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A comprehensive assessment is made of transient and asymptotic two-dimensional perturbation
growth in compressible shear flow using unbounded constant shear and the Couette problem as
examples. The unbounded shear flow example captures the essential dynamics of the rapid transient
growth processes at high Mach numbers, while excitation by nonmodal mechanisms of nearly
neutral modes supported by boundaries in the Couette problem is found to be important in sustaining
high perturbation amplitude at long times. The optimal growth of two-dimensional perturbations in
viscous high Mach number flows in both unbounded shear flow and the Couette problem is shown
to greatly exceed the optimal growth obtained in incompressible flows at the same Reynolds
number. © 2000 American Institute of Physid$$1070-663(00)00211-7

I. INTRODUCTION cous flow in the limitt—c<c in which limit the least damped
mode supported by the boundary conditions determines the
A comprehensive understanding of the stability of sheaisymptotic growth or decay rate which must be exponential
flow in general and of high Mach number shear flow in par-jn time. Nevertheless, for studying perturbation growth over
ticular requires taking into account perturbation growth dughe interval of time in which transient growth dominates the
to both modal and nonmodal processes. Flows confined bynpounded constant shear flow has the great advantage of
boundaries support normal modes and eigenanalysis of theyying analytic solutions for incompressible shear ffof,

linearized equations of fluid motion for such flows providess,, stably stratified flow$, and for compressible inviscid
information about the rate of perturbation energy growth ing,,\c10.11

the limit of long time while singular value decomposition of Using convected coordinates Chagelishvit al10L!

the st);]stem [r)]roi)ag?tor pr0\f|desT|r|]‘|formtat|on tagﬁ_Lt‘t tranlsle_ howed that inviscid divergent acoustic perturbations are al-
growth on shorter imé scales. These wo stability ana ySI§vays eventually excited, even if the initial conditions are of

methods can be combined to form a generalized Stablllt¥|ondivergent vortical form, and that the energy of acoustic

theory that synthesizes both the modal and nonmodal aspects . . o
: perturbations grows linearly with time &s»«. However, as
of perturbation growtt.

High Mach number shear flow occurs in technologicalt_m the total wave number of these growing disturbances

contexts such as hypersonic aircraft and in astrophysical phéi-.ls‘0 increases linearly with time suggesting an accelerating

nomena such as accretion didled at least in the case of YISCOUS damping rate and the question arises as to whether

accretion disks the dynamics is confined to two dimensionst.he inviscid asymptotic growth obtained in the inviscid

Transient nonmodal growth generally dominates over moda_rlnOOIeI is sustained at finite Reynolds number. We show by

growth in highly non-normal systems such as fluid sheafNtegration of the viscous extension of the compressible
flow except in the limit of long time in idealized models. shear wave solutions in unbounded constant shear flow that

Moreover, in realistic physical shear flow problems it is of- the inviscid growth is not sustained and that all solutions in
ten possible to exclude long time asymptotic growth eithelViScous unbounded constant shear flow are damped-as
because the linear operator associated with the mean flow {¥evertheless, we find that the maximum attainable growth is
asymptotically stable or because disruption of the coherencg€ater in compressible constant shear flow than that ob-
of the mode by turbulent motions limits the time available tained in incompressible flow at the same Reynolds number.
for modal growth so that emergence of the modal asymptoté'aVing established that nonmodal growth remains robust at
is never attained and growth instead occurs by repeated rapfthite Reynolds number in the unbounded constant shear flow
but transient nonmodal processes. we turn to the issue of the influence of boundaries on the
Because of the universality of nonmodal growth pro-perturbation dynamics. Imposition of no slip rigid bound-
cesses in shear floiransient growth can be understood to aaries in the viscous problem induces an eigenvalue problem
first approximation through study of the relatively simple with a discrete basis of modes. The perturbation dynamical
unbounded constant shear flow model. However, unboundesystem plus the boundary conditions is non-normal and con-
constant shear flow does not support modal solutions and ssequently these modes are not orthogonal.
cannot accurately model the behavior of any bounded vis- Constant shear flow with rigid no slip boundaries consti-
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tutes the plane Couette flow the stability of which has longinverse shears; and space by the channel half-width for
been an object of study in hydrodynamics. Couette flow doebounded channel flow, and byklfor unbounded flow. The
not support modal instability in the incompressible lithit Reynolds number is defined as Re?/ v7, wherev is the
while the unstable modes which exist for some sufficientlycoefficient of shear viscosity, the coefficient of second vis-
small Mach numbers in compressible Couette flow arecosity is assumed to be zero, alnds the space scale for the
weakly growing® unbounded or channel flow. The Mach number, measuring
We find weak modal instability in the viscous compress-the ratio of the characteristic flow speed to the speed of
ible Couette flow in agreement with previous results. How-soundcg, is M=L/7cs.
ever, we also find that at high Mach numbers two- In the case of unbounded flow, for which due to the
dimensional perturbations produce rapid nonmodal growtmondimensionalizatiork=1, it is useful to transform to
and that this nonmodal growth can strongly excite the pereconvected coordinates—yt and seek solutions t@2.1),
sistent modes, a process that cannot occur in unbounded flow.2), and (2.3) of form [ﬁ(y,t),ﬂ(y,t),ﬁ(y,t)]
due to the absen_ce of modes in unbounded flpw. _ I[E’(t) ,ﬁ(t) ,;(t)]eim(t)y, with time varying cross-stream
These two-dimensional growth mechanisms at highya,e numbem(t)=m(0)—t (cf. Refs. 4—11 Substituting
Mach numbers have implications for the maintenance of turyyis solution form transformé2.1), (2.2), and(2.3) to
bulence in accretion disks around massive bodies. The flow
in accretion disks is nearly two dimensional and Keplerian

