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ABSTRACT

Minimizing forecast error requires accurately specifythg initial state from which the forecast is made by optimall
using available observing resources to obtain the mostratxpossible analysis. The Kalman filter accomplishes this
for linear systems and experience shows that the extendiedalkdilter also performs well in nonlinear systems. Un-
fortunately, the Kalman filter and the extended Kalman filtguire computation of the time dependent error covariance
matrix which presents a daunting computational burden. é¥ew the dynamically relevant dimension of the forecast
error system is generally far smaller than the full stateattigion of the forecast model which suggests the use of rdduce
order error models to obtain near optimal state estimatdrsethod is described and illustrated for implementing a
Kalman filter on a reduced order approximation of the foreea®r system. This reduced order system is obtained by
balanced truncation of the Hankel operator representatidhe full error system and is used to construct a reduced
order Kalman filter for the purpose of state identificatiomitime-dependent quasi-geostrophic storm track model. The
accuracy of the state identification by the reduced ordemidal filter is assessed and comparison made to the state
estimate obtained by the full Kalman filter and to the estéraitained using an approximation to 4D-Var. The accu-
racy assessment is facilitated by formulating the staienaibn methods as observer systems. Practical applicafio
approximating to the reduced order Kalman filter making udstDsVar algorithms is examined.

1 Introduction

An important component of forecast error is error in the analysis of titialistate from which the forecast
is made. Analysis error can be reduced by taking more observationskibyg taore accurate observations,
by taking observations at locations chosen to better constrain the foraeddy extracting more information
from the observations that are available. The last of these, obtaining tkienoma amount of information
from observations, is attractive because it makes existing observatiars/aloable and because, at least for
linear systems, there is a solution to the problem of extracting the maximum infomfiatin a given set of
observations: under appropriate assumptions the problem of extraatimgetkimum amount of information
from a set of observations of a linear system in order to minimize the undgriaithe state estimate is
solved by the Kalman filter (KF) (Kalman, 1960; Ghil and Malanotte-Rizzol§1t9Vunch, 1996; Ide et al,
1997; Lermusiaux and Robinson, 1999). Moreover, application of édenkn filter to the local tangent error
equations of a nonlinear system provides a first order approximation taptiveal data assimilation method
which is valid in the limit of sufficiently small errors. This nonlinear extensiothef KF is referred to as the
extended Kalman filter (EKF) (Ghil et al, 1981; Miller et al, 1994, Ide & GhB97, Ghil, 1997).

Unfortunately, the Kalman filter and the extended Kalman filter require statiskisaription of the forecast
error in the form of the error covariance and obtaining the requirest envariance involves integrating a
system with dimension equal to the square of the dimension of the foresstrsyDirect integration of a
system of such high dimension is not feasible. Attempts to circumvent this difficeee review of Ghil,

1997) have involved various approximations to the error covariancéd@pist al, 2001; Tippett et al, 2000)
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and approximate integration methods (Evensen, 1994; Dee,1995; FukamgoMalanotte-Rizzoli, 1995;
Cohn and Todling, 1996; Verlaan and Heemink, 1997; Houtekamer anthéllitd 998).

While the formal dimension of the forecast error system obtained by linegrike forecast model about a
base trajectory is the same as that of the forecast system itself, themaaoas to believe that the effective
dimension is far lower. The trajectory of the system state in a high dimensipmairdcal system typically lies
on a small dimensional subspace of the entire phase space. In chatgimsydl initial conditions approach
this attractor which can be embedded in a space of dimension at thest, 2vhered is the attractor dimension
(Takens, 1981). An estimate of the attractor dimension can be made fromrttiEenof positive Lyapunov ex-
ponents (the Kaplan-Yorke dimension; Kaplan & Yorke, 1979) but ayytlie attractor dimension is bounded
above by the number of Lyapunov exponents associated with positiveneamowth along the system trajec-
tory in phase space (lllyashenko, 1983). While this is useful conciypfoabounding the dimension of the
embedding space, identifying the subspace itself is more difficult in the ¢ammlinear and time dependent
systems. However, in the case of stochastically forced linear normahsy#ite analogous subspace to which
the solution is primarily confined can be easily found by eigenanalysis ofotfariance matrix of the system
forced white in space and time. The resulting EOF spectrum typically fallepily in physical models. The
eigenvectors may be identified with the modes of the normal operator andrilesmanding eigenvalues are
the variance accounted for by the modes (North, 1984; Farrell amthéan 1996, (henceforth FI96)). The fact
that a restricted number of EOF’s account for nearly all of the variangermal systems shows that the effec-
tive dynamical dimension of these systems is small compared with the dimensiagirgbltase space. This
notion of quantifying the effective dimension of normal linear systems caxtemded to bound the effective
dimension of non-normal systems (Farrell and loannou, 2001a (foetic€101)).

In the case of the tangent linear forecast error system the spectrptimial perturbations of the error propa-
gator over the forecast interval typically comprise a few hundred gigatiuctures (Buizza and Palmer, 1995)
and Lyapunov spectra for error growth have shown similar numberssitiye exponents (Palmer et al, 1998)
which suggests from the above considerations that the effective dimesfdioe error system is Q0%).

