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Dynamics of the roll and streak structure in
transition and turbulence

By B. F. Farrell{, D. F. Gayme{, P. J. loannou€,
B. K. Lieuff, AND M. R. Jovanovi¢{f

The prominence of streamwise elongated structures in wall-bounded shear flow turbu-
lence previously motivated turbulence investigations using streamwise constant (2D/3C)
and streamwise averaged (SSST) models. Results obtained using these models imply that
the statistical mean turbulent state is in large part determined by streamwise constant
structures, particularly the well studied roll and streak. In this work the role of stream-
wise structures in transition and turbulence is further examined by comparing theoretical
predictions of roll/streak dynamics made using 2D/3C and SSST models with DNS data.
The results confirm that the 2D/3C model accurately obtains the turbulent mean veloc-
ity profile despite the fact that it only includes one-way coupling from the cross-stream
perturbations to the mean flow. The SSST system augments the 2D/3C model through
the addition of feedback from this streamwise constant mean flow to the dynamics of
streamwise varying perturbations. With this additional feedback, the SSST system sup-
ports a perturbation/mean flow interaction instability leading to a bifurcation from the
laminar mean flow to a self-sustaining turbulent state. Once in this self-sustaining state
the SSST collapses to a minimal representation of turbulence in which a single streamwise
perturbation interacts with the mean flow. Comparisons of DNS data with simulations
of this self-sustaining state demonstrate that this minimal representation of turbulence
produces accurate statistics for both the mean flow and the perturbations. These results
suggest that SSST captures fundamental aspects of the mechanisms underlying transi-
tion to and maintenance of turbulence in wall-bounded shear flows.

1. Introduction

The dynamical significance of streamwise elongated structures in wall-turbulence is
supported by a growing body of work pointing to their central role in both transition to
turbulence (Klebanoff et al. 1962; Andersson et al. 1999; Jovanovi¢ & Bamieh 2005) and
maintenance of a turbulent flow (Jiménez & Moin 1991; Hamilton et al. 1995; Jiménez
& Pinelli 1999). Streamwise coherent “roll cells” associated with streamwise elongated
regions of low and high streamwise momentum have been observed in both Direct Numer-
ical Simulations (DNS) of turbulent channel flow (Kim et al. 1987) as well as in boundary
layer and pipe flow experiments (Kim & Adrian 1999; Morrison et al. 2004; Guala et al.
2006; Hutchins & Marusic 2007a). These so-called streak structures are of great interest
because they account for a substantial portion of the turbulent kinetic energy (Morrison
et al. 2004; Hutchins & Marusic 2007a,b) and have been shown to modulate the activity
of near-wall structures (Hutchins & Marusic 2007b; Mathis et al. 2009).
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The importance of these streamwise coherent structures previously motivated the use
of a streamwise constant (so-called 2D/3C) model for plane Couette flow, which was
shown to accurately simulate the mean turbulent velocity profile (Gayme et al. 2010). A
more comprehensive model can be obtained by including feedback from the streamwise
constant mean flow to the dynamics of the perturbation field. A recent parameterization
of this feedback was incorporated in a Stochastic Structural Stability Theory (SSST)
model using a second order closure (Farrell & Ioannou 2012).

