VOLUME 65

JOURNAL OF THE ATMOSPHERIC SCIENCES

Formation of Jets by Baroclinic Turbulence

BRIAN F. FARRELL

Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

PETROS J. IoOANNOU

Department of Physics, National and Capodistrian University of Athens, Athens, Greece

(Manuscript received 4 September 2007, in final form 7 March 2008)

ABSTRACT

Turbulent fluids are frequently observed to spontaneously self-organize into large spatial-scale jets;
geophysical examples of this phenomenon include the Jovian banded winds and the earth’s polar-front jet.
These relatively steady large-scale jets arise from and are maintained by the smaller spatial- and temporal-
scale turbulence with which they coexist. Frequently these jets are found to be adjusted into marginally
stable states that support large transient growth. In this work, a comprehensive theory for the interaction
of jets with turbulence, stochastic structural stability theory (SSST), is applied to the two-layer baroclinic
model with the object of elucidating the physical mechanism producing and maintaining baroclinic jets,
understanding how jet amplitude, structure, and spacing is controlled, understanding the role of parameters
such as the temperature gradient and static stability in determining jet structure, understanding the phe-
nomenon of abrupt reorganization of jet structure as a function of parameter change, and understanding the
general mechanism by which turbulent jets adjust to marginally stable states supporting large transient growth.

When the mean thermal forcing is weak so that the mean jet is stable in the absence of turbulence, jets
emerge as an instability of the coupled system consisting of the mean jet dynamics and the ensemble mean
eddy dynamics. Destabilization of this SSST coupled system occurs as a critical turbulence level is exceeded.
At supercritical turbulence levels the unstable jet grows, at first exponentially, but eventually equilibrates
nonlinearly into stable states of mutual adjustment between the mean flow and turbulence. The jet struc-
ture, amplitude, and spacing can be inferred from these equilibria.

With weak mean thermal forcing and weak but supercritical turbulence levels, the equilibrium jet struc-
ture is nearly barotropic. Under strong mean thermal forcing, so that the mean jet is unstable in the absence
of turbulence, marginally stable highly nonnormal equilibria emerge that support high transient growth and
produce power-law relations between, for example, heat flux and temperature gradient. The origin of this
power-law behavior can be traced to the nonnormality of the adjusted states.

As the stochastic excitation, mean baroclinic forcing, or the static stability are changed, meridionally
confined jets that are in equilibrium at a given meridional wavenumber abruptly reorganize to another
meridional wavenumber at critical values of these parameters.

The equilibrium jets obtained with this theory are in remarkable agreement with equilibrium jets ob-
tained in simulations of baroclinic turbulence, and the phenomenon of discontinuous reorganization of
confined jets has important implications for storm-track reorganization and abrupt climate change.
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1. Introduction

Coherent jets that are not forced at the jet scale are
often observed in turbulent flows, with a familiar geo-
physical-scale example being the banded winds of the
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gaseous planets (Ingersoll 1990; Vasavada and Show-
man 2005; Sdnchez-Lavega et al. 2008). In the earth’s
midlatitude troposphere, the polar-front jets are eddy
driven (Jeffreys 1933; Lee and Kim 2003). The earth’s
equatorial stratosphere is characterized by the eddy-
driven quasi-biennial oscillation (QBO) jet (Baldwin et
al. 2001); the equatorial ocean supports eddy-driven
equatorial deep jets (Muench and Kunze 1994). The
midlatitude ocean also supports alternating eddy-
driven zonal jets, which are seen both in observations
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(Maximenko et al. 2005) and in models (Nakano and
Hasumi 2005; Richards et al. 2006). The phenomenon
of spontaneous jet organization in turbulence has been
extensively investigated in observational and in theo-
retical studies (Rhines 1975; Williams 1979, 2003;
Panetta 1993; Nozawa and Yoden 1997; Huang and
Robinson 1998; Manfroi and Young 1999; Vallis and
Maltrud 1993; Cho and Polvani 1996; Galperin et al.
2004; Lee 2005; Kaspi and Flierl 2007) as well as in
laboratory experiments (Krishnamurti and Howard
1981; Read et al. 2004, 2007). The mechanism by which
eddies maintain jets against surface drag is upgradient
momentum flux produced by the continuous spectrum
of shear waves as distinct from the discrete set of jet
modes (Huang and Robinson 1998; Panetta 1993; Vallis
and Maltrud 1993). This upgradient momentum trans-
fer mechanism maintains jets in barotropic flows
(Huang and Robinson 1998) and is also an important
component of the eddy forcing maintaining baroclinic
jets (Panetta 1993; Williams 2003). However, baroclinic
jet structure is additionally influenced by eddy heat
fluxes and secondary circulations as well as by exter-
nally imposed mean thermal forcing.

A characteristic property of mean jets in strong syn-
optic-scale turbulence is marginal stability coexisting
with robust transient growth (Farrell 1985; Hall and
Sardeshmukh 1998; Sardeshmukh and Sura 2007). In
the case of the midlatitude jet, this marginally stable
state is traditionally referred to as a baroclinically ad-
justed state after its original description by Stone
(1978), who drew attention to the proximity of mean jet
states to the classical two-layer model stability bound-
ary. It is now recognized that observed and simulated
marginally stable jets frequently exceed this necessary
condition for baroclinic instability that would apply to
the stability of a dissipationless and meridionally con-
stant shear. This is no contradiction of marginal jet sta-
bility because a correct assessment of jet stability re-
quires an eigenanalysis in which proper account is
taken of dissipation, quantization by boundaries, and
jet structure, particularly the stabilization effect of me-
ridional shear (Ioannou and Lindzen 1986; James 1987,
Roe and Lindzen 1996; DelSole and Farrell 1996; Hall
and Sardeshmukh 1998).

The recognition, in both observations and simula-
tions, of adjustment to marginal stability in baroclinic
turbulence resulted in application of a variety of theo-
retical approaches to understanding this phenomenon.
This effort was motivated in part by the fact that baro-
clinic adjustment is a fundamental problem in the
theory of baroclinic turbulence but also by its implica-
tions for flux parameterization in climate models.
These theoretical approaches include adjustment by the
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unstable modes themselves (Stone 1978; Held 1978;
Lindzen and Farrell 1980; Gutowski 1985; GutowsKki et
al. 1989; Stone and Branscome 1992; Lindzen 1993;
Welch and Tung 1998; Zurita-Gotor and Lindzen
2004a,b; Schneider and Walker 2006) and scaling argu-
ments for turbulent transport (Green 1970; Stone 1972,
1974; Held 1978; Held and Larichev 1996; Held 1999;
Lapeyre and Held 2003; Zurita-Gotor 2007). Baroclinic
turbulence is additionally characterized by power-law
behavior of fluxes as a function of variables controlling
stability such as the temperature gradient (Held and
Larichev 1996; Barry et al. 2002; Zurita-Gotor 2007)
and a theory for baroclinic turbulence should account
also for these power-law relations.

A model commonly employed for theoretical studies
of baroclinic turbulence is the two-layer model in a
doubly periodic domain (Haidvogel and Held 1980;
Panetta 1993). This model maintains a constant mean
shear. Consequently, the Phillips (1954) two-layer
model stability criterion, if it is calculated using the
mean shear, cannot be changed by fluxes in this model.
However, it does not follow that baroclinic adjustment
does not occur. In the two-layer model, adjustment to
marginal stability can result from a combination of dis-
sipation, quantization by boundaries, and meridional
confinement associated with the spontaneous emer-
gence of alternating jets.

We show how turbulent atmospheric jets are ad-
justed to stable but highly amplifying mean states.
Analogous behavior often arises when a feedback con-
troller is imposed to stabilize multidimensional me-
chanical or electronic systems and attempts to suppress
the nonnormal growth in such systems gave rise to ro-
bust control theory (Zhou and Doyle 1998). It is com-
monly held that stable but fragile equilibria arise pri-
marily as a consequence of a design process (Bobba et
al. 2002). We find that the state of high nonnormality
together with marginal stability is inherent to strongly
turbulent eddy-driven baroclinic jets because turbu-
lence maintains flow stability with a naturally occurring
feedback controller. A fundamental advantage of our
theory is that it clearly reveals this feedback stabiliza-
tion process and how it places the system in a stable but
highly amplifying state.

