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ABSTRACT 

The maintenance of variance and attendant heat flux in linear, forced, dissipative baroclinic shear flows 
subject to stochastic excitation is examined. The baroclinic problem is intrinsically non normal and its stochastic 
dynamics is found to differ significantly from the more familiar stochastic dynamics of normal systems. When 
the shear is sufficiently great in comparison to dissipative effects, stochastic excitation supports highly enhanced 
variance levels in these nonnormal systems compared to variance levels supported by the same forcing and 
dissipation in related normal systems. The eddy variance and associated heat flux are found to arise in response 
to transient amplification of a subset of forcing functions that obtain energy from the mean flow and project 
this energy on a distinct subset of response functions ( EOFs) that are in turn distinct from the set of normal 
modes of the system. A method for obtaining the dominant forcing and response functions as well as the 
distribution of heat flux for a given flow is described. 

1. Introduction 

The zonal wind in midlatitudes is to first approxi­
mation a jet in thermal wind balance with the tem­
perature gradient maintained by differential insolation 
between the equator and pole. This jet is perturbed by 
synoptic-scale transient disturbances that are stochast­
ically distributed in space and time and that have tem­
perature and velocity variance generally increasing with 
the strength of the shear. 

Various theories have been advanced to explain the 
origin and distribution of these transient cyclones and 
anticyclones. This interest can be traced in part to the 
influence of cyclones on weather: midlatitude weather 
forecasts are in good measure the predictions of cy­
clones and their tracks. But perhaps of equal impor­
tance is the contribution of the synoptic-scale transients 
to the long-term average transport of heat and mo­
mentum, which plays a central role in global climate. 

A widely accepted explanation for the production 
and maintenance of transient perturbation variance in 
geophysical shear flows is that the undisturbed back­
ground state supports modal instability and that infin­
itesimal perturbations projecting on the unstable modes 
amplify exponentially through a sufficient number of 
e-foldings so that the instability becomes exponentially 

Corresponding author address: Dr. Brian F. Farrell, Dept. of Earth 
and Planetary Sciences, Harvard University, Pierce Hall, 29 Oxford 
St., Cambridge, MA 02138. 

© 199 3 American Meteorological Society 

dominant over all other disturbances in the flow and 
eventually emerges as a modal wave of finite amplitude. 
Logical consequences of this paradigm include predic­
tion of cyclogenesis based on the existence of local ab­
solute instability (Pierrehumbert 1984; Lin and 
Pierrehumbert 1993 ), and adjustment of mean states 
by unstable waves to marginal stability configurations 
(Stone 1978; Lindzen and Farrell 1980; James 1987; 
Lindzen 1993 ). While modal instability theory has met 
with some success in model problems, it has not proven 
to be universally corroborated by observation. 

An alternative viewpoint proceeds from the obser­
vation that although a given background flow may 
possess a large store of available energy and support a 
large perturbation variance under stochastic forcing, it 
need not as a necessary consequence support expo­
nentially unstable modes (Farrell 1982, 1984, 1985, 
1988, 1989b, 1990). Nonmodal growth of perturba­
tions is required for explaining transition to turbulence 
in plane Couette and pipe Poiseuille flow, which sup­
port no unstable waves, and for plane Poiseuille flow 
which is observed to become turbulent at Reynolds 
numbers far below the critical value R = 5772 for 
which an instability of extremely small growth rate ex­
ists ( Orszag 1971 ) . It is suggested that this mechanism 
for transition is generally applicable and that mainte­
nance of perturbation variance in a wide class of flows 
can be traced to amplification of nonmodal pertur­
bations rather than to the growth of exponential modal 
instabilities (Farrell and Ioannou l 993b ). 
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Consider a baroclinic jet maintained by strong ther­
mal forcing so that while the background rate of strain 
field is modified by the perturbations, it is not to a first 
approximation determined by them. Certainly the ini­
tial growth of disturbances can be studied using linear 
theory and, if amplitudes remain sufficiently small, the 
maintenance of the perturbation field can also be stud­
ied using linear theory. In a forced/dissipative system 
with strong rates of strain but without exponential in­
stability the flow behaves as an amplifier of perturba­
tions (Farrell and loannou l 993a). At some high level 
of variance, nonlinear interactions will become im­
portant for providing the feedback perturbations re­
quired to sustain the variance and for limiting the po­
tential amplification inherent in the linear problem. 
This central role of nonlinearity in the maintenance 
of fully developed turbulence is widely recognized, but 
perhaps less well recognized is the fact that the energetic 
exchange between the forced background flow and the 
perturbations arises solely from terms comprising the 
linear interaction between them (Joseph 197 6). 

In this work we determine the statistics of a sto­
chastically excited pure baroclinic shear flow governed 
by linear dynamics. This model problem serves as an 
example of a larger class of dynamical systems that are 
governed by linearized dynamic equations and asso­
ciated boundary conditions expressible in the form: 

dx(t) 
~ = .:Ax(t) + ~(t), ( 1.1) 

where x is the vector field variable corresponding to 
the streamfunction collocated on points in directions 
of mean state variation; .:A is the operator of the lin­
earized dynamics; and ~ represents the stochastic forc­
ing (cf. Wang and Uhlenbeck 1945). 

We assume that the linear operator .:A is time in­
dependent and asymptotically stable (i.e., all the ei­
genvalues of .:A that determine the asymptotic behavior 
of the dynamical system have negative real parts). The 
exclusive role of the linear terms in the energetics es­
tablished by Joseph (1976) suggests a mean field ap­
proximation in which the background flow is taken as 
determined by factors exogenous to the perturbations 
under study, and the nonlinear terms describing the 
spectral transfer between perturbation scales is param­
eterized as a stochastic forcing. For simplicity, in the 
context of this mean field approximation we consider 
the deterministic background state to be time inde­
pendent and the stochastic forcing to be white. Allow­
ing time variation of the jet in ( 1.1 ) , would result in 
a great increase in complexity. We consider the analysis 
of such nonautonomous stochastic dynamical systems 
an important and challenging problem for future work 
to be undertaken after the dynamics of the autonomous 
system is well understood. 