In both the 2D/3C and SSST models the flow field is decomposed into a stream-
wise constant mean flow and a streamwise varying perturbation field but they differ in
their parameterizations of the perturbations. In the 2D /3C model, stochastically forced
streamwise roll structures produce Reynolds stresses that drive the mean flow. The SSST
model uses a three dimensional stochastic turbulence model (STM) along with an ensem-
bling assumption to parameterize the perturbation dynamics. The associated Reynolds
stresses force the streamwise roll structures and drive the mean flow, which is then used
in the STM to evolve a consistent perturbation field. With these additions to the ba-
sic 2D/3C system, the SSST model produces both the mean turbulent velocity profile
and the quadratic turbulence statistics. In addition, the inclusion of streamwise vary-
ing components and the feedback mechanisms associated with them enables the SSST
system to capture both transition to turbulence and the self-sustaining process (SSP)
that maintains the turbulent state (Farrell & Ioannou 2012). The success of these models
in simulating turbulence statistics has implications for understanding the dynamics of
turbulent flows. The 2D/3C model suggests that turbulence statistics are fundamentally
determined by the streamwise invariant dynamics of the roll structure. The SSST model
supports this notion and also implies that transition is instigated through an interaction
instability. It further suggests that turbulence is maintained by an essentially non-normal,
parametric, quasi-linear interaction instability regulated by a quasi-linear feedback pro-
cess that determines the statistical mean state. In the current work, we test the validity
of the mechanisms suggested by these models by comparing 2D/3C and SSST based
simulations to DNS data. We begin by deriving a so-called quasi-linear (QL) numerical
approximation of the SSST model from the Navier Stokes equations. The 2D/3C model
is shown to be a simplification of the QL. We then discuss the underlying theory of
these models and derive the full SSST dynamics. Finally, we compare results predicted
by SSST (obtained from simulations of QL) and 2D/3C simulations to DNS data.

2. Modeling framework

Consider an incompressible unit density fluid in a channel and decompose the velocity
fields as s = U + U , where the streamwise constant mean flow variables are denoted
by uppercase letters and variables associated with perturbations from this mean flow are
denoted by lowercase letters. Throughout this paper, streamwise averaged, spanwise av-
eraged and ensemble averaged quantities are respectively denoted by an overbar, =, square
brackets, [-] and angled brackets, (). Using these notations, the equations governing the
mean flow and the perturbation fields are:

i+ U -Vi+i-VU+Vp—Ai/R=—(@-Vi—T-Va)+¢ (2.1a)
U,+U-VU+VP—-AU/R=—i Vi, (2.1b)
V-i=0 , V-U=0, (2.1¢)
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where the Reynolds number (R) is the only explicit parameter. The term € in (2.1a)
represents an externally imposed stochastic forcing. In a DNS this € typically represents
the initial condition required to instigate transition to turbulence. In the current work it
represents a small finite time stochastic disturbance that is used in a similar manner. In
what follows, we refer to the system (2.1) as the NL system.

We first simplify (2.1) by stochastically parameterizing both the perturbation-perturbation
nonlinearity (4 - Vi — 4 - Vi) and the external excitation in equation (2.1a) to obtain

U+ U-Vi+a-VU+Vp—Ail/R=¢, (2.2a)
U,+U-VU+VP—-AU/R=—i Vi, (2.2b)

where € is a stochastic forcing to be specified. This is a nonlinear system where the first
equation (2.2a) captures interactions between the streamwise constant mean flow U and
the streamwise varying perturbations «@. The mean flow equation (2.2b) is driven by the
streamwise constant component of the Reynolds stresses, u - V4. Hereafter, the equations
(2.2) will be referred to as the QL system.

The mean flow considered here consists of streamwise, U, wall-normal, V', and spanwise,
W, velocity components. The nondivergence of this velocity field can be enforced by
defining a stream function W that satisfies V' = —W¥,, W = ¥,. For non-zero V and W
the mean flow has a roll structure, with mean streamwise vorticity €2, = AWV, where
Ay = 92, + 92,. The deviation of the streamwise velocity U(y, z,t) from its spanwise
average [U](y,t) defines the streak velocity Ug(y, z,t). In terms of the streamwise mean
velocity U and the stream function ¥ the mean equation (2.2b) takes the form

U~ UV, +U. VY, — A\U/R = F?, (2.30)
AUy — (Byy — 0.2) W, U, + 0, (V2 — U2) — Ay A U/R = FY7, (2.3b)
F* = —0,u0 — 0,uw,  FY = —(0yy — 0,.)00 — Dy (w? — v2). (2.3¢)

The streamwise mean velocity, U, in (2.3a) is forced by the Reynolds stress divergence F*,
which is obtained from (2.2a) and by U, ¥, — U, ¥,, the first part of which is the familiar
lift-up mechanism. The Reynolds stress term in (2.3b), F¥#, provides the streamwise roll
forcing by generating streamwise mean vorticity, 2, = A;V¥. The mean velocities can
only advect Q, via the term — (9, — 8..)¥, V. + 0, (V2 — ¥2).