(i.e., the rotational frequenc2 <R~ %2, whereR is the dis- dp_ La- |m(t);, (2.5

tance from the massive bodgnd the Mach number is very dt M? M?

large? Nonmodal processes may be key to producing the

outward angular momentum flux required to support the ob-  du ~ [K2(t) 1 \- m(t) |~

servationally inferred rates of mass infldfv. ar _'p_< Re S_Re) _< 3 Re)v’ (2.6
We begin by introducing the viscous compressible equa-

tions; optimal perturbations in unbounded shear flow are a7 m(t) K2(t)  m(t)

then obtained using convected coordinate solutions, after — =—im(t)p— "-L]_( )}}, (2.7

which boundary conditions are introduced and the resulting 9t 3Re Re = 3Re

Couette problem is formulated as a matrix dynamical system

2 _ 2 . . . _
and the optimal perturbations obtained. Finally some physiyvhereK (1) =1+m7(t) is the total time varying wave num

cal implications of these solutions for perturbation growthber' The original partial differential equations have been re-

processes in bounded and unbounded shear flow are giduced to a set of three ordinary differential equations which
can be readily integrated to determine the propagator matrix

cussed. that advances the initial state of the system to the state at a
later timet.

1. GROWTH OF TWO-DIMENSIONAL We choose to scale pressure by Mach number so that the

PERTURBATIONS IN COMPRESSIBLE CONSTANT system state ix, where x denotes the column vector

SHEAR FLOW [MPp,u,v]". The evolution of the state is then governed by

The two-dimensional continuity and momentum equa—the time-dependent matrix equation:

tions for harmonic perturbations of reduced pressyse, x
streamwisg(x) velocity, u, and cross-strearnty) velocity, v, — =A(t)X, (2.9
of the form[p,u,v]=[p,u,v]e'**, in a polytropic fluid(i.e., dt

pressure related to density B=Kp?) with constant shear

hereA(t) is gi
U=y and spatially uniform mean density are whereA(t) is given by

m . A A(t)

E+|kyp=—m, (2.1 0 i _im(t)

A M M

au - - ~ 1 . ik . ; 2

 ikvi= —p—i il 0 Kt 1 m(t)
+ikyu=—v—ikp+ =D?%u+ , (2.2 - = _ B2

at Re 3Re = M Re ' 3Re * 3Re

W e dp 1 . 1 dA - _im(t) ~m(t) C[KAD)  m()

ot Tk =T T R P T 3 Re Ty 2.3 M 3Re Re ' 3Re

where A denotes the velocity divergence which has the

streamwise Fourier coefficient: 29

The state att is related to the initial state byx(t)

