically stable operators is expressed. This dynamical amplification
process can be comprehensively probed by forcing the linearized operator associated with the boundary layer
flow stochastically to obtain the statistically stationary response.

In this work the spatial wave-number/temporal frequency spectra obtained by stochastically forcing the
linearized model boundary layer operator associated with wall-bounded shear flow at large Reynolds number
are compared with observations of boundary layer turbulence. The verisimilitude of the stochastically excited
synthetic turbulence supports the identification of the underlying dynamics maintaining the turbulence with
nonnormal perturbation growth.

1. Introduction

At high Reynolds number turbulent pipe and channel flows develop a region of strong shear adjacent to no-
slip surfaces. This boundary layer supports characteristic coherent structures which are commonly described
as streamwise streaks or streamwise vortices. The existence of boundary layer streaks has been recognized
for some time (Kline and Runstadler, 1959; Klineet al., 1967; Bakewell and Lumley, 1967) and the central
role of these structures in the energetics maintaining the turbulent state has also been recognized (Kimet
al., 1971). Nevertheless, while morphological aspects of these coherent structures are known with some
certainty, including the streak spacing of approximatelyz+ ≈ 100 (where cross-stream distance is expressed
in viscous wall units) and the streamwise extent ofx+ ≈ 600 (Smith and Metzler, 1983) and there even
exist frequency/wave-number spectra of the streamwise velocity perturbations at various distances from the
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wall (Morrison and Kronauer, 1969; Morrisonet al., 1971), there has been little success until recently in
reconciling these observations with theory.

Benney and Lin (1960) suggested that Tollmien–Schlichting (T-S) waves interact nonlinearly with super-
imposed three-dimensional waves to produce longitudinal eddies but their mechanism failed to produce the
observed spanwise wavelength and required existence of well-developed T-S waves which are not seen in
fully developed boundary layer turbulence. Moreover, the mechanism of streak formation is generally ac-
cepted to be the linear process of advection of mean streamwise momentum by streamwise roll perturbations.
This view is supported by comparison of structures arising in fully nonlinear direct numerical simulations
with those arising from random initial conditions using the linearized equations (Leeet al., 1990).

Görtler (1940) instability has been cited as a possible explanation for streamwise vortices from time to
time but that instability requires a concave boundary that does not occur except perhaps transiently or as
a local approximation to the background flow. More promising is the theory of Ellingsen and Palm (1975)
and Landahl (1980) which describes a kinematic mechanism for producing streaks in shear flows from
streamwise vortices that is not associated with an exponential instability. Benney and Gustavsson (1981)
later showed that large transient growth of streaks could occur in a manner similar to that described by
Landahl near a point of resonance between a Squire mode and an Orr–Sommerfeld (O-S) mode of the O–S
equations. Butler and Farrell (1992) (hereafter B&F) showed that streaks are the disturbances resulting
from the initial perturbation producing largest growth in shear flow and that this growth occurs even far
from Squire/O–S resonance. This result implies that streaks arise naturally from small random disturbances
and explains the ubiquity of streaks in shear flow. The mechanism responsible for selecting thez+ ≈ 100
spanwise spacing of the sublayer streaks was subsequently clarified by Butler and Farrell (1993). Their
results were obtained making use of optimal perturbation theory which provides a constructive method for
finding the perturbation with the greatest increase in energy over a specified interval of time (B&F). The
essential additional physically based parameter used by Butler and Farrell (1993) is this interval of time
which is chosen to be the decorrelation time in the flow as estimated from the observed eddy turnover
time. Using this parametrization the observed streak structure is found to correspond closely with the most
amplified perturbation when the appropriate Reynolds–Tiederman boundary layer profile is taken.

Optimal perturbation theory provides a method for identifying a complete orthogonal set of perturbations
ordered in potential for growth as measured in a chosen norm. This theory is appropriate for identifying
initial conditions conducive to growth and for placing bounds on the potential for growth as well as for
predicting the structures that arise transiently in the flow (see Farrell, 1988; B&F; Reddy and Henningson,
1993; Trefethenet al., 1993; Farrell and Ioannou, 1993a,b). Moreover, recognition of the potential for
growth of a subset of favorably configured perturbations in strongly sheared flows leads naturally to the idea
that maintenance of perturbation variance can be traced to amplification of a subset of transiently growing
perturbations which are continually replenished by nonlinear wave/wave interactions (Farrell and Ioannou,
1993,d, hereafter F&I).