A minimal 2D/3C representation of (2.3) is obtained by setting F* = 0 in (2.3a) and
parameterizing F¥% in (2.3b) as a stochastic excitation as follows:

Uy — UV, +U. Y, — A\U/R=0, (2.4a)
AWy — (Byy — 0:2) Wy, V, + 0, (V) — U2) — AyA\U/R = Fi(y, 2,t).  (2.4b)

In the simulations described in Section 6, the stochastic excitation F,(y, z,t) in (2.4b) is
generated by the Reynolds stresses obtained by stochastically forcing the perturbation
dynamics linearized about a laminar Couette flow. A similar stochastic forcing is used
to force the perturbation field in the QL simulations, except that the Reynolds stresses
arise from linearizing about the time dependent mean flow U.

Figure 1 illustrates the nonlinear interactions between the mean flow and perturbation
dynamics that are captured by the 2D/3C and QL models. Both of these models include
pathway (1) in which the perturbations (%) influence the dynamics of the mean flow
(T7). However, the QL (and its associated ensemble mean SSST model) also includes the
feedback pathway (2), from the mean flow to the perturbation dynamics.
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FIGURE 1. In both the 2D/3C (2.4) and QL (2.2) (and its associated ensemble mean SSST

—

model) the perturbations (@) influence the dynamics of the mean flow (U). This coupling is
denoted pathway (1) in the block diagram. The SSST model augments the 2D /3C formulation
with feedback from the mean flow to the perturbation dynamics, which is illustrated through
pathway (2).

3. Relation of 2D/3C and QL to SSST

The QL and the 2D/3C models are stochastic dynamical systems. Theoretical under-
standing of the behavior of these systems is facilitated by considering the dynamics of
the associated ensemble mean systems. The ensemble mean dynamical system associated
with QL is the SSST system, which is given explicitly by equation (3.3) below. The
SSST system comprises the streamwise mean flow dynamics coupled to the second order
covariances of the flow fields obtained using a stochastic turbulence model. The SSST
is preferred for theoretical investigations because it is a second order closure in which
quadratic perturbation quantities are directly computed in terms of the perturbation
covariance, which is the perturbation variable in SSST.

An analytically and computationally powerful simplification used in the derivation of
the SSST system is to equate the ensemble means of second order perturbation statistics
with the streamwise average of these quantities. In this way, the ensemble mean of a
Reynolds stress can be assumed to be equal to the streamwise mean of that Reynolds
stress.

We write the stochastically forced perturbation equation (2.2a) concisely as

B = Ad + e, (3.1)

where A is the dynamical operator linearized about the instantaneous mean flow U. A
governs the evolution of the perturbation state ¢. If we define the covariance of the per-
turbation fields between coordinate point a and b as C'(a,b) =< ¢(a)p(b) > where ¢(a) is
any perturbation state at point a (similarly for b), and multiply the perturbation equa-
tions (3.1) at locations a and b with ¢(b) and ¢(a) respectively we obtain the following
ensemble mean covariance equation

8,C(a,b) = (A(a) + A(b))C(a,b) + Q(a,b). (3.2)

Here, Q(a,b) is the spatial covariance of the forcing, defined as: < e(a,t1)e(b,ta) >:=
0(t1—t2) Q(a, b). The spatial covariance of this forcing will be assumed to be homogeneous.
The operator A(a) acts only on the ¢(a) component of C(a,b) and similarly A(b) acts
only on the ¢(b) component. With this notation, all of the Reynolds stress terms in (2.3¢)
can be expressed in terms of C. For example,