Excitation of the turbulent eddies can be traced ei-
ther to exogenous processes such as convection, as in
the case of the Jovian jets, or to endogenous sources
such as wave-wave interaction, as in the case of the
earth’s polar-front jet. These processes have short tem-
poral and spatial correlation scales compared with the
jet temporal and spatial scales, and their effect in forc-
ing the synoptic-scale wave field can be approximated
as stochastic (Sardeshmukh and Sura 2007). The central
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component of a theory for the dynamics of jets in baro-
clinic turbulence—namely, the method to obtain the
structure of the turbulence and the associated fluxes
given the jet—is provided by stochastic turbulence
modeling (Farrell and Ioannou 1993c, 1994, 1995, 1996;
DelSole and Farrell 1995, 1996; DelSole 1996; Newman
et al. 1997; Whitaker and Sardeshmukh 1998; Zhang
and Held 1999; DelSole 2004b). Once these fluxes are
known, the equilibrium states of balance among the
large-scale thermal forcing, the dissipation, and the en-
semble mean turbulent flux divergences can be deter-
mined; this is the method of SSST." (Farrell and Ioan-
nou 2003, 2007). The interaction between the large-
scale jet structure and the field of eddy turbulence is
nonlinear and results in a nonlinear trajectory for the
jet and the ensemble mean eddy field associated with it,
which often tends to an equilibrium and sometimes to a
limit cycle, but under extraordinary conditions is chaotic.

There are three length scales in the baroclinic dy-
namics of the two-layer model on a B plane: the scale
imposed by the boundaries; the Rossby radius Ly =
NHI/f, (in which f; is the Coriolis parameter, N the
buoyancy frequency, and H the depth of the fluid); and
the B scale, Ly = \/U/B, where U is a characteristic
velocity and B is the meridional gradient of the Coriolis
parameter. This U may be taken as the characteristic
velocity of the jet or of the eddies; when the rms eddy
velocity is taken for U, this length is proportional to the
Rhines radius. When U is the jet velocity, it is the length
scale for which planetary and shear vorticity gradients
are comparable.

We find in the presence of turbulence, and even in
the absence of an imposed mean thermal forcing, that
there is a linear instability of the coupled turbulence—
mean flow system giving rise to zonal jets. This jet-
forming instability is an example of a new class of in-
stability in fluid dynamics; it is an emergent instability
that arises from the interaction between the mean flow
and the turbulence. The modal jet perturbation growth
rate is exponential because the jet modes organize the
turbulence field to produce fluxes proportional in mag-
nitude and consistent in structure with the jet mode.

It is instructive to consider this jet forming instability
as a function of the strength of the stochastic excitation,
the mean thermal forcing, the static stability, and dis-
sipation.

With sufficiently energetic homogeneous stochastic

! The term “stochastic structural stability theory” was chosen to
connote analysis of both the equilibria emergent from the coop-
erative interaction between turbulence and mean flows and the
structural stability of these equilibria with parameter change.
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excitation and no mean thermal forcing, the zonal jets
that emerge spontaneously are nearly barotropic. If the
stochastic excitation is not too strong, these jets equili-
brate nonlinearly with a nearly sinusoidal barotropic
structure. However, as the stochastic excitation is in-
creased the nonlinearly balanced jets increase in ampli-
tude and encroach on eddy stability boundaries. This
results in modification of the jet structure as SSST
fixed-point equilibria enforce stability of the jet to eddy
perturbations because eddy fluxes diverge at stability
boundaries.? To avoid eddy instability, the jets become
increasingly east-west asymmetric, with the westward
jet equilibrating primarily barotropically at the Ray-
leigh—Kuo scale, which results in emergence of merid-
ional jet spacing with the 8 scale L.

When mean thermal forcing is imposed, baroclinic
equilibria are found. Under strong stochastic excitation,
the eastward part of these jet equilibria become sub-
stantially baroclinic while at the same time becoming
sufficiently narrow meridionally so that perturbation
eddy stability is maintained by meridional confinement
(Ioannou and Lindzen 1986; James 1987; Roe and
Lindzen 1996). The westward parts of these jets equili-
brate near the Rayleigh—-Kuo boundary with more
nearly barotropic structure.

Although jet equilibria with marginal stability have
been recognized as characteristic of baroclinic turbu-
lence and meridional confinement has been implicated
in their stabilization, our theory is far more specific
than a diagnostic in that it provides a method for pre-
dicting the precise structure of the equilibria. These
equilibria are preferred states in the sense of being pre-
cisely known marginally stable structures maintained
by the turbulence. However, their structure varies ei-
ther continuously or discontinuously as a function of
parameters influencing stability, such as the static sta-
bility or mean thermal forcing, so that no single pre-
ferred structure can be said to characterize the adjusted
state.

If the jets are quantized by meridional boundaries, as
would be the case for a planet of finite radius, a dis-
continuous reorganization of structure is induced at
threshold parameter values for which stable equilib-

21t is logically necessary that exponential eddy instabilities be
equilibrated in some manner. The mechanism of equilibration in
our model, and we believe the primary mechanism in atmospheric
jets generally, is through modification of the mean jet structure by
the eddy fluxes. In our quasigeostrophic model this modification
is necessarily confined to changes in jet velocity and attendant
horizontal temperature gradients, but more generally modifica-
tion of static stability must be involved in some manner that re-
mains to be investigated using a nongeostrophic model.
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rium states with the extant marginally stable wavenum-
ber cease to exist. This provides an instructive example
of the general phenomenon of eddy-driven jets appear-
ing and disappearing discontinuously as a function of
slow parameter change (Lee 1997; Farrell and Ioannou
2003; Robinson 2006). Understanding the physical
mechanism determining the structure the eddy-driven
jet is a fundamental geophysical fluid dynamics prob-
lem with important climate implications because dis-
continuous reorganization of eddy-driven jets can alter
both climate statistics, by altering storm tracks and the
source regions associated with isotopic signatures (Al-
ley et al. 1993; Fuhrer et al. 1999; Wunsch 2003), and
the climate itself, by changing the latitude of surface
stresses and associated oceanic upwelling (Toggweiler
et al. 2006). This mechanism for abrupt change of cli-
mate and climate statistics arising from storm-track re-
organization joins the short list of reorganization of
thermohaline ocean circulations (Weaver et al. 1991),
ice sheet instability (MacAyeal 1993), and sea ice
switches (Gildor and Tziperman 2003; Li et al. 2005) as
possible mechanisms for explaining the observed
record of abrupt climate change.

In this work we study the structure and dynamics of
jets in baroclinic turbulence by joining the equation
governing ensemble mean eddy statistics with the equa-
tion for the zonal mean to form a coupled wave-mean
flow evolution system. This nonlinear coupled equation
system is the basic tool of SSST analysis and we have
applied it previously to the study of barotropic jets
(Farrell and Toannou 2003, 2007).

2. Dynamics of the zonal average velocity in
turbulent flows

a. Formulation

A theory for jet dynamics in turbulent flow was de-
veloped in Farrell and Toannou (2003) and applied to
the problem of the formation of jets in barotropic tur-
bulence in Farrell and Ioannou (2007). Here we pro-
vide a brief review of the salient ideas of this theory in
the context of baroclinic jets, which is the focus of this
work.

Consider a turbulent rotating two-layer baroclinic
fluid on a B plane, and let U, ,(y, t) be the latitudinally
(y) and time (¢) dependent mean velocities of the upper
(denoted as 1) and lower (denoted as 2) layers, the
mean being taken in the zonal (x) direction. The baro-
tropic (denoted +) and baroclinic (denoted —) mean
flows, defined as

Uu -0

U+ U _
=—— and U =—F7—, 1)

"
v 2 2
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obey the following evolution equations (DelSole and
Farrell 1996; Vallis 2006):

?
U = —f(U+ —U)+F" and ©)
?
(D> - 20U, = §ZDZ(U+ —U) = 2reN(Ux — U)

+ DF, 3)
in which the term proportional to 7, represents linear
damping of the mean flow at the lower layer to a state
of rest (we assume no Rayleigh damping in the upper
layer); the term proportional to rg represents linear
relaxation of the baroclinic flow to the imposed baro-
clinic flow Ug; and the terms F* and F~ (explicit forms
given later) represent the forcing of the zonal flow by
the eddies. The nondimensional Rossby radius of de-
formation is Ly = 1/A = NH/fL, where L is the hori-
zontal scale, H the height of each layer, N the static
stability, and f the Coriolis parameters. The operator
D? = 9%/9y>.