The problem of reducing the order of a linear dynamical system candbenaghematically as that of finding a
finite dimensional representation of the dynamical system so that the ERxtamidt-Mirsky (ESM) theorem
(Stewart and Sun, 1990) can be applied to obtain an approximate trusgatecth with quantifiable error. The
ESM theorem states that the optirkarder truncation of an dimensional matrix in the euclidean or Frobenius
norm is the matrix formed by truncating the singular value decomposition of théxrtmits first k singular
vectors and singular values. A method for exploiting the ESM theorem to abtathuced order approximation
to a dynamical system was developed in the context of controlling lumpethptegaengineering systems and
is called balanced truncation (Moore, 1981; Glover, 1984; Zhou andeD®998). Balanced truncation was
applied to the set of ordinary differential equations approximating the pdiffiarential equations governing
perturbation growth in time independent atmospheric flows by FIO1.

We first review the method of balanced truncation and apply it to a stormtnadel (cf Farrell and loannou,
2001b). We then review some salient aspects of optimal state estimation anskdise structure of the gain
matrix in the presence of model error and the asymptotic behavior of the assimigaror as the number
of observations increases. We finally construct a reduced order Kdittex based on balanced truncation
and apply it to a time dependent Lyapunov unstable quasi-geostrophid ai@d®recast tangent linear error
system.
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2 The storm track model

2.1 Formulating the model

Consider an idealized model of the midlatitude storm track consisting of a Besgsatmosphere with con-
stant stratification and constant shear in thermal wind balancefsplane channel with periodic boundary
conditions in the zonal, direction; solid walls located at two latitudes in the meridioyaklirection and a
solid lid at heightz = H, simulating the tropopause. The observed zonal localization of a midlatituahe sto
track is simulated in the model by terminating the channel with a linear damping modélérgiorm track
exit region. The stability properties of such a storm track model are diedun FI96.

Zonal and meridional lengths are nondimensionalized £y1200 kny vertical scales bid = fL/N = 10 km
velocity byU, = 50 m/s; and time byT =L /U, so that a time unit is approximatelyh. The Brunt-Vaisala
frequency isN = 102 s~1, and the Coriolis parameter fs= 10~4 s~1. The corresponding non-dimensional
value of the planetary vorticity gradientfis= 0.46.

The non-dimensional linearized equation which governs evolution ofrsfueetion perturbations is:

2 2
T = v oy - (- S oy - oy )

in which the perturbation is assumed to be in the fab(x, z t) €Y, wherel is the meridional wavenumber;
2y is the perturbation potential vorticity, witi? = 92/9x? + 92/97% — 12; andD = d /dx. The perturbation
potential vorticity damping rate(X) is taken to vary smoothly in the zonal direction with form:

r(X) :% [2—tanh<x_6n/4> + tanh(isn/z)], 2)

in which parameters controlling the maximum damping rate and the width of the danggjiogy have been
chosen to bet =5 andd = 1.5, respectively. The mean velocity profileligz) = 0.2+ z The zonal extent
of the re-entrant channel is9 x < 4m, latitudinal walls are located gt= 0 andy = 1, and the ground and
tropopause boundaries are located-at0 andz= 1, respectively. In the following we consider perturbations
with | = 1. A cross section of the idealized storm track at a given latitude is showig it FZonservation of
potential temperature at the ground and tropopause provides the Ibpgodditions:

%y oy oy

59, = ~UOD T +UODY —r() 5 ~Tg(D*~1%)y atz=0, 3)
%9 _ oy oy
goz = VWP T UMDY G atz =1, ®

whereU’(0) andU’(l) denote the velocity shear at= 0 andz = 1 respectively. The coefficient of Ekman
dampingly = u \/ 27 is given the valué y = 0.0632 corresponding to a vertical eddy momentum diffusion

coefficientv = 20n?/sin the boundary layer .

The waves evolve with nearly zero damping in the middle third of the chanheh@h of 21 ~ 7500 Km)
which models the core of the storm track. Because in this model absoluteilitietllo not exist with
everywhere westerly flow, the storm track is asymptotically stable for all io@ddiwavenumbers because all
perturbations are eventually absorbed on entering the highly dissipptinges (FI96).

Two scenarios are investigated. In the first a transiently growing distaebexcited near the western boundary
of the storm track is modelled using the reduced order system, the pumgiagedillustrate the accuracy of the
reduced order model approximation of the autonomous dynamics. In tbedsd¢iome dependence is added to

3
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Figure 1: The cross section of the storm tack. Also shownteesponge layers.

produce a Lyapunov unstable model of a tangent linear forecassgstem, the time mean operator remaining
stable, with the purpose of evaluating the accuracy of the Kalman filter otthinthe reduced order model in
an unstable time dependent system. Such an unstable time dependent sgstdas@n even more stringent
test of the state estimator than does the time independent stable and unstaldlernoodgstems studied by
Todling & Ghil (1994), Ghil & Todling (1996) and Cohn and Todling (1996

The perturbation dynamics of the time mean storm track are governed by:

dy
where:
A= (0?) " (-(024+2D0% - BD — r(x) ?) , 6)

in which the Helmholtz operatof}?, has been made invertible by incorporating the boundary conditions

The dynamical operator is approximated spectrally in the zonal directiorwéhdinite differences in the
vertical. With 40 zonal harmonics and 10 levels in the vertical the resultingrdigal system hall = 400
degrees of freedom.