0y < uwv >= 0y (u(a)v(d))|,—y = (Fy(a) + yr)) Cuv(a,b)]

a=b"’

where Cyy(a,b) =< u(a)v(b) >. In this way we obtain the autonomous and deterministic
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SSST system that governs the evolution of the mean flow (U, ¥) and the perturbation
field expressed in terms of its covariance field C. The SSST system is then

d:C(a,b) = (A(a) + A(b))C(a,b) + Q(a,b), (3.3a)
U — UV, + UV, — \\U/R=(F,), (3.3b)
Ay, — (Byy — 0:2) W, V. + 0, (V] — U2) — AyA\U/R = (F,.). (3.3¢)

The corresponding ensemble mean Reynolds stress divergences are obtained from the
perturbation covariance as

(F) = = [(8y(a) + Oyr)) Cun(a,b) + (9z(a) + 0=v)) Cuw(a:b)],_, (3.4a)
(Fr) = = [ (Ovta) + 00)” = (et + 0:)") Coulasb)]

)

— [(y(a) + 0y)) (O=(a) + 0zv)) (Cuww(@;b) = Coula,0))] - (3.4D)

The counterpart of the SSST system in this work is the QL model (2.2). The QL
also employs a stochastic parameterization of perturbation-perturbation interaction and
exploits the streamwise mean flow and perturbation decomposition to obtain quasi-linear
dynamics. However, in QL the perturbation covariance is not solved for directly and no
large ensemble approximation is made. The advantage of QL is that it can be directly
simulated in a manner that is computationally feasible for large systems, through a
restriction of a DNS code to the QL dynamics of (2.2). The SSST model, which has the
perturbation covariance as a variable, has dimension O(N?) for a system of dimension
O(N) and is only directly integrable for low order systems. In this work we compare
predictions based on previous low order simulations of the SSST (Farrell & Ioannou
2012) to a higher order QL simulation, a 2D/3C model and DNS data.

4. Analysis of the models and prior results

We study Couette flow and define the Reynolds number R based on the wall velocities
+U. and the channel half width h. In the absence of forcing, both the 2D/3C model
(2.4) and the SSST model (3.3) admit the laminar Couette flow as an equilibrium. This
solution is globally stable for the unforced 2D/3C model (Gayme 2010), which implies
that this system will return to the laminar Couette flow if the forcing is removed. A
stochastically forced 2D /3C model captures the turbulent mean flow profile, as shown in
Figure 2. The mechanisms underlying maintenance of this mean flow profile are further
described in Gayme (2010). Although the 2D/3C model captures the basic dynamics of
the interaction between rolls and the mean turbulent velocity profile, it does not include
the feedback from the mean flow to the perturbation dynamics (as seen in Figure 1). As
described below, this feedback is critical for capturing the mechanism of transition and
the establishment of the self-sustaining process that maintains the turbulent state.

At fixed R and with sufficiently small values of forcing, the SSST model has a globally
stable equilibrium state with a streamwise mean component that varies only in the wall-
normal direction (i.e. there is no roll or streak). As the forcing increases, this equilibrium
bifurcates and at sufficiently high forcing a saddle-node bifurcation occurs. At this point
the SSST flow becomes time dependent and has the mean structure and perturbation
statistics of fully turbulent Couette flow. As described in Farrell & Toannou (2012), tran-
sition to turbulence in SSST is associated with this perturbation/mean flow interaction
instability. During transition to the time-dependent SSST state, evolution under SSST
produces the familiar overshoot of flow quantities that occurs before the flow settles onto
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FIGURE 2. Turbulent mean velocity profiles (based on a streamwise, spanwise and time averages)
obtained from DNS with the L, = 4m channel (solid line), the QL model (line with an x marker)
and the 2D/3C model (dashed line), all at R=1000. The forcing f in the 2D/3C model is 0.065.
There is no forcing applied to the DNS or QL during the time interval used to generate the
profile, (i.e. the QL is in the self-sustaining state).

the turbulent attractor. After transition to turbulence the forcing can be removed and
the turbulence self-sustains, with little change in the turbulence statistics. In a minimal
channel with no forcing, the SSST perturbation covariance collapses to rank 1 with the
perturbation field becoming asymptotically confined to a single streamwise component
during the self sustaining state. The SSST framework therefore suggests that the inter-
action of a perturbation field at a single streamwise wave number with the mean flow
provides a minimal representation of turbulent Couette flow (Farrell & Ioannou 2012).