The equations for the mean flow are written in the
compact form

dU_GU H 4

in which the U is the full mean state velocity vector

o-( ) 5
- U7 i ()

G is the linear dissipation operator

Gll G12>
o (6 %) 6
G, (©)

G22
with components

Lp)
G, =— 55 (73)
?2
G = 57 (7b)
7
G, = (D> — 227! (52 Dz), and (7c)

?
Gy, = (D* - 2)\2)1< ~5 D+ 2rR)\2>; (7d)

and the mean flow forcing H is composed of the eddy
forcing and relaxation toward the radiative equilibrium
thermal wind Ug; that is,

F+
H= . 8)
[(D2 -2 ND*F - 2rRA2U,;)]
The eddy forcing of the mean flow is expressed in terms

of the barotropic and baroclinic eddy streamfunction
(DelSole and Farrell 1996; Vallis 2006) as
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F" =y, + ¢ ¢, and (9a)
F™ =i, iy, = 2000y (9b)
The overbar denotes a zonal average and the perturba-
tion velocities are related to the streamfunctions " as

(10)

The perturbation streamfunctions are expanded in a
Fourier sum of zonal harmonics:

(e, y, 1) = 2 U (v, He™™.
k

+

u==—y; and v =y,

(11)

The zonal average ab of the product of two sinusoidally
varying fields de™* and be™ is Re(db*)8,,/2 (* denotes
complex conjugate). Using this property, the eddy forc-
ings [(9a), (9b)] are expressed in terms of the eddy
streamfunction Fourier amplitudes as

k
F*= —; 5 M DX + D2 %) and  (12a)

k
F~ = = 205 Im( DX + i DU = 20 ).
k

(12b)

Each Fourier component of the perturbation stream-
function evolves according to the stochastically excited
linear equation

d wi) (w:) <§(r)*>
— = A (U) +P . (13)
dt (wk N “\ew

In (13), the second term on the rhs represents stochastic
excitation and in the first term the autonomous linear
operator of the perturbation dynamics is

AgUY) ALU)
AdO= | (14)
A (UT) AU
in which the individual linear operators are
AL (UY =A[-ikU"A — ik(B — D*U")] —r"
= Tetns (15a)
A7 (U ) =AY (—ikU A+ ikD*U™) — r, (15b)

A (UY) = (A —20) [—ikU (A + 2)%) + ikD*U~
—r Al
A (U7) = (A = 200 [—ikU* (A — 2)%)

and (15¢)

+(B—D*U") —r*A+ 2rgh\] — regps
(15d)

where A = D? — k? is the Laplacian and A™! is the
inverse of the Laplacian in which the appropriate lat-
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eral boundary conditions have been incorporated. In
writing (13) we have included the linear operator pa-
rameterization of the nonlinear terms in the complete
perturbation equation as stochastic excitation and
added dissipation in the form of linear damping of the
streamfunction at rate r g (Farrell and IToannou 1993b,
1996; DelSole and Farrell 1996; Newman et al. 1997,
DelSole 2004b). The coefficients r* are the linear
damping rates of the barotropic and baroclinic stream-
function, respectively.
The stochastic excitation is given by

b _ [Al 0 ][w*w 0 ]
oo a-2]l 0 wwl

(16)

The stochastic excitation of the potential vorticity rep-
resented by (16) is A correlated in time and spatially
correlated by W™(y). The scalar coefficient ,, is chosen
so that each perturbation wavenumber is forced with
equal energy.

The continuous operators are discretized and the dy-
namical operator is approximated by a finite dimen-
sional matrix. The state ¢~ (k) is represented by a col-
umn vector with entries for the complex value of the
streamfunction at collocation points. In this approxima-
tion, W represents the spatial (y) correlation in the
stochastic excitation. Care must be taken that the struc-
ture of excitation matrix W does not bias the response.
We select W matrices producing Gaussian autocorrela-
tion function about the level of excitation y; propor-
tional to exp[—(y — y;)*/8%] so that & controls the cor-
relation distance in y. This forcing matrix is the same
for all zonal wavenumbers.

If the layers are excited equally, the stochastic exci-
tation of the time dependence of the barotropic & (¢)
and baroclinic & (f) components is equal and statisti-
cally independent so that

(E" 0Ty =0,

where the angled brackets indicate the ensemble aver-
age (i.e., an average over realizations of the forcing).
We choose each of the excitations to be delta correlated
with zero mean and unit variance; thus,

(E"@)y=(£ @)=0, and
(EXDET(5)) = (€ (OE T(9)) = 18(¢ — 9),

where | is the identity matrix. If only the upper layer is
forced, then the barotropic and baroclinic forcing are
taken equal to £ (¢).

The system consisting of (4) and (13) describes the
dynamics of a single realization of a stochastically ex-

(17)

(18)
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cited wave field interacting with the jet. This system
results in strong fluctuations in jet structure. However,
there are usually many independently excited waves
simultaneously interacting with the jet, so the fluctua-
tions in jet structure are suppressed by the ensemble
averaging of these independently excited wave fields.
With this assumption of ensemble average wave forc-
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C=| .. |
(Co)' Cr

with € = (Uit "), € = (Wi ), and € = (W ),
obeys the deterministic equation

(19)

ing, the time evolution of the ensemble average covari- dC, + .
: o — = + +
ance matrix of the perturbation field @~ AdUC+ CAU) +Qp with  (20)
a JAaTtwrw AT 0 on
= oyl . R 21
ok 0 (A — 2027 'W- (WA — 2221

the spatial covariance matrix for equal stochastic exci-
tation of both layers (in the case of excitation limited to
the upper layer, Q, is modified appropriately). For our
purposes, Q. includes all the relevant characteristics of
the stochastic excitation; the meridional distribution of
the forcing is given by the diagonal elements of this
matrix and the autocorrelation function by the rows.

The ensemble mean baroclinic and barotropic eddy
forcings [(12a), (12b)] are expressed in terms of the
covariances as

(22a)

k N
() = 2, = 5 diag[Im(C{ + COD™)

k © et .
(F7) =2 — 5 diagf Im[(C;" + C;")D*" — 2X°C; ),
k

(22b)

and these ensemble means of zonal average forcings are
introduced in place of the single realization of zonal
average forcing in (9a) and (9b).

In this limit, the evolution equation for the covari-
ance [(20)], the equation for the ensemble mean eddy
forcing [(22a), (22b)] and the equation for the barotro-
pic and baroclinic mean zonal flow [(4)] define a closed
autonomous nonlinear system for the evolution of the
mean flow under the influence of its consistent field of
turbulent eddies. This system is energetically consistent
and globally stable. For typical earth values of mean
baroclinic forcing, there is a small energy input by the
stochastic forcing, which can be accounted for in the
energy balance by a slight increase in dissipation,
whereas the dominant balance is between energy ex-
tracted from the mean by baroclinic processes and en-
ergy lost to frictional dissipation. Typically the equilib-
rium solutions of this system are steady mean flows
maintained with constant structure by eddy forcing, al-
though limit cycle and chaotic trajectories are found for
some parameter values (Farrell and Toannou 2003).

This ideal limit in which the ensemble average eddy
forcing is taken is of particular interest because in this
limit, although the effect of the ensemble average tur-
bulent fluxes is retained in the solution, the fluctuations
associated with the turbulent eddies are suppressed by
the averaging and the coupled jet-turbulence dynamics
becomes deterministic. In this limit the mean zonal flow
equilibria emerge with great clarity. This ideal limit is
approached when the autocorrelation scale of the per-
turbation field / is much smaller than the zonal extent L
of the domain. In that case, taking the zonal average is
equivalent to averaging N = O(L/) statistically inde-
pendent realizations of the forcing, which converges to
the ensemble average as N — o« (Farrell and Ioannou
2003). Examples of physical systems in which this limit
applies include the Jovian upper atmosphere and the
solar convection zone, both forced by relatively small-
scale convection. An experiment in which a jet emerged
from rather coarse-grained turbulent convection was
reported by Krishnamurti and Howard (1981). When
this large ensemble limit is not approached sufficiently
closely, the system exhibits stochastic fluctuations
about the ideal equilibrium. A physical system that ex-
hibits such behavior is the earth’s polar jet, in which the
number of independent cyclones around a latitude
circle is at most order 10 so that, while the underlying
order is revealed by the ideal dynamics, the observed
zonal jet exhibits stochastic fluctuations about the ideal
jet (Farrell and Ioannou 2003).

A limitation of our analysis is the assumption that the
stochastic excitation is independent of the mean and
eddy fields. Although for the Jovian atmosphere this is
probably a good assumption, because the stochastic ex-
citation is thought to arise from internally generated
convection, it is a crude assumption for the earth’s polar
jet, in which the excitation is influenced by the jet struc-
ture and eddy amplitude itself. Obtaining the stochastic
excitation consistent with the turbulence supported by
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ajet is equivalent to obtaining a closure of the turbulent
system, and progress on this problem has been made
(DelSole and Farrell 1996; DelSole 1999). Although an
attractive avenue for future study, such a closure is not
necessary for understanding the basic dynamics under-
lying emergence of zonal jets in turbulence; in the in-
terest both of simplicity and of clarity of exposition, we
for the present retain a spatially uniform stochastic ex-
citation.

b. Scaling of the equations, boundary conditions,
and parameters

The equations are nondimensionalized, using the
earth day for the time scale, t; = 1 day, and L = 10° m
for the length scale so that the velocity scale is L/t; =
11.6 m s~ ', The calculations are performed in a doubly
periodic domain with width L, = 20 units in the me-
ridional direction. This doubly periodic model was in-
troduced by Haidvogel and Held (1980) and used in the
work of Panetta (1993) and Held and Larichev (1996).
The size of the domain has been selected to be wide
enough to accommodate a number of jets; however,
quantization effects do become important, as will be
shown below. The calculations use typically 64-point
discretization in the meridional direction and 14 waves
in the zonal direction, consisting of global zonal wave-
numbers 1 to 14 in a periodic zonal domain of nondi-
mensional length L, = 40.

