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Abstract. S3T (Stochastic Structural Stability Theory) employs a closure at second order to
obtain the dynamics of the statistical mean turbulent state. When S3T is implemented as a
coupled set of equations for the streamwise mean and perturbation states, nonlinearity in the
dynamics is restricted to interaction between the mean and perturbations. The S3T statistical
mean state dynamics can be approximately implemented by similarly restricting the dynamics
used in a direct numerical simulation (DNS) of the full Navier–Stokes equations (referred to as
the NS system). Although this restricted nonlinear system (referred to as the RNL system) is
greatly simplified in its dynamics in comparison to the associated NS, it nevertheless self-sustains
a turbulent state in wall-bounded shear flow with structures and dynamics comparable to those
observed in turbulence. Moreover, RNL turbulence can be analysed effectively using theoretical
methods developed to study the closely related S3T system. In order to better understand RNL
turbulence and its relation to NS turbulence, an extensive comparison is made of diagnostics
of structure and dynamics in these systems. Although quantitative differences are found, the
results show that turbulence in the RNL system closely parallels that in NS and suggest that
the S3T/RNL system provides a promising reduced complexity model for studying turbulence
in wall-bounded shear flows.

1. Introduction

The Navier–Stokes equations (NS), while comprising the complete dynamics of turbulence, have
at least two disadvantages for theoretical investigation of the physics of turbulence: NS lacks
analytical solution for the case of the fully turbulent state, and the nonlinear advection term
results in turbulent states of high complexity that tend to obscure the fundamental mechanisms
underlying the turbulence. One approach to overcoming these impediments has been the
search for simplifications of NS that retain essential features of the turbulence dynamics. The
Linearized Navier–Stokes equations (LNS) provide one example of the successful application
of this approach in which the power of linear systems theory is made available to the study
of turbulence [1, 2]. The LNS system captures the non-normal mechanism responsible for
perturbation growth in NS [3]. This linear mechanism retained in LNS underlies both the
process of subcritical transition to turbulence and the maintenance of the turbulent state [4–7].
However, linear models are unable to capture other essential phenomena in turbulence that are
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intrinsically nonlinear, including the establishment of the turbulent mean velocity profile and the
maintenance of turbulence in a statistically steady state in the absence of extrinsic excitation,
the mechanism of which is referred to as the self-sustaining process (SSP). While there remain
many further aspects of the turbulent state to be addressed, such as the structures and spectrum
of the inertial subrange, a basis of understanding of wall turbulence comprises these fundamental
aspects. One approach to studying these phenomena that has proven successful is to impose
simplifications that isolate certain mechanisms of the turbulence dynamics. An example is
restricting the size of the channel [8, 9]. The existence of the minimal channel for sustaining
turbulence isolated the streak structure component of the SSP,1 and showed that the SSP cycle
comprises interactions among the streak, a pair of streamwise vortices of opposite sign (referred
to as rolls) and the perturbation field. In minimal channel turbulence a single streak fits in the
channel and the streamwise extent of the channel is of such length that the perturbations can
adopt a structure allowing them to extract energy from the mean flow through a time dependent
interaction [8, 10, 11]. Another example is imposing simplification of the dynamics by isolating
specific regions of the turbulent flow. For example, it was found that when the inner and outer
regions of the flow are isolated, turbulence was independently maintained in each region, arguing
that an independent SSP is operating in these regions [11–13].

The minimal channel flow studies referred to above focused attention on the effort to obtain
a self-consistent dynamical description of the interaction among the streak, the roll and the
perturbation field. The streaks in minimal simulations are associated with the zero streamwise
harmonic (kx = 0). This observation motivates constructing a reduced complexity turbulence
model based on the simplest closure of the LNS equations, which govern interaction between
the streamwise mean flow (with the streak structure included) and the streamwise varying
perturbation field (characterized by the kx 6= 0 flow field). This system is obtained by
augmenting LNS by only the nonlinearity resulting from including the feedback of the kx 6= 0
perturbations on the kx = 0 streamwise mean flow. This dynamics, which greatly restricts the
nonlinearity of the NS, will be referred to as the restricted nonlinear system (RNL). Remarkably,
as will be demonstrated in this work, the RNL self-sustains a realistic turbulent state, not only
in minimal channels at low Reynolds numbers, but also in larger channels and at moderate
Reynolds numbers.

The RNL system was introduced here as a simple extension of LNS that supports self-
sustained turbulence. However, the RNL has deeper roots: it approximates the second-order
cumulant closure of the NS, which is the basis of the Stochastic Structural Stability Theory (S3T).
S3T defines a statistical mean state dynamical system, and implementations of this system have
recently been used to develop theories of turbulence [14–20]. S3T employs an ensemble closure
which produces autonomous statistical mean-state dynamics in which turbulent mean states
exist as statistical equilibria. This makes the turbulent state available as an object for stability
study, extending classical hydrodynamic stability theory, which addresses only the stability
of stationary sample state solutions of the NS. In contrast, S3T can be used to determine the
structural stability of statistical mean state entities such as attractors (characterised by a specific
probability density function), so that for instance, when such an attractor becomes S3T-unstable
the fluid state bifurcates to a new attractor characterized by a different probability density
function. An example application of S3T is to a constant shear flow subjected to homogeneous
turbulence excitation in which it is found that a bifurcation occurs when the Reynolds number
exceeds a critical value resulting in a new stationary state comprising the mean flow with a roll-
streak structure and a perturbation field supporting it in a new statistical steady state [7]. At an
even higher Reynolds number a saddle-node bifurcation occurs in the S3T system, and the flow
transitions to a time-dependent state that self-sustains, which is identified with transition to the