The assumption that the linear dynamical operator 
is stable implies that the atmospheric statistics arise 

predominantly from nonmodal transient dynamics. 
This assumption does not preclude the interpretation 
that for an asymptotically unstable operator the non­
linear disruption of the motion would limit the dura­
tion of coherence, which could be incorporated in the 
linear dynamical operator by augmenting viscosity 
(Salmon 1980). The main difference from previous 
work (Salmon 1980; Haidvogel and Held 1980; Vallis 
1988) is that we postulate that the maintenance of the 
atmospheric variance and the atmospheric energetics 
can be modeled as stochastic amplification of transient 
disturbances with appropriate parameterization of 
nonlinear effects. The linearization assumed here is 
similar to that assumed in the rapid distortion theory 
ofturbulentflows(Townsend 1976;Huntetal.1991). 

In general, solution of ( 1.1) requires numerical in­
tegration, although closed form solutions to the baro­
tropic vorticity equation exist in the special case of 
unbounded constant shear and deformation (Moffat 
1967; Boyd 1983; Tung 1983; Craik and Criminale 
1986), allowing reduction of the stochastic excitation 
problem to a quadrature (Farrell and loannou I 993a). 

As a familiar example of stochastic dynamics, con­
sider white noise forcing of the damped harmonic os­
cillator equation that describes stochastic excitation of 
a unit mass spring or pendulum: 

d2x dx 2 _ 
dtz + ')" dt + WoX - ~(!), ( 1.2) 

where xis the displacement, 'Y the damping coefficient, 
w5 the restoring force linear in x, and ~(t) the forcing. 
Taking the Fourier transform pair: 

x(t) = 1: x(w)eiwtdw 

1 Joo . x(w) = - x(t)e-1
"'

1dt, 
21!" -oo 

the Fourier transform of ( 1.2) is 

(-w 2 + i')"w + wij)x(w) = ~(w). 

The ensemble average displacement is 

(I xl 2
) 

( l.3a) 

( l.3b) 

( 1.4) 

-Joo Joo (~(w)~*(w')) 
- -oo -oo (w 2 - i')"w - w5)(w' 2 + i')"w' - w5) 

x ei(w-w')tdwdw', ( 1.5) 

where ( ) represents the ensemble average and the 
star indicates complex conjugation. This response is 
influenced both by the spectral distribution of the driv­
ing through ~( w) and the response of the system, which 
for small damping is peaked near w0 . With white noise 
driving, 

- - ~ < ~( w )~*( w')) = 211" o( w - w'), 
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the variance can be found by contour integration, 

~ 
<lxl 2)=-. 

2wh 
( 1.6) 

It is well known that coherent forcing of the un­
damped oscillator at its resonant frequency results in 
a harmonic displacement amplitude growing linearly 
with time and that off-resonance forcing results in a 
finite displacement amplitude. Remarkably, the re­
sponse to incoherent forcing in the absence of damping 
is also unbounded; further analysis shows that in this 
case ( I x I 2) grows as t. Inspection of ( 1.6) reveals that 
the variance is also unbounded when the restoring force 
vanishes, regardless of the damping-this is Brownian 
motion, which is known to be nonstationary with 
(I xi 2 ) also growing as t. 

The harmonic oscillator example encompasses the 
physical process operating in linear normal dynamical 
systems for which the dynamical operator commutes 
with its Hermitian transpose. For normal dynamical 
systems resolution of the motion into its orthonormal 
modes allows each mode to be analyzed in isolation, 
and the total variance of the motion can be found by 
taking the sum of contributions from each of the in­
dividual normal modes. Furthermore, the variance 
contribution from each mode is inversely proportional 
to the damping rate of that mode. This can be under­
stood as resulting from the amplitude of the response 
rising until the loss of energy to dissipation balances 
the input of energy from driving. The forcing is the 
only source of energy to the normal modes, and the 
energy associated with the variance is accumulated 
from this forcing, resulting, for a given forcing ampli­
tude, in high variance only if <lamping is small. 

Consider now a fluid with a background flow field 
having nonvanishing rate of strain but with sufficient 
dissipation so that all small perturbations impressed 
on the flow eventually decay. Linearization of the dy­
namical system about the background flow results in 
a nonnormal linear dynamical operator (i.e., the dy­
namical operator does not commute with its Hermitian 
transpose) and an associated set of modes that decay 
individually but that are not mutually orthogonal either 
in the inner product associated with the L2 norm or in 
that associated with energy. This mathematical prop­
erty of nonorthogonality of modes is indicative of an 
important physical property. The lack of mode or­
thogonality corresponds to the potential for extraction 
of energy by the perturbations from the background 
flow field despite the absence of exponential instability 
(Orr 1907; Farrell 1982). The energy balance in such 
a system is between the stochastic driving together with 
the induced extraction of energy from the background 
flow, on the one hand, and the dissipation on the other. 
Tapping the mean flow energy can lead to levels of 
variance orders of magnitude larger than would have 
been expected to result in a normal system from the 

rate of dissipation of each mode. Without stochastic 
driving the perturbation field vanishes. With stochastic 
forcing the level of variance in a nonnormal system 
may be maintained predominantly by the stochastically 
induced transfer of background flow energy to the per­
turbation field rather than by accumulation of energy 
from the forcing, as is the case for normal systems such 
as the harmonic oscillator. 

Inspection of the observed global annual energy cycle 
provides an indication of the balances in this nonnor­
mal dynamical system: the maintained energy is 18.4 
X 10 5 J m-2

, requiring a perturbation 1~nergy input of 
0.7 W m-2 with transfer of energy from the mean to 
the eddies of the order of 1.27 W m-2

, and dissipation 
of 1.7 W m - 2 (Oort and Peixoto 1983 ) . The primary 
balance is between the transfer of energy from the mean 
and the dissipation, rather than between energy input 
and the dissipation as would occur for a normal dy­
namical system. 

Recent theoretical and observational advances 
(Farrell 1985; Sanders 1986; Nordeng 1990) support 
a shift away from identification of flow disturbances 
with exponential modal instabilities toward recognition 
of the role of a wider subset of disturbances that con­
tribute to the transient wave variance. From this per­
spective the nature of the imposed perturbation plays 
a central role. In an attempt to understand further the 
role of perturbations, this work explores the mechanism 
by which variance is maintained by stochastically in­
ducing transfer of background flow energy to the vari­
ance field. 