The strength of the stochastic excitation Q, is mea-
sured by the forcing density ¥ = trace(MQ,)/n, where M
is the energy metric

1A 0
M= _E[o (A —2)\2)]’

defined so that (Y, ) )M(y;, ;)" is the total energy
per unit mass of state (Y5, {5 ) at each zonal wavenum-
ber k, and » is the number of discretization points in the
meridional direction. For convenience, the stochastic
excitation will at times be expressed in dimensional
units (mW kg™ 1).

Unless otherwise specified, friction parameters for
the perturbation dynamics are rgz = 1/15, r, = 1/5, and
rogg = 1/20. For the mean dynamics, 7, = 1/5 and vis-
cosity v = (8y)?, where 8y is the grid size. The Froude
number in most of the calculations is A*> = 1/L% = 1.

For simplicity and to facilitate interpretation, we im-
pose meridionally homogeneous stochastic excitation
and meridionally constant radiative equilibrium forcing
with shear:

(23)

RAT 1,

Uil =2Ue =750

(24)
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where AT is the temperature difference across 10* km,
fy, = 10~* s7! is the Coriolis parameter, and R = 287
J (kg K) ! is the gas constant. This constant shear flow
becomes baroclinically unstable when AT > AT, which
with the above dissipation parameters is AT, = 28.3 K
(10* km)~'. An important parameter is the criticality
defined as

&€= 4(U, — Up)/(BA?). (25)

Supercriticality (i.e., £ > 1) implies exponential insta-
bility of the inviscid two-layer model for meridionally
constant flows according to the Phillips (1954) criterion.
The criticality is not a criterion for instability of realistic
flows, which are generally both meridionally varying
and dissipative. Because of the presence of dissipation
in the example above, the critical temperature gradient
for instability AT, = 28.3 K (10* km) ™! corresponds to
criticality & = 2.03.

3. Stability analysis of the ensemble mean coupled
system

Recall that in the ensemble mean limit the eddy/
mean jet system is governed by the coupled equations

e A, (U, +C,A,(U)"+Q, and (26a)
v _ GU+H 26b
i U+H. (26b)

The equilibria of this set of equations consist of an
equilibrium velocity U” and an associated equilibrium
perturbation covariance C* satisfying

A (UHCE + CLALUN) = —Qq,, (27a)

GU +H=0. (27b)

If stable, these equilibria may be found by forward
integration of the coupled Egs. (26a) and (26b); other-
wise, a root finder must be employed.

Two distinct concepts of jet stability arise in connec-
tion with these equilibria. The first is the familiar eddy
perturbation stability determined by analysis of the op-
erator A% An equilibrium mean flow U is by necessity
stable in this sense because otherwise the eddy variance
would diverge. The converse, however, is not true; the
stability of A does not imply the stability of the equi-
librium (UF, C*), and there is a new stability concept
arising from the interaction of the jet with its consistent
eddy flux divergences. The stability of the coupled sys-
tem (26a) and (26b) is determined by analysis of the
operator that governs the perturbation dynamics of its
equilibria, as discussed in Farrell and Ioannou (2003,
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FIG. 1. The critical value of stochastic excitation % (m W kg™ ') required to structurally
destabilize the baroclinic jet in thermal wind balance with mean thermal forcing AT [K (10*
km)~!]. The different curves correspond to the critical stochastic excitation %, required for the
emergence of a zonal jet with meridional wavenumber n = 1, ..., 4. The eddy field comprises
global zonal wavenumbers 1-14. Relevant physical parameters: g = 1.6 X 107" m™! s,
Froude number A> = 1, eddy damping rates r, = 1/5 day ! and r, = 1/15 day ™!, damping rate
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of the mean 7, = 1/5 day~!, and mean cooling 7,=1/15 day'. With these parameters insta-
bility of the baroclinic jet occurs at AT, = 28.3 K (10* km) ™.

2007). This stability of the ensemble mean eddy-mean
jet equilibrium state depends on the strength of the
stochastic excitation Q, the thermal forcing measured
by the temperature difference AT, the Froude number
A2, and the dissipation. We primarily examine the sta-
bility of equilibrium states as a function of the stochas-
tic excitation ¥ = trace(MQ)/n and AT.

It can be shown by integration of (27b) in y and
imposition of boundary conditions on the eddy motions
that the meridional mean of an equilibrium U” has the

property
Ly Ly
f U dy = f Ug dy, (28)

0 0

which implies that equilibration cannot result from
change in the mean meridional shear or the mean tem-
perature gradient. This is also true of the simulations of
Panetta (1993) and Held and Larichev (1996).

For AT < AT,, the radiative equilibrium flow Uy is a
fixed point of the coupled system (26a) and (26b) for
any excitation ¥ because the ensemble mean eddy
fluxes are meridionally constant. For AT > AT, the

radiative equilibrium flow Uy is an unstable fixed point
of the coupled system (26a) and (26b). We wish to ex-
amine the coupled eddy—mean jet stability of these ra-
diative equilibrium fixed points. When AT < AT, the
radiative equilibrium Uy becomes unstable only when
the stochastic excitation # exceeds a critical value #..
When AT > AT, the radiative equilibrium Uy is un-
stable for all %

The critical value of stochastic forcing . (mW kg™ 1)
is plotted as a function of AT in Fig. 1. Because of the
meridional homogeneity of the perturbation equations,
the perturbation eigenmodes are harmonic functions.
Unstable jet perturbations of harmonic form in the me-
ridional direction emerge when ¥ exceeds 7. Figure 1
shows the critical forcings required to destabilize zonal
flows with meridional wavenumbers n =1, ..., 4.

When the radiative equilibrium is unstable to the for-
mations of jets, the growing zonal jets ultimately equili-
brate as finite-amplitude extensions of the unstable
eigenmodes of the coupled SSST wave-mean jet sys-
tem. These equilibria may be stable or unstable fixed
points. When unstable, the jets may go to a new stable
equilibrium or settle in a limit cycle having periodic
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F1G. 2. (a), (b) Meridional structure of the equilibrium upper-layer (continuous line) and lower-layer (dashed
line) mean flows maintained by stochastically modeled turbulence in a doubly periodic domain with no mean
thermal forcing. Equilibria for two levels of stochastic excitation Fare shown. The stochastic excitation is (a) F =
5.83 mW kg~ ' and (b) # = 58.3 mW kg ' per zonal wavenumber. (c), (d) The corresponding mean potential
vorticity gradients of the upper- and lower-layer flows. The nonnormality of the equilibrium flows has increased
from 53.9 for the flows in (a) to 155 for the flows in (b). The eddy field comprises global zonal wavenumbers 1-14.
The eddy damping parameters are r, = 1/5 day! and rg = 1/15 day™'; the damping rate of the mean is 7,=1/5

day ' and the mean cooling is Fx=1/15 day '

behavior; also, chaotic trajectories are possible (Farrell
and Toannou 2003, 2007). However, over a significant
parameter range stable fixed points are found, and
these are the subject of our study in this paper.

4. Examples of jet equilibria

a. Jet equilibria with no mean thermal forcing

The equilibria found in the absence of mean thermal
forcing are, for a wide choice of realistic parameter
values, nearly barotropic and similar to those discussed
in Farrell and Ioannou (2007), although with appropri-
ate parameter choice and/or vertical asymmetry of sto-
chastic excitation substantial baroclinicity can be main-
tained.

For sufficiently strong stochastic excitation, multiple
equilibria differing in jet meridional wavenumber exist
at AT = 0 as indicated in Fig. 1.

Examples of meridional wavenumber-2 jet equilibria
are shown in Fig. 2 for two values of stochastic excita-
tion. In the first case, the stochastic excitation is F= 5.8
mW kg~ ! per wavenumber (Fig. 2a); in the second, the
stochastic excitation is ¥ = 55.8 mW kg~ ' per wave-
number (Fig. 2b). The first case is stochastically excited
with sufficient energy input rate to clearly show depar-
ture from the nearly harmonic equilibrium form ob-
tained for slightly supercritical stochastic excitation.
The second state is excited at a rate that places the
equilibrium state close to the stability boundary just
before the bifurcation to meridional wavenumber-1
equilibria as a function of stochastic excitation, and
therefore the second equilibrium state departs maxi-
mally from the harmonic equilibrium state that results
for slightly supercritical stochastic excitation.

In these examples the eddy field comprises 14 zonal
wavenumbers. Although the lower layer is Ekman
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damped, the equilibria are nearly barotropic and equili-
brate close to the Rayleigh-Kuo stability boundary
so their meridional spacing scales as Lg = \/ U/, and
there is pronounced asymmetry between the westward
and eastward jets (Farrell and Ioannou 2007). The
mean potential vorticity gradient is positive almost ev-
erywhere, as shown in Fig. 2. Laboratory experiments
using a stratified fluid in a rotating channel with a slop-
ing bottom verify the formation of such stable persis-
tent mean jets when there is no mean thermal forcing
(Read et al. 2004, 2007). Although stable, these equili-
brated flows are highly nonnormal, with nonnormality
increasing® from 53.9 to 155 as the stability boundary is
approached.