2.2 Reducing the model order by balanced truncation

Although this storm track model is of small enough dimension for direct nuadesidution, we are interested
in using it to explore the accuracy of approximate solutions obtained ugsinged order models that could be
implemented in far larger systems such as arise in numerical forecast.

Before proceeding with the order reduction we must first choose the tiwat will be used to measure the
accuracy of the approximation. The accuracy is measured by the nattme eficlidean length of the errors
incurred in a chosen variable. This norm is the square root of the eaolidaer product in this variable. If an-
other norm is selected to measure the accuracy of the approximation thenghdimact method of accounting

1For waves with a constant meridional wavenumibéne operatof? is invertible even for homogeneous boundary conditions.

4
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for this choice is to transform the variable used to represent the state ®fdtean so that the euclidean inner
product in the transformed variable corresponds to the new norm. @heed order approximate system re-
sulting from balanced transformation will in general depend on the noasesh As discussed in FIO1, optimal
order reduction of dissipative stable normal systems is immediate: it is Galadjecfion of the dynamics
onto the least damped modes. Difficulties in the reduction process arisetihsystem is non-normal in the
variable corresponding to the chosen norm. Then Galerkin projectioredeabt damped modes is suboptimal
and the reduction must proceed by including in the retained subspace tihetdisbspaces of the preferred
excitations and preferred responses of the system. Throughout fl@sywa have chosen streamfunction as the
error variable, the rms of which is to be minimized in the construction of the madet ceduction. However,
we find that the results do not change qualitatively if the energy norm sechiastead.

The preferred structures of response of the non-normal stormdyatém are revealed by stochastically forc-
ing the system with spatially and temporally uncorrelated unitary forcing aledlating the eigenfunctions

of the resulting mean covariance matBx=< @' > (the brackets denote an ensemble average, and 1 the
hermitian transpose of a vector or a matrix). The covariance matrix undeirfercing is given by:

P:/ Mt dt )
0
and this integral is readily calculated by solving the Lyapunov equatior6jFI9

AP +PAT =—1 | (8)

which P satisfies, as can be easily verified. The hermitian and positive definite rPatitaracterizes the
response of the system and its orthogonal eigenvectors, orderedrgadimg magnitude of their eigenvalue,
are the empirical orthogonal functions (EOF’s) of the system unddratigaand temporally uncorrelated
forcing.

The preferred structures of excitation of the system are determinedifi@stochastic optimal matrix:

_ [T At
Q_/OeAeAdt, ©)

the orthogonal eigenvectors of which when ordered in decreasingitudgrof their eigenvalue rank the forc-
ing structures according to their effectiveness in producing the statistimaligtained variance (for a deter-
ministic interpretation of) see FI01). The eigenvectors Qf are called the stochastic optimals (SO’s) and
because of the non-normality of the system are distinct from the EOF’s. sfidthastic optimal matriQ
satisfies the back Lyapunov equation:

ATQ + QA =—1. (10)

Lyapunov equations8] and (L0O) have unique positive definite solutioRandQ if A is stable. The covariance
matrix P and stochastic optimal matri®Q need to be determined or approximated in order to proceed with
order reduction by balanced truncation.

A successful order reduction must accurately approximate the dynafihes £ystem which can be expressed
as the mapping of all past (square integrable) forcings to all futurensgs of the system. This linear mapping
of inputs to outputs is called the Hankel operator. Application of the ESM ¢medo the Hankel operator
provides the optimal low order truncation of the dynamics. Remarkablyuseaaf the separation between
past forcings and future responses in the Hankel operator reypaése of the dynamics this operator has finite
rank equal to the order of the system; its singular values, denotbaddrg the square root of the eigenvalues
of the product of the covariance and stochastic maR®@, The balanced truncation transforms the internal
coordinates of the system so that the transformed covariance mRatnd stochastic optimal matr@ become
identical and diagonal (while preserving the inner product of the phlygariables). The dynamical system is
then truncated in these transformed balanced coordinates. The balamzzdion retains a leading subset of

5
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empirical orthogonal functions (EOF’s) and stochastic optimals (SO) oflyhamical system and preserves
the norm. Balanced truncation preserves the stability of the full systemramdies an approximation with
known error bounds which is found in practice to be nearly optimal (Mob®81; Glover, 1984; FI01). The
procedure used to implement the balanced truncation is now briefly reviewed

Consider a gener&lorder truncation of thé&l dimensional systendy:

W = Ak‘l’k s (11)
whereA, is the reduceé x k dynamical matrix, withk <N, andtIJk the associated reduced or#tadimensional
state vector which is related to the full state vector by the transformgtioa X{,. Similarly, the reduced
state vector], is related to the full state vector by, = Y1{ (the dagger denotes the hermitian transpose of
a matrix), which implies tha¥ X = 1,, wherel, is thek-order identity matrix. Matrice¥ andX determine
the transformation from the full system to the reduced system. The ndgtrgoverning the dynamics iri (),
is:

A, =YTAX . (12)

Details of the construction on the biorthogonal matri¥esndY are given in Farrell & loannou (2001b).

A measure of the accuracy of the truncation is the maximum difference thaiccarr between the full system
responsey(t), and the reduced order system resporjge). This measure is thid., norm of the error system:

A = Aulle = sngR(w)—li(w)Hz : (13)

in which the resolvent of the full systerR(w), is defined aRk(w) = (iwl — A)~! and the resolvent of the
full order projection of the reduced systenRéw) = X (iwl, — A,)~L. Itis to be recalled that the, norm
of a matrix, denoted a$- ||,, is equal to its largest singular value.