~

" " d — . . . B
A=ikii+ _v’ (2.4 ®(t)x(0), whered(t) is the finite time propagator
dy \
andD? denotes the Laplacian operaf=d?/dy*—k?. In o(t)=lim [[ er7, 2.10
(2.2), (2.2, (2.3 time has been nondimensionalized by the r—0 n=1
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Re=5000, M=50,k=1
450 T T

FIG. 1. Energy evolution of the initial perturbation of
unit energy that leads to maximum energy growth at

b =20 (with k=1). Curve 1 is for incompressibleM

=0) viscous bounded Couette flow at-R8000; curve

2 is for the same case except compressilile=50);
curve 3 is for unbounded constant shear compressible
flow at M =50 and Re=5000; curve 4 is for the same

b case except the flow is inviscid.
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1
50 100 160
time

obtained byN advances of the system by the infinitesimal wave number and is robust in the presence of viscosity; and
propagatorse®(")7 | whereN and r satisfy the relatiort a slow secondary asymptotic growth phase that disappears
=Nr. when viscosity is included. The mechanism of growth in
The perturbation energy density has both kinetic and pothese two phases can be understood by considering the per-
tential energy components with the total energy densityturbation energy tendency equation:
given by
dE 2mim(ty__ 1 (f2mmt)
——J uv dy—R—e . (|V ul?+|Vu|?)dy

uP+[ol*+Mpl* 1, dt
= 4 = Z|X| , (21])
1 (2a/mt—
in which pressure has been scaled by Mach number in the ~3Rely A%dy, (212

definition of the state variable so that the Euclidean inner

product is proportional to perturbation energy. The maxi-where the bar denotes average over a streamjseave-

mum factor of increase in energy density that can beength andA is the velocity divergence. The only source of

achieved at timeis then||®(t)||* where]| -|| denotes thé.;  perturbation growth is the Reynolds stress which contributes

matrix norm. This norm can be readily evaluated by singulathe first term on the right-hand side @.12). By decompos-

value decomposition which for the propagadbft) is of the  jng the velocity field into its irrotational and solenoidal parts

form: ®(t)=UXV" where is positive diagonal and), V (u,0)=V ¢+ VX(yk) (wherek is the unit vector perpen-

are unitary. The square of the maximum elemenka$ the  gicular to the plane of the flowg is the potential of the

square of the, norm of ®(t) which can be interpreted as jrrotational velocity component, angl is the streamfunction

the maximum factor of energy denSity increase that can bgf the solenoidal Ve|ocity Componenthe fo”owing propor-

achieved at time. This maximum energy growth factor is tjonal relation for the spatially averaged Reynolds stress in

called the optimal growth, and the corresponding column otgnvected coordinates can be obtained:

V, referred to as the optimal perturbation, is the initial con- iy

dition that results in this increase. 2m/m(t ~1 ~12
The energy density evolution of the initial perturbation _j uv dy=m(t) = m(t)| |

that produces optimal energy growth tat 20 is shown in o o

Fig. 1 for the inviscid and viscougRe=5000 unbounded +R(P* h—m2(t)* @), (2.13

constant shear flows at Mach numiér=50. In the inviscid
wherefR denotes the real part of a complex number and the

case the ener rows asymptoticallyt#s'* (this is true for . . . . X
all initial pertu?ga%ions, no¥or?ly the g;[)timal initial perturba- juldes denote the Founer_ amplitude of the pelrtglrbatmon fields
tion), but as can be seen from Fig. 1 this inviscid asymptotidh_the convected coordinate ansais= ¢(t)e” Oy g
growth is not sustained in the presence of viscous dissipa= #(t)e™* ™", Consider an initial perturbation with
tion. m(0)>0. Part of the contribution to energy growth due to
Optimal initial perturbations undergo two physically dis- the solenoidal component of the perturbation velocity field is
tinct growth phases: a rapid transient phase that peaks atthe first rhs term in2.13), m(t)|z~p|2, which contributes sub-
nondimensional time of the order of the initial cross-streamstantially initially, whilem(t)>0, but as the phase lines are
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Inviscid unbounded constant shear flow
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FIG. 2. Top panel: The optimal initial wave number
m(0) as a function of optimizing time for perturbations
in inviscid unbounded constant shear flow. The dashed
line showsm(0) for incompressible flowNl =0); the

full line shows the compressible flom(0) (M =50).