As an example of a nearly barotropic equilibrium, a
calculation was done for the Jovian 23°N jet for which
accurate velocity data is available (Sanchez-Lavega et
al. 2008). Comparison between this accurately observed
jet and the corresponding equilibrium obtained using
representative Jovian parameters is shown in Fig. 3.
Noteworthy are the nearly constant shears and cusplike
maximum of the eastward jet and the rounded profile
of the westward jet. The physics of these characteristic
features of barotropic equilibria in strong turbulence is
discussed in detail in Farrell and Ioannou (2007).

b. Baroclinic jet equilibria with barotropically
unstable upper-level jets

In the absence of mean thermal forcing the equilibria
are nearly barotropic. However, when the symmetry
between the layers is sufficiently disrupted, baroclinic
equilibria can be maintained with strong jets despite the
absence of any mean thermal forcing. We find that
strong jets satisfying Rayleigh-Kuo necessary condi-
tions for instability form spontaneously as equilibria in
the presence of sufficient stochastic excitation and dis-
sipation. As an example, consider the two-layer model
with the following parameters: 3 equal to one-fifth of
the terrestrial 8, symmetric eddy damping r, = r, = 1
day ™!, eddy cooling of r, = 1/15 day !, and dissipation
of the mean 7, = 7, = 1/250 day ! with stochastic ex-
citation of only the upper layer at level 7= 0.972 mW
kg~!'. (Throughout this paper, day is abbreviated d.)
Equilibrium jet profiles together with the upper and
lower layer mean potential vorticity gradients

3 The measure of nonnormality we use is the ratio of the vari-
ance maintained by stochastic excitation of this system to the
variance maintained in the equivalent normal system that has the
same eigenvalues but orthogonal eigenvectors when both are
forced with identical stochastic excitation Q = | (Ioannou 1995;
Farrell and Ioannou 1996).
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FiG. 3. (a) Simulation of the 23°N jet on Jupiter (solid) com-
pared with observations (circles) adapted from Sdnchez-Lavega et
al. (2008). The equilibrium jet structure (solid) is barotropic and is
barotropically stable. (b) The associated mean vorticity gradient
normalized by beta. Parameters are eddy damping ry, = Fyown =
5.6 X s™!; mean damping 2.7 X 107%s™!, as suggested by Conrath
et al. (1990) and used by Yamazaki et al. (2004); stochastic forcing
0.34 W m ™2 per zonal wavenumber in a total Jovian layer depth of
5 bar; and B value corresponding to Jovian planetographic lati-
tude 23°N. The domain is doubly periodic with meridional width
equivalent to 28° Jovian latitude. The calculation was performed
using the 14 zonal wavenumbers 2amn/L,, withn = 1,..., 14.

Qly = B - U{ + )\2(U1 - UZ)’
Q,, =B~ Us = N(U, — Uy), (29)

are shown in Fig. 4. Also shown in the same figure are
the barotropic vorticity gradients B — U7 (thick and
thin dashed lines). This stable equilibrium jet is baro-
clinic, with the upper-level flow violating Rayleigh—
Kuo stability condition by 108.

c. Jet equilibria with mean thermal forcing

Consider a stochastically excited baroclinic flow with
mean thermal forcing. As the mean thermal forcing is
increased, jets equilibrate that are marginally stable
and highly nonnormal. Examples of such baroclinically
adjusted jets are shown in Fig. 5a for two different lev-
els of stochastic excitation, = 0.48 mW kg ' and 7=
1.34 mW kg ', with mean thermal forcing AT = 30
K(10*%km) ! [recall that the stability boundary is AT, =
28.3K (10*km)~']; this figure shows meridional wave-
number-3 jet equilibria. The second equilibrium in Fig.
5b is close to the structural stability boundary just be-
fore the bifurcation to meridional wavenumber-2 equi-
libria as a function of forcing. Note that both equilibria
have a mean supercriticality parameter & = 8Ug/(BA\?) =
2.15. The equilibrated flows in Fig. 5 and most of the
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F1G. 4. (top) Meridional structure of the equilibrium upper-layer (thick line) and lower-layer
(thin line) mean flows maintained by stochastically modeled turbulence in a doubly periodic
domain with no mean thermal forcing. The equilibrated flows violate the Rayleigh-Kuo
barotropic stability condition but the flows are stable. The layers are equally damped at rate
r, =1, = 1 day™ !, the eddy cooling rate is r, = 1/15 day~ !, and the dissipation of the mean
occurs at rate 7, = 7, = 1/250 day . Stochastic excitation of only the upper layer at level ¥ =
0.972 mW kg~ ! is used. The other parameters are A> = 1 and 8 = 1/5 of the terrestrial value
in order to simulate Jovian conditions. (bottom) The corresponding mean potential vorticity
gradients measured in units of B8 of the upper-layer (solid thick line) and lower-layer (dashed
thick line) flows. Also shown are the corresponding barotropic potential vorticity gradients

(solid and dashed lines, respectively).

examples shown in this paper have mean supercritical-
ity £ > 1 and yet are manifestly stable.

The equilibrated eastward jets can be highly baro-
clinic because baroclinicity of the eastward jet increases
the already positive potential vorticity gradient—unlike
the case of the westward jets, for which the baroclinic
shear is suppressed at equilibrium to preserve stability,
as can be seen in Figs. 5c,d. The presence of dissipation
allows the potential vorticity gradient of the equili-
brated jets to change sign, substantially violating the
Charney-Stern stability condition, while retaining sta-
bility. These baroclinically adjusted states are primarily
equilibrated by meridional confinement interacting
with dissipation (Joannou and Lindzen 1986; James
1987; Roe and Lindzen 1996).

d. Mechanism controlling turbulent heat flux

Regulation of the mean heat flux in a doubly periodic
two-layer baroclinic turbulence model has been the

subject of much study (Haidvogel and Held 1980;
Panetta and Held 1988; Held and Larichev 1996; Pavan
and Held 1996; Lapeyre and Held 2003). We investigate
the role of emergent jets in this process by modeling a
turbulent supercritical flow in which equilibrated jets
have enforced stability.

To address the role of multiple jets (each of which
has been baroclinically adjusted to be near a stability
boundary) in regulating the heat flux across a wide
channel, we perform an experiment in which a super-
critical radiative equilibrium constant shear state is per-
turbed by a small random initial jet structure and al-
lowed to equilibrate with zero initial eddy covariance.
The temperature difference of the radiative equilibrium
is 35 K over a distance of 10* km, corresponding to a
supercriticality of § = 2.51. The equilibration occurs in
a characteristic progression in which the eddy field
grows rapidly to reach a high overshoot eddy variance
and heat flux, at which time the eddy field organizes jets
that grow and ultimately equilibrate the combined eddy
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FiG. 5. (a), (b) Meridional structure of the equilibrium upper-layer (continuous line) and lower-layer (dashed
line) mean flows maintained by stochastically modeled turbulence in a doubly periodic domain with mean thermal
forcing AT = 30 K (10* km) ', Equilibria for two levels of stochastic excitation Fare shown: (a) F= 0.48 mW kg~!
and (b) = 1.34 mW kg ! per zonal wavenumber. (c), (d) The corresponding mean potential vorticity gradients
of the upper- and lower-layer flows. Both equilibrium flows are supercritical with the same supercriticality pa-
rameter ¢ = 2.18 but are exponentially stable because of the meridional variation of the flows and the dissipation.
The nonnormality of the equilibrium flows has increased from (a) 26.7 to (b) 53. The eddy field comprises global
zonal wavenumbers 1-14. The eddy damping parameters are r, = 1/5 day !, rx = 1/15 day !, and r;; = 1/20 day ".