2. Formulation 

We restrict attention to the linear dynamics of per­
turbations to a baroclinic mean state in a midlatitude 
/1-plane channel the parameters of which vary only with 
height z in the domain 0 < z < z1 , where z1 will be 
taken to correspond to an altitude of 40-80 km. The 
zonal direction, x, is taken to be unbounded and the 
meridional direction, y, is confined by channel walls 
to - Ye ~ y ~ Ye· The Coriolis parameter is taken as f 
= fo + {1y. Variation of static stability modeling a 
stratosphere is included. We also consider vertical den­
sity variation with a constant scale height, 

H= _ ! dp. 
p dz 

For simplicity, following Charney (1947), we have 
adopted an independent specification of static stability 
and temperature. Such a specification allows a simple 
and realistic transition to stratospheric static stability, 
which although not strictly thermodynamically con­
sistent is widely used as an approximation and intro­
duces small errors. 

With these assumptions the quasige:ostrophic per­
turbation potential vorticity equation and boundary 
conditions with constant linear damping at the rate R 
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and Ekman damping with coefficient r 0 second in the and a stability parameter 
scaled streamfunction: 

ez/2 
<P(z, t) = lf;(z, t) i.[; eikx cos(/y), (2.1) 

takes the nondimensional form: 

-+R + ikU -- -+S2
-- If; (a )[a2

1f; (a 2 

dS) ] 
at az 2 

f dz 

+ ikQylf; = 0, (2.2.a) 

( ! + R + ikU) ( :~ + SI/;) 

- ik( ~~ - ro)l/I = 0, z = 0, (2.2.b) 

(*1 + R + iku)( :~ + Slf;) 

dU 
- ikdzlf; = 0, z = z1, (2.2.c) 

where time has been nondimensionalized by 1 I fo, ver­
tical distance by H, and horizontal distance by 
HI~, where Eo = f 61 N6 is the square of the ratio of 
the Coriolis parameter to a characteristic Brunt-Vaisala 
frequency, and the total horizontal wavenumber is a 

= V k 2 + /2
, so that the dimensional variables (denoted 

with a tilde) are 

- t t = -
fo 

k= ~k 
H 

i= ~l 
H 

z=Hz 

- foHU 
U=--

~ 

ii= fo~{3 
,., H . (2.3) 

The problem is characterized by an .Ekman parameter 

_ i (_!___)112 a2 
ro - H 2/o Ek' (2.4) 

where v is the coefficient of vertical eddy diffusion; a 
mean potential vorticity gradient, 

(3 dU d 2 U 
Q =-+2S--- (2.5) 

Y E dz dz 2 ' 

(2.6) 

In ( 2.2) we have included damping arising from the 
vertical velocity induced by Ekman convergence at the 
ground and a constant linear damping at the rate R. 
The meridional dependence in ( 2.1 ) satisfies the 
boundary condition <P = 0 at the channel walls, which 
are taken to broadly correspond to the latitudinal extent 
of the jet. The meridional wavenumber is related to 
the half-width of the jet, Ye. by l = 7r I 2 Ye. 

The nonstandard nondimensionalization of time by 
the inverse of the Coriolis parameter was selected in 
order to retain the maximum zonal velocity of the 
background flow, which is more commonly employed 
in the nondimensionalization of time, as a free param­
eter. With the chosen nondimensionalization the max­
imum velocity becomes equal to the Rossby number, 
and consequently the nondimensional velocity needs 
to be chosen small compared to 1 to maintain the va­
lidity of the quasigeostrophic equations. 

We choose values of the parameters appropriate for 
the midlatitude atmosphere: fo = 10-4 s - 1 

, N 
= 10-2 s-1, H = 10 km, and rJ = 1.6 X 10- 11 m- 1 s-1. 
This results in (3 = 0.16, a horizontal wavenumber k 
= 1 corresponding to 1550 km, and a unit of nondi­
mensional time corresponding to 2.8h. We will con­
sider linear damping with R = 0.01 giving a dimen­
sional e-folding interval of 11.5 days. The value of the 
Ekman parameter over a neutrally stratified oceanic 
boundary layer corresponds to a coefficient of vertical 
diffusion v of about 5 m2 s - i , while over flat land with 
neutral stratification the appropriate value of v is ap­
preciably higher, typically 50 m2 s - 1 [Ekman damping 
parameterizations derived from the boundary-layer 
model employed by ECMWF are discussed in Lin and 
Pierrehumbert ( 1988); see also Gill ( 1982)]. We will 
consider eddy viscosity v = 10 m2 s- 1

, unless other­
wise stated. This leads to an Ekman number Ev 
= H- 1Vv/2fo = 0.0225. 

The zonal wind is chosen to be 

1 + tanh[(z - z0 )/b] 
U = sz - [sz - s(z - z0 )] 

2 

) 
1 + tanh[(z - 2z0 )/b] + s(z - z0 2 

, (2.7) 

with the zonal jet maximum occurring at nondimen­
sional height z0 = 1.5. The vertical extent of the at­
mospheric jet is controlled by b, which we set equal to 
0.15 nondimensional units. The parameter sis a non­
dimensional shear parameter, which will be varied. A 
zonal wind maximum at the tropopause of 45 m s- 1 

corresponds to s = 0.3. A typical variation of the mean 
zonal wind with height is shown in Fig. 1. 
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The stratification parameter, which with our non­
dimensionalization is related to the inverse square of 
the Brunt-Vaisalii frequency, is taken to be of the form 

[ 3 
1 + tanh[(z - zs)/os] ]-l 

f =' 1 + 
2 

(2.8) 

in order to simulate the increased stability in the 
stratosphere. The tropopause is located at Zs = z0 + o, 
where z0 is the height of the jet maximum, and the 
vertical extent of the transition to stratospheric values 
is controlled by Os = o / 2. The variation of E with height 
is also shown in Fig. 1. 