1 In this context the term “streak” describes well-defined elongated regions of spanwise alternating bands of low
and high speed fluid superimposed on the mean shear.
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turbulent state. In the self-sustaining turbulent state the statistical mean state dynamics of S3T
approaches the deterministic dynamics of the RNL. Recent work has exploited S3T dynamics
to explore the role of streamwise coherent structures in turbulence, including the dynamics of
the roll and streak structures [21, 22]. In this paper, we verify predictions of S3T for turbulence
structure at high Reynolds numbers in pressure-driven channel flow by comparing flow statistics,
structures, and dynamical diagnostics obtained from the RNL system to results obtained in the
S3T system and to direct numerical simulations (DNS) of the full NS equations.

2. Modeling framework

Consider a pressure-driven plane Poiseuille flow maintained by application of the time-dependent
pressure, −G(t)x, where x is the streamwise coordinate. The wall-normal direction is y and
the spanwise direction is z. The lengths of the channel in the streamwise, wall-normal and
spanwise direction are respectively Lx, 2h and Lz. The channel walls are at y/h = 0 and 2.
Streamwise mean, spanwise mean and time-mean quantities are denoted respectively by an

overbar, • = L−1
x

∫ Lx

0
• dx, square brackets, [ • ] = L−1

z

∫ Lz

0
• dz and a wide hat •̂ =

T−1
∫ T

0
• dt, with T sufficiently long. The velocity, u, is decomposed into its streamwise mean

value, denoted U(y, z, t), and the deviation from the mean (the perturbation), u′(x, y, z, t),
so that the flow velocity is u = U + u′. The pressure gradient is similarly written as
∇p = ∇ (−G(t)x+ P (y, z, t) + p′(x, y, z, t)). The NS can be then decomposed into an equation
for the mean and an equation for the perturbation as follows:

∂tU+U · ∇U−G(t)x̂+∇P − ν∆U = −u′ · ∇u′ , (1a)

∂tu
′ +U · ∇u′ + u′ · ∇U+∇p′ − ν∆u′ = −

(
u′ · ∇u′ − u′ · ∇u′

)
, (1b)

∇ ·U = 0 , ∇ · u′ = 0 , (1c)

where ν is the coefficient of kinematic viscosity. The x, y, z components of U are (U, V,W ) and
the corresponding components of u′ are (u′, v′, w′). The streak component of the streamwise
mean flow is denoted with Us and defined as Us = U − [U ]. The V and W are the streamwise
mean velocities of the roll vortices. Streamwise mean perturbation Reynolds stress components
are therefore written as e.g. u′u′, u′v′.

The RNL approximation is obtained by neglecting the perturbation-perturbation interaction
terms in Eq. (1b). The RNL system is:

∂tU+U · ∇U−G(t)x̂ +∇P − ν∆U = −u′ · ∇u′ , (2a)

∂tu
′ +U · ∇u′ + u′ · ∇U+∇p′ − ν∆u′ = 0 , (2b)

∇ ·U = 0 , ∇ · u′ = 0 . (2c)

Equation (2a) describes the dynamics of the streamwise mean flow, U, which is driven by the
divergence of the streamwise mean Reynolds stresses. These Reynolds stresses are obtained
from Eq. (2b) which incorporates the influence of the time dependent streamwise mean flow
U(y, z, t) on the streamwise varying perturbations u′, but not the nonlinear interaction among
the perturbations. Only the interaction of the perturbations directly on the streamwise mean
flow, U, is retained in the r.h.s. of Eq. (2a). Remarkably, RNL self-sustains turbulence by
incorporating this one essential nonlinear interaction, in the absence of which a self-sustained
turbulent state cannot be established [23, 24].

1st Multiflow Summer Workshop IOP Publishing
Journal of Physics: Conference Series 506 (2014) 012004 doi:10.1088/1742-6596/506/1/012004

3



Table 1. Simulation parameters. [Lx, Lz]/h is the domain size in the streamwise, spanwise direction.
Nx, Nz are the number of Fourier components after dealiasing and Ny is the number of Chebyshev
components. Reτ is the Reynolds number of the simulation based on the friction velocity and [L+

x ,L
+
z ] is

the channel size in wall units.

abbreviation [Lx, Lz]/h Nx ×Nz ×Ny Reτ [L+
x ,L

+
z ]

NS350 [π , π] 128× 255 × 193 357.1 [1122, 1122]
RNL350 [π , π] 128× 255 × 193 353.5 [1111, 1111]
NS950 [π , π/2] 256× 255 × 385 939.9 [2953, 1476]
RNL950 [π , π/2] 256× 255 × 385 882.4 [2772, 1386]

3. Numerical approach and simulation parameters

The data were obtained from a DNS of Eqs. (1) and from the RNL that is directly associated with
the DNS. Both the DNS and its directly associated RNL are integrated with no-slip boundary
conditions in the wall-normal direction and periodic boundary conditions in the streamwise and
spanwise directions. The dynamics were expressed in the form of evolution equations for the
wall-normal vorticity and the Laplacian of the wall-normal velocity, with spectral discretization
and Fourier dealiasing in the two wall-parallel directions, and Chebychev polynomials in the
wall-normal direction [25]. Time stepping was implemented using the third-order semi-implicit
Runge-Kutta method.