The damping rate of the mean is 7, = 1/5 day™'; the mean cooling rate is 7, = 1/15 day ..

and mean jet system at a lower equilibrium total eddy
energy. The time development of the flow and the as-
sociated fluxes are shown in Figs. 6 and 7. This progres-
sion is commonly observed when an eddy-mean jet sys-
tem is established or perturbed (Panetta and Held 1988;
Panetta 1993; Chen et al. 2007). To better understand
control of the heat flux by the jets, an experiment was
performed in which for the first 60 days the coefficient
of Newtonian cooling of the mean baroclinic flow was
set to 7 = 1/3 day ! before being switched to 7z = 1/15
day ! at day 60. By ¢ = 60 the flow has been stabilized
(Fig. 7c) and both the jets and the eddies have equili-
brated as indicated by the constant value of the maxi-
mum wind in layer 1 and the maximum shear shown in
Fig. 7a, the latitudinally averaged heat flux in Fig. 7b,
and the latitudinally averaged total eddy energy in Fig.
7d. Under strong mean thermal relaxation the jets are
suppressed, and as a result the eddy equilibrium kinetic

1

energy and the eddy heat flux decrease when the relax-
ation is decreased to 7z = 1/15 day ! at t = 60 day,
allowing the jet to increase in amplitude, which in-
creases jet stability. This behavior is analogous to the
midwinter suppression of eddy variance that is ob-
served in the Pacific storm track in winter (Nakamura
1992; Zhang and Held 1999), a phenomenon that has
also been simulated for conditions during the last gla-
cial maximum (Li and Battisti 2008). The common
thread in the two-layer model simulation and the ob-
servations is that the westerlies become sharper and
stronger while the eddy activity is reduced. The time
development of the fluxes and variances show that at
first both the mean flow and the eddy fluxes and vari-
ances overshoot their equilibrium values before jets de-
velop, which then suppress both the eddy heat flux and
the variance, demonstrating the crucial role of the jets
in controlling the mean equilibrium state. We conclude
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FIG. 6. Contours of the zonal mean velocity in the upper layer as a function of time and meridional distance. The
flow starts at t+ = 0 with a random perturbation about the radiative equilibrium uniform flow that maintains a
temperature difference of 35° K (10* km)~!. The eddy field comprises global zonal wavenumbers 1-14. The eddy
damping parameters are r, = 1/5 day ', rg = 1/15 day ', r.; = 1/20 day '. The damping rate of the mean is 7, =
1/5 day™'; the mean cooling rate is 7, = 1/3 day ! for the first 60 days and then changes to 7 = 1/15 day ! at
t = 60 days. The stochastic excitation is # = 0.48 mW kg~' per zonal wavenumber.

that regions containing a number of jets baroclinically
equilibrate each individual jet while the mean shear
remains supecritical and that this baroclinic equilibra-
tion of the individual jets then determines the equilib-
rium heat flux.

5. Scaling, baroclinic adjustment, and the role of
nonnormality

Equilibrium jets that form in strong turbulence are
adjusted to marginal stability. Although stable, these
highly sheared flows are also highly nonnormal, sup-
porting large transient perturbation amplification. One
consequence of this stability and nonnormality in the
earth’s midlatitude atmosphere is the association of cy-
clone formation with the chance occurrence in the tur-
bulence of optimal or near-optimal initial conditions
(Farrell 1982, 1989; Farrell and Ioannou 1993c; DelSole
2004a, 2007). These optimal perturbations are analo-

gous to the dangerous inputs that render feedback-
stabilized mechanical and electronic systems fragile
(Zhou and Doyle 1998), and it is excitation of these
amplifying perturbations by the nonlinear wave-wave
interactions, here parameterized by stochastic excita-
tion, that maintains the turbulent variance (Farrell and
Toannou 1993c,d; DelSole 2007).

In addition to explaining the stability, high nonnor-
mality, and the centrality of transient growth in jet dy-
namics, we argue that these equilibria provide an ex-
planation for the scaling laws of fluxes as a function of
parameters influencing jet stability found in baroclinic
turbulence simulations (Zhou and Stone 1993; Held
and Larichev 1996; Barry et al. 2002; Zurita-Gotor
2007).

To introduce this last idea, consider the linear dy-
namics of streamwise rolls in an unbounded shear flow
with rotation in the spanwise direction. This system is
governed by the Reynolds matrix, which provides a
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FiG. 7. (a) Nondimensional maximum upper-level velocity (solid) and maximum shear (dashed line) as a function
of time (unit velocity is 11 ms™'). (b) Mean heat flux as a function of time. (c) Maximum growth rate of the
instantaneous flow as a function of time (day~!). (d) Total eddy energy (solid) and ratio of eddy barotropic to eddy
baroclinic energy (dashed) as a function of time. The parameters are as in Fig. 6.

convenient example of a dynamical system in which
stability and nonnormality interact:

—v(? + m?)

[ —(a —2Q)
| 200207 + m?)

. 30
—v(lz—i-mz)] (30

In (30), Q) is a rotation rate, « the constant shear of the
mean flow, v the coefficient of viscosity, / the spanwise
wavenumber, and m the vertical wavenumber (see ap-
pendix). With Q = 0, this matrix models the dynamical
system of a streamwise roll perturbation in an un-
bounded constant shear boundary layer (Farrell and
Ioannou 1993a). In addition, with ) = 0 this dynamical
system is stable, with decay rate —v(/* + m?), but with
nonnormality increasing with «, so that it supports op-
timal transient growth increasing proportional to o
and occurring at time [v(/*> + m?)]”", implying that the
variance grows proportional to o for constant viscosity.
With the modification of including a spanwise oriented
rotation rate (), the decay of the least damped mode
also decreases as « increases so that when «, = 2Q) +
v3(1? + m?)*/(2Q1?), the matrix becomes unstable. The

rotation rate () destabilizes the Reynolds matrix by
coupling the streamwise and spanwise velocity com-
ponents. With this addition, the Reynolds matrix
provides a versatile model of the interplay between sta-
bility and nonnormality in the vicinity of a stability
boundary such as that to which the coupled eddy-mean
jet system generally adjusts jets. We now use this matrix
to understand how power-law behavior arises in
strongly turbulent equilibria such as the midlatitude jet.
When « is increased in the Reynolds system and the
dynamical matrix A is forced with constant-variance
white noise in each variable, the variance increases pro-
portional to . In contrast, the variance in the equiva-
lent normal system, in which the change in the eigen-
values is retained but the eigenvectors are assumed or-
thogonal, exhibits no power-law behavior but only the
familiar resonance-induced (e — «,)~! divergence in
the immediate neighborhood of the stability boundary
as shown in Fig. 8. The momentum flux also increases
proportional to «, deviating from this power only in the
immediate neighborhood of the critical shear.
Power-law behavior is similarly generic in strongly
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Fi1G. 8. For the Reynolds example system: the ensemble mean energy (E) as a function of the
shear « for rotation rate Q0 = 10>, v = 0.1 and perturbation wavenumbers / = m = 1. The
critical shear at which the matrix becomes unstable is . = 4000. The variance increases as o,
deviating from this power law behavior only for shears very close to «,. The dashed-dotted
curve shows the momentum flux (uw), which can be seen to vary as a. The dashed curve shows
the variance (E,) maintained by the equivalent normal system with the same decay rate as A;
this variance is almost constant, increasing only for shears close to «.

turbulent jet equilibria, but the specific power depends
on the stability parameter involved, the variable, and
the growth mechanism. The origin of power-law scaling
behavior can be understood by considering the growth
of optimal perturbations, which dominate the mainte-
nance of variance in highly nonnormal systems. Figure
9 shows the increase of the mean baroclinic and baro-
tropic energy generation rates

1 [
P, = f — 22U (¢ ¥ Ydy and  (3la)
0

1 I
Kem = L (U ((pl ), + U, )

+ U (0, + vy )] dy. (31)
and of the quantity
VT = iyt + ety ), (32)

which is proportional to the heat flux, with criticality of
the equilibrated flow evaluated at the jet maxima & =
4(U, — U,)/(BN?). The energy generation rates increase
as £* in agreement with simulations showing power-law

scaling of the flux—gradient relationship, which has
been interpreted as higher-order thermal diffusion with
diffusivity increasing as the third power of the tempera-
ture gradient (Held and Larichev 1996; Zurita-Gotor
2007). The heat flux (at the center of the jet and its
mean value) increase with criticality as &. At high criti-
cality, departures from the power-law behavior shown
in Fig. 10 result if the meridional average shear is used
to calculate the criticality rather than the shear at the
jet axis. The reason is that the shear becomes meridi-
onally concentrated at high criticality. Figure 10 also
shows the heat flux as a function of the criticality taken
as the meridional average shear.