While optimal perturbation theory has led to insights into mechanisms of perturbation growth, it is not
ideally suited for studying the statistical properties of the ensemble of all perturbations making up the
turbulent flow. For this purpose the stationary statistics of the associated nonnormal dynamical system needs
to be obtained and the appropriate method for accomplishing this is the theory of stochastic differential
equations (F&I; Farrell and Ioannou, 1994a). Previously, stochastic analysis was applied to the study of
bypass transition by demonstrating very rapid increase in variance (O(R3)) with shear based Reynolds
number in stochastically excited shear flows which led to a successful prediction of observed transition
Reynolds numbers (Farrell and Ioannou, 1994a). A theory based on the dynamics of nonnormal operators
has also successfully accounted for maintenance of the large-scale variance in the atmosphere and reproduced
the observed synoptic and planetary scale wave spectra and eddy transports (Farrell and Ioannou, 1993c;
1994b; 1995).

While the methods familiar in the study of coupled stochastic differential equations associated with
normal operators (see Wang and Uhlenbeck, 1945) are easily extended to the nonnormal system arising
from the highly sheared flow of the turbulent boundary layer, the implications of these results are often
novel (F&I). Application of methods of stochastic analysis to the mean velocity profile associated with
turbulent shear flow, identifies the statistical properties of the turbulence including the Karhunen–Loeve
functions that most efficiently characterize the structures accounting for the disturbance variance as well as
the forcing perturbations most effective in producing the variance (F&I). Perhaps the results of most interest
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for the present purposes are the spectra relating frequency and wave number in boundary layer turbulence.
Such spectra have been obtained for the quasi-geostrophic turbulence of the midlatitude atmospheric jet and
found to compare well with observations (Farrell and Ioannou, 1994b, 1995). Analogous to the observed
atmospheric spectra are the observed spectra of streamwise velocity perturbations in the sublayer of channel
flows which have been studied using hot wire anemometry (Morrison and Kronauer, 1969; Morrisonet al.,
1971). These observations provide a more complete description of the coherent boundary layer motions than
that provided by streak spacing alone.

In this work the parameterization of finite time disruption exploited in Butler and Farrell, (1993) and
Farrell and Ioannou (1993a) to obtain the coherent structures in the boundary layer is extended to obtain
the boundary-layer-frequency/wave-number spectra of Morrison and Kronauer (1969). To this purpose a
method of accounting for the finite time correlation of disturbances in stochastically forced boundary layer
flow is developed and the success of the resulting simulation of boundary layer turbulence provides support
for a mechanistic theory of turbulence based on the properties of the highly nonnormal dynamical operator
arising in strong shear.

2. Stochastic Dynamics of the Linearised Navier–Stokes Equations

2.a. Formulation

Consider a turbulent channel flow driven by a constant pressure gradient with streamwise (x) mean velocity
U (y) varying only in the cross-stream direction (y). The evolution of harmonic perturbations with streamwise
wave numberkx and spanwise (z) wave numberkz are modeled by the stochastically forced linearized three-
dimensional Navier–Stokes equation with a random forcingε assumed for simplicity to be a spatially and
temporallyδ-correlated Gaussian white-noise process with zero mean and unit variance. The forced equation
takes the form (see F&I):

dϕ
dt

= Aϕ + ε(t), (1)

whereϕ = [v̂ , η̂]T , with the cross-stream (y) perturbation velocity given by

v = v̂(y, t) ei(kxx+kzz), (2a)

and the cross-stream perturbation vorticity by

η = η̂(y, t) ei(kxx+kzz), (2b)

and in which the real parts are accorded physical interpretation.
The evolution operator can be expressed in the form

A =
[
L 0
C S

]
, (3)

in whichL is the O–S operator,S is the Squire operator, andC is the coupling between cross-stream vorticity
and velocity resulting from the tilting of mean spanwise vorticity by the perturbation cross-stream velocity.
In detail:

L = ∆−1(−ikxU∆ + ikxd2U/dy2 + ∆∆/R), (4a)

S = −ikxU + ∆/R, (4b)

C = −ikzdU/dy. (4c)

The Laplacian operator is given by∆ ≡ d2/dy2 − K2, whereK is the total horizontal wave number:
K2 ≡ k2

x + k2
z. The operator∆−1 in (4.a) is rendered unique by incorporation of the no-slip boundary

conditions at the channel wallsy = ±1 which require:
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v̂(±1) = 0,
dv̂
dy

∣∣∣∣
y=±1

= 0, (5)

η̂(±1) = 0.