Quantities reported in outer-units lengths are scaled by the channel half-width, h, and time
by h/uτ , and the corresponding Reynolds number is Reτ = uτh/ν where uτ =

√
ν dU/dy|w

(dU/dy|w is the shear at the wall) is the friction velocity. Inner-units lengths are scaled by
hτ = Re−1

τ h and time by Re−1
τ h/uτ . Velocities scaled by the friction velocity uτ will be denoted

with the superscript +, which indicates inner-unit scaling.

4. Comparison of turbulence structure and dynamics diagnostics between NS and

RNL

In this section we compare turbulence diagnostics obtained from self-sustained turbulence in the
RNL system, Eqs. (2), to diagnostics obtained from the parallel DNS of the NS, Eqs. (1). The
geometry and resolution of the NS and RNL cases are given in Table 1. Results are reported for
Poiseuille turbulence at either Reτ = 350 or Reτ = 950. The RNL simulations were initialized
with an NS state and run until a steady state was established. The RNL simulations produce
self-sustained turbulence with the time mean estimated Reτ values reported in Table 1, which
are close to the Reτ values of the NS turbulent state. Henceforth, the RNL simulations will be
identified with the Reτ value of the corresponding NS.

The turbulent mean profiles for the NS and RNL simulations with Reτ = 350 and Reτ = 950
are shown in outer variables in Fig. 1(a,c), while Fig. 1(b,d) shows the same data in inner-wall
units. Previous simulations in Couette turbulence [22] at lower Reynolds numbers (Reτ = 65)
showed very small differences between the mean turbulent profile in NS and RNL. These
simulations at larger Reynolds numbers show significant differences in the mean turbulent
profiles sustained by NS and RNL. This is especially pronounced in the outer regions, where
RNL produces a mean turbulent profile with substantially smaller shear. Both profiles produce
a logarithmic layer. However, the shear in these logarithmic regions are different: the von
Kármán constant of NS at Reτ = 950 is κ = 0.4, while for RNL it is κ = 0.77. Formation of
a logarithmic layer indicates that the underlying dynamics producing the logarithmic layer are
retained in RNL. Because RNL maintains essentially the same stress and variance as NS in the
logarithmic layer with a smaller shear, RNL is in this sense more efficient than NS in transferring
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Figure 1. Streamwise velocity
̂[U+(y)] for the simulations

in Table 1. (a) NS350 and
RNL350 simulations, (c) NS950
and RNL950 simulations. The
corresponding profiles are shown
in (b) and (d) in wall units.
The dashed lines indicate the
best fit to the law of the wall,

[̂U+] = (1/κ) log (y+) +C, with
coefficients: NS350: κ = 0.44,
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energy from the mean to the perturbations.
A comparison of perturbation statistics in RNL and NS is shown in Fig. 2 for Reτ = 950.

The streamwise perturbation velocity fluctuations are significantly more pronounced in RNL,
and the magnitude of the streak in RNL exceeds significantly the streak magnitude in NS in the
inner wall region (cf. Fig. 2a). In contrast, the wall-normal and spanwise fluctuations in RNL
are less pronounced than in NS (cf. Fig. 2b,c) and similarly the streak fluctuations in the outer
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region are also less pronounced in RNL (cf. Fig. 2a). The structure of the fluctuations of the
vorticity components as a function of y is shown in Fig. 2(d,e,f). The ωz and ωy fluctuations
are similar in NS and RNL. The large ωz fluctuations are associated with the shear of the
streamwise velocity, while the ωy fluctuations are associated with the streamwise streak structure.
Only the ωx fluctuations differ appreciably in amplitude between RNL and NS. This vorticity
component is primarily associated with the fluctuations in the streamwise roll circulations, which
are responsible for maintaining the streak, and which is central to sustaining the turbulence.

Despite this difference in the r.m.s. values of the velocity fluctuations, both RNL and NS
produce very similar uv Reynolds stress. The increased amplitude of the velocity fluctuations in
RNL is consistent with the fact that RNL and NS produce nearly the same energy dissipation

rate. The Reynolds stress ̂[uv ] is the sum of [̂UsV ] and ̂[u′v′ ]. Comparison of the wall-normal
distribution of the time mean of these two components of the Reynolds stress is shown in Fig. 3(a).
Because the turbulence in NS and RNL is sustained with essentially the same pressure gradient,
the sum of these Reynolds stresses is the same linear function of y outside the viscous layer. The

Reynolds stress is dominated by the perturbation Reynolds stress ̂[u′v′ ] in both simulations,
with the RNL stress penetrating farther from the wall. This is consistent with the fact that the
perturbation structure in RNL has larger scale. This can be seen in a comparison of the NS and

RNL perturbation structure shown in Fig. 4. Note that the Reynolds stress [̂UsV ] associated
with the streak and roll in the outer region of the NS simulation is larger than that in RNL.
Further, the average correlation between the perturbation u′ and v′ fields are almost the same
in both simulations, while the correlation between the Us and V in the RNL is much smaller
than that in NS in the outer layer. This is seen in a plot of the structure function (cf. [26])
shown in Fig. 3(b).