5. Numerical approach

The numerical simulations in this paper are based on a spectral code developed by
Gibson (2012). The time integration uses a third order multistep semi-implicit Adams-
Bashforth/backward-differentiation scheme that is detailed in Peyret (2002). The dis-
cretization time step is automatically adjusted such that the Courant-Friedrichs-Lewy
(CFL) is kept between 0.05 and 0.2. The spatial derivatives employ Chebyshev polyno-
mials in the wall-normal (y) direction and Fourier series expansions in the streamwise
(x) and spanwise (z) directions (Canuto et al. 1988). No-slip boundary conditions in
the wall-normal direction and periodic boundary conditions in the streamwise () and
spanwise (z) directions are imposed on the velocity fields. Aliasing errors from the evalu-
ation of the nonlinear terms are removed by the 3/2-rule when the horizontal FETS are
computed, as detailed in Zang & Hussaini (1985). A zero constant pressure gradient was
imposed in all simulations.

We employ two different computational boxes for the DNS. The lengths of the first
computational box in units of channel half height h are L, = 4m, y € [-1,1] and L, = 4«
with N, x Ny x N, = 128 x 65 x 128 grid points in the x, y and z directions. The second
DNS box represents a minimal channel in the streamwise direction (Jiménez & Moin
1991) with L, = 1.27 and N, = 64. In order to perform the QL and 2D /3C computations
the DNS code was respectively restricted to the dynamics of (2.2) and (2.4).

The stochastic forcing for all of the models was constructed by first creating indepen-
dent random excitations of the streamwise and wall-normal velocities. These were used
to derive the spanwise excitation that produces a divergence free flow. For the L, = 1.27
simulations the stochastic forcing was designed to only excite the streamwise mode with
a wave number of k, = 1.67, which is the largest streamwise harmonic perturbation in
the L, = 1.27 channel. The structure of the random excitations of the streamwise and
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wall-normal momentum equations are given by

M./2 M,

=(r,,2) = W(ay) D D Re(am ) Do), ()
n=—M_,/2 m=0

where T}, (y) is the m?" Chebyshev polynomial. The number of modes excited in y and
z are M, = (1/2)N, and M, = (2/3)N.. We use a Tukey window function W («,y) with
a = 0.4 in order to obtain smooth forcing realizations close to the walls. The coefficients
Amn are complex random numbers that are normally distributed with zero mean and
variance 2. These numbers are regenerated every AT = 0.05. If the normalized forcing
obtained from the random = that satisfies | F]|2 = 1 (i.e. has a unit energy norm) is
denoted by F , then the body force introduced every AT is F = 1/ VAT F. We divide
this forcing by /AT so that its variance is independent of AT. The parameter f controls
the amplitude of the forcing and is an adjustable parameter in the simulations.

6. Results

In this section we compare 2D/3C and QL simulations to DNS. Figure 2 demonstrates
a close correspondence between the mean velocity profiles resulting from 2D/3C, QL,
and DNS simulations. Further results obtained using the SSST and 2D/3C model were
previously reported in Farrell & Ioannou (2012) and Gayme et al. (2010). Here we focus on
the roll and streak structure and the dynamical properties of the flow field. All simulations
in this section were conducted at R = 1000.