Assuming the Hankel singular values have been ordered decreasingriitm, it can be shown that the error
in theH, norm (13) of the approximation of the full system by akyrder systen®\, satisfies the inequality:

N
her S HA = Aplle <2 h; (14)
i-f1

whereh, _, is the first neglected Hankel singular value (Zhou and Doyle, 1998)oAghh,  , is only a lower
bound on the error, we have found in examples that this lower boundiily e¢t@ined.

2.3 Applying balanced truncation to the mean storm track peturbation model

In order to obtain a balanced truncation of the storm track model govdmnegberator §) we first obtain

the covariance matrix?, and the stochastic optimal matri®, by solving Lyapunov equation8) and (0)
respectively. The eigenfunction Bfassociated with the largest eigenvalue is the first EOF of the perturbation
field, and the eigenfunction d associated with the largest eigenvalue is the first SO of the perturbation
field. The structure of the first EOF, which accounts for 23 % of the stheaction perturbation variance, is
concentrated in the exit region of the storm track as can be seen i @ap left panel). By contrast, the first
SO, which is responsible for generating 19.7 % of the streamfunction patioin variance, is concentrated

at the entrance region of the storm track and is nearly orthogonal to sh&@F as can be also seen in Fig.

2 (bottom left panel). This near orthogonality between the EOF structueS@rstructures remains even at
order 30. Balanced truncation accomplishes an accurate represepfatiendynamics by retaining both the
structure of the dominant EOF’s and of the SO’s. It is clear from Eithat truncations based on projections
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Figure 2: For the stable time mean storm track model. Top f&nEhe streamfunction of the first and the
30th EOF. The first EOF accounts for 23 % of the maintainedararé, the 30th EOF accounts for 0.35 %
of the variance. Bottom panels: The structure of the streantfon of the first and 30th Stochastic Optimal.

The first SO is responsible for producing 19.7 % of the mairgdivariance; the 30th SO is responsible for
producing 0.48 % of the maintained variance.

on the leading EOF’s will be very suboptimal as the leading EOF’s span wiglltloe exit region of the storm
track, leaving the dynamically important entry region of the storm track, eperturbations start growing,
virtually without support in the span of the retained basis.

Although the error in the frequency response of a balanced truncafi¢b4)) is bounded above by twice the
sum of the neglected Hankel singular values and below by the first nedldankel singular value, experience
shows balanced truncation of tangent linear forecast error systeuaitsri@ truncation errors close to the lower

bound. The Hankel singular values and the eigenvalu€sanfd theQ for the storm track model are shown in
Fig. 3.

Note that the decrease with mode number of the eigenvaluBsamid of Q is more rapid than that of the
Hankel singular values. But this more rapid decrease with mode numbeg efglnvalues dP andQ does
not indicate the order required for an accurate approximation; this is thdetarmined by the first neglected
Hankel singular value which falls more slowly with mode number.

Itis often assumed that a system can be well approximated by Galerkiciwojento a subspace of its EOF’s;
with the effectiveness of the truncation being judged from the magnitudeedigfenvalues of the neglected
EOF’s. While this is valid for normal systems, we see here that for nomalosystems the decrease with
mode number of the eigenvalues of the covariance matrix is misleading ana@yeaptimistic as an estimate

of the order required for an accurate approximation.

A subset of the columns &f is retained in the balanced truncation. This non-orthogonal basis andritsdgje
onal, the columns of, are constructed so as to capture the structures supporting the dynarseteffiontly,
simultaneously accounting for the preferred responses (EOF’s) amidferred excitations (SO’s) of the dy-
namics. The first and the tenth structure retained in the dynamics (the firdtatenth column oK) and their
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Figure 3: The Hankel singular values (stars) compared to éfgenvalues of the covariance matix
(circles), and the eigenvalues of the stochastic optimatim® (crosses). The Hankel singular values are
the square roots of the eigenvalues of the prod@t Note that the EOF’s (the eigenvaluesR)fand the
SO’s (the eigenvalues &) fall much more rapidly with mode number than do the Hankejsiar values.

biorthogonal structures (the first and tenth columiy pare shown in Fig4.

The storm track model and its reduced order approximate have veryediffeigenvalue spectra. The eigen-
value spectrum of the reduced order approximate is such that the fi@guesponse of the approximate system
is as close as possible to that of the original system, which is shown iB.Fignis results both from a decrease
in the stability of the reduced system compared to that of the full system amtlre increase in growth due
to the non-normality in the reduced system.

The accuracy of the approximation is measured byHbeorm of the error dynamical systefih — Agp||o,
which, as discussed in the previous section, lies between the lower biwemdby the first neglected Hankel
singular valuehg, = 13.8, and the upper bound: fglhi = 1.8 x 10%. The largest singular value of the
error system resolvent as a function of frequency is shown in@igihere it can be seen thg — Ag||o =
28.5, which shows that the balanced truncation error in this example is onlpxpymately twice its lower
bound. The error is nearly white for the span of frequencies thag¢spond to the frequencies of the system
eigenmodes. For comparison, the error incurred in an order 60 Gajadgection of the dynamics onto the
first 60 EOF’s and the error incurred in an order 60 Galerkin projedidn the first 60 least damped modes,
are also shown in Figs. It can be seen that the EOF projection performs appreciably worséhtbdmalanced
truncation, while the modal truncation at this order is useless.

