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It has recently been recognized that the non-normality of the dynamical operator obtained by the
linearization of the equations of motion about the strongly sheared background flow plays a central
role in the dynamics of both fully developed turbulence and laminar/turbulent transition. This
advance has led to the development of a deterministic theory for the role of coherent structures in
shear turbulence as well as a stochastic theory for the maintenance of the turbulent state.
In this work the theory of stochastically forced non-normal dynamical systems is extended to
explore the possibility of controlling the transition process and of suppressing fully developed shear
turbulence. Modeling turbulence as a stochastically forced non-normal dynamical system allows a
great variety of control strategies to be explored and their physical mechanism understood. Two
distinct active control mechanisms have been found to produce suppression of turbulent energy by
up to 70%. A physical explanation of these effective control mechanisms is given and possible
applications are discussed. €996 American Institute of Physid$$1070-663(96)00405-2

I. INTRODUCTION needed to keep the flow laminar is not known theoretically
(as such knowledge would be tantamount to knowing the
Preventing the transition to turbulence of a laminar flowstructure of the domain of attractiprBecause of this limi-
and suppressing the variance of a turbulent flow, perhapgition in our knowledge, proposed strategies can only be
with the ultimate goal of inducing relaminarization, are in verified by actual experiment or by direct numerical simula-
themselves problems of great theoretical and practical impotion.
tance. In addition, understanding the physical mechanism of A widely accepted theory of transition envision expo-
turbulence and turbulent transition should lead either tmentially unstable two dimensional T-S waves growing as
methods of control or to an explanation of why such controlexponential instabilities until falling victim to secondary
is not possible; from this perspective the control problem ishree-dimensional instabilities, which, in turn, give way to a
seen as a test of physical theory. From the viewpoint otascade of further instabilities with the ensemble of these
practical engineering, a comprehensive theory of the transiexponential instabilities supporting the turbulent sta@an-
tion process and of the maintenance of fully developed turtrol strategies proceeding from this paradigm include at-
bulence that both implied new control mechanisms and protempts to lower the growth rate of the primary unstable T—S
vided a means of testing proposed mechanisms would be @fave by using suction to change the velocity préfded by
great utility, even if the result were to discourage the searchitering the viscosity of the flow through heating or cooling
for, e.g., a passive compliant membrane that relaminarizeghe surfacé,in addition to attempts to depress growth rates
the turbulent boundary layer. Extensive attempts to reduc@sing compliant boundari&®and direct active cancellation
drag in turbulent boundary layer flow by imposing a varietyof the T-S waves by introduction of antiphase
of active and passive control measures have shown that iperturbations.
the absence of applicable theory it is very unlikely that an  The assumption that modal instabilities leading to tran-
optimal method can be identifiéd. sition are necessarily two dimensional apparently follows
The control problem is made more difficult by the fact from Squire’s theorerfiwhich requires the maximally grow-
that there are no results available on the structure of théhg inviscid modal instability to be two dimensional and is
domain of attraction of the laminar flow for subcritical Rey- commonly interpreted to imply a similar restriction in vis-
nolds numbers in shear flovat least for Reynolds numbers cous flow. However, observation reveals an important role
in excess of those for which the laminar solutions are unifor three-dimensional disturbances in transition and the per-
versally attracting, i.eR=20.7 for Couette flowR=49.6 for  turbations exhibiting greatest growth can be shown to be
plane Poiseuille However, there is ample experimental evi- hoth nonmodal and three dimensioral.
dence that sufficiently small perturbations fail to induce tran-  While exponential instability theory provides a plausible
sition, at least folR<10>. This observation suggests that a explanation for transition in which the unstable T—S waves
control strategy that adequately suppresses the perturbatigow initially as modal waves and in which these unstable
variance will succeed in maintaining the laminar flow. Un-waves can be addressed for the purposes of control by can-
fortunately the exact degree of perturbation suppressiogellation or by intervention to reduce their growth rates,
modal instability theory provides much less guidance toward
aCorresponding author: Telephond617)-496-2410; electronic mail:  affecting control of fully developed turbulence for which a
pji@io.harvard.edu useful correspondence between unstable modes and observed
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coherent structures has not been found. For this reason at- The stochastic model of turbulence we are using fails to
tempts to effect control based on exponential instabilityreproduce the full complexity of turbulence observed in
theory have been confined to delaying transition by suppresshear flow. This model cannot substitute for direct numerical
ing T—S waves in nonbypass transition. simulation of a turbulent flow, which can be expected to

Recently, an alternative theory has been advanced basg@dovide a more realistic model of turbulence. However, for
on the great potential of a subset of perturbations to increaséie purposes of evaluating control strategies a turbulence
in energy by transient growth processes unrelated to the exnodel need only provide an adequate approximation to the
istence of exponential instabiliti€s*® Moreover, this theory ~ development of the coherent structures primarily responsible
of transient growth in non-normal dynamical systems hador the energetic interaction between the mean flow and the
recently been extended to provide a theory for the mainteperturbation field. Because the non-normal operator includes
nance of the turbulent state in which the growing subset ofhis interaction while retaining the simplicity of a linear op-
perturbations that are replenished by spectral transfer in therator it is the least complex turbulence model retaining the
fully nonlinear systent® are instead replenished by a param-essential physics underlying the maintenance of perturbation
etrized stochastic forcing in the modéf'8 variance.