We consider a spatially discrete approximation to (2) so that the spatially continuous operators reduce to
finite-dimensional matrices.

In the equations above we have nondimensionalized lengths with the channel half-width,L, velocities
with the friction velocity,Uτ , and time byL/Uτ .

The Reynolds number based on the friction velocity isR ≡ UτL/ν. Consequently, for such a turbulent
channel flow we can immediately relate the Reynolds number,R, based on the friction velocity, to the
Reynolds number,Rlam, based on the maximum velocity attained if the flow were laminar under the same
pressure gradient (Rlam = R2/2). The relationship betweenR and the Reynolds number,Rm = RUm/Uτ ,
based on the actual maximum velocity,Um, which is often quoted in experimental work, can only be obtained,
at present, from experiment (see Houssain and Reynolds, 1975).

We assume as the background flow the symmetric mean velocity profile proposed by Reynolds and
Tiederman (1967):

U (y) =
∫ y

−1
dy

Ry

1 +νE(y)
, for y ∈ [−1,1], (6)

in which the variable eddy viscosity is given by

νE(y) =
(1 + (1

3κR(1− y2)(1 + 2y2)(1− e−(1−|y|)R/A))2)1/2− 1

2
. (7)

The profile forκ = 0.4, A = 30, andR = 180 and 2000 is shown in Figure 1. In addition, appropriate
length and time scales are introduced to resolve the region adjacent to the boundaries. Specifically, length
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Figure 1. Mean velocity profile of the turbulent channel flow as given by the Reynolds–Tiederman equation (8) forκ = 0.4 andA = 30
as a function ofy+, the distance from the lower boundary. The velocity,U , is nondimensionalized by the friction velocity,Uτ . The upper
curve correspond to Reynolds numberR = 180 and the lower curve toR = 2000.
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Figure 2. The Reynolds number based on the maximum velocity attained in the turbulent flow,Rm, as a function of the Reynolds
number based on the friction velocity,R, for the Reynolds-Tiederman profile. Also (dashed line) the Reynolds number,Rlam, based on
the maximal velocity that would be attained if the flow were maintained laminar.

is expressed in wall unitsν/Uτ , and time in units of the viscous time scaleν/U2
τ . In what follows lengths

expressed in wall units and times expressed in viscous time units will be denoted with superscript +.
The Reynolds–Tiederman velocity profile gives the maximum mean velocity,Um, which is attained at the

center of the channel. The relationship for this Reynolds–Tiederman profile among the Reynolds number
based on the friction velocity,R, the Reynolds number based on the maximum mean velocity attained in
the turbulent flow,Rm, and the Reynolds number based on the maximal velocity that would be attained if
the flow were maintained laminar,Rlam, are shown in Figure 2.

2.b. Determining the Temporal Evolution of Second Order Moments Under Stochastic Excitation

The forced solution of (1) is given by

ϕt =
∫ ∞

0
eA(t−s) H(t− s)ε(s) ds , (8)

whereH(t) denotes the Heaviside function and the forcing is considered to be switched on att = 0.
All the second-order moments of perturbation variables at timet can be found from the correlation matrix

of the state vector:
Ctij = 〈ϕ(t)iϕ(t)∗j 〉. (9)

In which〈 〉 denotes an ensemble average, a star denotes complex conjugation and indices denote a variable
at the discretized level. For exampleϕi for a discretization ofN points corresponds to the cross-stream
velocity v̂(yi) for 1≤ i ≤ N , and the cross-stream vorticity ˆη(yi−N ) for N + 1≤ i ≤ 2N .