The optimal growtf as a function of optimizing time attained by the full system and by the following: the
order 60 balanced truncation; the order 60 system obtained by Galex§gcgion on the first 60 EOF's;
the order 60 system obtained by Galerkin projection on the first 60 S@dthe order 60 system obtained
by Galerkin projection on the first 60 least damped modes are all shown .in7Fidlote that the balanced
truncation performs very well, reproducing the optimal growth nearlygodlsf up tot = 5, corresponding to

2 The optimal growth at timet, is defined as the maximum perturbation growth that can occur overttiffier an autonomous
system, governed b, the optimal growth at is given by the largest singular valueet or byHeAtHz.
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Figure 4: For the stable time mean storm track model. Toppaftel: the streamfunction of the first basis
vector of the expansion for the balanced truncation of thetesy. It is given by the first column Xf Top
right panel: the streamfunction of the tenth basis vectahefexpansion for the balanced truncation of the
system. It is given by the tenth columnXof Bottom left panel: the streamfunction of the biorthogoofal
the first basis vector. It is given by the first columnyofBottom right panel: the streamfunction of the tenth

basis vector. It is given by the tenth columrvof
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Figure 5. The maximum singular value of the resol@() = (iwl —A)~! of the full systerA as a function
of frequency. The maximum of this curves as a functioo & the H, norm of A which is found here to be
198.1. Also plotted is the maximum singular value of thelvest associate withg,, which is the operator
obtained from an order 60 balanced truncationfaf The maximum of this curves is the Horm ofA, which

is found to be 196.2.



FARRELL & | OANNOU.: APPROXIMATING OPTIMAL STATE ESTIMATION

- _ 4
10° b A= Ao mopar Nl = 1:4 10 i

— 3
23y, + O3, )=18%10

I A=A 1

60 £0F Ileo = 40

I A- AGOBAL I, =285

IR @ I,

261 =138

1 1 1 1 1
0 2 4 6 8 10 12
0(w)

Figure 6: For the stable time mean storm track model: the mmaxn singular value of the error systefn—
Ag as a function of frequency. The systéqy, is an order 60 approximation obtained frof by balanced
truncation. The maximum of this curves is thg efror of the order 60 balanced truncation which is found
here to be 28.5. Also indicated with a straight line is theotie¢ical minimum error of an order 60 truncation,
which equals the first neglected Hankel singular valye= 13.8. The balanced truncation is seen to be nearly
optimal.

about 2 days. By comparison the EOF and SO truncations performcgplseworse and the modal truncation
gives even poorer results.

The structure of the initial perturbation that leads to greatest squarenéti@ztion growth at = 10 in the full
system, together with the resulting structure, is shown in Bjgor comparison these structures as obtained
by the truncated system are also shown. The structures are well ahptuttee order 60 reduced system.

We have demonstrated how to obtain balanced truncation of a stable time iddapsystem but the method
of balanced truncation can be extended to unstable systems (Sznai@0@2yland to time dependent systems
in which balancing is performed sequentially over finite time intervals (Van &gd000).

In forecast applications we seek an accurate reduction of the dynafrties time dependent tangent linear
operator calculated on the system trajectory over a limited time interval (24 bod&). One choice is to
balance on the time mean operator over this interval. Another choice is to badanihe time dependent
version of the tangent linear operator over this or an extended intdygal #he assimilation time, obtaining
approximation of the® and Q matrices on this interval. Both procedures have been tested using the time
dependent version of our storm track model and found to produagatectruncations. We examine below
results obtained from a reduced order Kalman filter in which the truncation de roa the time dependent
tangent linear operator over 48 hours centered on the assimilation time.

The time mean tangent linear operator (the mean being calculated over aaljrigegenerally asymptotically
stable. This is because realistic states of the atmosphere support primaglyilitiss with positive group
velocities and do not support absolute instabilities (unstable modes withrzeneelocity)(Farrell, 1982; Lin
and Pierrehumbert, 1993; DelSole and Farrell, 1994). The asymptotibilitgtaf the tangent linear system
arises primarily from the continual instigation of transient growth which o&unon periodic time dependent

10
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Figure 8: For the stable time mean storm track model. Thecstme of the streamfunction of the optimal perturba-
tion that leads to the greatest energy growth at 10 (left panels), and the evolved optimal streamfunctionctvhi

is the structure that these optimals evolve into at the dptirg time t= 10 (right panels). The top panels are for
the full system while the bottom panels are for the order @ared truncation.
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systems in the same way that the Mathieu instability arises in time periodic systemsm@g¢hsinism is
discussed in Farrell and loannou (1999) and has been verified imthext of a forecast system by Reynolds
and Errico (1999) and Gelaro et al (2000). The stability of the mearatmeallows balancing to be performed
on a stable operator although the error system itself is nonautonomousyangtatically unstable. However,
it is not necessary to balance on the mean operator, and as remarkedabparable results can be obtained
by balancing on the time dependent tangent linear operator over arpajppeanterval; experiment suggests
approximately 48 hours.

3 Assimilation as an observer system

Consider assimilating data taken from truth, The forecast errag; = x; — x; obeys the equation:
de
dt

in which A is the unstable tangent linear operaftis the model error covariance, ang, is assumed to be a
vector of temporally uncorrelated noise processes.

