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ABSTRACT

Coherent jets, such as the Jovian banded winds, are a prominent feature of rotating turbulence. Shallow-

water turbulence models capture the essential mechanism of jet formation, which is systematic eddy mo-

mentum flux directed up the mean velocity gradient. Understanding how this systematic eddy flux conver-

gence is maintained and how the mean zonal flow and the eddy field mutually adjust to produce the observed

jet structure constitutes a fundamental theoretical problem. In this work a shallow-water equatorial beta-

plane model implementation of stochastic structural stability theory (SSST) is used to study the mechanism of

zonal jet formation. In SSST a stochastic model for the ensemble-mean turbulent eddy fluxes is coupled with

an equation for the mean jet dynamics to produce a nonlinear model of the mutual adjustment between the

field of turbulent eddies and the zonal jets. In weak turbulence, and for parameters appropriate to Jupiter,

both prograde and retrograde equatorial jets are found to be stable solutions of the SSST system, but only the

prograde equatorial jet remains stable in strong turbulence. In addition to the equatorial jet, multiple mid-

latitude zonal jets are also maintained in these stable SSST equilibria. These midlatitude jets have structure

and spacing in agreement with observed zonal jets and exhibit the observed robust reversals in sign of both

absolute and potential vorticity gradient.

1. Introduction

Coherent jets are often observed in turbulent flows,

with the banded winds of Jupiter constituting a familiar

and frequently studied example (Ingersoll 1990; Vasavada

and Showman 2005; Sánchez-Lavega et al. 2008). This

phenomenon of spontaneous jet formation in turbulence

has been studied observationally and theoretically (Rhines

1975; Williams 1979, 2003; Panetta 1993; Nozawa and

Yoden 1997; Huang and Robinson 1998; Manfroi and

Young 1999; Vallis and Maltrud 1993; Cho and Polvani

1996; Galperin et al. 2004; Lee 2005; Kaspi and Flierl

2007; Sokolov and Rintoul 2007), as well as in laboratory

experiments (Krishnamurti and Howard 1981; Read

et al. 2004, 2007). The primary mechanism maintaining

planetary turbulent jets has been identified as eddy

momentum flux systematically directed up the mean

velocity gradient (Panetta 1993; Nozawa and Yoden

1997; Huang and Robinson 1998; Ingersoll et al. 2004;

Salyk et al. 2006). This upgradient momentum flux is

produced by shear straining of the eddy field by the

mean flow, implying that the large-scale jets are main-

tained by a spectrally nonlocal interaction between the

small-scale eddy field and the large-scale jets (Panetta

1993; Nozawa and Yoden 1997; Huang and Robinson

1998; Ingersoll et al. 2004; Salyk et al. 2006; Kitamura

and Ishioka 2007).

Characteristics of the jets of Jupiter include prograde

equatorial velocity, multiple midlatitude jets, asymme-

try between prograde and retrograde jets such that

the prograde jet is typically stronger and sharper than

the retrograde jets, and substantial change in sign of the

absolute vorticity gradient in the midlatitude retrograde

jets (Limaye 1986; Porco et al. 2003; Read et al. 2006).

The central component of a theory for turbulent jet

dynamics, that is, the method for obtaining the structure

of the turbulence and the associated fluxes given the jet,
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is provided by a stochastic turbulence model (STM)

(Farrell and Ioannou 1993a, 1994, 1995, 1996; DelSole

and Farrell 1995; DelSole 1996; DelSole and Farrell

1996; Newman et al. 1997; Whitaker and Sardeshmukh

1998; Zhang and Held 1999; DelSole 2004). Once these

fluxes are known, the equilibrium jet dynamical balance

between the ensemble-mean turbulent momentum flux

convergence and dissipation can be determined. This is

the method of Stochastic Structural Stability Theory

(SSST; Farrell and Ioannou 2003, 2008). The interaction

between the large-scale jet structure and the field of

eddy turbulence is nonlinear and results in a nonlinear

trajectory for the jet and the ensemble-mean eddy field

associated with it, which for parameter values in the

shallow-water equations (SWEs) on an equatorial beta

plane typical of Jovian conditions asymptotically ap-

proaches a stable equilibrium with multiple jets. This

equilibrium arises from a linear instability of the cou-

pled turbulence–mean flow system. This jet-forming

instability is emergent from the interaction between the

mean flow and the turbulence. The finite-amplitude

equilibria can, for sufficiently low turbulence intensity,

be connected continuously to the associated linear in-

stabilities.