The problem of inhibiting transition is necessarily linear ~ Some advantages of the method of analyzing turbulence
if free-stream perturbations are constrained to be sufficientigontrol strategies outlined here are that it facilitates testing a
small, and in this limit the linear non-normal transient wide variety of mechanisms and provides physical insight
growth mechanism necessarily underlies transition in flowdnto their method of operation. Of great interest are simple
without robust exponential instabilities, including the canoni-local reactive controls that do not require identification of a
cal Couette, pipe Poiseuille, plane Poiseuilbelow Rey- Wwave and subsequent cancellation at a downstream point but
nolds number 5772and exponentially stable boundary layer rather require only a rule specifying the local response in
flows—all of which exhibit bypass transition. In the case ofSOme variable to an observation of another or perhaps the
plane Poiseuille flow and Blasius flow at Reynolds number$ame variable. Such controls could potentially be imple-
for which unstable T—S waves exist, the growth rate of themented using a simple local feedback loop.
exponential instability is small compared with that of the ~ An example of such a feedback control in a fully non-
subset of rap|d|y growing three-dimensional perturbationslinear turbulent flow simulation has been described by Choi
so that even in these cases the unstable growth of T—S wav8bal*® These authors observed the cross-stream normal ve-
is unlikely to be important, except under carefully controlled!ocity at various distances from the wall and imposed an
experimental conditions designed to forestall bypass transfdual normal velocity control at the wall. For an observing
tion. distance measured in wall units gf =10, they obtained a

From the theoretical perspective of transient develop30% suppression of mean drag, and in some instances suc-
ment in non-normal dynamical systems, suppressing transkeeded in relaminarizing the flow. However, for other ob-
tion requires inhibiting the development of nonmodal pertur-Serving distances increases of variance were foyngé Compari-
bations with the potential for growth. It is obvious that if the SOn Will be made between the results of Cledial™ and
entire perturbation field were observed and that if the controPredictions based on the control theory developed in this
were able to address the entire field, then complete cancell4Ork-
tion would be possible. It is not so obvious that observation
of a single variable at a cross-stream plane coupled with
control of a single variable at the surface would be sufficient - FORMULATION OF THE CONTROL PROBLEM
to suppress the growth of perturbations throughout the\. Implementing active boundary control in
boundary layer. the dynamical operator

As is the case for inhibiting transition to turbulence, re-

ducing th . in fully develoned turbul | Consider the evolution of small perturbations imposed
ucing the variance in fully developed turbulence also re,, 5 gteady channel flow with streamwise) background

quires intervention to suppress the growing subset of COhe'iieIocityU(y) varying only in the cross-stream directiog)(
ent structures. Again, it is not immediate that observation,monic perturbations with streamwise wave numband

and control, in which each is confined to a single variable af ., vise £) wave numbet obey the linear equation:
a single cross-stream level, can be effective. The method tha{)

will be used to study this problem is to construct a param- d_¢: B e
etrized model of the turbulent flow by stochastically forcing at "

thbe ??;,octl)atelt(j non;jnorr]mal ﬂdynzfanlwllcal dsyl;stgm l'nfar'zi%here the state variable ig=[0,%]", in which ¢ is the
a O,:J | .eth.ac gr(()ju? BS car (:\r’]v 0 zwe tyt'm‘zos' |odn O cross-stream perturbation velocity, afie=ilt —ikw is the
controtin this modet. because the coherent SUCLUIes doMis o stream perturbation vorticity,w are the perturbation

. . . . CI
m.ittr']n?k’] thz en_ergetncs t(')f thle turtbuLent'F state can bi 'denf{'r:'e@treamwise and spanwise velocities, respectjvelne dy-
w € dominant optimal periurbations ansing rom e, ;. operator in(1) is obtained from the linearized

- i 9 i -
non-normal dynamical operai8r” it follows that suppres Navier—Stokes equations by eliminating the pressure field

sion of these variance producing structures in the linear Pasi . . N
, . ““Using the continuity equatioft. The operator is given b
rametrized turbulence model should at least provide guid- ¢ yeq P g y

ance in the choice of control strategies for fully turbulent % 0 @
flow. =l o
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with cannot be understood using arguments about cancellation or
reinforcement of perturbations that exist in the unmanipu-

Z=A7H(-1kUA+IKU"+AAIR), (39 lated flow. Instead, suppression of turbulence occurs because
=—ikU+A/R, (3b)  control parameters alter the boundary conditions so as to
constrain the perturbations to exhibit reduced growth com-
z=—ilu’, (30)  pared to that found with the standard boundary conditions in
in which the Laplacian operator is given By=d?/dy?— k2,  the unmanipulated flow. _
with K being the total horizontal wave numbe?= k2+ 2. As an aid to interpreting the control action, we form the

Cross-stream derivatives of the mean fields are denoted witherturbation energy equation,

a dash. The equations have been rendered nondimensional §g 1 duv

with the maximum background velocity in the chanrig}, E=J y( U ay

and the channel half-width,, so that the Reynolds number

is REL_JOle;_ v denoting the _kinematic virscos_ity. A well- —p_v|y=1+p_v|y=71, @)

posed inversion of the Laplacian {83 requires incorporat-

ing the boundary conditions at the channel walts+1. where the overbar denotes integration over a single period in
The components of the dynamical operatdy are the the horizontal k,z) plane. The Reynolds stress is related to