As tan 1 m(0) is the angle between the phase lines and
the vertical, the phase lines of optimal perturbations are
seen to be less inclined to the vertical in the compress-
ible case. Bottom panel: The magnitude of the vorticity,
divergence, and pressure multiplied Byof the initial
optimal perturbation as a function of the optimizing
time. The phase of these quantitieg&t0 is the same.

Optimal initial wavenumber m(0)
wn

Topt

turned into the direction of the shear, so that eventuallydivergence, and pressure of the optimal initial condition as a
m(t) <0, it becomes an energy sink. This term, which is thefunction of T for M =50.
sole energy source in incompressible shear fiowanishes Given that viscosity damps perturbations in proportion
in compressible flow asn(t)|/|?=0(t"2) at large times to the square of the total perturbation wave number, it fol-
(see the Appendix which is slower than th@(t %) rate of  lows that optimal perturbations in viscous compressible flow
asymptotic decay of the Reynolds stress in unbounded invigwill be damped less than optimal perturbations in viscous
cid incompressible constant shear flGw. incompressible flows because compressible flow optimals
The second term on the rhs (@.13, —m(t)|$|2, arises have smaller wave numbers during their growth period. Op-
from the irrotational component of the perturbation velocitytimal energy growth for inviscid incompressible flows in-
field and exists only in compressible flow. It is initially an creases Withl oy, asEqp( Top)/Eop(0) =1+ T3, whereT oy
energy sink, whilem(t)>0, but becomes an energy sourceis the optimizing timés? and consequently optimal growth is
when the phase lines have turned into the flow direction s@reater at large times for inviscid incompressible than is at-
that m(t) <0, leading to eventual energy growth linear in tained in inviscid compressible flows, where the asymptotic
time in inviscid unbounded shear flowis the Appendix itis  growth is linear in time. However, due to their smaller wave
shown that at large timem(t)|}'5|2ﬂc+|3 cost’/M+¢)  numbers optimal perturbations in compressible viscous con-
with C, D, and ¢ constants This ability of perturbations in stant shear flow realize greater growth than is attained by
compressible shear flow to continue extracting energy fron®ptimals in incompressible viscous constant shear flow at the
the mean flow after the perturbation phase lines have turneseme Reynolds numbécf. an example in Fig. )1
into the direction of shear is a new mechanism arising from  The third term in(2.13 is the energy tendency from
compressibility. The fact that the only source of energyinteractions between the irrotational and solenoidal velocity
growth in incompressible shear flows is the solenoidal veloccomponents. It can be shown to oscillate with high amplitude
ity component which extracts energy only wher{t)>0, at times exceeding the optimization tirteee the Appendix
and that in constant shear flom(t)=m(0)—t decreases However, these oscillations, which are due to interference of
with time, means that in order to maximize energy growth aoppositely traveling waves with both irrotational and sole-
time t the optimal perturbation must have large initial cross-noidal velocity components, do not contribute to the secular
stream wave numbéfurther analysis shows that in inviscid growth of energy at large times.
incompressible shear flows the optimal wave number is While the first stage of transient growth is only moder-
m(0)= t/2+\t?/4+ 1, wheret is the optimizing time, so ately affected by viscosity, the later stage, which is associ-
that at large timesn(0)~t (cf. Ref. 15]. In compressible ated with secular growth in the inviscid problem, is elimi-
flow the perturbation can extract energy even wimeft) nated by viscosity. For example, energy evolution of the
<0 and consequently optimal growth does not require thaoptimal perturbation at=20 for the unbounded constant
m(0) be as large initially as in the case for incompressibleshear flow at Re5000 (curve 3 of Fig. 1 shows that the
flow. The initialm(0) that leads to optimal growth is shown initial transient growth is largely retained in the presence of
as a function of optimizing tim&, in Fig. 2 forM=0 and  viscosity, along with a secondary maximum due mainly to
M =50. Also shown in Fig. 2 are magnitudes of the vorticity, the Reynolds stress from the irrotational velocity component,
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Couette Flow, k = 1, Re = 5000
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while the secular energy growth at largbas been lost. and is also extracting energy from the mean as indicated by
Consider now viscous Couette flow between two boundits Reynolds stress.
ing surfaces with no slip boundary conditions=v=0 at Optimal energy growth as a function of time for various