In this work, the convective excitation of turbulence

observed in Jupiter’s atmosphere (Gierasch et al. 2000;

Ingersoll et al. 2000) is approximated as stochastic in

both space and time and its amplitude taken as an in-

dependent parameter in the solution of the SSST sys-

tem. Using this model we investigate both the formation

and equilibration of jets in SWE equatorial beta-plane

turbulence.

We find that if the turbulence is not too strong, and if a

randomly structured small-amplitude initial zonal jet is

prescribed, the equatorial jet equilibrium can be either

prograde or retrograde, depending on the initial per-

turbation zonal velocity. This result is consistent with

the existence of linear instability of the zonal jet free

turbulent state to zonal jet perturbations that occurs in

the presence of sufficient turbulence intensity. However,

for parameter values used in our model simulations, as

the turbulence level increases or the dissipation of the

jet decreases, the nonlinear equilibrium equatorial jet

speed increases and the retrograde equatorial jet ulti-

mately loses structural stability. At this point the retro-

grade jet undergoes a catastrophic readjustment, from

which it emerges as a prograde jet. On the other hand,

the prograde equatorial jet persists as a stable equilib-

rium at higher turbulence intensity and/or lower jet dis-

sipation, with correspondingly higher associated jet speed.

The stability of both prograde and retrograde jets over a

considerable parameter range is consistent with the mix

of prograde and retrograde jets on the gaseous planets

and in simulations of decaying turbulence initialized

randomly (Kitamura and Ishioka 2007), as well as in

simulations of forced turbulence (Huang and Robinson

1998; Scott and Polvani 2007, 2008). The phenomenon

of retrograde jet destabilization occurs over a range of

parameter values typical of Jupiter jet simulations but

has not been verified to occur for all parameter values

appropriate for the gaseous planets, particularly for

Froude numbers of O(1) or larger.

At low turbulence intensity, multiple nearly sym-

metric prograde and retrograde jets with low jet speed

form in the midlatitudes. As turbulence intensity in-

creases, the jet speed also increases, with the prograde

jets becoming increasingly narrow while the retrograde

jets assume a more rounded profile. These adjustments

occur because as turbulence intensity rises, the retro-

grade jet encroaches on eddy stability boundaries, which

results in modification of the jet structure by eddy

momentum fluxes because these eddy fluxes diverge at

the stability boundary (Farrell and Ioannou 2003). The

stable equilibrium jets exhibit a substantial reversal in

sign of both absolute and potential vorticity gradients.

Such meridionally localized reversals of absolute vor-

ticity gradient are a prominent feature of both observed

and simulated jets (Limaye 1986; Read et al. 2006; Scott

and Polvani 2007). Potential vorticity gradients, rever-

sals of which are associated with necessary conditions

for instability in the inviscid SWE system, change sign in

approximate coincidence with absolute vorticity gradi-

ents in our jets, in observations, and in simulations

(Read et al. 2006; Scott and Polvani 2007). We find that

our jets remain stable with a limited extent of reversal

of potential vorticity gradient, which implies, given the

approximate coincidence of absolute and potential vor-

ticity gradients, that jet spacing is close to the notional

Rhines radius based on the mean velocity.1 However,

this meridional jet scale arises in SSST from a mecha-

nism unrelated to the Rhines radius interpreted as a

halting scale for two-dimensional turbulent cascades.

2. Dynamics of zonal jets in turbulence

A theory of zonal jet dynamics in turbulence was de-

veloped in Farrell and Ioannou (2003). This theory was

applied to the problem of the formation of jets in baro-

tropic turbulence in Farrell and Ioannou (2007) and to

the problem of formation of jets in baroclinic turbulence

in Farrell and Ioannou (2008). We now briefly review

this theory in the context of the SWE.

1 This follows from the vanishing of q
y

5 b� u
yy

, implying

b ’ U/L2, where L is the meridional length scale and U is the

velocity scale.
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Consider the dynamics of a zonally unbounded shallow

fluid layer confined by rigid walls to a meridional channel

on an equatorial plane with a free upper boundary. The

nondimensional equations for the zonal (x) velocity, u,

meridional ( y) velocity, y, and height, h, are

›
t
u 1 u›

x
u 1 y›

y
u� f (y)y 1

1

F2
›

x
h

5�r
u
� r(y)u 1 n=2u, (1a)

›
t
y 1 u›

x
y 1 y›

y
y 1 f (y)u 1

1

F2
›

y
h

5�r
u
� r(y)y 1 n=2y, (1b)