Orr—Sommerfeld operator, the coupling operator be- the Fourier amplitudes by = 1/2 Re(w*), and the pertur-

tween cross-stream velocity and vorticity, which corre-  bation kinetic energy is given by

sponds physically to the generation of cross-stream vorticity 1 (1

by tilting of the mean spanwise vorticity; and the advection- E= > f dy u?+v2+w?. (8)

diffusion Squire operatory”. In the numerical calculations -1

that follow all continuous operators are approximated by fi-  The first term on the rhs df7) can be interpreted in the

nite differences, rendering the continuous dynamical systerthtegral sense as the rate of change of energy arising from

finite dimensional. Accuracy is checked by doubling thethe local acceleration of the mean flow by divergence of the

resolution of the discretization. perturbation Reynolds stress, the second term is the dissipa-
We choose to impose symmetric control at the channedion due to viscous diffusion, and the two boundary terms

wallsy==1 in reaction to observations of a field variable atrepresent energy injection at the boundaries, which may be

Y$P=—1+Y, and atY3"=1-Y,. By cross-stream velocity nonzero when a control action is applied. The pressure at the
control we mean that observations of the cross-stream velogvall is given by

ity at Y"b,Y‘Z’b are used to impose a cross-stream velocity at

1
R (uAu+v Av+w Aw)

_ : . ik . d%
y==1 according to p(il)IFU’(il)v(ilHWd—yg . 9)
0(—1)=Co (Y%, y=+1
. S (4) We will determine the magnitude and phase of the con-
0(1)=Co(Y$), trol C and the observation lev, that reduces the growth

of perturbations. Plane Poiseuille flow with=1—y? and a

whereC is a complex control constant. Clearly, alternative X
Reynolds—Tiederman boundary layer flow are used for the

controls can be imposed in a similar manner.
The remaining boundary conditions for the case of activeexamples.

specification of the cross-strear)(velocity at the bound- o )

aries are the vanishing of the streamwigg @nd spanwise B: Estimating the growth of perturbations under

velocity (W) components, which requires at the walls active boundary control

dp In order to proceed it is necessary to have a measure of
) 0, perturbation growth. We choose the perturbation energy

given in operator form by

E=o¢" Z. (10)

In (10) ¢ is the Hermitian transpose a@f and the energy
Consequently, at the channel wall we have the followingmetric is defined, for a cross-stream géy, by

i

‘F(”’"‘d_y:
=1 (ki1 22 =0 ©
W=z |kt gy) 7Y

o>

boundary conditions: . sy [-A 0
ﬁ - 0 1,//)— W 0 | ’ (11)
dy y==1 , 6) wherel is the identity and\ is the finite difference approxi-
2(=1)=0 mation of the corresponding continuous operator, which has

been rendered invertible by incorporation of the boundary
Note that the perturbation evolution equati¢h) to-  conditions.

gether with boundary conditiong) and (6) form a linear We transform(1) into generalized velocity variables

system with homogeneous boundary conditions and that img=.7? ¢ so that the usual, norm corresponds to the

position of feedback control constitutes a change in thesquare root of the mean energy. Under this transformation a

boundary conditions of the flow. Therefore the control actionperturbation, att=0 evolves to timg according to
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lﬂt =€ < lﬂo , (12) Streamwise velocity, Re =2000; ICI=0 , THETA=0

in which the dynamical operator has been transformed to the
similar. z=_7Y2%.7~ 2,

The energy at is given byE' = z/;Ee“//T‘e' 6. The op-
timal perturbatiot** giving the maximum possible growth at o4}
t is the eigenvector that corresponds to the greatest eigen-
value of e “'tet. Equivalently!*!5 this optimal growth is
given by the square of the spectral norm||ef”|, which is
equal to the maximum singular value ef”*. This energy L o2
growth is due to the non-normality of the evolution operator
(i.e.,.#.7'#._71_7), and has been recently demonstratéti
to obtain value©(R?). The transiently growing optimal per-
turbations can be identified with the characteristic coherent
structures(streaks near the wall, double rollers farther from
the wall), which are responsible both for bypass transition
and for maintenance of the variance in turbulent fi8&’ Spanwise direction

An alternative measure of growth at tinhés the square
of the Frobenius norm oé ™. This quadratic measure is FiG. 1. Contours of the streamwise velocity distribution in shez plane
equal to the sum of the squares of the singular values dbr the first EOF accounting for 63% of the total eddy energy. The pertur-
et This measure is proportional to the growth over an in_bat.ions. are rollgk=0) with total wave numbeK =1 :;. The mean flow_ is
tervalt of the mean perturbation when all perturbations are_IFjﬁlseunle and the Reynolds num_beF_«isZOOO. There is no control applied.

e plotted vectors are the projection of the velocity vector onythe
forced equally initially. The time integral of this measure is plane. Note that the streaks are locatey=a0.5 (in fully turbulent flows the
proportional to the perturbation variance maintained in thesorresponding streaks are located at a distance of 20—30 wall units from the
channel flow under white noise forcing, i.e. the accumulatedoundaries
variance over an intervalfor unit forcing of each degree of
freedom is given by

o
©

Irrrit

-
T

o
=)

=5.7

1 MAX
=)

{
. /r/l7—::1_{£::E_:}l\\\ N
B B SN NN
11y ///,/Z/ ’N» \‘\\\\\\\\‘\\\ \ :_

\ ity
f \/\ }\;p}u

the unmanipulated flow is shown in Fig. 1. Note that the
U streaks are centered at a distance of approximatel.5
(Et):trac€< joe ‘e tdt)- 13 from the walls.