Turning now to the NS950 and RNL950 simulations, (y, z)-plane snapshots of the streamwise
mean flow component (corresponding to kx = 0 streamwise wavenumber) are shown in Fig. 5.
Contours of the streamwise streak flow field, Us, are shown together with vectors of the
streamwise mean (V,W ) field, which indicates the velocity components of the large-scale roll
structure. The presence of organized streaks and associated rolls is evident both in the inner-wall
and in the outer-wall region. Figure 6 shows a three-dimensional perspective of the flow of the NS
and RNL simulations, in which all of the kx components of the velocity field are included. Note
that in the RNL there is no visual evidence of the kx = 0 roll/streak structure which is required
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the streak velocity, U+

s = U+− [U+], superimposed with the components of the (V +,W+) velocities. The
top panels show the whole channel, while the bottom panels show the inner-wall region, 0 ≤ y+ ≤ 200.

by the restrictions of RNL dynamics to be the primary structure responsible for maintaining the
RNL self-sustained turbulent state. Rather, the most energetic streamwise harmonic (hkx = 2
for this channel) is most prominent and dominates the perturbation structure.

A comparison of the spectral energy densities of the velocity fields as a function of streamwise
and spanwise wavenumber, (kx, kz), provides an alternative view of the turbulent structure. The
premultiplied spectral energy densities of each of the three contributions to the kinetic energy,
Euu, Evv and Eww at channel heights y+ = 20, representative of the inner-wall region, and
y/h = 0.65, representative of the outer-wall region, are shown in Fig. 7. Near the wall, RNL
produces spanwise streak spacing and rolls similar to those in NS. The tendency of RNL to
favor longer structure is also evident in these figures. The spectra for the outer region indicate a
similar large-scale structure and good agreement in the spanwise spacing between RNL and NS.
This figure establishes the presence of large-scale structure in the outer region in both RNL and
NS. It has been noted that in NS, while the dominant large-scale structures scale linearly with
distance from the wall in the inner-wall region, structures having the longest possible streamwise
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(a) NS

(b) RNL

Figure 6. Three-dimensional perspec-
tive plots of the flow at a single time
for (a) NS950, and (b) RNL950, for the
lower half of the channel, 0 ≤ y/h ≤
1. Both images show contours of the
streak component plus streamwise per-
turbation, U+

s + u′+. The central x-
z panel shows the flow at y/h = 0.65.
The superimposed vectors represent the
(U+

s + u′+, w+) velocities for the x-z
panel, (U+

s +u′+, v+) velocities for the x-
y panels and (v+, w+) velocities for the
y-z panels. The parameters of the simu-
lations are given in Table 1.

scale dominate the flow variance in the outer regions at high Reynolds number [27, 28]. This
linear scaling near the wall can be seen in Fig. 8, where the pre-multiplied spectral densities
are shown as a function of the distance y and of the spanwise wavelength, kz, as in [27, 28], for
both NL and RNL. In both simulations the spanwise wavelength associated with the spectral
density maxima increases linearly with wall distance, and this linear dependence persists up to
y/h ≈ 0.5 (or y+ ≈ 450). Beyond y/h ≈ 0.5 structures assume the widest wavelength allowed in
the channel, suggesting that simulations must be performed in wider boxes in future work (cf.
discussion in Jiménez & Hoyas [28] and Flores & Jiménez [29]). Corresponding contour plots
of spectral energy density as a function of streamwise wavelength and wall-normal distance are
shown in Fig. 9. These plots show that the perturbation variance in the inner wall and outer
wall region is concentrated in a limited set of streamwise components which is apparent in Fig. 6.
The restriction of the streamwise structure is particularly pronounced in the case of RNL, in
which the outer layer variance peaks at hkx = 4, which scale the wall-normal velocity inherits.
Note that the longest wavelength in these graphs is equal to the streamwise length of the box,
not to the infinite wavelength associated with the energy of the streak/roll structure, which, as
we will see, is the most energetic structure in the NS but not in the RNL.
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spectral energy densities at y+ = 20. Contours are (0.2,0.4,0.6,0.8) times the maximum value of the
corresponding spectrum. The maximum λ+

x and λ+
y are the lengths L+

x , L
+
z of the periodic channel.

5. The RNL system as a minimal turbulence model

RNL turbulence has the property that, when initiated with full NS turbulence, it spontaneously
transitions to a self-sustaining turbulent state supported by a severely restricted set of streamwise
Fourier components. This property is consistent with the structure of the RNL system, which
retains only the interaction between the kx = 0 and the kx 6= 0 components, from which it
follows that the only energy source for maintaining a perturbation is its interaction with the
mean flow [7]. It is remarkable that at these fairly high Reynolds numbers only a small set
of streamwise harmonics are maintained by this interaction with the mean flow. Moreover,
this is the fundamental interaction maintaining RNL turbulence and, by implication, given
the similarity in the structure and dynamics between them, of NS turbulence as well. Even
if the RNL dynamics is initialized with an NS flow state with energy in all Nx components,
the RNL turbulence eventually reduces to involve only the nx ≪ Nx Fourier components with
wavenumber hkx = (2π/Lx) × (0, 1, . . . , nx − 1). We view this transition of NS turbulence to
RNL turbulence as a process of distillation by which a small set of structures maintaining the
turbulent state is identified, a result that was previously obtained in the case of self-sustained
Couette turbulence at Re = 400 and Re = 1000 [7, 21]. In this previous work, a minimal-channel
RNL simulation at Re = 400 was shown to self-sustain turbulence by the interaction of only
two kx components: kx = 0 and the first harmonic in the channel. The analogous distillation
process for the Reτ = 950 simulation is shown in Fig. 10(a). The time evolution of the energy of
the first 15 streamwise varying Fourier components in an NS simulation is shown in the left part
of the figure (uτ t/h < 100), while the subsequent evolution of these components is shown in the
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Figure 8. Normalized pre-multiplied spectral densities kzEf (kz) = kz
∑

kx

Eff (kx, kz), with f = u, v, w,
as a function of spanwise wavelength, λz/h, and y/h. Spectral densities are normalized so that at each y
the total energy,