›
t
h 1 u›

x
h 1 y›

y
h 1 (›

x
u 1 ›

y
y)h

5�r
h
(h� 1)� r(y)(h� 1) 1 n=2h. (1c)

The Coriolis parameter for the equatorial beta plane is

f( y) 5 by with b 5 2v/a, where v is the rotation rate of

the planet and a is its radius. We will also consider the

geophysical beta variation f(y) 5 (bLy/p) sin(py/Ly)

over the channel interval [2Ly/2, Ly/2]. Rayleigh fric-

tion at rate ru is included in the momentum equations

and Newtonian cooling, at the rate rh, in the height

equation. We also include a latitudinally varying Ray-

leigh friction r( y):

r( y) 5 r
s

1� tanh
y 1 L

y
/2� 1/2

d
s

� �� �

1 r
s

1 1 tanh
y� L

y
/2 1 1/2

d
s

� �� �
(2)

that damps all fields, creating an absorbing sponge layer

in the vicinity of the channel walls. Diffusive dissipation

with coefficient n is added to improve numerical stability.

Height is nondimensionalized by the equivalent depth

of the fluid, H; the horizontal scales by a typical length

scale, L; time by the period of rotation of the planet, T 5

2p/v; and velocity by U0 5 L/T. The Froude number is

F 5 U
0
/
ffiffiffiffiffiffiffi
gH
p

, with g being the gravitational accelera-

tion. For Jupiter T 5 3.6 3 104 s, and with L 5 107 m, the

velocity scale is U0 5 278 m s21 and the nondimensional

equatorial beta parameter is b 5 1.8. In most of the ex-

amples F 5 0.3, rs 5 2, ds 5 0.5, and n 5 (6dy)2, where dy

is the discretization interval in the meridional direction.

For the Jovian case we assume the fluid is forced by

convection and is in a turbulent state. To model forcing

of the mean jets by this turbulence, we use a stochastic

turbulence model to obtain the ensemble mean eddy

fluxes. The stochastic forcing and the damping pa-

rameters for Jupiter are not well known individually.

What is known is the turbulent large-scale rms velocity,

which is O(5 m s21), and the mean jet velocity, which is

O(100 m s21) (Salyk et al. 2006). By adjusting the forcing

and eddy damping to produce the observed level of

turbulence, one can infer the linear mean jet dissipa-

tion rate required to produce the observed jet velocity.

Combining the Lyapunov equation of the STM with the

equation for the zonal mean flow, we obtain the au-

tonomous deterministic equation set from which the

jets in equilibrium with the turbulence can be deter-

mined (Farrell and Ioannou 2003). The development of

these equations is now described in more detail.

Decompose the fields into zonal mean and fluctua-

tions about the mean:

u 5 u 1 u9, y 5 y 1 y9, h 5 1 1 h 1 h9, (3)

in which the bar denotes a zonal average, and assume

weak meridional circulation. Neglecting2 y and the eddy

mass flux terms y9h9, the zonal average of (1a) is

›
t
u 5�y9Du9� r

m
u� r( y)u 1 nD2u, (4)

where D denotes differentiation with respect to y and

1/rm is the damping time of zonally averaged fields, which

will be taken to be on the order of the radiative time

scale 1/rm ’ 1000 Jovian days. The mean height h is ob-

tained diagnostically by assuming geostrophic balance:

Dh 5�F2f ( y)u. (5)

The stochastic perturbation equations obtained from

(1a)–(1c) are

›
t
u9 1 u›

x
u9 1 [Du� f ( y)]y9 1

1

F2
›

x
h9

5�[r
u

1 r( y)]u9 1 n=2u9 1 F
u
h

u
(t), (6a)

›
t
y9 1 u›

x
y9 1 f ( y)u9 1

1

F2
›

y
h9

5�[r
u

1 r( y)]y9 1 n=2y9 1 F
y
h

y
(t), (6b)

›
t
h9 1 u›

x
h9 1 Dh y9 1 (1 1 h)(›

x
u9 1 ›

y
y9)

5�[r
h

1 r( y)]h9 1 n=2h9 1 F
h
h

h
(t). (6c)

In the above equations the stochastic forcing terms

Fuhu(t), Fyhy(t), and Fhhh(t) parameterize the structure

and time variation of the convective excitation and the

excitation from the nonlinear eddy–eddy scattering (cf.