The dynamical system ( 2.1) for the variable¢( z, t) 
= E- 112 ez12tf;( z, t) is written in operator form as 

d¢ -dt = 13</>, (2.9) 

where 

ez/2 Ve 
13 = Ve (t:i.- 1(-ikU-R)t:i. - ikt:i.-'Qy) ez/2 , 

(2.10.a) 

with 

t:i. = ~ -(a2 + s2 - dS) 
az 2 

E dz ' 
(2.10.b) 

and t:i. - 1 rendered unique with the incorporation of 
boundary conditions (2.2.b,c). The dynamical system 
(2.9) is solved for ¢(z, t) given an initial state ¢0 spec­
ified at t = 0. 

Consider the finite-difference approximation to 
( 2.10.a,b). The generalized coordinate for an N-level 
discretization is a vector, 

( 2.11 ) 

where¢; is the value of the variable at the ith discretized 
level, Z;' and 13 becomes an N x N complex matrix. 
By this means, the continuous dynamical system ( 2.9) 
is approximated as a finite dimensional dynamical sys­
tem. Reduction of the continuous dynamical system 
to a finite dimensional system is central to current 
methods of modeling atmospheric dynamics. Corre­
spondence between the continuous and discrete dy­
namical system is assumed in numerical weather pre­
diction models, where typically a relatively small num­
ber of vertical levels are employed. We note the 
tenuousness of this correspondence, to which we will 
return in the discussion, and employ a large number 
of discretization levels (typically 200 levels), which we 
double to verify convergence. 

4.0 r--r--r---,--.-,----,----.--,.-,----,-----,-,--, 

3.5 

3.0 £( z) 

2.5 

N 2.0 

1.5 

1.0 u ( z) 

0.5 

0.0 '---"'----'-----''--'---'----'-"'-----'-·---'--'-~ 
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7' 0.8 0.9 1.0 

Flo. I. The nondimensional mean flow velocity and Brunt-Viiisiilii 
frequency variation with height. The nondimensional shear is s = 0.3 
corresponding to a dimensional maximum zonal velocity of 45 m s-1

, 

and<= I in the troposphere corresponds to Brunt-Viiisiilii frequency 
N=I0-2 s- 1• 

Returning to the formulation of the discretized 
problem, the perturbation energy is defined at time, t, 
as 

E 1(k, I) = - dzp a 2<f>*</> + E - --
1 Lz, ( _ _ a¢* a;p) · 
8 0 az az (2.12.a) 

= ;p t(t).M¢(t), (2.12.b) 

in which ¢ t is the Hermitian transpose of ¢ and the 
energy metric, .M, is given by 

( 2.13) 

with o the grid size, :lJ the discretized first-order d /dz 
operator, Pt= p(z;)ou, and 0;j = Vp(z;)E(z;)ou (ou 
the Kronecker delta). 

3. Stochastic excitation of perturbatio111 variance 

We wish to determine the statistical evolution of the 
perturbation energy density, E, under stochastic forc­
ing. It is advantageous to transform the dynamical 
equation ( 2. 9) into generalized velocity variables u 
= .M 112¢. The quasigeostrophic dynamic equation in 
this variable takes the form: 

(3.1) 

where 

(3.2) 
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and ~ is the random forcing assumed to be a b-cor­
related Gaussian white noise process with zero mean: 
(t) = 0, (~;(t)~j{t')) == toiJo(t- t'), which excites 
independently each spatial forcing distribution spec­
ified by the columns JU> of the matrix 'Jij· Unless 
otherwise indicated, all ~; will be taken of equal mag­
nitude k which, by scaling the forcing matrix 'J, can 
be taken equal to unity. We want to determine the 
evolution of the variance sustained by ( 3.1), which 
in physical variables is the ensemble-averaged energy 
density (E 1

) == (ui (t)u;(t))), and its limit (E 00
) 

= lim1_> 00 ( u ~ ( t) U; ( t))), when this limit exists. 
Note that the operator ..A is in general nonnormal; 

that is, ..At ..A + ..A.At ( t denotes the Hermitian trans­
pose) so that the eigenvectors of ..A are not necessarily 
orthogonal and transient growth not associated with 
modal instability is possible. Nonnormality of ..A stems 
from the fact that the underlying dynamical system is 
not energetically closed so that the mean flow and the 
perturbations can exchange energy. If ..A is normal, as 
is the case in the absence of basic-state shear, trans­
formation into normal coordinates yields directly the 
generalization of ( 1.6): the level of variance is then 
the sum of the variance in each of the normal coor­
dinates forced independently (Wang and Uhlenbeck 
1945). Thus, 

N • 

(Eherm) == ;~ - 2~~; [l - exp(2u;t)], (3.3) 

where~; is the magnitude of forcing of the ith eigen­
function of the normal operator ..A and u; is the cor­
responding eigenvalue. When the eigenvalues are 
negative, as is the case for asymptotically stable dy­
namics, the variance approaches a statistically steady 
value at which the accumulated energy produces a 
balance between the rate of energy injection and the 
rate of energy dissipation and in which the main­
tained variance is proportional to a weighted sum of 
the inverse of the decay rate of its modes. Due to 
energy exchange with the mean, nonnormal dynam­
ical systems do not allow such a straightforward 
characterization, and a generalized calculus for de­
termining the evolution of the ensemble average 
variance is needed (cf. Ioannou 1992; Farrell and 
loannou l 993b). 

Before embarking on a calculation of the ensemble 
average energy density we return to the issue of cor­
respondence between the discrete and continuous 
system. The variance of the continuous system is 
found by infinite summations of the form ( 3.3) and 
questions of convergence as a function of N naturally 
arise. Related to this is the convergence as N - oo 
of the energy input L f:,, 1 ~;. Consequently, we seek 
the factor by which the energy density of the response 
exceeds the energy density input over unit time: 

G = lim (E
1

) 
N ' 

N-oo • 
l:t 

(3.4) 

i=l 

where here ~; is the energy input over unit time to the 
ith forcing function. 