∑
kz

Ef (kz), is the same. Shown are for NS950 (a) kzEu(kz), (b) kzEv(kz), (c) kzEw(kz)
and for RNL950 (d) kzEu(kz), (e) kzEv(kz), (f) kzEw(kz). The isocontours are 0.2, 0.4, . . . , 1.4, and the
thicker line marks the 1.0 isocontour.
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Figure 9. Normalized pre-multiplied spectral densities kxEf (kx) = kx
∑

kz

Eff (kx, kz), with f =
u, v, w, as a function of streamwise wavelength, λx/h, and y/h. Spectral densities are normalized so
that at each y the total energy,

∑
kx

Ef (kx), is the same. Shown are for NS950 (a) kxEu(kx), (b)
kxEv(kx), (c) kxEw(kx) and for RNL950 (d) kxEu(kx), (e) kxEv(kx), (f) kxEw(kx). The isocontours are
0.1, 0.125, . . . , 0.35, and the thicker line marks the 0.2 isocontour.

right part, after the perturbation-perturbation interactions are suppressed at the indicated time,
so that the turbulence evolves under RNL dynamics. It is evident from Fig. 10(a) that RNL950
turbulence in a channel with Lx = πh retains only the six Fourier components hkx = 2, 4, . . . , 12
out of the Nx = 127 streamwise varying components that are present in the NS simulation.
All components with hkx > 12 decay exponentially. As a result, a transition occurs in which
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a reduced-complexity dynamics maintaining turbulence arises, which self-sustains turbulence
despite this greatly restricted support in streamwise wavenumber space. That RNL maintains a
turbulent state similar to that of NS with nearly the same Reτ (Reτ = 882 vs. Reτ = 940) implies
that these systems have approximately the same energy production and dissipation and that the
nx components retained in RNL assume the burden of accounting for this energy production
and dissipation. Specifically, the components in NS that are not retained in RNL are responsible
for approximately one third of the total energy dissipation, which implies that the components
that are retained in RNL must increase their dissipation by that much.

6. Streak structure dynamics in NS and RNL

Large scale roll/streak structures are prominent in the inner layer as well as in the outer layer,
both in NS and in RNL. The dynamics of this structure can be diagnosed using the time

90 95 100 105 110 115

10
−15

10
−10

10
−5

10
0

u τ t /h

E
(k

x
,
u

τ
t/

h
)

90 95 100 105 110 115
0

1

2

3

u τ t /h

E
(k

x
,
u

τ
t/

h
)

Er

Es

(b)

(a)

E (hk x = 14, uτ t /h)

E (hk x = 2, uτ t /h)

E (hk x = 4, uτ t /h)

Figure 10. An NS950 simulation up to uτ t/h = 100 (indicated with the vertical line) is continued
subsequently under RNL dynamics. Shown are (a) Energy of the first 15 streamwise varying Fourier
components (hkx = 2, 4, . . . , 30). The energy of the Fourier components decreases monotonically with
wavenumber. Decaying Fourier components are indicated with dashed lines. After the transition to RNL
dynamics all components with hkx ≥ 14 decay (hkx = 14 decays, although it is not shown in this figure).
Asymptotically the dynamics of the RNL950 turbulence is maintained by interaction between the set of
surviving hkx = 2, 4, . . . , 12 Fourier components and the mean flow (kx = 0). (b) Detailed view showing
the energy of the mean and surviving perturbation components during the transition from NS to RNL
dynamics, in which the total energy increased by 10%. For the kx = 0 shown are: the streak energy,
Es = (hLz)

−1
∫
dy dz U+2

s /2, and roll energy, Er = (hLz)
−1

∫
dy dz (V +2 +W+2)/2. The energy of the

hkx = 2, 4, 6, 8 components increases rapidly during the adjustment after transition to RNL dynamics.
Note that the total energy in the perturbation kx 6= 0 components decreases from 0.91 in the NS950
(0.56 being in the components that survive in the RNL) to 0.78 in RNL950. Also the roll/streak energy
decreases from 1.1 in NS950 to 0.8 in RNL950, while the energy of the kx = kz = 0 component increases
from 397 to 448.
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evolution of the energy of each kx component during the transition from NS to RNL, shown in
Fig. 10(b). It can be seen that in NS the energy associated with the streamwise mean structure
with kx = 0 and kz 6= 0 is dominant among the structures that deviate from the mean flow
[U ]. In the inner layer the interaction of roll/streak structures with the kx 6= 0 perturbation
field maintains turbulence through an SSP [7, 10, 11]. The RNL system provides an especially
simple manifestation of this SSP, as its dynamics comprise only interactions between the mean
(kx = 0) and perturbation (kx 6= 0) components. The fact that RNL self-sustains a counterpart
turbulent state provides strong evidence that the RNL SSP captures the essential dynamics of
turbulence in the inner-wall region.