Farrell and Ioannou 2003). Because of zonal homogeneity,

the fields can be expanded in a Fourier series with zonal

2 We have verified that the Coriolis force associated with y is at least

an order of magnitude smaller than the Reynolds stress term in (4).
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wavenumber k 5 2pm/Lx, where Lx is the equatorial

circumference and m is the global zonal wavenumber.

The perturbation field at each wavenumber evolves ac-

cording to

dc

dt
5 A

k
(u)c 1

ffiffi
�
p

Fh(t), (7)

in which the state, c, has been discretized on an equally

spaced grid to form the state column vector: [u1, . . . , un,

y1, . . . , yn, h1, . . . , hn]T, with subscript i denoting the

value of the field at the ith discretization point and n

the number of points. The associated dynamical opera-

tor A
k
(u) is expressed as a matrix using second-order

finite differences. The parameter � controls the excita-

tion amplitude.

The eddy-induced acceleration �y9Du9 is obtained

under the ergodic assumption that the zonal mean is

equal to the ensemble mean over realizations; that is,

y9Du9 5 hy9Du9i. (8)

This ergodic assumption is accurate for the giant planets

in which a large number of uncorrelated eddies force the

mean flow. With this ergodic assumption, the eddy-

induced acceleration �y9Du9 can be obtained from the

ensemble perturbation covariance as will be shown in

(17) below.

Stochastic excitation of the SWE that is delta corre-

lated in space and time excites space scales small com-

pared with the Rossby radius and time scales small

compared to f, so large divergent velocity fields are

excited and a computationally expensive geostrophic

adjustment needs to be resolved. To avoid this, the ex-

citation is assumed to occur on space and time scales that

excite nearly balanced velocity and height fields. We

choose each column of the nf columns of the n 3 nf

excitation matrix, F, to excite the rotational component

of the velocity by exciting the streamfunction propor-

tional to exp[2(y 2 yi)
2/df

2], where yi is the y coordinate

at the ith collocation point and df 5 1, resulting in spatial

correlation of the excitation over L 5 106 m (this exci-

tation matrix is assumed to be the same for all zonal

wavenumbers, and we find it produces an approximately

flat perturbation energy spectrum over the dynamically

important zonal wavenumbers m 5 5–60). A red noise

process is used to correlate the above excitation struc-

tures in time. This red noise process is implemented by

choosing the nf red noise process h(t) to solve the

equation

dh

dt
5�1

t
h 1

ffiffiffi
2

t

r
w(t), (9)

where t is the autocorrelation time scale of the red noise

process and w is a white noise process with zero mean

and unit variance:

hw(t)i5 0, hw(t)wy(s)i5 I d(t � s), (10)

in which I is the identity matrix, h�i denotes an ensemble

average, and y denotes the Hermitian response. The

factor
ffiffiffiffiffiffiffi
2/t
p

in (9) ensures that the red noise processes

have unit variance. The covariance equation is obtained

by combining (7) and (9) in the form

d

dt

ck

hk

� �
5

Ak ffiffi
�
p

F

0 �1

t
I

0
@

1
A ck

hk

� �
1

0ffiffiffi
2

t

r
w

0
@

1
A. (11)

The ensemble-mean covariance

Ck
[

Ck
cc Ck

ch

Ck
hc Ck

hh

� �
[
hckckyi hckhkyi
hhkckyi hhkhkyi

� �
(12)

of perturbations with zonal wavenumber, k, evolves

according to the time-dependent Lyapunov equation

(Farrell and Ioannou 1996)

dCk

dt
5 Â

k
Ck

1 CkÂ
ky

1 Q̂, (13)

in which

Â
k

5

Ak ffiffi
�
p

F

0 �1

t
I

0
@

1
A (14)

is the operator of the perturbation dynamics augmented

by the red noise process. The associated excitation is

Q̂ 5
0 0

0
2

t
I

 !
. (15)

The acceleration induced by the entire field of eddies

is the sum of the individual accelerations induced by

each zonal wavenumber, k:

�y9Du9 5��
k

y9kDu9k. (16)

The contribution to this sum from each zonal wave-

number is obtained from the corresponding covariance,

Ck
cc, in the following manner: If Pu is the operator that

projects the state, c, on the complex Fourier amplitude

of its zonal velocity, u, and Py is the corresponding

projector on the amplitude of the meridional velocity, y,

we then have
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�
k

y9kDu9k 5 �
k

1

2
<(y9kDu9k*)

5 �
k

1

2
< diag P

y
Ck

ccPyuDy
� �h i

, (17)

where < denotes the real part, * denotes complex con-

jugation, and diag is the operation that forms a diagonal

matrix with the elements of the column vector on which

it operates or forms a vector from the diagonal of the

matrix on which it operates.