Convergence of ( 3.4) will depend on the form of 
dissipation included in the dynamical operator ..A. In 
laboratory flows governed by the Navier-Stokes equa­
tions, molecular diffusion strongly dissipates the more 
highly structured vertical modes of the system and ( E 1

) 

is rapidly convergent. However, the total energy input 
diverges as N - oo unless the forcing distribution is 
tapered off at higher mode number to render the energy 
input finite. A natural choice for such a rolloff of the 
forcing at high mode number is the distribution char­
acteristic of fully developed homogeneous turbulence 
(Farrell and Ioannou l 993b). In contrast, quasigeo­
strophic dynamics with linear damping does not selec­
tively damp higher-order vertical modes, and this leads 
to divergence of ( E 1

) as N - oo. In that case and in 
the absence of tapering of the forcing, ( 3.4) is an in­
definite form, although it may have a limit associated 
with a divergent input of energy. Correspondence with 
the continuous system can be obtained either by in­
cluding vertical diffusion in the quasigeostrophic for­
mulation or by limiting the forcing to a restricted pass 
band. In this work we have selected the second alter­
native. In calculating the variance we will make the 
assumption that the stochastic forcing is limited to the 
first 25 vertical wavenumbers in the troposphere. Under 
this assumption both the variance, ( E 1

), and the am­
plification factor, G, of the discretized system converge 
as the number of discretization levels increases. 

We return now to the dynamical system ( 3 .1 ) , the 
solution of which, fort~ 0 with initial condition u0 , 

is given by 

u == e.A1u0 + L fJ(t - s)'J~ds, (3.5) 

where fJ(t - s) = e.A<z-s>_ The random response, u, is 
linearly dependent on ~ and consequently is also Gauss­
ian distributed. The first moment, given by ( u) == e.A1Uo, 
vanishes for large times if we assume that ..A is stable, 
in which circumstance the statistics are independent of 
the initial conditions, which will henceforth be taken to 
be zero. The temporal development of the variance due 
to forcing initiated at t == 0 is given by 

(E1
) = ( ui (t)u;(t)) 

= 'J~(L f16aU - s)f1ad(t - s)ds)'Jd1 

= 'V f * (/) CU I f (/) 
L; b JL ba a • (3.6) 
I 

We have defined Jf 1 = J~ gt(t - s)fi(t - s)ds, and 
f ~b) = 'Jab. Recall that f ~b) represents the ath coor­
dinate of the bth forcing function. 
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FIG. 2. Time development of the ensemble average energy density amplification, ( E) IN. For 
this integration N = 200 and all degrees of freedom are equally forced. The baroclinic basic state 
has shears= 0.3, corresponding to a maximum jet speed at the tropopause of 45 m s- 1

• The rate 
oflinear damping is R = 0.01. The wave with k = 2, I = 2 is shown for eddy diffusion coefficient 
v = 5 m2 s- 1 and v = 10 m2 s- 1

• The dashed curve shows the evolution of the variance as it would 
occur if the dynamical system were normal with v = JO m2 s-1

• The dash-dot curve shows the 
evolution of the variance according to linear dynamics with v = 0 and R = 0, in which case the 
dynamical system is asymptotically unstable. 

The evolution equation for J( 1 with initial condition 
:H 0 = 0 can be derived by direct time differentiation 
of J( 1

• It is 

d 
- J(l = :J +,At J(f + J(f,A (3.7) 
dt ' 

in which :J is the identity matrix. The asymptotic sta­
bility of .A ensures the existence of J( 00 = lim1-> 00Jf 1 

and therefore of the statistical steady-state response to 
stochastic forcing. The asymptotic value can be deter­
mined from the Lyapunov equation: 

,At J{OO + J( 00 .A = -:J, (3.8) 

which can be solved by standard methods ( Lefschetz 
1963). 

It can be readily verified that the solution to ( 3. 7) 
is 

(3.9) 

Note that when .A is not asymptotically stable, J( 00 

diverges according to the linear approximation of the 
dynamics, but that the time development of the vari­
ance can still be obtained by direct numerical integra­
tion of(3.7). 

The variance arising from stochastic forcing alone 
is 

<E') = trace(;ttJ( 1;7) = trace(;t';J.~J('). (3.10) 

With a complete orthogonal set of forcing functions 
so that ':}':}t = :J, the expression for the energy density 
simplifies to <E1

) = trace(Jf 1
) and the variance is in­

dependent of the specific forcing distribution; that is, 
any full rank unitary forcing distribution will lead to 
the same variance. This result is not tme for weighted 
forcing distributions. In Fig. 2 we show the approach 
of <E1

) to its asymptotic value. For comparison and 
to make contact with a normal system, we have also 
included in the same graph the evolution of the vari­
ance as it would have occurred if each of the modes 
were contributing to the variance according to the 
mode decay rate as in (3.3), interpreting in this way 
.A as a normal operator. Note the reduced level of 
variance. In general we find, for atmospheric values of 
parameters, that the associated normal system supports 
levels of variance that are typically an order of mag­
nitude smaller than are supported by the actual non­
normal dynamical system. The increase of the variance 
with the degree ofnonnormality, which varies with the 
shear of the background flow, is shown by a plot of the 
variance sustained as a function of shear in Fig. 3. The 
time development of variance in the absence of dissi­
pation is also shown in Fig. 2. In this case .A is unstable 
and linear theory eventually becomes inadequate. 
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FIG. 3. Variation of ensemble average energy as a function of shear 
s. The variance has been normalized by its value ( Eo) at zero shear 
in which case the dynamical operator A is normal. A shear typical 
of the storm track would be s = 0.3. In this calculation, we have 
assumed that the random forcing is limited to vertical wavenumber 
25 in the troposphere. 