The structure of the RNL system compels the interpretation that the time dependence
of the SSP cycle, which might appear at first to consist of a concatenation of random and
essentially unrelated events, is instead an intricate interaction dynamics among streaks, rolls
and perturbations that produces the U(y, z, t) which, when introduced in Eq. (2b), results in
the generation of an evolving perturbation Lyapunov structure with exactly zero Lyapunov
exponent. S3T identifies this exquisitely contrived SSP cycle, which comprises the generation of
the streak through lift-up by the rolls, and the maintenance of the rolls by torques induced by
the perturbations which themselves are maintained by an essentially time-dependent parametric
non-normal interaction with the streak (rather than e.g. inflectional instability of the streak
structure) [7].

Vanishing of the Lyapunov exponent associated with the SSP is indicative of a feedback
control process acting between the streaks and the perturbations by which the parametric
instability of the perturbations on the time-dependent streak is reduced so that it asymptotically
maintains a zero Lyapunov exponent. Examination of the transition from the NS to the RNL,
shown by the simulation diagnostics in Fig. 10(b), reveals the action of this controller. When
the interaction among the perturbations in Eq. (1b) is switched off so that the simulation
is governed by RNL dynamics, we observe a sudden increase of the energy of the surviving
kx 6= 0 components, as shown by the rapid increase of the energy in the hkx = 2, 4, 6, 8
components. An increase of the energy of these components is expected because the dissipative
effect of the perturbation-perturbation nonlinearity that acts on these components is removed in
RNL. As these modes grow, the SSP cycle quickly adjusts to a new turbulent equilibrium state
characterized by reduced streak amplitude and increased energy in the largest streamwise scales.
This SSP cycle is more efficient in the sense that a self-sustained turbulence with approximately
the same Reτ as that in NS is maintained with smaller mean shear. This turbulent state is
dominated by high-amplitude fluctuations of the hkx = 2, 4, 6, 8 components, as well as in
the components associated with the wall-normal and spanwise direction. This can be seen in
a comparison of the NS and RNL perturbation structure (the velocity field corresponding to
kx 6= 0) shown in Fig. 4. The perturbations in RNL simultaneously reduce the shear of the
mean flow and maintain a reduced amplitude streak in the outer layer. A comparison of the
shear, of the r.m.s. V velocity, and of the r.m.s. streak velocity, Us, in the outer layer is shown
as a function of y in Fig. 11, from which it can be seen that the reduction of the amplitude of
the streak in RNL is equal to the reduction in the mean flow shear. It is important to note that
these dependencies are integral to the SSP cycle, and specifically of its feedback control that
determines the statistical steady state, and must be understood in the context of the cycle.

In the discussion above we have assumed that the presence of roll and streak structure in the
outer layer in RNL indicates the existence of an SSP cycle there as well, and by implication also
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in NS. In order to show this consider the momentum equation for the streamwise streak:

∂tUs = −
(
V ∂yU − [V ∂yU ]

) (
−      W ∂zU − [W ∂zU]

)

︸ ︷︷ ︸
A

−

−
(
v′ ∂yu′ − [v′ ∂yu′]

)
−

(
w′ ∂zu′ − [w′ ∂zu′]

)

︸ ︷︷ ︸
B

+ ν∆Us . (3)

Term A in Eq. (3) is the contribution to the streak acceleration by the ‘lift-up’ mechanism and
the ‘push-over’ mechanism, which represent transfer to streak momentum by the mean wall-
normal and spanwise velocities respectively. Term B in Eq. (3) is the contribution to the streak
momentum by the perturbation Reynolds stress divergence (structures with kx 6= 0).

In order to identify the mechanism of streak maintenance we examine whether terms A and B
accelerate or decelerate the streaks by evaluating from the simulation the contribution of
the terms IA(t) = h−1

∫
R
dy IA(y, t) and IB(t) = h−1

∫
R
dy IB(y, t), where IA(y, t) =

hu−2
τ L−1

z

∫
dz sgn(Us)× (Term A) and IB(y, t) = hu−2

τ L−1
z

∫
dz sgn(Us)× (Term B), to streak

maintenance as a function of time and region R of the flow (similar results are obtained by
multiplying with Us to obtain an energy rather than a momentum budget for Us). The results
of this calculation are shown in Fig. 12 for R extending over the the inner region, the outer region
and the whole channel. In the inner and outer wall regions for both NS and RNL the streak
structure is supported primarily by the lift-up mechanism while the Reynolds stress divergences
oppose the streak. While the magnitude of the acceleration by the lift-up and the deceleration
by the Reynolds stress divergence are nearly the same in both NS and RNL in the inner region,
in the outer region the acceleration by the lift-up in the RNL is about half of that in the NS,

due to the smaller mean flow shear in RNL. The wall-normal structure of the time-mean ÎA and
ÎB are shown in Fig. 13(a,b). We conclude that in NS and RNL the only positive contributions
to the outer layer streaks are induced by the lift-up from the roll circulation, despite the small
shear in this region. We next consider the dynamics maintaining the roll circulation.