The covariance evolution Eqs. (13) and the mean flow

equation

›
t
u 5��

k

1

2
< diag P

y
Ck

ccPyuDy
� �h i

1 f�rI 1 diag[r(y)] 1 nD2gdu, (18)

form a deterministic set of equations for the mean wind,

u, and the eddy covariances, Ck
cc, that governs their

time-dependent coevolution. These are the SSST equa-

tions with which we can determine both the equilibrium

jets and their structural stability. The equation for the

mean (18) is linear in both Ck and u: The nonlinearity

in the SSST equations appears only in the covariance

equation (13) which contains products of components of

u (as Ak depends linearly on u) and components of Ck.

This nonlinear system is globally stable and its typical

temporal asymptotic solutions are steady jets; although

limit cycle and chaotic trajectories are supported for

some parameter values (Farrell and Ioannou 2003).

3. Mechanism of jet formation

At sufficiently low turbulence levels, controlled by the

variance of the stochastic excitation �, eddy–mean flow

interaction is inadequate to overcome dissipation, jet

growth does not occur, and the mean flow remains

constant and close to zero. We call this nearly motionless

state the zero state. The stability of the zero state can be

studied by perturbing the SSST system [(13) and (18)]

and investigating the eigenvalues of the corresponding

coupled perturbation equations for dC, the perturbation

covariance, and du, the perturbation mean zonal flow:

›
t
du 5��

k

1

2
< diag P

y
dCk

ccPyuDy
� �h i

� r
m

I 1 diag[r( y)]� nD2
	 


du, (19)

›
t
dCk

5 Â
k

0dCk
1 dCkÂ

ky
0 1 � dÂ

k
Ck

0 1 Ck
0dÂ

ky� �
.

(20)

In Eq. (20) C0
k is the eddy covariance maintained at

equilibrium by unit excitation � 5 1 when the back-

ground flow is the zero state with associated linear op-

erator Â
k

0 . Equation (20) depends linearly on dCk,

linearly on du (because the perturbation linear operator

dÂ
k

is a linear function of du), and linearly on � (because

the covariance at equilibrium is a linear function of the

excitation level). For a critical value of the excitation �c,

the SSST perturbation system becomes unstable, and for

values larger than the critical a new mean flow arises,

which for excitations close to �c has nearly the same

structure as the most unstable eigenfunction of the SSST

perturbation equations.

The critical �c and the structure of the eigenfunctions

(denoted with the subscript eig)

du
eig

dCk
eig

 !
(21)

at the bifurcating point can be obtained with economy

when at the bifurcating point the top eigenvalue of (19)

and (20) is real and zero (i.e., when the principle of ex-

change of stability holds). When this is true, the struc-

ture of the instability at the bifurcating point can be

studied very simply because at �c Eq. (20) implies that

the eigenfunction dCk
eig corresponding to the zero ei-

genvalue must satisfy

Â
k

0dCk
eig 1 dCk

eigÂ
ky
0 5��

c
dÂ

k
Ck

0 1 Ck
0dÂ

ky� �
. (22)

This Lyapunov equation makes clear that dCk
eig becomes

a linear function of du
eig

and �c and the perturbation

eddy-induced acceleration in (19) can be written as

��
k

1

2
< diag P

y
dCk

cceigPyuDy
� �h i

5 �
c
Mdu

eig
, (23)

where M is a linear operator. Substituting (23) in (19), we

obtain in the absence of sponge layers and diffusive

damping that dueig is an eigenfunction of M:

�
c
Mdu

eig
5 r

m
du

eig
. (24)

The critical destabilizing �c for an eigenfunction is given

by �c 5 rm/l, where l . 0 is a corresponding positive

eigenvalue of M.

The operator M in (24) can be written using (17) as

M
ij

5 �
›h(y9Du9)i

i

›u
j

, (25)

in which M can be interpreted as determining the sensi-

tivity of the zonal mean eddy momentum flux conver-

gence for unit turbulence excitation (�c 5 1) to small

changes in the zonal mean wind; specifically, we interpret

2h(y9Du9)ii to be, for unit excitation, the eddy accelera-

tion induced at the ith collocation point by a zonal mean

wind perturbation at the jth collocation point, uj.