= Ae; + QY 2w, (15)

Introducen observationsy,,, defined in terms of trutk; as:
Yoo = Hx + RY2wo , (16)

whereR is the observational error covariance amglis ann vector of white noise processes.

Assimilate these observations to obtain an analygiswith analysis erroe; = x5 — X satisfying the Luen-
berger observer system:

d
= Ae+K(yg— Hxa) + QY

= (A—KH)ea+ KR 2w, + QY2 . 17)

The gain,K, is chosen to minimize the analysis error variance fraoge} >). Unlike the forecast error
system, a Luenberger observer system is asymptotically stable. AnyKgaimat stabilizes the tangent linear
operator results in an observer with bounded error, this error bemcgddy a combination of model error

Q and observational errd® (cf 17). Good gains do not just stabilize the operator but simultaneously reduce
the non-normality of the tangent linear operator so that the minimum of(kagg! >) is maintained by the
combination of observational and model error.

Just as generalized stability of the tangent linear forecast systentsréveaotential for forecast failures due to
transient growth of initialization error or unresolved forcings distributest ¢the forecast interval, so also does
generalized stability analysis of the observer system reveal how madebed initialization error contribute
to analysis failures.

3.1 The case of an optimal observer

The gairK that minimizes the statistical steady analysis error variance(iagg! >) is the Kalman gain. For
simplicity of presentation we take as our example an opefatbat is time independent and observations taken
continuously in time. A stationary error system with continuous observatiactsoisen for heuristic reasons
although in forecast systems the tangent linear operator is time dependenibservations are introduced at

12
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discrete intervals. However, the statistical properties of optimal state estinamgogeneral and results are
qualitatively similar across observer systems.

The asymptotic Kalman gain resulting from continual assimilation of observatiithobservation matrid
is:
K=PH'R™, (18)

with P the stabilizing solution of the algebraic Ricatti equation:
AP +PAT —PH'RIHP+Q =0. (19)

Itis a property of the Kalman filter that the matixobtained as a solution of the algebraic Ricatti equation is
also the asymptotic error covariance of the observer syst&mn (

3.2 4D-Var as an observer system

4D-Var data assimilation with assimilation winddwcan be viewed as a special case of an observer in which
a climatological background error covariarBds advanced foil units of time. In our autonomous model
system the error covariance is advanced according to:

P=erTBA'T, (20)

from which we obtain the gain:
Kap var = PHT(HPHT+R) . (21)

This gain produces a stabilized observer if enough observations aee mad

The asymptotic error in the observér7j is obtained by calculating the covarian€ethat solves the equation:

T t
(A=Kyp vaH)P+P(A=Kyp yaH) +Kup vaRKp v +Q=0. (22)

4 Effect of the number of observations on the performance of the assimilain

Consider convergence of the assimilated state to truth as more observatitsisam in the presence of model
error. To fix ideas assume that repeated independent observationmeade at each of the grid points of our
model.

If the state of the assimilation system has dimeng$ioand n observations are taken at each grid point the
observation matrix for theseobservationsi,, is annN x N matrix:

Hh=1y&)e (23)

wherel, is the identityN? dimensional matrix® denotes the Kronecker product aads the unit column
e=[1,---,1]" of dimensiom.

Consider an observation error covariance ma®ix rly @ In, wherely, is then? dimensional identity matrix
and letK , be the Kalman gain that results from thesabservations. The Kalman gain is:

1
Kn=PHIR = FPn(IN(X)eT), (24)

with Py, the stabilizing solution of the algebraic Ricatti equation:

AP, +PAT—PHIRIHP,+Q =0, (25)

13
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whereQ is the model error covariance. On substitution of the specific expressimve for the observation
matrix H, and the observational error covariance majx25) assumes the simplified form:

n
APn+PnAT—FPﬁ+Q:0, (26)

from which we conclude that the analysis error in the observer systauitirey from assimilation of obser-
vations at each grid point with each observation having observatiomalh\&riance is equal to the analysis
error that results from observing the same system with a single isolatetvatise with observational error
variancer /n. It remains to determine how the error covariaRgscales with.

In the absence of model errd® (= 0) the answer is immediate:
Pn = (27)

whereP is the assimilation error covariance associated with a single observation sdtisfies the algebraic
Ricatti equation:
1
AP+PAT—FP2:O. (28)
So in the absence of model error the assimilation square error tends taszerare observations are taken at
the expected rate of 1.

Consider now the case in which model error exists. In that case we map@Rpin an asymptotic series:

_Po P,
Pn= N + N +eee (29)
The leading term in this expansion is given by:
Po= VIQYZ, (30)

and consequently the asymptotic error covariance in the presence of enamtdnas the leading behavior:

_ T A2
Pn—\/;Q . (31)

We conclude that in the presence of model error the assimilation squareftine Kalman filter tends to zero
in our example as more observations are taken arraté.

It is instructive to compare this to the behavior of analysis error in a 4Dd&t assimilation as the number of
observations increases. In the absence of model error the 4D-8lgsEsquare error also tends to zero at rate
n—1, but in the presence of model error if the background covari@nisenot rescaled as more observations
are taken the analysis error asymptotes to a non zero constant value.