6. Quantization and abrupt jet reorganization

As stochastic excitation is increased or mean shear is
increased or static stability decreased, equilibrium jets
strengthen and adjust in structure to maintain a stable
equilibrium. However, if the jet number is quantized, as
is the case for the earth, eventually no stable jet equi-
librium is possible at the extant wavenumber and the
eddy—mean jet system undergoes a bifurcation in which
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Fi1G. 9. The mean eddy baroclinic energy generation rate —P,,, (solid line), the mean eddy
barotropic energy generation rate K, (dashed line), and the heat flux v7 at the center of the
jet (dashed-dotted line) as a function of the criticality parameter & = [4(U; — U,)/BL,]
evaluated at the jet maximum, together with the mean heat flux as a function of the mean
criticality = (circles). The eddy generation rates increase as ¢£* (indicated with the upper
dotted line) and the heat flux increases as € (indicated with the lower dotted line).The mean
heat flux also has the same power-law behavior. The heat flux does not scale with the mean
criticality = because as criticality increases it becomes increasingly localized near the jet
center. The stochastic excitation is = 0.24 mW kg~ ' per mode. The eddy field comprises
global zonal wavenumbers 1-14. The eddy damping parameters are r, = 1/5 day ™', rzx = 1/15
day ™!, and r.y = 1/20 day~'; the damping rate of the mean is 7, = 1/5 day~'; the mean cooling

rate is rp, = 1/15 day L.

a new equilibrium is established, typically at the next
lowest allowed wavenumber. This reorganization oc-
curs abruptly as a parameter-controlling jet amplitude
is changed. Similar behavior has been observed to oc-
cur in model systems (Lee 1997, 2005; Robinson 2006)
and has been inferred to occur in the climate record
(Fuhrer et al. 1999; Wunsch 2003; Alley et al. 1993). It
provides a mechanism for producing abrupt changes in
climate statistics by changing the source region of cli-
mate markers such as isotopes that are recorded in ice
cores (Wunsch 2003). More fundamentally, because the
axis of the polar jet is also an axis of concentration of
surface stress, the abrupt displacement of the polar jet
could change the climate itself by influencing the ven-
tilation rate of the intermediate depths in the ocean
(Toggweiler et al. 2006).

A parameter of the baroclinic system that may vary
with climate change is the static stability; in a warmer

world, troposphere static stability is expected to in-
crease as a result of decrease in the saturated adiabatic
lapse rate. This effect is generally accepted for the trop-
ics and subtropics (Held 1982; Sarachik 1985; Xu and
Emanuel 1989), and although the extent of the increase
in the extratropics is less well established, it is expected
to also apply in midlatitudes (Juckes 2000; Frierson
2006). The opposite tendency is expected to have char-
acterized ice age climates.

The growth rate and structure of baroclinic waves are
strongly influenced by static stability, with the growth
rate and the penetration depth scaling inversely with
the buoyancy frequency (Vallis 2006), so that it is of
interest to add static stability to stochastic excitation
and thermal gradient as parameters in our analysis.

Lower static stability implies a higher Froude num-
ber as A = (fL)*(NH)?. We find that static stability
serves as a bifurcation parameter analogous to the
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FI1G. 10. For the equilibrium jets, the maximum heat flux (7 ¢") as a function of Froude
number A% At \> = 1.2 there is an abrupt transition from a meridional wavenumber-3 jet to
a meridional wavenumber-2 jet. The thermal forcing is AT = 30 K (10* km)~! and the
stochastic excitation is F = 0.49 mW kg~ ! per mode. The eddy field comprises global zonal

wavenumbers 1-14. The eddy damping parameters are r, = 1/5 day ™!, rg = 1/15 day~

! and

Fer = 1/20 day™'; the damping rate of the mean is 7, = 1/5 day~'; the mean cooling rate is

7r = 1/15 day ..

mean shear in its influence on jet equilibria and that
small changes in static stability can induce abrupt reor-
ganization of jet equilibria as shown in Fig. 10. In this
example, bifurcation from a wavenumber-3 to a wave-
number-2 jet occurs as shown in Fig. 11. At A\* = 1.2,
there is an abrupt transition from a meridional wave-
number-3 jet to a meridional wavenumber-2 jet for
thermal forcing AT = 30 K (10* km) ™' and stochastic
excitation of 7= 0.49 mW kg~ ' per mode.

7. Discussion

a. Relation between SSST equilibria and the
barotropic governor

It was noticed by James (1987) that baroclinic jets in
GCM simulations tend to equilibrate by modifying the
barotropic shear and that substantially greater baro-
clinic shear can be maintained in these horizontally
sheared flows than would be compatible with stability
in a horizontally homogeneous flow. This phenomenon,
called the barotropic governor, was confirmed by sta-
bility analyses, and it implies that the baroclinic adjust-
ment process is in part independent of changes in ver-

tical shear (Lindzen 1993). The ensemble mean eddy—
mean jet equilibria provide insight into the mechanism
underlying the barotropic governor by showing that a
barotropic governor stabilized state is an attracting
equilibrium state of the ensemble mean eddy-jet
coupled system. This mechanism of stabilization by
confinement due to horizontal shear, which we have
seen in the two-layer model, was analyzed by Ioannou
and Lindzen (1986) and Roe and Lindzen (1996).

b. Relation between SSST equilibria and baroclinic
adjustment

Baroclinic adjustment was originally invoked to ex-
plain the observed near-baroclinic neutrality of the
midlatitude jets (Stone 1978; Stone and Miller 1980).
This adjustment to marginal stability has been con-
firmed in observed flows (Hall and Sardeshmukh 1998;
Sardeshmukh and Sura 2007) and in two-layer model
turbulence (Cehelsky and Tung 1991; DelSole and Far-
rell 1996; Roe and Lindzen 1996). Baroclinic adjust-
ment is important as a concept because of the insight it
offers into the nature of baroclinic turbulence. It is also
important as the theoretical underpinning for the con-
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FIG. 11. Structure of the equilibrium upper-layer (continuous line) and lower-layer (dashed
line) mean flows maintained in a doubly periodic domain with mean thermal forcing AT = 30
K (10* km)~! and stochastic excitation of = 0.49 mW kg~' per mode. (a) The meridional
wavenumber-2 jet that bifurcates from (b) the meridional wavenumber-3 jet. The parameters

are as in Fig. 11.

cept of compensation, which has implications for cli-
mate dynamics. The idea of baroclinic compensation is
that because baroclinic turbulence maintains a rela-
tively constant temperature gradient in mid and high
latitudes, the influence of any change in alternative
heat transport mechanisms such as ocean heat transport
is diminished: the baroclinic transport adjusts up or
down to compensate for any variation in these trans-
port mechanisms so their variation cannot substantially
change the climate. Baroclinic adjustment has been ex-
tensively studied and two main ideas have emerged: (i)
adjustment due to modal instabilities themselves pro-
ducing the heat flux when the stability boundary is
crossed, with these modal instabilities then adjusting
the system to a stability boundary (Stone 1978; Cehel-
sky and Tung 1991; Gutowski et al. 1989; Lindzen and
Farrell 1980; Lindzen 1993); and (ii) high-order turbu-
lent diffusion due to baroclinic eddies producing rapid
increase in heat transport coincident with but not caus-
ally related to unstable growth itself (Pavan and Held
1996; Held and Larichev 1996). We have seen that en-
semble mean eddy—mean jet equilibria approach a sta-
bility boundary when the turbulence is sufficiently
strong; thus, these equilibria provide a natural interpre-
tation for the phenomenon of baroclinic adjustment.
This interpretation unites the previous interpretations

in the following sense: the stability boundary is impor-
tant but not, as in the original baroclinic adjustment
interpretations, because growth occurs when this
boundary is exceeded; rather, it is because turbulent
fluxes produced by the nonnormal interaction among a
larger set of waves increase rapidly as the stability
boundary is approached, thereby producing equilib-
rium states of the coupled mean flow-turbulence sys-
tem that occur near stability boundaries when the tur-
bulence is strong. Turbulent transport is important be-
cause it is the spectrum of waves, not just the
instabilities, that produces the transport; however, the
equilibrium flux—gradient relationship cannot be under-
stood from homogeneous turbulence closure arguments
because the transport at equilibrium is essentially con-
trolled by the inhomogeneity of the equilibrium states
and particularly by the organization of the mean flow
into jets. Although a baroclinically adjusted state can
result from a wide variety of jet structure modifications
(including reduction in the temperature gradient and
meridional confinement), an advantage of the en-
semble eddy-mean jet equilibria calculation we have
done is that it provides a prediction of the particular
structure changes involved in producing the baroclini-
cally equilibrated state so that it is a predictive and not
simply a diagnostic theory for jet equilibria.
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8. Conclusions

Large-scale zonal jets emerge spontaneously from
baroclinic turbulence in the absence of jet-scale forcing;
examples include the Jovian banded winds and the
earth’s polar-front jet. The primary physical mechanism
maintaining these jets is turbulent eddy fluxes that have
been systematically organized by the jet to support the
jet structure. This phenomenon arises from an ubiqui-
tous instability of turbulent fluids to jet formation,
which occurs because turbulent eddies are always avail-
able to be organized by an appropriately configured
perturbation zonal jet to produce a flux proportional to
jet amplitude. Because this local upgradient flux is pro-
portional to jet amplitude, it results at first in an expo-
nential jet growth rate. This is a new mechanism for
destabilizing turbulent flows that is essentially emer-
gent from the interaction between the mean state and
its turbulence. In this work, we have provided a de-
tailed dynamical explanation for the systematic mutual
organization of the jet and the turbulent eddy fluxes
required to produce this instability. A key ingredient of
this theory is stochastic turbulence modeling, which
provides an analytic solution for the eddy covariance in
statistical equilibrium with the jet so that the feedback
between the jet and the turbulence can be analyzed in
detail. The primary analytical tool of SSST is the
coupled dynamical system consisting of the evolution
equation for the eddy fluxes obtained from a statistical
equilibrium stochastic turbulence model together with
the evolution equation for the zonal jet. This nonlinear
coupled set of equations exhibits robust and relatively
simple behavior. Using this model, we find that the
state of thermal wind balance with a constant tempera-
ture gradient on a doubly periodic beta plane is a sta-
tionary state of the coupled system for baroclinically
stable shear; however, this stationary state is exponen-
tially unstable to zonal jet perturbations if the turbu-
lence is sufficiently strong, and these zonal perturba-
tions evolve into jets that grow and adjust in structure
until reaching finite-amplitude equilibrium. If a baro-
clinically unstable mean shear is thermally forced, then
the equilibration is again a function of both the thermal
gradient and the stochastic excitation, and equilibria
are also found.