OCTOBER 2009 F A R R E L L A N D I O A N N O U 3201



For simplicity assume an eddy field restricted to have

a single perturbation zonal wavenumber, m, and obtain

the critical �c and the corresponding top eigenfunction of

�cM 2 rmI as a function of m. The eigenfunction of �cM 2

rmI with zero growth gives the mean flow structure that

will emerge at small but supercritical � . �c. At the as-

sociated �c the zero state becomes structurally unstable

and jets emerge from this monochromatic eddy field.

The critical rms turbulence intensity rm/lm, where lm is

the top positive eigenvalue of M, is shown as a function

of zonal wavenumber m in Fig. 1. The critical excitation

�c decreases rapidly with eddy perturbation zonal wave-

number m, implying that if the high eddy perturbation

zonal wavenumbers are not suppressed, the flow will

be organized (at least for sufficiently small zonal wind

perturbations) by these high-zonal-wavenumber eddies.

Such an increase in forcing of the mean jet with increase

in zonal perturbation wavenumber was noted by Kitamura

and Ishioka (2007).

The top eigenfunctions of �cM 2 rmI for eddy zonal

wavenumbers m 5 20, 40, 60 are shown in Fig. 2. The

underlying mechanism of jet formation producing these

eigenfunctions can be traced to the general property that

shearing of turbulence produces an upgradient momen-

tum flux that is equivalent to an antidiffusion (Starr 1968;

Farrell and Ioannou 1993b, 2007).

We can further probe the organization of turbulent

eddy momentum fluxes by zonal jets by imposing an

infinitesimal velocity perturbation centered at the equa-

tor of the form du 5 exp[�( y/Dy)2]. With Dy 5 1, the

resulting eddy-turbulence-induced fractional time rate

of change of the mean flow for excitation by representa-

tive zonal wavenumbers is shown in Fig. 3. Unlike the

eigenfunctions shown in Fig. 2, these test functions in-

duce momentum flux convergence that will not preserve

their form. Both Figs. 2 and 3 show linear perturbation

results implying that either sign of jet perturbation is

equally likely to be destabilized with an e-folding time

on the order of 300 Jovian days. It follows that either a

prograde or a retrograde equatorial jet can emerge at

small turbulence levels depending on initial conditions, a

result consistent with the simulations of Kitamura and

Ishioka (2007).

One implication of the antidiffusive upgradient mo-

mentum flux produced by perturbations to zonal ve-

locity is that the eigenfunctions of M are approximately

the eigenfunctions of the diffusion operator, which ex-

plains the nearly harmonic form of the initial mean zonal

jets that grow out of the turbulence field (cf. Fig. 2).

Turbulent eddies are distributed over all perturbation

zonal scales and the eigenfunctions of the total sensi-

tivity matrix (23) formed as the sum over contributions

from all perturbation zonal wavenumbers depend on

this distribution. However, as we have seen, the higher

zonal wavenumbers produce disproportionately greater

flux, so they dominate the tendency unless their ampli-

tude falls off very rapidly with wavenumber.

4. Formation and equilibration of prograde and
retrograde equatorial jets

We wish to study the formation and equilibration of

the equatorial jet and choose as a bifurcation parameter

the variance of the stochastic excitation maintaining the

turbulence, «. For very small values of this excitation the

equilibrium flow is nearly zero.3 As the excitation in-

creases, a critical value is reached at which, with equal

probability given random initial conditions, either a

prograde or a retrograde jet emerges as an instability at

a bifurcation point. This instability subsequently equil-

ibrates at finite amplitude and the maximum of the

equilibrium zonal jet wind speed at the equator for

Jovian parameters as a function of rms velocity of the

turbulence that would be maintained by the excitation if

it were applied to the zero state is shown in Fig. 4. The

turbulence level observed on Jupiter4 (Salyk et al. 2006)

FIG. 1. Critical rms turbulence intensity, resulting from excita-

tion � 5 rm/lm, required to destabilize the top eigenfunction of the

eddy–mean flow interaction operator M with eigenvalue lm . 0 as a

function of global zonal wavenumber m. Parameters are rm 5 1023,

F 5 0.3, r 5 0.15, rh 5 0.15, and n 5 0.