Figure 3 compares QL, 2D/3C and DNS RMS streak, \/U>527 roll, vV2 4+ W2, and
perturbation, vu? + v2 + w?, velocities along with the square root of the change in their
energy from that of the laminar flow. Figure 3(d) shows that the RMS of the change from
the laminar velocity obtained in the QL simulation and the DNS are very similar, whereas
the 2D/3C produces slightly more energy. This additional energy is primarily a result
of the larger RMS streak velocity seen in Figure 3(a). However, the RMS perturbation
velocity (vu? + v? + w?) in the 2D/3C simulation is less than that of both the QL and
DNS, as shown in Figure 3(c). This result is consistent with the fact that in the 2D/3C
the streak is not regulated by feedback from the mean flow to the perturbation field,
pathway (2) in Figure 1. This regulation corrects the streak in the QL model to a value
similar to that of the DNS.

The forcing in the QL simulation shown in Figure 3 was stopped at ¢ = 500, which
indicates that the behavior of the QL for ¢ > 500, which is similar to that of the DNS, is
a result of the self-sustaining process (SSP) described in Farrell & Ioannou (2012). This
behavior is further explored in Figure 4, which shows the time evolution of turbulent
statistics obtained by continuing the QL beyond ¢ = 500 with the following three different
levels of forcing: f =0, f = 0.04 and f = 0.1. The fact that the amount of forcing applied
to the QL after ¢ = 500 had minimal effect on the turbulence seen in Figure 4 indicates
that the turbulent state in the self-sustaining regime is tightly regulated by the two-way
coupling in the QL.

Figures 5(a) and 5(b) show details of roll and streak development during transition and
establishment of the turbulent state for DNS, QL and 2D/3C. Here, the effect of feedback
from the mean flow to the perturbations, pathway (2) in Figure 1, is quite evident. Lack of
this feedback in 2D/3C results in the streak continuing to grow after the transient growth
phase. In QL and DNS, the magnitude of the streak is reduced through a combination
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Ficure 3. Roll, streak and perturbation development during transition and turbulence at
R = 1000. Shown are (a) RMS streak velocity /U2, (b) RMS roll velocity vV2 + W2, (c) RMS
perturbation velocity vu? + v? 4+ w?, and (d) RMS velocity departure from the laminar flow. All
figures show DNS for boxes with L, = 1.27 (solid line) and L, = 4 (cross-marker with line),
QL forced with f = 0.04 at k, = 1.67 (dash-dot line) and the 2D/3C with f = 0.04 (dashed
line). The perturbation forcing of the QL simulation was stopped at ¢ = 500 demonstrating that
after transition, the QL self-sustains.
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FIGURE 4. The self sustaining state in the QL simulation. In all plots the QL was forced with
amplitude f = 0.04 until ¢ = 500. At t = 500 the same QL was evolved under no forcing
f =0 (solid), with f = 0.04 (dashed) and with f = 0.1 (dashed-dot). Shown are (left) the RMS

perturbation velocity vu? 4+ v? + w? and (right) the RMS roll velocity v/V?2 + W?2. This shows
that after the QL enters the self sustaining state, the statistics are independent of f. When the
QL is on this turbulent attractor the dynamics are strongly regulated by the interaction between
the perturbations and the roll/streak structure.

of perturbation Reynolds stress induced dissipation and modification to the roll forcing
based on feedback from the mean flow. Another feature of Figure 5 is the prominent
initial overshoot of roll and streak energy that occurs just prior to the establishment of a
statistically steady turbulent state in the QL and DNS. This overshoot is associated with
the perturbation/mean flow structural instability described in Farrell & Ioannou (2012).
The exponential growth of this instability is intercepted by nonlinear feedback dynamics
that regulate the unstable growth and establishes the statistically steady turbulent state.
This agrees with the dynamics predicted by the low order minimal channel simulation of



Roll/streak dynamics 51

g £ o1
S 3
:
2 'S 0.05
0
2 =
= o
0 L L L L
0 20 40 60 80 100
t
(a) Streak development (b) Roll development