Consider the ensemble average total kinetic energy. We can write the perturbation kinetic energy as

Et = ϕ†Mϕ = u†u, (10)

whereϕ† is the hermitian transpose ofϕ, u = M1/2ϕ is a generalized velocity, and the energy metric is
defined, for a cross-stream grid intervalδy, by

M =
δy

8K2

[
−∆ 0
0 I

]
, (11)



242 B.F. Farrell and P.J. Ioannou

whereI is the identity, and∆ is the discretized Laplacian operator (in what follows all operators are to be
interpreted with their finite difference approximation). The ensemble average total energy is then given in
terms of the correlation matrixCt by

〈Et〉 = trace(M1/2CtM1/2). (12)

The correlation matrix is obtained from (8) by using the statistical properties of the noise. We have (F&I):

Ct =
∫ t

0
eA(t−s)eA

†(t−s) ds. (13)

To obtain the evolution equation forCt, note thatC0 = 0 and that the statistically steady state is con-
vergent to the time-independent correlation matrix,C∞, if the dynamics are asymptotically stable. Time
differentiation of (13) immediately gives an equation for the temporal evolution ofCt:

dCt
dt

= I + ACt + CtA†, (14)

which can be solved for the time dependence of the correlation matrix:

Ct = C∞ − eAtC∞ eA
†t, (15)

in which the asymptotic correlation matrixC∞ which characterizes the statistically steady state is determined
from solution of the Liapunov equation:

AC∞ + C∞A† = −I, (16)

which can in turn be solved with standard methods.

2.c. Determining the Frequency Spectrum of the Maintained Variance

Consider the Fourier transform pair:

ϕ(t) =
∫ ∞
−∞

ϕ̂(ω) eiωt dω. (17a)

ϕ̂(ω) =
1

2π

∫ ∞
−∞

ϕ(t) e−iωt dt. (17b)

Applying the convolution theorem to (8) we obtain

ϕ̂(ω) = R(ω)ε̂(ω) (18)

with resolvent
R(ω) = (iωI − A)−1. (19)

The steady state streamwise velocity variance atyi is

〈uiu∗i 〉 =
∫ ∞
−∞

∫ ∞
−∞
UiaRab(ω)〈ε̂b(ω)ε̂∗m(ω′)〉U∗ilR∗lm(ω′) ei(ω−ω

′)t dω dω′, (20)

in which there is no summation overi implied and in which the operatorU is defined as

U =
i

K2

[
kx(d/dy) 0

0 −kz

]
.(21) (21)

Assuming unit white noise forcing characterized by

〈ε̂k(ω)ε̂∗m(ω′)〉 =
1

2π
δkmδ(ω − ω′), (22)

we have from (20)
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〈|ui|2〉 =
1

2π

∫ ∞
−∞

Φii(ω) dω, (23)

in which the energy spectrum associated with a particular level in the cross-stream direction is given by the
diagonal element of

Φ(ω) = UR(ω)R†(ω)U†. (24)

2.d. The Role of Finite Coherence Time in Shear Turbulence

Transient growth in shear flow is most effectively produced when two generic mechanisms occur in combina-
tion: an initial upstream shearing in the streamwise–cross-stream plane that rapidly amplifies the cross-stream
velocity (essentially the two-dimensional mechanism identified by Orr (1907)), followed by sustained growth
of the streamwise velocity by cross-stream advection of the background streamwise velocity which results
in the production of streaks (the mechanism identified by Moffat (1967), Ellingsen and Palm (1975) and
Landahl (1980)). These two mechanisms operate symbiotically in shear flows producing perturbations of
universal form that to good approximation depend on the flow only through the time interval over which
this growth process proceeds. This time interval is conveniently scaled by a representative shear, i.e., on
S∗ = Topt(dU/dy) (Farrell and Ioannou, 1993a). For largeS∗, i.e.,S∗ > 20, the optimal perturbations are
streamwise rolls. With decreasingS∗ the optimal perturbations become increasingly oblique, thereby taking
advantage of the rapid but short-lived Orr mechanism, and as a result assume the form of double roller eddies
(Townsend, 1972).