7. Roll dynamics: maintenance of mean streamwise vorticity in NS and RNL

We have established that the roll circulation is not only responsible for streak maintenance in
the inner layer but also in the outer layer. We now examine the mechanism of roll maintenance
using streamwise averaged vorticity, Ωx = ∂yW−∂zV , in the outer layer as a diagnostic. In order
for roll circulation to be maintained against dissipation there must be a continuous generation
of Ωx. There are two possibilities for the maintenance of Ωx in the outer layer: either Ωx is
generated locally in the outer layer, or it is advected from the near-wall region.
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Figure 12. Streak-generation terms. (a) IA(t) over the whole channel with time-mean value 2.95 for
NS950 and 2.59 for RNL950. (c) IA(t) over the outer region, 0.2 ≤ y/h ≤ 1.8, with time-mean value 1.97
for NS950 and 0.4 for RNL950. (e) IA(t) over the inner region, 0 ≤ y/h ≤ 0.2 1.8 ≤ y/h ≤ 2, with time-
mean value 1.68 for NS950 and 2.19 for RNL950. (b) IB(t) over the whole channel with time-mean value
−2.4 for NS950 and −1.21 for RNL950. (d) IB(t) over the outer region, 0.2 ≤ y/h ≤ 1.8, with time-mean
value −1.2 for NS950 and −0.08 for RNL950. (f) IB(t) over the inner region, 0 ≤ y/h ≤ 0.2 1.8 ≤ y/h ≤ 2,
with time-mean value −1.2 for NS950 and −1.13 for RNL950.

From Eq. (1a) we obtain that Ωx satisfies the equation:

∂tΩx = −V ∂yΩx −W ∂zΩx

︸ ︷︷ ︸
C

+(∂zz − ∂yy)
(
v′w′

)
− ∂yz

(
w′2 − v′2

)

︸ ︷︷ ︸
D

+ ν Ωx∆Ωx . (4)

Term C expresses the streamwise vorticity tendency due to advection of Ωx by the streamwise
mean flow (V,W ). Because there is no vortex stretching contribution to Ωx from the (V,W )
velocity field, this term only advects the Ωx field and cannot sustain it against dissipation.
However, this term may be responsible for systematic advection of Ωx from the inner to the
outer layer. Term D is the torque induced by the perturbation field. This is the only term that
can maintain Ωx. The overall budget for square streamwise vorticity in the region R, y1 ≤ y ≤ y2,
0 ≤ z ≤ Lz, is given by:

∂t

∫ y2

y1

dy

[
1

2
Ω2
x

]
= −

[
1

2
Ω2
x V

] ∣∣∣∣
y=y2

y=y1︸ ︷︷ ︸
h−2u3

τ IC

+

∫ y2

y1

dy
[
Ωx × Term D

]

︸ ︷︷ ︸
h−2u3

τ ID

+ ν

∫ y2

y1

dy

[
Ωx∆Ωx

]
. (5)

where we have defined IC(t) = h−1
∫
R
dy IC(y, t) and ID(t) = h−1

∫
R
dy ID(y, t), with

IC(y, t) = h3u−3
τ L−1

z

∫
dz Ωx × (Term C) and ID(y, t) = h3u−3

τ L−1
z

∫
dz Ωx × (Term D). Term
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Figure 13. (a) Contribution to streak acceleration from the lift-up mechanism ÎA. (b) Contribution to

streak acceleration from the perturbation Reynolds stress divergence ÎB . (c) contribution to streamwise

mean vorticity generation from perturbation Reynolds stress induced torques ÎD (cf. section 7). Results
from NS950 (solid) and RNL950 (dashed). Upper panels show structure in the outer layer, 0.2 ≤ y/h ≤ 1,
lower panels show the structure in the inner layer, 0 ≤ y+ ≤ 200.
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Figure 14. Time series of the contribution
to the rate of change of

∫
dy

[
Ω2

x/2
]

by perturbation torques, ID(t), and from
advection of streamwise mean vorticity by
the mean flow, IC(t), for NS950 (solid)
and RNL950 (dashed). (a) ID for the
whole channel, 0 ≤ y/h ≤ 2 (IC = 0 in

this case). The time-mean ÎD is 2103.6
for NS950 and 982.8 for RNL950. (b)
ID over the outer layer, 0.2 ≤ y/h ≤
1.8. The time-mean ÎD for this region is
242.5 for NS950 and only 28.7 for RNL950.
(c) IC for the outer layer 0.2 ≤ y/h ≤
1.8. The time-mean ÎC is 2.9 for NS950
and 11.2 for RNL950. These figures show
that in NS the roll is maintained locally
by the perturbation Reynolds stresses and
that in RNL the major contribution to the
roll maintenance is contributed locally from
perturbation induced torques.
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IC represents the flux of vorticity into the region by the streamwise averaged wall-normal velocity,
V .

Time series of the contributions from IC(t) and ID(t) to the Ωx production for NS950 and
RNL950, shown in Fig. 14, demonstrate that Ωx is primarily generated in situ by Reynolds

stress torques. The corresponding wall-normal structure of the time-mean ÎD, representing the
local contribution to streamwise mean vorticity generation from perturbation Reynolds stress
induced torques is shown in Fig. 13(c). Note that for NS in the outer layer, the streamwise
mean vorticity generation by the Reynolds stress is strongly positive at each instant. This is
so despite the fact that the r.m.s. V velocity is smaller in the NS than in the RNL, as seen
in Fig. 11, implying greater streamwise vorticity dissipation in the NS. It could be argued that
the positive value of the generation ID found in NS and RNL is a consequence of the finite
streamwise extent of the channel and as the channel length increases, assuming that there is
no systematic correlation between streamwise average torques and streak structure, ID should
decrease as 1/

√
Lx and in the limit of an infinite channel the NS and RNL should sustain no

Ωx. However, S3T theory shows that there is a systematic correlation between streaks and roll
generation by the perturbation torque resulting from the deformation of the turbulence by the
streak and, as a result, it predicts that in the limit Lx → ∞, ID should asymptote to a finite
non-zero value at least in RNL.