In order to understand this behavior consider the asymptotic errar-aso in the unstable stochastically
forced scalar system with growth rede

3—,[8 — ae+q-?w. (32)

The associated algebraic Ricatti equation is:

2am— P2+ =0, (33)

_al 2("V 4 qh
po=a-+1/2(-) +a-. (34)
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Time invariant scalar model
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Figure 9: Error in the scalar optimal observer system and alacsystem with an equivalent 4D-Var observer as
a function of the number of observations. The gain in thenogitiobserver is the asymptotic Kalman gain. The
growth rate is a= 1/2 d 1, the observational error i$#0m. The model error variance is-g 58 m? d ! resulting in

a model induced error af0 m after a day. With g 0 the error in both the observer system with the Kalman filter
and the 4D-Var falls as /2. With g+ 0 the error in the 4D-Var observer asymptotes to a constanieathile in
the observer with the Kalman filter falls asH*.
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This stabilizing solution is also the error in the observer system after assimitdtionbservations. Note that
in the absence of model error and for rll

2 .
pn:% if g=0, (35)
and that the Kalman gain is
2
Kn = Fa[lala"'alal]a (36)

and that the weight given each in the assimilation is:
Kan — 2a B (37)

indicating that the weight given to observations is proportional to the growth rate and is independent of

the number of observations.
With model error and as — oo:
ro.
pur /L i a0, (38)

and the Kalman gain is:

Kn~ [ TL,1,1,], (39)
so that the weight given to observations is:
KnHp = v/ Nar, (40)

independent of error growth rate and indicating that as the number eh@tions tends to infinity in the
presence of model error the model is increasingly discounted and teevatiens accepted. A comparison of
the error as a function of the number of observation in the scalar systémvisisn Fig.9.

Regardless of the model error, the error in the optimal observer varfdmough observations are assimilated
a result that holds in higher dimensions, as we have seen.

5 Approach of 4D-Var to the Kalman filter as the assimilation interval in-
creases

In the absence of model error 4D-Var is equivalent to the extended Kdiitter if the assimilation window
is extended to infinity. Present implementations of 4D-Var employ assimilation wsdb 12 hours and it
may appear that these implementations must be suboptimal and that the assimilakibhecamproved by
lengthening the assimilation window.

Consider the asymptotic gain arising from a single observation in the time indiepiestorm track model with
and without model error. The asymptotic gain is shown in E(top panel). It is evident that in the presence
of model error the gain is not localized: the gain identifies the unstable gtegonfi the forecast model and
provides loadings designed to destroy these structures which haveatteete of a global mode. As shown
in Fig. 10 (bottom panel) in the presence of model error the gain becomes localizedrteithborhood of the
observation because the model error that is distributed in the systemcprothecoherent responses far from
the observation location that cancel when the ensemble average resptms system is taken so that the gain
in the presence of model error is localized.

Because 4D-Var calculates the gains without model error the gain atesbwitth a 4D-Var assimilation as the
assimilation window is increased extends into the far field. This evolution ofaimeagsociated with an initial

16
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Figure 10: The asymptotic Kalman gain for observation at¢kater of the channel in the storm track model. Top
panel the gain for the case of no model error. Bottom panebtier for the case with model error. The model error
g produces an r.m.s. model error 5im in a day. The r.m.s. observational errorli® m. The asymptotic Kalman
gain has been calculated for the time mean flow. Note that tieetrerror leads to localization of the gain in the
neighborhood of the observations.
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Figure 11: Evolution of the gain associated with the obséoramarked with a star in 4D-Var as a function of the
assimilation interval in the unstable time mean storm tragior model. The backgroun8 matrix is the identity.
As the assimilation interval increases 4D-Var gains extianal the far field.
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Figure 12: Error in 4D-Var assimilations in the time depentistorm track model with no model error as a func-
tion of assimilation interval. Also shown is the error obtadl with sequential application of a Kalman filter. 16
observations are assimilated with r.m.s. observationaebreof 10 m. As the assimilation interval tends to infinity
the 4D-Var error approaches that of the Kalman filter.

climatological backgroun® in a 4D-Var assimilation is shown in Fid.1. With time the climatological gain
associated with the background error covariance assumes a glolotlisru

In the absence of model error the gain as the assimilation interval incragg@@mches the structure of the gain
of the Kalman filter and the analysis error of 4D-Var asymptotes to the analysisobtained by a Kalman
filter. The convergence of 4D-Var assimilation error to that of the Kalmam idtghown for the time dependent
version of the storm track model in Fi@2.

However, the perfect model assumption is physically unrealistic, and théad Bssimilation scheme produces
gains that have global structure as the assimilation window is increasednd\ia iur model storm track that

4D-Var performs best with an assimilation window that is large enough to allewgain to be affected by the

flow but short enough so that far-field loadings do not have time to formexample of 4D-Var analysis error

as a function of the assimilation interval is shown in Fi§. In this example the optimal assimilation interval
is 36 hours.

We conclude that neglect of model error in the formulation of 4D-Var mdk®4/ar operate best for rather
short assimilation intervals. Model error must be introduced to make 4#Vaptimal observer. In the sequel
we propose a method for introducing model error into 4D-Var.