In boundary layer flow the shear is typically highly concentrated near the boundary and the extent of the
interval of growth combines with the boundary constraint to affect the optimal perturbation structure. For
small optimizing times perturbations assume small scale in order to exploit the region of maximumS∗ near
the ground. For larger optimizing times the viscous decay which is proportional to the square of the wave
number results in retreat of the optimals to larger scale. In boundary layer flow the compromise between these
two influences produces optimal perturbation typically found to havekx ≈ 0 andkz ≈ 0.5–2 in conjunction
with maximal energy amplification ofEt/E0 ≈ R2 at timet ≈ R over a wide range of Reynolds numbers
(B&F; Reddy and Henningson, 1993; Trefethenet al., 1993; Farrell and Ioannou 1993a,b). The effect of wave
number on the growth of perturbations is shown in Figure 3 for a turbulent channel flow withR = 180. The
perturbation with spanwise wave numberkz = 10 (corresponding to the observed streak spacingλ+

z = 100)
produces rapid initial growth, but because of dissipation does not exhibit growth forTopt > 2. The maximal
growth for this disturbance is attained forTopt ≈ 0.5 which corresponds when expressed in wall units to
T +

opt ≈ 90 which as we will see is the eddy turnover time appropriate for the sublayer region.
The growth of a given perturbation in turbulent flow cannot continue to arbitrary time because of disruption

by other perturbations and we assume that this time is set by the coherence time of the turbulent flow
approximated by the eddy turnover time,Te. The structure of the optimal perturbations depends on the
eddy turnover time,Te, expressed in local shear time units,i.e. onS∗ = dU/dyTe. The importance of this
nondimensional interval was recognized by Leeet al. (1990) who provide estimates which are shown in
Figure 4. Butler and Farrell (1993) showed that the perturbations in the turbulent sublayer that optimize
energy in an eddy turnover time characteristic of sublayer turbulence have the observedz+ = 100 streak
spacing.

In order to model the stochastic response of the turbulent flow accurately we must ensure that variance
is not allowed to accumulate over times longer than typical coherence times. In Figure 5 we show the
development of the ensemble perturbation energy as a function of time for the same wave numbers for
which the transient growth potential was shown in Figure 3.

2.f. Incorporating Finite Coherence Time in the Stochastic Calculus

The effect of finite coherence time on the evolution of disturbances is modeled by assuming that the
perturbation field is disrupted and set to zero after an interval,Tc, following its excitation by the forcing.?

? The observed spectra of transient disturbances in the midlatitude atmosphere can be modeled by restricting the persistence of
motions solely through the choice of an effective level of dissipation. This relatively simple parametrization of eddy effects succeeds
presumably because the variance is dominated by stable modes (Farrell and Ioannou, 1995). In the present case of turbulent channel
flows explicit incorporation of the coherence time in the manner described proved to model the spectra more accurately.
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Figure 3. Energy growth of the optimal perturbation as a function of optimizing time,Topt, for λ+
z = 100 (kz = 11.3), λ+

x = 600
(kx = 1.88) (circles), and for the global optimalkx = 0,λ+

z = 565 (kz = 2) (stars). The background velocity is shown in Figure 1 and

the Reynolds number isR = 180. The maximal energy growth can be found by calculating theL2 norm of eM
1/2AM−1/2T , whereA

is the evolution operator andM is the energy metric given by (11.).
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Figure 4. Eddy turnover timeT +
e (continuous line) as a function of distance from the wall (y+) in turbulent channel flow, as estimated

from the values of the shear rate parameterS∗ = TedU/dy (dot-dash line) obtained by Leeet al. (1990). The dashed curve gives the
shear timeT +

s = 1/(dU/dy+) calculated from the Reynolds–Tiederman velocity profile. Note thatS∗ has a peak of 35 at≈ 10 wall
units which results in streamwise vortices becoming the associated optimals, and asympotes to a value of≈ 5 in the logarithmic layer
which results in double roller eddies becoming the associated optimal disturbances.
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Figure 5. Time development of the ensemble average perturbation energy forλ+
z = 100 (kz = 11.3), λ+

x = 600 (kx = 1.88) (circles),
and for the global optimal which occurs atkx = 0,λ+

z = 565 (kz = 2) (stars). The corresponding time in wall units isT + = RT . The
background velocity is shown in Figure 1.