An illustrative alternative to the time-domain anal­
ysis employed above is to obtain the asymptotic en­
semble energy density < £ 00

) from the frequency re­
sponse of the dynamical system following the method 
presented in section l for the harmonic oscillator. 
Fourier transformation of ( 3.1 ) readily yields that 

( 3.11) 

where the energy weighted frequency response, 

F( w) = trace( .7l t ( w ).71( w) }, 

is obtained from the resolvent 

(3.12a) 

(3.12b) 

Note that mode coupling due to the nonnormality of 
the operator .A. leads to an energy response function 
F( w) that cannot be simply characterized as a sum­
mation of contributions from the poles of the resolvent. 
This alternative method of determining the asymptotic 
variance is informative because it reveals the frequency 
distribution of contributions to the variance, but it is 
numerically inefficient compared to the previous 
method that relies on solution of the Lyapunov equa­
tion. In Fig. 4 the response function for a perturbation 
with k = 2, l = 2 and shears= 0.3 in basic state (2.7) 
is shown. The main contribution to the variance arises 
from frequencies producing phase speeds contained 
within the flow; that is, 0 ~ w/ k ~ Umax (for the case 
shown Umax = 0.45 ). The frequency decomposition of 
the ensemble average energy is concentrated in the low­
frequency domain (i.e., it has a red spectrum) and pos­
sesses two maxima associated with distinct surface and 
tropopause disturbances, which for this 45 m s- 1 jet 
have approximate periods of 4.5 days and 1 day, re­
spectively, with corresponding phase speeds of8 m s-1 

and 35 m s- 1
• In formulating the stochastic excitation 

we have assumed that the random forcing is white. 
However, the quasigeostrophic dynamics itself implies 
that the dominant response of the baroclinic atmo­
sphere is concentrated in periods longer than a day. 
The high-frequency components of the forcing spec­
trum do not lead to a significant response. If we had 
used a red forcing spectrum, we would expect an even 
more enhanced redness of the response. 

The fields resulting from ( 3.1) are Gaussian with 
zero mean. Their statistical specification can be ob­
tained from the correlation matrix, taking into account 
the assumed o correlation of ~: 

@@t = < U;(t)uJ (t)) 

= (L ds L ds'!l;b(t - s)'Jbc~c(s) 

x 9j'.(t - s')'J:gn(s')) (3.13) 

= L ds9;b(t - s)'Jbc'J:cgfe(t - s) 

= L ds9;b(t - s)'Jbc;J!e9!j(t - s), 

or in matrix form 

@1 = fo
1 

9(t - s)fJt(t - s)ds, ( 3.14) 

in which forcing distributions are assumed to satisfy: 
:J = ;J;Jt. 

Clearly @0 = 0 and, due to the asymptotic stability 
of .A., stationary statistics are achieved so that 
lim1_> 00 @1 = @ 00

• The evolution equation of the cor­
relation matrix is 

( 3.15) 

107 

10• 

a 10• 

10• 

103 

1~ .......... ~~-'-'-'"~~.w.....~'-'-'"-'-'-'-'-~.U.....~~_,_._.........._...._u:,,.__.....,_, 
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ml k 

FIG. 4. The energy frequency response function F( w) of the baro­
clinic atmosphere. The mean state is as in Fig. 3 with k = 2, I = 2. 
The responses for v = 10 m2 s-• (solid) and for v = 5 m2 s-1 (dots) 
are shown. 
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To obtain the asymptotic value of the correlation ma­
trix, we proceed as in (3.8) to solve the associated Lya­
punov equation: 

( 3.16) 

which determines the time evolution of the correlation 
matrix as 

( 3.17) 

Note that, due to the nonnormality of .A, expressions 
( 3.16) and ( 3.17) are not the Hermitian conjugates of 
(3.7) and (3.8). This has the physical significance, as 
will be explained in the sequel, that <]{ 1 is associated 
with the structures forcing the variance, while @ 1 is 
associated with the structures of the resulting response. 

The correlation matrix is a positive definite Her­
mitian operator by construction, and therefore it has 
real and positive eigenvalues associated with mutually 
orthogonal eigenvectors. Each eigenvalue equals the 
variance accounted for by the pattern of its corre­
sponding eigenvector. The decomposition of the cor­
relation matrix into its orthogonal components is called 
the EOF decomposition (Lorenz 1956). To determine 
the EOF decomposition we solve the eigenvalue prob­
lem: 

( 3.18) 

In the energy norm the EOFs determine an orthogonal 
set of generalized velocity response functions, with 
corresponding streamfunctions given by ;p "" .M- 112u, 
which can be ordered by their contribution to the vari­
ance using the eigenvalues A< i). Note that, in contrast 
to the orthogonality of the underlying generalized ve­
locities, these streamfunctions are not orthogonal. 

We can proceed similarly to determine the eigen­
functions, J< i), of <]{ 00 

: 

( 3.19) 

As can be verified by inspection of ( 3.6), these eigen­
functions determine the forcing distributions JU> that 
render the functional 

(3.20) 

stationary (note again that <]{ 00 is Hermitian and pos­
itive definite). The eigenfunctions q/ = .!11- 112 l can 
be ordered according to their contribution to the 
maintained variance using the eigenvalues µ,U>. 

We have determined and ordered two sets of or­
thogonal functions: using ( 3.19) we ordered the forc­
ings according to their contribution to the variance, 
and using ( 3. 18 ) we ordered the responses according 
to their contribution to the statistical steady-state cor­
relation matrix. When .A is normal, these two sets of 
orthogonal functions reduce to the eigenfunctions of 
.A because .A, <]{ 1 , and @1 commute and therefore are 

simultaneously diagonalizable by the same eigenvec­
tors. For a normal operator the EOF patterns of the 
system response ordered according to their contribution 
to the variance are also the forcing modes of the system 
when they are also ordered according to their contri­
bution to the variance, and these are both identical to 
the normal modes of .A. None of these three sets of 
functions is the same when .A is nonnormal, as can 
be directly seen in Figs. 5a,b,c. Note that the first EOF 
(Fig. 5a) gives a realistic distribution of the eddy energy 
(cf. Fig. 26 of Oort and Peixoto 198 3). North ( 1984) 
realized that when the operator is nonnormal, the EOF 
decomposition of the correlation matrix cannot be used 
to identify the dynamical modes of the system. For 
nonnormal systems, identification of those forcings re­
sponsible for the largest contribution to the variance 
of the statistical steady state becomes an important 
theoretical question, and we have found that these 
forcings can be identified by eigenanalysis of the matrix 
:J( 00

, which is obtained as the solution of the back Lya­
punov equation (3.8); we call this ordered set offorc­
ings the back EOF decomposition. In choosing a basis 
set for a complete dynamical investigation ofa system, 
it is necessary to resolve both the subspace of the back 
EOF decomposition as well as that of the EOF decom­
position because the former span the forcings that grow 
into the responses spanned by the latter. 