6 Reduced order error covariance estimate

We now formulate the observer system in which the error covariance anadd in the truncated space to
obtain a reduced order Kalman gain. The resulting observer systemucagdoordinates is:

d
d—?( = (Ac—KH) g+ K RY2Wo — Qp?win (41)
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Figure 13: R.m.s. error in 4D-Var assimilations in the timepgndent storm track model with model error as a
function of assimilation interval. The best 4D-Var perfamoe is achieved in this example for assimilation over the
interval 36 h. Also shown is the error obtained with the Kalman filter. 48ervations are assimilated with r.m.s.
observational error oflO m; the model error variance is ¢ 12 n? d—1, so that a model error d m accumulates

in one day.

where the reduced analysisgs= Y'e, for k << N and the reducel x k operator is:
A, = YTAX. (42)
Then observationsy,,, are assimilated in the reduced space according to:
Yob = HiX + RYwo, (43)
where the reduced order observation matrix is:
H, = HX. (44)

The error system in the reduced space is used to obtain the Kalmak gaird to propagate the error covari-
ance,
P =<ee& > . (45)

The error covariance of the full system is then approximated from thheateduced covariandg by:
P=XPX". (46)

This error covariance is used in our 4D-Var model. By introducing thigudaxice in 4D-Var we evolve the
error covariance and simultaneously also introduce model error. Irttiodh of this reduced order covariance
in 4D-Var makes the 12 hour 4D-Var perform nearly optimally. Analysis efgierformance of this filter is
shown in Fig.14. Using the reduced order covariance obtained without model erros teadiegradation of
the 4D-Var assimilation due to unrealistic far field loadings in the gains.
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Figure 14: Error in a simulation of the time dependent storatk model with model error. Panel (a): comparison
of the errors in al2 h and24 h 4D-Var with the error in the full Kalman filter. Panel (b): ngarison of the error in

a 24 h 4D-Var with the error in &2 h 4D-Var in which the isotropic statiB has been preconditioned with the error
covariance obtained from a reduced rank Kalman filter wittelaed truncation. The reduced rank Kalman filter
has been obtained with model error. In the truncated systérdof have been retained out of the 400 dof of the
system. The isotropB introduced to the reduced rank covariance has amplitudekmpthe smallest eigenvalue of
the reduced rank covariance. Also shown is the error resglifiom the Kalman filter. Th&2h 4D-Var performance

is nearly optimal. Panel (c): comparison of the error ir2d h 4D-Var with the error in &4 h 4D-Var in which the
isotropic staticB has been preconditioned with the error covariance obtaiftech the reduced Kalman filter. The
24 h 4D-Var preconditioned with the covariance from the redukalman filter propagates the covariance without
model error longer and its performance is worse than thahefd¢orresponding2 h 4D-Var. Panel (d): r.m.s. error
in 4D-Var assimilations in the time dependent storm tracldehavith model error as a function of assimilation
interval. Also shown is the error obtained with sequentjgblication of a Kalman filter and the error from tHe2 h
4D-Var which was preconditioned with the reduced rank ctaraze. 16 observations are assimilated with r.m.s.

observational error ofl0m. The model error variance coefficient is=cl2 m? d—1, so that a model error &6 m
accumulates after a day.
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7 Conclusions

A data assimilation system combines observations and dynamics expressgghthnumerical forecast model
to obtain an estimate of the state of the atmosphere. An optimal data assimilation sgatbines observa-
tions and dynamics to obtain the statistically best state estimate. Statistical optimalitgsdgtormation
about the observation error and about the error in the numericaleftrechis latter is difficult to obtain be-
cause of the high dimension of the error system so that approximations tordoa$t error have to be made
to implement practical applications of optimal state estimation. A promising methodtainong an approx-
imation to forecast error is to advance the error covariance in a state spaeduced dimension compared
with that of the full forecast error system. The error covariance in ¢deiged space can then be used in an
approximate optimal state estimation method such as 4D-Var or the extended KatenaBuch a reduction
is possible because the significantly unstable subspace of the erron systiemuch lower dimension than the
complete state dimension.

Assimilation systems can be usefully modelled as observer systems in whichiamgajrix that stabilizes the

analysis error system is an observer and the gain that results in minimursiareahpr is the optimal observer.
This perspective on assimilation provides insight by allowing generalizbdistanalysis of the observer sys-
tem to be performed revealing for instance the distributed error souraeseive to most effectively degrade
the analysis (Farrell and loannou, 2003).

Analysis of the observer system modelling 4D-Var and the Kalman filter Ieteat as the number of obser-

vations assimilated increases the analysis error asymptotes to a finite valuarablapo observational error

and independent of the number of observations unless the foremast@variance is systematically adjusted
to account for the increase of observations. One way this adjustmefitecaccomplished is by advancing
the forecast error covariance in the dynamically relevant reducest sydtem that supports the growing error
structures.

The result from using this accurate forecast covariance is that asuthban of observations increases the
associated Kalman filter obtains assimilation e®on—1/#) (with model error present) while the 4D-Var sim-
ulation fails to systematically reduce the estimation error. Assuming that redey@d& observation in the
restricted subspace of significantly growing error structures hasarr will be available it is important to
systematize the error covariance calculation in order to take advantagesefdhservations.

The gain under the assumption of a perfect model develops far field gpdda degrade the assimilation
because the model error is in fact non-vanishing. The error coariabtained by introducing model error
into the reduced system suppresses these far field loadings. The®vesiance calculated in the reduced
system provides a method for introducing model error into 4D-Var thuscieg the deleterious effects of the
perfect model assumption and allowing accurate equivalent gains taleetbon short assimilation intervals.
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