The variance maintained by unbiased forcing in an un-
where the brackets denote ensemble averaging. The steadyanipulated Poiseuille flow peaks at the roll agis=0) and
state maintained variano(eEw) is given for asymptotically has forR=2000 a broad maximum &= O(]_), asshown in
stable systems as the limit ¢£3) ast—-c. Fig. 2. For large Reynolds numb@®>1000, the peak wave

Due to the non-normality of the evolution operator, thenumber increases linearly with Reynolds number. Oblique
variance cannot be obtained by summing the responses of tgrmonic perturbations also build energetic streaks and
individual modes, as in a normal system, and indeed for almaintain substantial varian¢é*® Consequently, in our in-

stable non-normal dynamical systeffs, vestigation of optimal control parameters we include oblique
N 1 perturbations.
E*)> _ 14
(E9) |:El —(N+A)) a4
where\; are the eigenvalues o# andN is the dimension of 10° :

the system. The sum on the rhs (@#) is the variance that

would result if the operatar# were a normal operator with

the same spectrum ag, in which case the maintained vari-

ance for unit forcing of each degree of freedom is well

known to be the sum of the inverse of twice the decay rates

of the individual mode$? .
The maintained variance for asymptotically stable flows % 10°

is found by solving the Lyapunov equation for the correla-

tion matrixt’ V*:

w o ot 10°
INTHNE AT =1, (15)

with Vi = (4} ) andl the identity matrix corresponding to

unitary forcing. The asymptotic variance can be identified 102 ‘ . . :

with the trace of the correlation matriXE™)=tracgV™). 0 Kl

Moreover, eigenalysis of the Hermitian and positive definite

C_O'Telat'on matrixv* yl_e_lds the Emplrlcal OrthOQQnal Func- fiG. 2. Ensemble average enerds) for roll perturbations(k=0) as a

tions (EOP decomposition of the variance. The first EOF for function of total wave numbeK=1.
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Re =2000, THETA =0, rolls 1 =1 Most Unstable mode ; R =500 ; ICl=1 ; THETA =180 ; Yo = 0.5;

1 7 T T T

E(C)/E(0) _
b S

1
S

0.2

A . . . \ \ . -1 L . L
% 3 % - P 1 2 3 ) Z0.15 ~0.1 Z0.05 0 0.05 0.1

(a) Control (a) Y

R=2000: IK = 1: th = 60 Re=5001K|=1; ICl=1, THETA=180; dIn(E)/dt=0.03
:

T

02 : s s s s s .
~4 -3 -2 -1 0 1 2 3 4 -
(b) Control (b) -:Uduv/dy; — Dissipation

FIG. 3. (a) Suppression of variance of roll perturbatiais=0, 6=90°) as a FIG. 4. (a) The structure of the cross-stream veloditgal part continuous
function of the magnitude of the cross-stream velocity control at the wallsine, imaginary part dashed lindor the most unstable modgrowth rate

for various observation distancds from the wall. Positive control values ~0.019 with R=500, and for a perturbation witt=0° and total wave num-
correspond to in phase control, negative control values correspond to out &€r K=k=1. The control is out of phase and has unit amplitude. The ob-
phase control. The total wave numbeiis-1=1 and the Reynolds number Servations are at,;=0.5. (b) The associated energy conversions. The con-
is R=2000. (b) Suppression of the variance of oblique perturbatiomish tinuous line isUdu v/dy and the dashed line is the dissipation. The
0=60°, recallk=K cos(@)] as a function of the magnitude of the cross- boundary energy source is destabilizing and contribute to approximately half
stream velocity control imposed at the walls for various observation dis-of the energy delivered by the Reynolds stress.

tancesY, from the wall. Positive control values correspond to in phase

control, negative control values correspond to out of phase control. The total

wave number iK=1=1 and the Reynolds number B=2000. The con- (Eé)
tinuous line is for observation af,=0.1, the dot—dashed line fof,=0.2, —, (16)
and the dashed line fof,=0.3. (Eg)

in the complexC plane, wherg(Ep) is the variance main-

The stochastic theory of turbulence outlined above hadined under stochastic forcing with no control appli€
recently been applied to obtain the energy containing struc=0)- We investigate the magnitude of the variance suppres-
tures of turbulent boundary layers, and particularly to re-Sion as a function of the amplitud€| and phase of the

cover the leading EOF of the turbulent boundary |ayercontrol for roll and oblique perturbations and for observation

which consists of streaks near the walls with peak stream@t various distances from the wallo. An effective control

wise velocity at approximately 25 wall units and spanwisemUSt I.ead to robust suppression of both roll and oblique per-
spacing of 100 wall units. The same theory also reproducefroations.