FIGURE 5. Initial development of the roll and streak structure during transition to turbulence
at R = 1000. Shown are the RMS values of (a) the streak velocity /U2 and (b) the roll velocity

v/ (V2 + W?2) for DNS (solid line), QL (dashed-dot), 2D/3C (dashed line). All simulations were
initialized from a laminar state. A stochastic perturbation forcing with amplitude f = 0.04 was
introduced to instigate transition. This figure shows that the QL and DNS exhibit exponential
growth of the roll/streak structure in accordance with the roll/streak instability predicted by
SSST with the predicted overshoot and subsequent establishment of the feedback regulated
turbulent state. The 2D/3C produces continued algebraic growth of the roll/streak structure
because of the lack of feedback from the mean flow to the perturbations, pathway (2) in Figure
1.

SSST shown in Figure 24 of Farrell & Ioannou (2012) and serves to validate the SSST
theory first introduced in that work.

Figure 6 shows contour plots of the U velocity field superimposed with the V', W vector
fields at a single time snapshot for the k, = 0 (zero streamwise wave number) mode of the
DNS (with a minimal streamwise channel L, = 1.27), the QL and the 2D/3C. A minimal
channel was used in order to minimize any smoothing effects resulting from the implied
streamwise averaging associated with the k, = 0 mode of the DNS. For comparison,
Figure 7 shows the same plot obtained from a DNS run in the longer channel (with
L, = 4m), where the effects of this averaging are much more evident. The qualitative
features of the roll and streak structures depicted in Figures 6 and 7 are remarkably
similar for all of the models discussed.

7. Conclusions and directions for future work

The 2D/3C model captures the dynamics of the interactions between the roll struc-
tures and the mean flow. It provides accurate statistics for the turbulent mean flow when
stochastically forced at the appropriate amplitude. This result implies that the primary
mechanism determining the structure of the turbulent mean flow is streamwise constant.
One implication of this conclusion is that the mechanism producing the mean flow can
be isolated from the mechanism maintaining the turbulent state and analyzed separately.
However, understanding how the roll and streak structure is maintained in a statistical
steady state requires a model that also includes feedback from the streamwise constant
mean flow to the streamwise varying perturbation dynamics. The addition of this feed-
back is accomplished in the SSST formulation by means of a second order closure. The
additional feedback mechanism in the SSST model allows it to capture the dynamics of
transition to turbulence as well as the self sustaining process that maintains the turbu-
lent state. In this work we tested the predictions of both the 2D/3C and the SSST model
by comparing them to DNS data. The SSST was simulated by imposing the dynamical
restrictions of SSST on a DNS code to emulate the SSST dynamics via a QL model. The
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FIGURE 6. A y-z plane cross-section of the flow at a single snapshot in time (a) the k, = 0
mode of the DNS, (b) the QL, and (c) the 2D/3C simulations, all at R = 1000. All panels show
contours of the streamwise component of the mean flow U with the velocity vectors of (V, W)
superimposed. The QL is self-sustaining (f = 0), and the 2D3C is forced with an amplitude
f=0.065.
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FIGURE 7. A k, = 0 snapshot of the DNS with the longer (L, = 47) channel showing contours of
the streamwise velocity field U with the velocity vectors of (V, W) superimposed. The averaging
effect caused by the longer channel is clearly evident in the more regularized features versus the
plots in Figure 6

results demonstrated good agreement between the 2D/3C, QL and DNS in the structure
of the mean flow and mean perturbation statistics. The SSST based predictions for the
behavior of the roll and streak structures during transition and the development of a self
sustaining state was also verified by comparing the QL to DNS. These results imply that
fundamental aspects of the dynamics of turbulence in plane Couette flow are streamwise
constant (i.e. captured by the 2D/3C model). Also, further aspects, including transition
and mechanisms associated with the self-sustaining process maintaining turbulence are
contained in the extension to SSST. Moreover, because these dynamics are accurately
captured by a maximally simple model that is dominated by one streamwise wave number
interacting with the time-dependent streamwise mean flow, the results suggest that SSST
provides a computationally tractable model system for further study of the dynamics of
shear flow turbulence.
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