3 The motionless state is not exactly an equilibrium because of

spatial inhomogeneity of the Coriolis parameter and dissipation

near the boundaries.
4 This turbulence level is controlled by the stochastic forcing,

parameterizing convection, and the eddy damping. These values

are uncertain, but for determining the eddy fluxes the intensity of

the turbulence resulting is the relevant variable, not the individual

value of the excitation and damping.
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is also indicated in Fig. 4. The equilibrium prograde and

retrograde jet structure at selected turbulence levels

along the equilibrium curves in Fig. 4 are shown in Figs. 5

and 6, together with their associated absolute and po-

tential vorticity gradients. The jet zonal wind maximum

increases with increase in turbulence, and to remain

stable the jet shape adjusts to lie near the Ripa (1983)

necessary condition for instability primarily by broad-

ening the retrograde jets. The Ripa necessary condition

is an inviscid criterion that requires that potential vor-

ticity gradient

Q
y

5 (1 1 h)�1[b( y)�D2u 1 F2f ( y)Qu] (26)

change sign for instability to arise (here Q 5 [ f (y)�Du]/

(1 1 h). We find that jet structure at marginal stability

avoids a large sign change in potential vorticity gradient

such that at these parameter values, as the turbulence

variance increases, the retrograde equatorial jet even-

tually is unable to maintain a stable equilibrium and

catastrophically reconfigures into a prograde jet.

Zonal mean jets for Jovian parameters with a variable

Coriolis parameter are shown together with their abso-

lute and potential vorticity gradients in Fig. 7. The ab-

solute and potential vorticity gradients are close, as they

are also seen to be in observations (Read et al. 2006),

and become negative predominantly where the jets are

retrograde, again in agreement with observations. The

potential vorticity exhibits a staircase structure as seen

in Fig. 8, again in agreement with observations and

simulations (Read et al. 2006; Scott and Polvani 2007).

Note that negative potential vorticity gradients are not

FIG. 2. Meridional structure of the most unstable eigenfunction of the eddy–mean flow

sensitivity operator, M, for four global zonal wavenumbers, m: (a) m 5 20, (b) m 5 40, (c) m 5 60.

Parameters are F 5 0.3, r 5 0.15, rh 5 0.15, and n 5 0. The critical rms turbulence intensity to

destabilize these eigenfunctions is respectively 3.3, 1.6, and 1.1 m s21.

FIG. 3. Meridional structure of the mean flow acceleration

d log(U)/dt (in inverse Jovian days) induced by eddy momentum

flux convergence when the background zero state mean flow is

infinitesimally perturbed in the form du 5 exp[�( y/Dy)2] (dotted)

for an eddy field with global zonal wavenumber m 5 20 (dashed–

dotted), m 5 40 (dashed), and m 5 60 (solid). The parameters are

Dy 5 1, F 5 0.3, r 5 0.15, rh 5 0.15, and n 5 0; the rms turbulent

intensity is 5 m s21.
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consistent with theories for jet formation based on dif-

fusive mixing of planetary potential vorticity (Dritschel

and McIntyre 2008). With these parameters the equa-

torial flow could equally have been retrograde, as shown

in the left panel of Fig. 9. But if the excitation is in-

creased by 15% (or equivalently the dissipation of the

jet decreased by a similar factor), the retrograde jet loses

structural stability and a prograde equilibrium eventu-

ally emerges, as shown in the right panel of Fig. 9. This

transition is shown in the center panel of Fig. 8. The

prograde jet shown at the right subsequently converges

to a stable fixed point with essentially the same

FIG. 4. Equilibrium equatorial jet speed as a function of turbu-

lence intensity expressed as the rms velocity that would be main-

tained by the stochastic excitation of the state with no zonal mean

flow. Both prograde and retrograde jets bifurcate from this zero

state. The circle indicates approximate conditions for the equato-

rial jet of Jupiter. Arrows indicate continuation of the equilibrium

states. A retrograde equatorial jet is not supported at rms turbu-

lence intensity greater than 13.5 m s21. The case shown is for

an equatorial b plane with Jovian planetary parameters F 5 0.3,

b 5 1.7952, r 5 0.2, rh 5 0.2, n 5 0.02, rm 5 1023, and t 5 5. A

sponge layer starts one unit before the boundary and the sponge

layer is not forced. The eddy field comprises global zonal wave-

numbers m 5 5, 10, 15, 20, 25, 28, 30, 32, and 34; the equatorial

circumference is Lx 5 40.

FIG. 5. (top) Meridional structure of the equilibrium prograde

equatorial jets for turbulence intensities 5.75, 13, and 26 m s21 from

the example shown in Fig. 4. The stronger jets correspond to higher

intensity. (bottom) Normalized potential vorticity gradient H(0)Qy /b

(solid) and absolute vorticity gradient qy/b (dashed) of the stron-

gest jet in the top panel. Both vorticity gradients change sign,

consistent with observations.