the observed frequency—wave number spectra. Because of
the universality of the dynamics producing coherent struc-”" IN PHASE AND OUT OF PHASE CONTROL

tures in shear flows, we expect that control strategies will ~We first constrain the control parameter to be real. The

display a similar generality in fully turbulent flows. variance suppression for in pha€@>0) and out of phase
Effective controls,C, are those that minimize control (C<0) is shown in Figs. @) and 3b) for roll and a
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typical oblique perturbation. Out of phase control of roll perturbations leads to robust

As expected, in phase control leads for small controlreduction of variance with the suppression becoming more
amplitudes to increased variance, and in the vicinitCefl  effective the farther the observation level is located from the
the flow becomes unstable. Remarkably, for higher amplicontrolled boundaryat least forY;<0.5. Maximum sup-
tudes and with observation levels sufficiently near the wallpression requires amplitud¢€|>4. Greater observing dis-
robust variance suppression is found. This mechanism wiltancesY,, not shown in Fig. &), lead to a minimum asso-
be referred to as overdriving suppression. ciated with a 90% variance suppression for control

The instability in the vicinity of|C|=1 arises from the amplitudes|C|~1. Unfortunately, this promising control
diffusion term and the boundary conditiav/dy=0 at the strategy does not generalize to oblique perturbations, as is
wall. This instability occurs in the absence of flow, as can besvident in Fig. 8b), which shows the variance for a pertur-
readily checked by calculating the spectrum of the Orr—bation with phase lines at an anghe=60° to the spanwise
Sommerfeld operatai3a) with U=0, so that only the diffu- direction [k=K cos(), | =K sin(#)]. For Y,>0.2 and with
sion term is present. Unlike shear instabilities, which areout of phase control of amplitudé€|~1, oblique perturba-
stabilized for sufficiently small Reynolds numbers, this dif- tions become unstable, leading to variance increase. This in-
fusive instability can be shown by a scaling argument tostability appears at low Reynolds numbefsypically
persist for all nonzero Reynolds numbers. For the fourthR=0(500)] and analysis of the energetics of the instability
order Orr—Sommerfeld operator the diffusive instability van-reveals that the control injects only a small amount of energy
ishes for sufficiently large control amplitude. For second-while the predominant energy source is the down-gradient
order diffusion operators, such as that govern heaReynolds stress term. The most unstable perturbations occur
conduction, the instability can be shown to persist for allat =0, in agreement with predictions of Squire’s theorem.
control amplitudes larger than the threshold. It can be showiThe analysis of the most unstable 2-D perturbatién0) at
that in phase control of these diffusive operators result in aiR=500 with unit out of phase control amplitude and obser-
enhancement of variance in the parameter range in whicliation atY,=0.5 is shown in Fig. @) and analysis of the
they are are asymptotically stable. energetics is shown in Fig.().

In contrast to the enhancement of variance resulting The direct numerical simulation experiments of Choi
from in phase control of the Orr—Sommerfeld operator withet al?° showed that out of phase control of unit amplitude
U =0, the presence of shear can lead to suppression of varf€ =—1) leads to drag reduction for observations at locations
ance for this operator at sufficiently large Reynolds numbersess than 20 wall units and to drag increase for observations
and large control amplitudes. This overdriving suppression igt greater distances from the wall. The cause of this drag
a consequence of the non-normality of the advection term ilincrease is presumably inception of the instability described
the Orr—Sommerfeld operator and cannot be understood aove. To check this a stability calculation was performed on
arising from the diffusive term. the symmetric mean velocity profile proposed by Reynolds

It can be seen from Figs.(® and 3b) that in phase and TiedermaR’?*
overdriving at an amplitud€~2 leads to variance suppres-

y R
sion of the order of 60%—-70% when observations are made U(y)=f dy l+—y for ye[—1,1], (17)
at Yo=0.2 from the wall. This control robustly suppresses -1 ve(y)
the variance of both roll and oblique perturbations. in which the variable eddy viscosity is given by

- A TW3RA y?)(1+2y?)(1—e - MIRA) 312

> , (18

VElY

in terms of a von Keman constantx and a boundary thick- The calculations reported here and the experiments of
ness parametek that characterizes the thickness of the wall Choi et al?° were carried out in a channel flow so that the
region velocity variation in Van Driest’s wall law. This pro- possibility remains that the instability occurring in the vicin-
file reproduces the mean velocity of turbulent channel flowsty of out of phase control®=180 would not occur in

for a wide range of Reynolds numbers. The Reynolds-boundary layer flows. To check this, a stability analysis was
Tiederman velocity profile for=0.525,A=37, and for a performed on the one-sided Reynolds—Tiederman profile.
Reynolds numberbased now in the friction velocityof  Although the instability occurs at a higher value of observa-
R=180 is shown in Fig. 5. The results of the stability analy-tion locations(for observations located at 40 wall units from
sis of the Orr—Sommerfeld operator for this prof#@own in  the boundaryit is qualitatively similar to that found in chan-
Fig. 6) indicates that inception of the instability occurs for nel flow. The possibility of maintaining stability at higher
observations located at 30 wall unifer this Reynolds num- observation levels in boundary layer flows suggests that
ber a wall unit is related to the nondimensional length bygreater suppression of turbulence could be achieved by out
y" =180y so 30 wall units corresponds $6=0.17). of phase control in the boundary layer.
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Reynolds — Tiederman mean flow ( R =180)
1 T T T T T T

08

0.6

04

0.2

10
u(y)

20

FIG. 5. The Reynolds—Tiederman profile. The Reynolds number based o
the friction velocity isSR=180.