With weak excitation, the equilibrated jets are sinu-
soidal and nearly barotropic. There may be a number of
unstable meridional jet wavenumbers each leading to
an equilibrated state. When evolved from an unbiased
initial condition, the wavenumber of a weakly forced jet
is that of the most unstable eigenmode of the linearized
SSST system, and the amplitude at equilibrium results
from the balance between the weakly nonlinearly modi-
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fied upgradient eddy momentum flux and dissipation.
But as the stochastic excitation (or another stability-
related parameter such as the static stability) changes
so as to tend to destabilize the jet, its structure evolves
in a characteristic progression that contrives to main-
tain the jet equilibria near a modal eddy stability
boundary despite the increase in jet amplitude. The
eastward jet contracts and becomes increasingly baro-
clinic, whereas the westward jet expands, maintaining
less baroclinicity. Contraction of meridional scale in the
eastward jet augments the effective beta, as does an
arbitrary vertical shear, so the eastward jet shear may
become quite large. This mechanism for stabilizing the
baroclinic mode in eastward shear may be viewed as a
manifestation of the barotropic governor (Ioannou and
Lindzen 1986; James 1987; Lindzen 1993). No such sta-
bilization of the westward jet is possible, so the vertical
shear remains small in the westward jet to prevent
baroclinic eddy mode destabilization while the meridi-
onal scale expands to approach the Rayleigh—-Kuo con-
dition for barotropic modal stability. Consequently, the
equilibrium jet structure exhibits pronounced asymme-
try, with the eastward jet being sharper than the west-
ward jet; and of the three space scales in the jet struc-
ture problem, the beta scale Lg="/U,,,,/B emerges as
the primary meridional structure scale.

Dissipation and quantization of both meridional and
zonal wavenumbers often results in stable states that in
some degree satisfy either or both of the Charney—
Stern and Rayleigh-Kuo conditions. This is no contra-
diction because these conditions are necessary and not
sufficient conditions and in any case apply strictly only
to flows without dissipation. It is important to keep in
mind that the fact that an observed jet satisfies one or
both of these necessary conditions need not imply that
the jet is unstable.

Adjustment of jets to marginal stability can take
place in many ways, including reducing the vertical
shear, increasing the horizontal shear, and, in the primi-
tive equations, modifying the static stability. Because
all of these mechanisms are available, the mere knowl-
edge that the system is adjusted to a state of marginal
stability, although useful as a diagnostic, does not con-
stitute a predictive theory for jet structure. A particular
advantage of the SSST is that it transcends this ambi-
guity by the crucial additional requirement of equilib-
rium between the turbulent fluxes and the jet, which
identifies in the space of all marginal equilibria the con-
sistent and therefore the physically relevant one.

Adjustment to stable but highly amplifying states
with power-law behavior for flux—gradient relations is
characteristic of jet equilibria. Analogous behavior of-
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ten arises when a feedback controller is imposed to
stabilize a multidimensional unstable mechanical or
electronic system (Zhou and Doyle 1998). We have
shown that the state of high nonnormality together with
marginal stability is inherent because turbulence main-
tains flow stability with a naturally occurring feedback
controller.

In the presence of meridional quantization, such as
that enforced by finite planetary radius, an abrupt re-
organization of jet structure occurs as stochastic forcing
or another parameter controlling jet amplitude in-
creases. This reorganization occurs as the increasing
westward jet amplitude forces an incipient instability
for the particular dissipation and spatial confinement of
the model. At this point, the jet reorganizes to the next
lower allowed meridional wavenumber and the process
continues.

This abrupt reorganization of jet structure as a func-
tion of parameter change is an example of a fundamen-
tal process in jet dynamics with important climate con-
nections. Discontinuous reorganization of eddy-driven
jets can alter both climate statistics (Fuhrer et al. 1999;
Wunsch 2003) and the climate itself (Toggweiler et al.
2006). Abrupt change of climate and climate statistics is
common in the climate record (Alley et al. 1993), but
mechanisms for producing abrupt transitions have been
difficult to find. Storm-track reorganization is an alter-
native and perhaps complementary mechanism to reor-
ganization of thermohaline circulations (Weaver et al.
1991; Kaspi et al. 2004) and sea ice switches (Gildor and
Tziperman 2003) for explaining the record of abrupt
climate change.

We find that baroclinic adjustment in a wide channel
occurs by the formation of multiple narrow jets, each of
which while stable supports a substantial fraction of the
mean thermal gradient. Moreover, the heat flux across
the channel is controlled by these narrow jets.

This work provides a detailed physical theory for the
emergence of jet structure and structural transition in
baroclinic turbulence. The equilibrium state obtained
constitutes a theory for the general circulation of the
midlatitude atmosphere.

For reasons of theoretical clarity, we have chosen to
concentrate on the case of jets in meridionally homo-
geneous domains. However, the meridional structure of
the earth’s subtropical jet is forced and this jet would
exist even in the absence of eddies (Held and Hou
1980). Extension of this work to address jet structure
and transition when a large-scale meridional structure
is imposed will be the subject of future work.
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APPENDIX

The Reynolds Matrix

The perturbation equations governing the evolution
of the (x, y, z) perturbation velocities (i, v, w) and
pressure (p) of the harmonic form

(u, v, w, p) = [G(t), B(0), w(t), p(O)]"> ™ (A1)

in an unbounded constant shear flow az i in a frame
rotating in the —() j direction are

dﬁ N 2 2\ A

i —(a = 2w — v(I* + m")a, (A2a)
do 2 2

i —ilp — v(I + m“)0, and (A2b)
dw ) ) )

VT —imp — 200 — v(I* + m”)w. (A2c¢)

These equations describe the evolution of x indepen-
dent perturbations. These perturbations excite roll cir-
culations in the (y, z) plane associated with zonal (x)
streaks (Farrell and Ioannou 1993a).

Using the continuity equation, we obtain

2im{)

P+ m?

p= a, (A3)

and by eliminating the pressure from the vertical (z)
velocity equation, we obtain the dynamical system

dii > 5
= —v(F+m)d — (@ —2Q)Ww and (Ada)
dw 2P0

= i — vl + m). A4b
=Rl v m) (Adb)
For constant parameters, the perturbation dynamics
are governed by the matrix

—v(® + m?)

—(a — 20
| 2002 + m?)

—v(® + mz):|' (A9

The dynamics are stable if the shear of the mean flow is
smaller than a, = 2Q + »(P? + m?)*/(2QP).

When the dynamics are stable, the ensemble mean
energy density for unit mass density (E)={ii*+1*+w?)/4
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maintained under white stochastic excitation with unit
covariance is
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where the perturbation covariance matrix C =
{(a,w)(11,w)") solves the Lyapunov equation

1 ( 2+ m? ) AC+CA"=—1. (A7)
Ey=-|Cy+——Cx |, A6
(Er=3\Cn o (45) The solution is
2071 + m®)? — 2fP(a — 2Q) + (a — 2Q7° (7 + m®)
11 = f (3 2 2 4( ( En? (Aga)
8v°(I° + m?)
V(2 + m?)?t — QP (a - 2Q)(17 + m?) + 0°1*
Cy = W+ ) ., and (A8b)
c c a(l? + m?) +2Q107 Eowh (A0
= = - , Where c
12 21 8V2(12 + m2)3 n
£ v(I? + m?)? (A9)
A+ mP)? - 200X« — 2f)
is the total variance maintained by the equivalent normal system
A (12 + m2) + V202 (a - 20) NP+ n? 0 AL0)
0 (12 + 1) =\ 20— 20)/N/P +

which has the same eigenvalues as (AS).

As the shear « increases, the equivalent normal total
variance E,, increases only in the neighborhood of the
critical shear «,., where the system becomes unstable
(see Fig. 9). The nonnormality of the Reynolds matrix
is responsible for the power-law behavior of the main-
tained variance and the flux. Except in the immediate
neighborhood of «, as « increases, (#?) = C,, increases
proportional to o?, (W?) = Xi*)/m* = C,, increases
proportional to «, and (zw) = C,,/2 increases also pro-
portional to a.
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