4. Fluxes and energetics 

The perturbation energy equation is derived in the 
usual way by multiplying ( 3.1 ) by the Hermitian con­
jugate of the generalized velocity, ut, and similarly 
multiplying by the generalized velocity the Hermitian 
conjugate of ( 3.1) and adding to obtain the ensemble 
average energy equation: 

d E1 = (u* (.Al+ .A)u·) dt I I} I} } 

+(ui;Ju~J+:;J;Jj;u;), (4.1) 

where E 1 = ( ui U; ). Disregarding the transient solu­
tion of(3.5), we obtain 

( ui :Ju~J) = ~~, (4.2) 

where N is the number of discretization levels. Assum­
ing .A is asymptotically stable, ( 4.1) becomes 

lim - (ui (.Alj + .A;J)uJ) = N~. (4.3) 
1->w 

In the absence of shear, .A is normal and ( 4.3) is a 
statement of balance between the ra.te of energy input 
and the rate of energy dissipation. In the presence of 
shear .A is nonnormal and the lhs of ( 4.3) includes 
the additional term representing energy interaction 
with the basic flow. Note that in this case the spec-
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trum of .A. is different from the spectrum of .A. + .A. t 
[which can be seen from inspection of the first term 
on the rhs of ( 4. l ) to determine the initial growth of 
a disturbance]. This instantaneous rate of growth 
may be large despite the fact that asymptotically the 
disturbance must decay at a rate determined by the 
real part of the spectrum of .A., which may be strongly 
damped. This initial growth arising from the exis­
tence of positive eigenvalues of .A. + .A. t implies en­
ergy exchange with the mean flow even when the 
spectrum of .A. is stable. 

In unbounded shear flows, which support no modes, 
Farrell and Ioannou ( 1993a) found that, except for 
very small shears, fluxes are upgradient regardless of 
the dissipation, and the forcing serves ultimately to 

b 
FORCING FUNCTION, VAR =6800, k=21=2 SHEAR=0.3 R=0.01 E=0.0225 
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0o 0.5 1.5 2 2.5 3 
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FIG. 5. (a) The first EOF of the correlation matrix. The 
mean state and wavenumbers are as in Fig. 3, with v = 10 
m2 s- 1• (b) The corresponding forcing that contributes most 
to the variance. Note that this forcing function is distinct from 
the first EOF shown in (a). (c) The corresponding least stable 
mode. Note that this mode is distinct from both the first EOF 
and the first forcing function shown in (a) and (b ), respec­
tively. 

reinforce the mean shear. On the other hand, with the 
inclusion ofa parameterization of the occlusion process 
that modeled the existence of modal solutions, the 
fluxes were found to be always downgradient. In the 
baroclinic problem, which supports damped modal so­
lutions, we also find that the fluxes are downgradient 
for all shears and dissipations, a result consistent with 
the parameterized role of modes in the unbounded 
shear problem. 

In order to identify terms in the energy equation 
responsible for energy exchange with the mean flow, 
we form the ensemble average perturbation energy 
density equation. Following the usual steps (cf. 
Lindzen 1990), we have in nondimensional vari­
ables: 
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d roo 100 
dt (E1

) =Jo dz(peUz<Px<Pz) -
0 

dz(pR(<Pi + </J~ + e</J;)) 

where the energy density E 1 is given in ( 2.12), and the 
overbar signifies an average over the horizontal domain 
bounded in the meridional direction by the channel 
walls and one wavelength in the longitudinal direction. 
The term responsible for energy growth is the heat flux 
proportional to 

H = ~ p( Im(¢* :z ¢)) . ( 4.5) 

The heat flux can be calculated as the trace of the cor­
relation matrix: 

I k < " " 71';j = 2 Im( 'P;a:Dab<l>b'Pjc<Pn), ( 4.6) 

where 1J is the discretized d /dz operator and 'Pu 
== V p( Z;) o;j· Expression ( 4.6) reduces to 

71'1 = ~ lm('P1J.M-112(J1.M,-112ep), (4_7 ) 

where <J 1 is the correlation matrix given in ( 3.12). The 
correlation matrix of the generalized velocities deter­
mines the heat flux matrix and, in particular, the di­
agonal elements of 71' 1 give the height distribution of 
the heat flux, an interesting property that may be of 
value in observational studies. An example of the dis­
tribution of the ensemble average heat flux is shown 
in Fig. 6. Note the second maximum near the tropo­
pause, above which there is a southward heat flux in 
the stratosphere. Despite the southward flux in the 
stratosphere, the vertically integrated heat flux is pos­
itive. The realism of this distribution of the ensemble 
average heat flux can be immediately assessed by com­
parison with observations that are plotted in Fig. 7. 

5. Discussion 

In the inviscid baroclinic problem it is often found 
that the most unstable modal streamfunctions can be 
resolved with a limited number of vertical levels be­
cause modal solutions tend to have rather smooth ver­
tical structure when damping is small, as in the familiar 
Charney and Eady problems. However, it has also been 
observed that very high levels of discretization are re­
quired to resolve nearly neutral small-scale waves 
(Green 1960; Bell and White 1988). 

Inclusion of Ekman damping presents additional 
problems of correspondence between the continuous 
and discrete system; for example, it is known that Ek-

- Ev(pe( <Pi+ </J~)) I z~O + Loo dz(p;'/JFnoise), ( 4.4) 

man damped discrete systems may support spurious 
numerical instabilities regardless of the level of dis­
cretization (Farrell l 989a). These instabilities occur 
because in the continuous system the phase speed of 
the unstable mode remains within the flow, while the 
growth rate decreases with increasing Ekman damping 
until a critical Ekman damping is reached for which 
the mode becomes neutral and above which the mode 
ceases to exist (Lin and Pierrehumbert 1988). The dis­
crete system cannot capture the disappearance of the 
unstable mode with increasing Ekman damping when 
the critical level remains within the flow, but instead 
produces a spurious unstable mode. Inclusion oflinear 
damping does not remove this spurious mode but does 
minimize its effects by causing it to decay. 