Having established that the streamwise vorticity in the outer layer is generated in situ from
local Reynolds stress divergences we conclude that the SSP cycle is operational in the outer
layer, just as in the inner one.

8. Discussion and Conclusions

We have established that RNL self-sustains turbulence at moderate Reynolds numbers in
pressure-driven channel flow, despite its greatly simplified dynamics when compared to NS.
Remarkably, in the RNL system, the turbulent state is maintained by a small set of structures
with low streamwise wavenumber Fourier components (at Reτ = 950 with the chosen channel the
SSP involves only the kx = 0 streamwise mean and the next six streamwise Fourier components).
Not only that, but this minimal turbulent dynamics arises spontaneously when the RNL system
is initialized by NS turbulence at the same Reynolds number. In this way RNL spontaneously
produces a turbulent state of reduced complexity. RNL identifies an exquisitely contrived SSP
cycle which has been previously identified to comprise the generation of the streak through lift-
up by the rolls, and the maintenance of the rolls by torques induced by the perturbations which
themselves are maintained by an essentially time-dependent parametric non-normal interaction
with the streak (rather than e.g. inflectional instability of the streak structure) [7]. The vanishing
of the Lyapunov exponent associated with the SSP is indicative of a feedback control process
acting between the streaks and the perturbations by which the parametric instability that
sustains the perturbations on the time dependent streak is reduced to zero Lyapunov exponent,
so that the turbulence neither diverges nor decays.

We have established that both NS and RNL produce a roll/streak structure in the outer
layer and that an SSP is operating there despite the low shear in this region. It has been shown
elsewhere that turbulence self-sustains in the logarithmic layer in the absence of boundaries [13].
This is consistent with our finding that an SSP cycle exists in both the inner-layer and outer-
layer.

The turbulence maintained in RNL is closely related to its associated NS turbulence, and
both exhibit a logarithmic layer, although with substantially different von Kármán constants.
Existence of a logarithmic layer is a fundamental requirement of asymptotic matching between
regions with different spatial scaling, as was noted by Millikan [30]. However, the exact value
of the von Kármán constant does not have a similar fundamental basis in analysis, and RNL
turbulence, which is closely related to NS turbulence but more efficient in producing Reynolds

1st Multiflow Summer Workshop IOP Publishing
Journal of Physics: Conference Series 506 (2014) 012004 doi:10.1088/1742-6596/506/1/012004

16



stress, maintains as a consequence a smaller shear and therefore greater von Kármán constant.
Specifically, we have determined that the SSP cycle in RNL is characterized by a more energetic
and larger-scale perturbation structure, despite having a lower amplitude streak and mean shear.

Formation of roll/streak structures in the logarithmic layer is consistent with the universal
mechanism by which turbulence is modified by the presence of a streak in such way as to induce
growth of a roll structure configured to lead to continued growth of the original streak. This
growth process underlies the non-normal parametric mechanism of maintaining the perturbation
variance in the SSP that maintains turbulence if the Reynolds number is large enough [7]. This
universal mechanism does not predict nor requires that the roll/streak structures be of finite
streamwise extent and, in its simplest form, it has been demonstrated that it supports roll/streak
structures with zero streamwise wavenumber. From this point of view, the observed length of
roll/streak structures is not a consequence of the primary mechanism of the SSP supporting them,
but rather a secondary effect of disruption by the turbulence. In this work we have provided
evidence that NS turbulence is persuasively related in its dynamics to RNL turbulence. Moreover,
given that the dynamics of RNL turbulence can be understood fundamentally from its direct
relation with S3T turbulence, we conclude that the mechanism of turbulence in wall-bounded
shear flow is the roll/streak/perturbation SSP that was previously identified to maintain S3T
turbulence.
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[13] Mizuno Y and Jiménez J 2013 Wall turbulence without walls J. Fluid Mech. 723 429–55
[14] Farrell B F and Ioannou P J 2003 Structural stability of turbulent jets J. Atmos. Sci. 60 2101–18
[15] Farrell B F and Ioannou P J 2007 Structure and spacing of jets in barotropic turbulence J. Atmos. Sci. 64

3652–65
[16] Marston J B, Conover E and Schneider T 2008 Statistics of an unstable barotropic jet from a cumulant

expansion J. Atmos. Sci. 65 1955–66

1st Multiflow Summer Workshop IOP Publishing
Journal of Physics: Conference Series 506 (2014) 012004 doi:10.1088/1742-6596/506/1/012004

17



[17] Tobias S M, Dagon K and Marston J B 2011 Astrophysical fluid dynamics via direct statistical simulations
Astrophys. J. 727 127

[18] Srinivasan K and Young W R 2012 Zonostrophic instability J. Atmos. Sci. 69 1633–56
[19] Bakas N A and Ioannou P J 2013 Emergence of large scale structure in barotropic β-plane turbulence Phys.

Rev. Lett. 110(22) 224501
[20] Constantinou N C, Farrell B F and Ioannou P J 2013 Emergence and equilibration of jets in beta-plane

turbulence: applications of Stochastic Structural Stability Theory J. Atmos. Sci. Doi:10.1175/JAS-D-13-
076.1, in press

[21] Farrell B F, Gayme D F, Ioannou P J, Lieu B K and Jovanović M R 2012 Dynamics of the roll and streak
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