y=*1). The perturbation dynamics are governed by EqsMach numbers as well as for incompressible flaw=0) at
(2.1)—(2.3. In order to study the dynamics of perturbations Re=5000 andk=1 is shown in Fig. 6. While at small Mach
in bounded flow we approximate the systé2nl)—(2.3) by =~ number the optimal growth in compressible shear flow is less
discretizing the differential operators with central differ- than that found in incompressible shear flgthis is also
ences. It is known that in the presence of boundaries and &und to be the case for three-dimensional perturbations in
fixed Reynolds number the compressible flow may beboundary layer lows at low Mach numbé&ts at large Mach
weakly unstable for moderate Mach numb¥rsyhile for  numbers the optimal growth attained in compressible flow is
sufficiently high Mach numbers the modal instability is lost. an order of magnitude greater than that in incompressible
The growth rate of the most unstable mode kot 1 and  flow.
Re=5000 as a function of Mach number is shown in Fig. 3.  The mechanism of capture of transient growth energy by
Consider first a flow at Re5000 andM =50 for which  the least damped mode is of particular significance because it
parameters the flow is almost neutral for1. The energy produces robust excitation of a persistent structure which
evolution of the optimal initial perturbation that leads to would otherwise be damped or at most weakly growing. For
maximum growth at=20 is shown in Fig. 1. Observe that example, consider the optimal energy growth attained as a
the evolution of energy at first follows that in the viscous function of time atM =20,50,100, shown in Fig. 6; for large
unbounded constant shear flow, as expected from the univeoptimizing times the perturbation energy becomes large and
sality of the transient growth mechanism, but for large timesearly constant as the nonmodal processes have strongly ex-
the perturbation asymptotically decays at the exponential rateited the nearly neutral modes of the flow at these Mach
of the least damped mode as expected for a bounded visconsmbers. Moreover, this mechanism is important even in
flow. For comparison curve 1 in Fig. 1 shows the energycases for which the flow is unstable. Considlér4.75 for
evolution in an incompressible flow for the initial condition which there is an unstable mode with nondimensional
that maximizes energy growth &t 20. As discussed earlier growth rate 0.0689. The optimal energy growth as a function
the enhanced energy growth in the compressible flow is duef time and the energy evolution of the most unstable mode
to the fact that the irrotational component of the velocity (dashed lingare shown in Fig. 6. Energy derived from tran-
field can continue to extract energy from the mean flow eversient growth is transferred to the weakly unstable mode as
after it has been convected into the direction of the shear, anidcreases resulting in greatly enhanced excitation of the un-
consequently such perturbations can continue to grow for atable modeby a factor of 20 in this case
longer period of time before being strongly affected by vis-
C_OSIty. Thg struct_ure_of the o_ptlmal perturbat_|on at the |n|t|aI|”_ CONCLUSIONS
time is indicated in Fig. 4 by its pressure, which accounts for
92% of the initial perturbation energy. The evolved optimal  Perturbation growth in viscous compressible shear flow
at the optimizing time =20 is shown in Fig. 5. It is evident was examined using unbounded constant shear flow and the
that the perturbation is leaning in the direction of the sheaCouette flow as examples. These constant shear examples are
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Re =5000,k =1

FIG. 4. Structure of the pressure field component of the
optimal initial perturbation that leads to the maximum
energy growth at=20. The Mach number i81 =50
and the Reynolds number is R8000 andk=1. The
maximum energy growth at=20 is E(20)/E(0)
=277 (the energy evolution of this perturbation is
shown in Fig. ). Approximately 92% of the optimal
perturbation energy is in the pressure field.

particularly useful in revealing the fundamental properties ofperturbations producing optimal energy growth over speci-
nonmodal growthwhile retaining the simplicity of the ana- fied time intervals were identified using singular value de-
lytic convected coordinate solutions in the case of the uneomposition of the system propagator. The optimal perturba-
bounded shear flow and the familiarity of the Couette probtions reveal that in contrast to what is found in inviscid flow
lem in the case of the bounded flow. Nonmodal perturbatiomonmodal growth can be increased by compressibility in vis-
growth was found to be enhanced in compressible shear flowous flow. In addition, asymptotic excitation of a nearly neu-
compared to that found in incompressible shear flow becauseal mode by its optimal was found to excite the mode at
irrotational velocity fields sustain downgradient Reynoldsmore than an order of magnitude greater energy compared to
stresses after the Reynolds stress from solenoidal motiordirect excitation of the mode itself, which demonstrates the
has reversed. However, growth by this mechanism is noimportance of nonmodal growth in the asymptotic regime
sustained ag—o because viscous damping rapidly in- even in flows which support an unstable mode.
creases as the wave number of the solution increases. Lastly, we remark that the great amplification of a subset
In order to quantify in a canonical manner the potentialof perturbations in viscous compressible flow suggests that
for perturbation growth in compressible shear flow initial continual excitation by intrinsic or extrinsic sources would