FIG. 6. (top) Meridional structure of the equilibrium retrograde

equatorial jets for turbulence intensities 5.75 and 13 m s21 from the

example shown in Fig. 4. The stronger jet corresponds to the higher

intensity. (bottom) Normalized potential vorticity gradient H(0)Qy/b

(solid) and absolute vorticity gradient qy/b (dashed) of the stronger

jet in the top panel. Both vorticity gradients change sign, consistent

with observations.

FIG. 7. (top) Meridional structure of the jets for Jovian condi-

tions. The stochastic excitation is that which would maintain

8.2 m s21 rms variance in the absence of any flow. (bottom) Merid-

ional structure of normalized potential vorticity gradient H(0)Qy /b

(solid) and absolute vorticity gradient qy/b (dashed); the planetary

vorticity gradient is also shown (dotted). The eddy parameters are

r 5 0.15, rh 5 0.45, and n 5 0; the mean flow parameters are

n 5 0.02 and r 5 0.15. The zonal wavenumbers included are m 5 5,

8, 10, 14, 20, 30, 40, 50, 60.
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structure. This example shows how SSST dynamics

naturally explain the phenomenon of jet coalescence

and, given that SSST is linear in the eddy dynamics,

demonstrates that jet coalescence is not necessarily re-

lated to a turbulent cascade.

5. Conclusions

Zonal jets, such as are observed on Jupiter, emerge

spontaneously from turbulence in the absence of jet

scale forcing. The physical mechanism giving rise to and

maintaining these jets is turbulent eddy fluxes system-

atically organized, through interaction with the jet, to

support the jet structure. This phenomenon is associated

with a ubiquitous instability of turbulent fluids to jet

formation, which occurs because turbulent eddies are

organized by an appropriately configured perturbation

zonal jet to produce exactly the momentum fluxes re-

quired to amplify that jet. This jet formation mechanism

essentially emerges from the interaction between the

mean state and the turbulence. The problem of captur-

ing this emergent instability analytically is solved by

SSST. The SSST equations comprise a stochastic tur-

bulence model to obtain the eddy fluxes coupled to an

evolution equation for the mean flow.

In this work we applied SSST to jet formation in the

turbulent SWE on an equatorial beta plane to model

emergence and equilibration of the zonal jets of Jupiter.

We find for parameter values appropriate for Jupiter

that these jets form spontaneously as a linear instability

when turbulence reaches sufficient intensity and grow

until reaching a nonlinear equilibrium. Therefore, at low

turbulence levels both prograde and retrograde equa-

torial jets form and we find that both subsequently

progress to form stable equilibria, but for sufficiently

high turbulence levels and for Froude numbers used in

the examples in this work only the prograde equatorial

jet can be maintained as an equilibrium state. In the

midlatitudes multiple jets are maintained at equilibrium

with amplitude decreasing poleward. As turbulence in-

tensity increases, the equatorial jets become increasingly

asymmetric with the retrograde jet widening. This jet

structure evolution with increasing turbulence intensity

is characteristic of a progression that contrives to main-

tain the eddy stability of the jet despite increasing jet

FIG. 8. Meridional structure of PV for the jet shown in Fig. 7

(solid). Also shown is the associated jet scaled to fit (dashed). The

PV exhibits staircase structure.

FIG. 9. (left) The initial condition consisting of an equilibrium retrograde jet for the pa-

rameters of Fig. 7 and equivalent turbulent intensity 8.2 m s21. At t 5 0 the forcing is increased

15%, producing a turbulent intensity of 9.4 m s21 and the retrograde jet is no longer an

equilibrium. (right) The equatorial wind reverses at t 5 37.5, giving rise at t 5 47 to the

equilibrium prograde jet. (center) Contours of zonal velocity as a function of latitude and time.
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amplitude. In agreement with the observed Jovian jets

(Read et al. 2006) and simulations (Scott and Polvani

2007), we find the retrograde midlatitude jets both satisfy

the Ripa (1983) necessary condition for instability and

exhibit pronounced change in sign of absolute vorticity

gradients. We note that mixing of planetary potential

vorticity cannot produce such reversals of potential

vorticity gradient.

The mechanism of jet formation we have described is

captured by SSST, which provides a new perspective on

the interaction between turbulence and mean flows. As

we have briefly discussed, the dynamics of this interac-

tion can be understood more deeply by further analyzing

the functional derivative of momentum flux divergence

with mean jet velocity perturbations, a study that is in

preparation.
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