The perturbation field takes the form:

ϕt =
∫ ∞

0
eA(t−s) H(t− s)STc(t− s)ε(s)ds, (25)

with
STc(t− s) = (1−H(t− s− Tc)). (26)

Consider the correlation matrixCTc
ij = 〈ϕtiϕt∗j 〉 valid for timest ≥ Tc:

CTc
ij =

∫ t

0
eA(t−s)
ia eA

†(t−s)
aj STc(t− s) ds (27a)

=
∫ Tc

Tc−t
eA(Tc−x)
ia eA

†(Tc−x)
aj (1−H(−x)) dx (27b)

=
∫ Tc

0
eA(Tc−x)
ia eA

†(Tc−x)
aj dx (27c)

wherex = s − t + Tc. Comparing (27c) to (13) it can be seen that the variance of the disrupted boundary
layer is obtained by accumulating the variance over the interval of timeTc. Comparing with (15) we have
for the disrupted flow a correlation matrix given by

CTc = C∞ − eATcC∞ eA
†Tc , (28)

from which, as previously remarked, we can obtain all the statistics of the flow.
To obtain the frequency spectrum for a turbulent flow with coherence timeTc we proceed as in Section

2.c. The Fourier transform of (25) produces the finiteTc resolvent

RTc(ω) = R(ω)F , (29)

which is the product of the resolvent for the undisrupted flow given in (19) and the filter:

F = I − e−(iωI−A)Tc (30)
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which due to the asymptotic stability ofA reduces to the identity for largeTc and approaches the inverse of
the resolvent multiplied byTc for smallTc, so that in this limit the spectrum becomes white.

The corresponding frequency spectrum of the streamwise velocity variance is given by

ΦTc(ω) = URTc(ω)RTc†(ω)U†. (31)

3. An Example of Perturbation Spectra in the Turbulent Sublayer

For a flow withR = 250 the maintained ensemble average energy as a function of spanwise wave numberk+
z

for streamwise rolls with coherence timesT +
c = 30,60, 90, 120, 150 is shown in Figure 6. The response for

Tc = 90 is as in Smith and Metzler (1983) (see Klineet al.1967; Johanssonet al.1991) with a peak at the
observed spanwise spacing ofz+ ≈ 100. Consequently we select the value ofTc = 90 for our simulations.

Detailed spectra of sublayer turbulence have been obtained from experiments at high Reynolds numbers
(R = 500–2000) by Morrison and Kronauer (1969) and Morrisonet al. (1971). They obtained the power
spectrum of the streamwise velocity variance〈|u|2〉 at various distances from the wall as a function of
streamwise and spanwise wave number by Fourier transforming the observed temporal and spatial correlation
functions. They then displayed the normalized spectral densities as a function of log frequency and log wave
number and in order that equal spectral power be represented by equal area in the logarithmic plot they
introduced the auxiliary spectral densities:

P(ω+, k+
z ) = ω+k+

zΦTc(ω+, k+
z ),

(32)
P(ω+, k+

x) = ω+k+
xΦTc(ω+, k+

x),

with the following property:∫ ∞
0

∫ ∞
0

ΦTc(ω+, k+
z ) dω+ dk+

z =
∫ ∞

0

∫ ∞
0
P(ω+, k+

z ) d(log(ω+)) d(log(k+
z )), (33a)∫ ∞

0

∫ ∞
0

ΦTc(ω+, k+
x) dω+ dk+

x =
∫ ∞

0

∫ ∞
0
P(ω+, k+

x) d(log(ω+)) d(log(k+
x)). (33b)

We adopt this convention in order to facilitate comparison.
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Figure 6. The statistically steady ensemble average energy for a flow withR = 250 as a function of spanwise wavelengthλ+
z and for

streamwise rolls with coherence timesT +
c = 30, 60, 90, 120, 150 (the curves correspond to the coherence times in ascending order from

bottom to top).
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Figure 7. (a) Contours of log10P(ω+, k+
x) at y+ = 13.8 as a function of log10k

+
x and log10ω

+ for λz = 130. The coherence time is
T +

c = 90 and the friction velocity based Reynolds number isR = 2000 which corresponds to a Reynolds number based on the actual
maximum velocity ofRm ≈ 41 000. The straight line corresponds to a mean velocityU+ = 10. (b) Contours of normalizedP(ω+, k+

x) at
y+ = 14.6 as a function ofk+

x andω+ for a flow withRm = 45 600 as obtained experimentally by Morrison and Kronauer (1969) (their
Figure 7(b)). The straight line corresponds to the mean velocity aty+ = 14.6.