IV. CONTROL OF ROLL PERTURBATIONS

We first consider control actions in which the boundary
response is in quadrature with the observati®=+90°).
For roll perturbationg6=90°), a robust suppression of vari-
ance as a function of the control amplitude is found for vari-
ous observation level¥;<<0.4 [Fig. 7(a@)]. For Y,=0.4 the
variance suppression can reach 70%—80% for control ampl
tudes|C|~4. For observation level¥,>0.5 roll perturba-
tions show an increase in variance #+90° [Fig. 7(b)].

Tiederman (R=180) ; ICI =1, THETA =180

Reynolds —
0.8 T

0.6

04

0.2

o

Growth rate

FIG. 6. Growth rate of the most unstable wave as a function of streamwis
wave number for various observation distan¥gdrom the wall for out of
phase control of unit magnituddC|=1, ®=1809. The mean flow is
Reynolds—Tiederman witRR=180. The dashed line is for observations a
distance 20 wall units from the boundaty=0.11), the continuous line is
for a distance of 30 wall unity=0.167, and the dash—dotted line for
observation at 40 wall unit/=0.22). Growth rates are here nondimension-
alized byL/U ., whereU . is the friction velocity.

Phys. Fluids, Vol. 8, No. 5, May 1996

R=2000, THETA=90,1=1

02 L L L L L L L

0
Control

R=2000,=1, THETA=90
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FIG. 7. (8) Suppression of variance for roll perturbatiafs=0, 6=90°) as

a function of the magnitude of the cross-stream velocity control at the walls
and for various observation distanc¥g from the wall. Positive controls
correspond to controls with pha€e=90°, negative controls correspond to
controls with phase®=270°. The total wave number iK=I=1 and
R=2000. (b) Increase in variance for roll perturbatiofis=0, =90°) as a
function of the magnitude of the wall normal velocity control for various
observation distance¥,=0.7, 0.8, 0.9 from the wall. The bottom curve
corresponds t&/,=0.7 and the top t&'y=0.9. The phase of the control is
©=90°. The total wave number K=1=1 andR=2000.

Note the symmetry of response ©=90° and®=270°.
Symmetry about®=180° can be shown to be a general
property of roll perturbation control because the absence of
advection in the evolution equations leads to identical energy
growth for conjugate controls. Consequently, investigation
of control phases €®<180° exhausts the possibilities.

Despite robust suppression of varianceéat90°, it can
be seen in Figs. (@ and 8b) that the greatest suppression

for roll perturbations occurs a@=180°, corresponding to

exactly out of phase control. Unfortunately, as we have seen,
this out of phase control fails to similarly suppress oblique
perturbations because of the existence of an unstable mode.
We show in the sequel th&~90° provides the best com-
promise.
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FIG. 9. Contours of streamwise velocity distribution in the z plane for

the first EOF, which accounts for 52% of the total eddy energy. The pertur-
bations are rollgk=0) with total wave numbeK=1=1. The control has
magnitudg C| =4 and phas€®=90°. The variance suppression is 80%. The
mean flow is Poiseuille and the Reynolds numbeR#2000. The plotted
vectors are proportional to the projection of the velocity vector orythe
plane.

dvo(X,Y,Z
o(X,y )U’t.
ay

The fixed structure and linear growth in time of the

streamwise streaks is revealed (80b). The solution does
not translate in space and, consequently, control actions for

7(X,y,z,t)=— (200

roll perturbations cannot induce superposition and a resulting
cancellation of the developing streak. Such superposition
cancellation can occur for oblique perturbations leading to
enhanced variance suppression. For pure roll disturbances

FIG. 8. Suppression of variance for roll perturbatidks 0, #=90°). Shown
are contours of EZ)/(Eg) as a function of the magnitudéG|) and the
phase(®) of the control. The total wave number lis=1=1 andR=2000.
(a) For observations a distandg=0.4 from the wallsib) for observations

a distanceY,=0.7 from the walls.

the problem of suppression becomes that of identifying the
control parameters that constrain the initial fiel(x,y,z) in
such a way that energy growth is reduced compared to that

Understanding the response of roll perturbations tyhtained in the unmanipulated flow. The perturbation energy
boundary control turns out to be particularly simple. Con-growth at timet for harmonic perturbations is easily calcu-

sider the initial development of a velocity field, whichtatO

lated from(20) to be

is confined to a wall normal velocity perturbation N Jor in )
[0,00(x,Y,2),0], with v o(X,y,Z) satisfying the boundary con- Et) ., J-1dy U Tdog(y)/dy] 1)
ditions consistent with the control specified b§). The in- E(0) It dy{K205+[doo(y)/dy]?}

viscid evolution, which provides a good initial approxima-

tion to the dynamics, satisfies the equations

The optimal control strategy obtained for controls specified
by C,Y, is the the one that solves the variational problem:

JdAv 1 2 2

—=0, (199 J=1 dy U'“(dg/dy)

at

MINie) MA o) | 1T gy ik2g7+ (dgrayl)w @7

(9_U:_U,U' (19p  for all adequately differentiable functiong that satisfy

at boundary condition$4) and (6). Solution of this variational

an o problem by standard methods reproduces the variance sup-

i ! v (199 pression curves shown in Figs@Band &b)

y The first EOF for control amplitudéC|=4 and phase
which can be immediately integrated to give ©®=90° and with observations at a distartg=0.4 from the
y.zt)= v.2), 20 walls is shown in Fig. 9. It is evident that the constraint
v (XY, 2,t) =vo(X¥,2) (209 imposed by the control leads to the development of a much
u(x,y,z,t)=—uvo(x,y,2)U’t. (20  weaker doublet of opposing streaks.
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FIG. 10. Suppression of variance as a function of the magnit|@g aénd
phase(®) of the control for oblique perturbations with=60° [k=|K| cos
(6)]. Shown are contours ¢E¢)/(Eg). The total wave number =1 and
the Reynolds number iR=2000.(a) For observations a distand&=0.4
from the walls;(b) for observations a distancé,=0.7 from the walls.

V. CONTROL OF OBLIQUE PERTURBATIONS

We turn now to variance suppression for oblique pertur-
bations. A contour plot of the suppression of ensemble-
average perturbation energy as a function of the magnitude

and phase of the control is shown in Fig.(d0for observa-
tions located atY;=0.4 from the wall and in Fig. 1®) for
observations located af,=0.7 from the wall. Note that in

both cases robust suppression of the order of 60%—70% oc- o5 1

R=2000;|K|=1,|C|=2,Yo=04
14 . . T T . . T T

E(C)/E(0)
=}
0

o
)

0.4

0.2 . . . . L . . L
0 20 40 60 80 100 120 140 160 180

THETA

FIG. 11. Suppression of variance as a function of the phase of the control
for |C|=2 andY,=0.4 for various perturbations of increasing obliqueness.
The continuous curve is for roll perturbatiofg=0). The dashed curve is

for an oblique perturbation witl#=80°. The dotted curve is for an oblique
perturbation with§=60°. The dot—dashed curve is for an oblique perturba-
tion with #=0°. The total wave number i&|=1 andR=2000.

unstable for out of phase controls, as can be seen from Fig.
11. Consequently, the most robust strategy is a compromise
with control phases in the neighborhood@#90°. We now
examine this control strategy in detail.

The suppression of variance f@=90° control for a
variety of oblique perturbations with observationYg=0.4
is shown in Fig. 12. Note that oblique perturbations, unlike
their roll counterparts, exhibit a sharp suppression of vari-
ance as the control magnitude increases from zero. In order
to understand this behavior consider the stochastic frequency
response of the flow. This is obtained by solving for the

R=2000, Yo=04

1 T T T T T T T

o
~
T
L

® =90

E(C)/E(0)
fe)
2

curs at®=90°. The out of phase and in phase controls are
not included in these graphs because they have already been
presented in Sec. lll. We also have limited our investigation
to region 6<®<180°, although now the advection operator
breaks the symmetry abo@=180°, because the instability

0.4

of oblique perturbations already evident@t180° extends
to higher values of.

0.2 !

2
Control

We have already seen that out of phase control SLJDIEIG. 12. Suppression of variance as a function of control magnitude for

presses variance qptimally _for StreamWise_ roll perturbationSeontrol phase®=90° andY,=0.4 for various perturbations of increasing
However, even slightly oblique perturbations may becomebliqueness§=90°, 60°, 45°. The total wave numberks=1 andR=2000.
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Analysis of energetics confirms that the energy growth
arising from the Reynolds stress is reduced in the controlled
ssfp T e ] flow [Figs. 1%a) and 15b)].

g ] An implication of these results is that the rms amplitude
of the streamwise and cross-stream velocities in controlled
flows peak at greater distance from the wall. This can also be
seen to be the case in the numerical simulations presented by
Choi et al®°

Re =2000,Y,=03,1KI=1,0=600

2:101=2,86=0

8:1CI=2,8=900

logio (<E>)

VI. DISCUSSION AND CONCLUSIONS

In this work methods for controlling transition to turbu-
] lence and suppressing fully developed turbulence have been
15 . T T . .
-05 0.0 15 20 explored, making use of the theory of stochastically forced
non-normal systems. The parametrized turbulent state pro-
duced by stochastic forcing of the highly non-normal opera-

FIG. 13. Th t duced by white noise forci functi : o VY
o o e 10 1o Teeoonas of the unmanuiad@) resulting from linearization about the background shear

of phase speed. Curve 1 corresponds to the response of the unmanipula ) ) - :
flow and the dotted curve is the equivalent normal response. Curve 2 coProvides a convenient model for testing control strategies. A
responds to an in phase contf@=0) of magnitude|C|=2. Curve 3 cor-  number of active controls were explored using this model
respond_s to contrdC| =2 at a phase ob=90° and the dot—dashe_:d curveis gnd physical mechanisms by which these controls operate
the equivalent normal response. The total wave numbeKisl and . ie
R=2000. were identified.
This parametrized turbulence accurately models the co-
herent structures and the energetic interaction of the coherent
structures with the mean flow, which sustains the turbulent

frequency response of the evolution equation forced by whitgtate. In the form presented in this work this model does not