Inspection of the first back EOF in Fig. Sb indicates 
that resolving the forcing functions in the stochastic 
problem also requires very high levels of discretization 
for realistic values of dissipation; typically N = 200 is 
needed for the examples in this work. It is difficult to 
escape the conclusion that modeling accurately the 
stochastic dynamics of the atmosphere requires these 
high resolutions. 

It should also be noted that the vertical scale of the 
random forcing has an important impact on the main­
tained variance. For example, if we consider that forc­
ing is restricted to the troposphere and required to have 
a low vertical wavenumber (as is the case in latent heat 
parameterizations in large model studies), then the 
projection of the forcing on the dominant back EOFs 
is reduced and this leads to a reduction of the sustained 
variance. This can be seen in Fig. 8, where we have 
chosen various minimum vertical scales of the sto­
chastic forcing and calculated the sustained variance 
as a function of the shear. The zonal flows with higher 
shear have dominant back EOFs involving smaller 
scales and the projection of the stochastic forcing is 
increasingly ineffective, leading to saturation and even 
reduction of the variance with increasing shear (as­
suming exponential stability of the linear operator is 
maintained). 

We tum now to the question of picking a metric by 
which to measure perturbation magnitude. Consider 
the norm generated by the full rank Hermitian matrix 
.M, for which u = .M 112¢ is the associated generalized 
variable. This generalization allows the use of different 
norms to measure perturbation magnitude, and the 
choice of a norm is a central consideration for non­
normal systems (North 1984; Farrell 1989). The free-
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FIG. 6. The distribution of the ensemble average heat flux with 
height. The basic state is the same as in Fig. 3, k = 2, I = 2, and v = 
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dom to choose a norm allows the investigator to con­
centrate on those aspects of the dynamics that are of 
greatest interest, perhaps energy growth in one study 
and, in another context, central pressure fall. This dis­
tinction is without consequence in normal dynamic 
systems. 

Among the set of all positive definite quadratic 
norms associated with the set of nonsingular Hermitian 
matrices, .M, there is the norm of the inner product in 
which the eigenvectors of .A in ( 3.2) are orthogonal: 
.M, = (<I>§'<I>t)- 1

; where <I> is the matrix of the eigen­
vectors of :B arranged in columns, and g is any positive 
definite diagonal matrix. This is the measure of per­
turbation magnitude consisting of a weighted sum of 
the squared amplitudes of the modes that make up the 
perturbation (the weighting depends inversely on the 
diagonal elements of g). So generalized, it is the only 
norm in which the modes are orthogonal (for a proof 
of this statement, refer to Farrell and Ioannou l 993b). 
Despite the apparent simplicity gained by the fact that 
the dynamical system is normal in the generalized co­
ordinates associated with this norm, the sum of squared 
amplitudes of the modes making up a disturbance has 
no obvious physical significance such as attaches to 
perturbation energy or geopotential variance, which 
are the metrics of the energy and L 2 norms, respectively. 
In passing, we remark that it has sometimes been sug­
gested that a natural measure of perturbation magni­
tude would follow from use of the weightings associated 
with pseudoenergy or pseudomomentum because the 
generalized inviscid modes are orthogonal in these in­
ner products (Held 1985). However, even leaving aside 
the unphysical requirement that the flow be inviscid 
for their validity, the associated inner products do not 
in general generate a norm because they have a null 
space that is spanned by the normal modes. 
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FIG. 7. The distribution of the zonally and seasonally averaged 
transient heat flux for latitude 45°N, from the values given by Oort 
and Peixoto ( 1983). DJF denotes the winter months; JJA denotes 
the summer months. 

Finally, we remark that there is a close correspon­
dence between the methods used in this work to obtain 
the correlation matrix using the given dynamical sys­
tem and the related data analysis problem of using the 
observed correlation matrix to obtain the dynamical 
system and its forcings (Penland 1989). 

6. Conclusions 

We have examined the mechanism by which a 
nonnormal system such as the baroclinic atmo­
sphere, that is subject to stochastic forcing can main­
tain a high level of variance as an amplifier of non­
modal perturbations. The forcing functions ( FOFs) 
ordered in their contribution to the variance are 
identified with the solution ofa particular Lyapunov 
equation, and the response functions ( EOFs) are 
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FIG. 8. Variation of ensemble average energy as a function of shear 
s for different forcing distributions. The variance has been normalized 
to the value maintained at zero shear ( £ 0 ). Curve I corresponds to 
a forcing distribution with a minimum resolved scale of 0.5 km, 
curve 2 to a forcing distribution with a minimum resolved scale of 
1.5 km, and curve 3 to a forcing with a minimum resolved scale of 
3.25 km. The case k = 2, I= 2 is shown, with v = 10 m2 s- 1

, and R 
= 0.01. 
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identified with the solution of a related Lyapunov 
equation. The primary forcing functions, the primary 
response functions, and the normal modes are found 
to be mutually distinct for nonnormal systems such 
as the baroclinic atmosphere, although these are 
identical to the normal modes in the case of normal 
systems. In the atmosphere these forcing functions 
could arise as projections from diabatic processes that 
produce potential enstrophy both in the interior 
through latent heat release and at the boundary from 
surface heating; in addition, frictional processes op­
erating in strongly sheared frontal regions could in­
troduce potential enstrophy projecting on the pri­
mary forcing functions, as could large- and small­
scale topographic forcing. But it is possible as well 
to generalize the notion of a flow operating predom­
inantly as an amplifier to include self-excitation from 
feedback, just as an acoustic amplifier is well known 
to break into oscillation when the amplified signal is 
allowed to sufficiently influence the input. The clear 
association of latent heat release with cyclones is 
perhaps the most obvious candidate for closing the 
atmospheric amplifier feedback loop, although the 
nonlinear interactions among perturbations are also 
involved in maintaining dynamically the population 
of energetically active perturbations. 

Regardless of the source of excitation, the linear 
growth mechanism is solely responsible for transferring 
energy from the mean flow to the perturbations. In this 
work the mechanism by which variance is maintained 
was examined using stochastic forcing to model the 
source of excitation that induces the transfer of mean 
flow energy to the perturbation field. 
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