VORTICITY, Re = 5000, M =50, t =20, E(t)/E(0)=276.821, % K =97.1925, Q| = 13.1326

FIG. 5. Structure of the evolved optimal perturbation
associated with optimal growth &t,,=20 viewed at
t=20. The Mach number i& =50 and the Reynolds
number is Re5000 andk=1. The top panel shows
perturbation vorticity, the middle panel shows perturba-
tion divergence with arrows indicating the total veloc-
ity. The bottom panel shows the vertical distribution of
—uv. Note that although at the initial time most of the
energy is concentrated in potential form, at the optimal
time 97% of the perturbation energy is in kinetic form.

3 Note also that although the perturbation is oriented with
REYNOLDS STRESS lines of constant phase in the direction of the shear the
' Reynolds stress is positive indicative of energy transfer
. from the mean flow to the perturbation which would not
be the case for incompressible flow.

1
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Couette flow, k = 1, Re =5000
10 T T T T T T

FIG. 6. Optimal energy growth attained by two-
dimensional perturbations as a function of optimizing
time in incompressible flow N=0), and for Mach
numbersM =1,4.75,20,50,100. The flow is bounded
Couette at Re5000, andk=1. The dashed curve
shows the growth associated with the mode with the
fastest exponential growth ratgrowth rate 0.0689)
which occurs whem =4.75.

Optimal energy growth

0 5 10 15 20 25 30 35 40

support a statistically steady state with greatly enhanced pefs a conserved quantity. Writing(t)=—K?(t)3 and p
turbation variance compared to the variance that would be-Cc/M?+ f(t)/M? the evolution equation$A1)—(A3) re-
excited in a system with equivalent damping but withoutduce to the following two equations in the variabfés) and
transient amplification, a result that has been demonstrate;g:
for similar systems in incompressible flows. df

gt = KA0e, (A5)
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At large times(A6) can be approximated as
APPENDIX: ASYMPTOTIC ENERGETICS OF ~
TWO-DIMENSIONAL INVISCID PERTURBATIONS IN do C f
COMPRESSIBLE UNBOUNDED CONSTANT dt == W - W' (AT)
SHEAR FLOW

becausé?(t)=0(t?), and thenA5) and (A7) can be com-

Evolution equations for the irrotational and solenoidal bi - : ; - : ;
o ined to yield the following differential equation governing
components of the velocity fieldi(v) =V ¢+ V X(yk) can . ) . . ~
be derived from(2.5) to (2.7). Using the same convected the larget behavior of the irrotational velocity potentiéi:

coordinate ansatzp= ¢(t)e* MWy y="y(t)e™ MmOy the d%¢  KA(t)~
following governing equations are obtained in the absence of "1z =~ "z b, (A8)
viscosity:
~ ) which admits the asymptotic Wentzel-Kramers—Brillouin
dp K1)~ solution:
=5, (A1)
dt M?2 .
B exf =i [ (A9)
d(K2(1)7 ~ = ex _IJM s,
L d(t)‘/’) = —K*(1)9, (A2) VK
which in the t—o limit behaves as¢|=0(t 3. The
do _ 2 asymptotic amplitude of the streamfunction is
ar. P ¥, (A3) .
K2(t) ~  MA™ . [tK(s)
5 2 ) _ p=xi——— ex ilf ——ds|, (A10)
whereK<(t) =1+ m-(t) is the time varying total wave num- (K(1)) M

ber, andp is the amplitude of the pressure perturbation. It is

. . _ . . ~ — 73/
easy to show that which in thet—oe limit behaves a$y|=0(t~*?). Note that

in incompressible flows the streamfunction decays at the rate
K2(t)y+M?p=C (A4)  [§=0(t™%).
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