For comparison we have obtained spectral densities for a variety of Reynolds numbers by stochastic
analysis, and typical results forR = 2000 and a representative coherence time ofT +

c = 90 are shown in
Figures 7(a) and 8(a) Because the variance is concentrated in the near-wall region we were able to integrate
the equations at high Reynolds number by limiting the domain to the first 100 wall units and imposing a
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Figure 8. (a) Contours of log10P(ω+, k+
z) at y+ = 7.5 as a function of log10k

+
z and log10ω

+ for λx = 600. The coherence time is
T +

c = 90 and the friction velocity based Reynolds number isR = 2000 which corresponds to a Reynolds number based on the actual
maximum velocity ofRm ≈ 41 000. (b) Contours of normalizedP(ω+, k+

z) at y+ = 7.5 as a function ofk+
z andω+ for a flow with

Rm = 46 400 as obtained experimentally by Morrison, Bullock, and Kronauer (1971) (their Figure 4).

symmetry condition in the interior. We have checked the convergence of our results by doubling the size of
the domain and in the case of the lower Reynolds numbers ofR = 180 andR = 250 by comparison with
integrations of the whole domain.

Contours of spectral densityP(ω+, k+
x) for λ+

z = 130 aty+ = 13.8 are shown in Figure 7(a). The corre-
sponding plot from Morrison and Kronauer (1969) is shown in Figure 7(b). The spectral density peaks for
0.05≤ ω+ ≤ 0.3 and 0.01≤ k+

x ≤ 0.03 and although we have limited our study to the dominant spanwise
wave number the agreement is encouraging. The straight lines at 45◦ in Figure 7 are lines of constant phase
velocity and their intersection with the ordinate log10kx = 1 indicates the phase velocity which coincides
with the mean velocity of the flow at the height showni.e.U = 10. The spectral density peak gives for this
location the dispersion relationω+ = 10kx. This relation can be used, in the manner of Morrisonet al.(1971),
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to obtain the power densityP(ω+, k+
z ) due to all wave numberskx. Otherwise, consideration of multiple

streamwise wave numbers is necessary in the calculation of this spectrum because, as can be seen from
Figure 7(a), the spectral density is not localized. We obtain the streamwise velocity variance as a function
of k+

x andk+
z and then use the dispersion relation to obtainP(ω+, k+

z ). The result is shown in Figure 8(a)
and for comparison the results of Morrisonet al. (1971) are shown in Figure 8(b). Concentration of the
power density at the observed 130 wall unit spanwise spacing and at the observed frequencies is verified by
comparison of Figure 8(a) and 8(b).

6. Conclusions

The turbulent state of wall-bounded flows is characterized by energetic interactions between the highly
sheared mean flow of the boundary layer and coherent disturbances having the form of streamwise streaks
and associated streamwise vortices. Because of the very high shears found in the boundary layer, perturbation
dynamics may plausibly be anticipated to be dominated by interaction between the mean shear and the
perturbations which is fully incorporated in the linear dynamical operator. This fundamental linearity of
boundary layer turbulence dynamics is demonstrated by comparisons performed between simulations with
and without inclusion of nonlinear wave interactions (Leeet al., 1990). Despite this evident simplicity of
the dynamics, straightforward calculation of the eigenspectrum of the linearized dynamical operator fails
to produce structures with the observed form of streamwise vortices. This failure of correspondence can be
understood from the perspective of analysis of the nonnormal operator associated with the linear dynamics
as due to the fact that while the perturbations of maximal growth in the linear problem take the form of
streamwise rolls, these are not the eigenfunctions of the linearized operator, rather they are the optimal
structures identified with the first singular vectors of the propagator arising from the dynamical operator in
an appropriate norm and with an appropriate time interval for development.

A first approximation to the dominant structure in the boundary layer is suggested by the above consid-
erations to be that structure produced by the optimal perturbation over a coherence time interval estimated
to be the eddy turnover time (Butler and Farrell, 1993; Farrell and Ioannou 1993a). In this work a more
comprehensive theory of the turbulent state has been developed by obtaining the spectrum of response of
the dynamical operator associated with the turbulent flow through analysis of the response of the operator
to stochastic excitation. Agreement with the observed boundary layer spectrum in turbulent channel flow is
obtained if the accumulation of variance is restricted to an interval of time corresponding to a representative
coherence time in the flow.
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