0.5 10
Phase Speed(c)

noise:® The ensemble-average energy is given by directly provide a theory for the dynamics of the inertial
o subrange nor for the dynamics of the dissipation range and
(E*)y= f dw tracd. % (w) %#(w)], (23)  we defer to extensive previous work under the rubric of iso-

tropic homogeneous turbulence theory that addresses the lat-
where the dagger denotes the Hermitian transpose and tier two dynamical regimes. We note in defense of this limi-
resolvent is defined as tation of our inquiry to the energy bearing scales that the
,, . _ injection of energy mediated by coherent structures is neces-
Aw)=(iol=2)"" 24 sary in shear turbulence to supply energy to inertial subrange
The frequency response fé=60° perturbations is shown in and ultimately to the dissipation scales.
Fig. 13 for the unmanipulated flow, and for controls with In the examples examined, the cross-stream velocity was
|C|=2 and control phase®=0, 90. Also plotted is the observed at a boundary parallel plane in the interior of the
equivalent normal response calculated as the summation ébw, and the surface normal velocity was imposed as a con-
the residue of the poles of the resolvent, which would givetrol. Diagnosis of the energy input at the boundary reveals
the variance for a normal operator with the same spectrunthat successful control requires input of energy into the fluid
Note the profound effect of non-normality in maintaining implying that implementation of active control is necessary
variance far in excess of what would be anticipated from theo obtain turbulence suppression by the mechanisms exam-
rate of dissipation of the modéthis result can be shown to ined. Examination of Reynolds stress distribution reveals
be a necessary consequence of the non-normality of théat successful controls reduce the net down-gradient mo-
operatof?). mentum flux by the growing structures sufficiently, to not
It is evident from Fig. 13 that the variance of the con- only compensate for the energy input due to boundary forc-
trolled flow peaks at higher frequencies corresponding to @ng but also to reduce the overall variance. Two mechanisms
shift of the streaks to the interior of the flow where the sheaby which reduction of Reynolds stress is accomplished were
is smaller. identified. One effective means of suppressing perturbations
Physically the variance reducing control action inhibitswas referred to as overdriving because the effective normal
the formation of streaks in the vicinity of the wall where high velocity was found to be of large amplitude and in phase
shear would lead to substantial buildup of streak amplitudewith the perturbation normal velocity. This in phase forcing
The evolution of the optimal perturbation that grows maxi-produced the expected destabilization at low driving ampli-
mally in ten time units is shown in Figs. (& and 14b) for ~ tude, but as the amplitude of the driving was increased the
the controlled and unmanipulated flow. The control bound-phase of the perturbation was altered to produce decay and
ary condition induces a time varying cross-stream velocitysuppression of as much as 70% of variance for observations
near the boundaries that inhibits the formation of the enernear the wall. The most effective general control resulted
getic near wall streaks. We remark in passing that the mogtom a higher amplitude normal velocity advanced in phase
effective cancellation of the near wall streaks by this mechaby approximately ®=90° compared to the perturbation
nism would have occurred for out of phase control if therephase and for observations located near the center of the
were no instabilities. streak location of the unmanipulated flow. This control also
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FIG. 14. Evolution of the optimal oblique perturbation wis60° that leads to maximal energy growth in ten units of time for the controlled flow, with
|C|=2, ®=90°, andY,=0.3 and the unmanipulated flow. Compared to the unmanipulated flow there is a 60% variance supgeesSmrtours of the
cross-stream velocity at=0 for the unmanipulated flowb) Contours of the cross-stream velocitytat10 for the unmanipulated flowc) Contours of the
cross-stream velocity at=0 for the controlled flow(d) Contours of the cross-stream velocitytat10 for the controlled flow. The total wave numbeiis=1

and R=2000.

worked by altering the structure of the perturbation so thathe wall normal velocity. Unfortunately, analysis of the ex-
the down-gradient Reynolds stress was reduced. Out giression for perturbation pressure fluctuations at the wall
phase contro(®=180° was effective in reducing the vari- [Eq. (9)] reveals that the perturbation pressure itself is deter-
ance of almost all perturbations. Unfortunately this promis-mined primarily by the wall normal velocity when the mean
ing control gives rise to an instability caused by the boundshear is nonzero at the bounddfirst rhs term of(9)]. It
ary control. This instability that occurs for observationsfollows that perturbation wall pressure in the presence of a
0.3<Y<<0.7 limits the practical utility of this control. mean shear and a wall normal velocity cannot provide an
Active control has sometimes been referred to as wavéndependent observation of disturbances in the interior. It
cancellation, but this may be misleading because the controinay be possible, however, to offset the observation of pres-
in fact, puts energy into the wave, but in such a way as tsure from the control either in space or in time to avoid this
modify its structure so that interaction with the mean flowdifficulty.
reduces the down-gradient Reynolds stress and in turn re- Reduction of variance by as much as 70% is found for
duces the perturbation variance. A more insightful viewpointboundary normal velocity control. Prior to transition from
is to see the control as an alteration of the boundary condilaminar flow to turbulence the perturbation field can gener-
tion that more tightly constrains the system and by thisally be accurately modeled by the linearized equations be-
means produces a reduction of variance. cause of the smallness of the perturbations, so that the equa-
Perhaps the most straightforward control to implementions used in this work are justifielpriori. However, in the
would consist in observing the wall pressure and controllingcase of fully developed turbulence, where the rms velocity is
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