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Abstract. We describe a new model for synchronization of neuronal oscillators 
that is based on the observation that certain species of fireflies are able to alter 
their free-running period. We show that by adding adaptation to standard 
oscillator models it is possible to observe the frequency alteration. One conse- 
quence of this is the perfect synchrony between coupled oscillators. Stability and 
some analytic results are included along with numerical simulations. 
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1. Introduction 

Synchronization of large groups of fireflies has been recognized for the last four 
hundred years. Buck and coworkers have quantified this phenomenon for several 
species of insects [ 1, 2, 5, 6] by studying the responses of an isolated insect to single 
and periodically varying flashes of light. There appear to be several different 
mechanisms for synchrony and entrainment among the different species. These 
include phase advance synchrony, phase delay synchrony, and perfect synchrony. 
In phase advance synchrony, the insect is able to advance its phase to a pulse of 
light, but cannot delay it under any circumstances. This model appears to apply 
to the American species, Photinus pyralis which does not congregate and flash 
synchronously in large groups, although transient synchronization is sometimes 
seen. One can make a simple mathematical model of this by using an "integrate 
and fire" oscillator which responds to a pulse of light by always advancing the 
phase (see e.g. Peskin [11]). Mirollo and Strogatz [13] have recently shown that 
N such oscillators, each coupled to all of the others, will always tend to the 
perfectly synchronized state except for a set of initial conditions that has measure 
zero. One could probably generalize their theorem to the case in which the 
oscillators were of slightly different frequency. In [1], Buck suggests the linear 
analogue of an integrate and fire model to explain this type of entrainment. 

* This work was partially supported by NSF Grant DMS9002028 and the Mathematical Research 
Branch of The National Institutes of Health 
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Phase delay synchrony is a mechanism by which the oscillator is inhibited by 
the pulse of  light and which allows it to either advance or delay its phase 
depending on where the pulse arises. This appears to be the method utilized by 
P. cribellata which has the ability to entrain over a broad range of frequencies. 
This particular species will lock to differing frequencies but has a distinct phase 
shift that increases as the forcing frequency diverges from the intrinsic frequency 
of the pacemaker. In fact, the shift is exactly the difference between the 
free-running period and the forcing period. Buck et al. [2] studied the free- 
running rhythm of  this insect and found that the flashing was controlled by an 
endogenous neural pacemaker. The timing of the flashes does not depend on the 
insect seeing his own flash nor even that he flash. The pacemaker is extraordinar- 
ily robust with a variation in interflash intervals of less that 3%. The firefly 
entrains to a range of periodic stimuli within one or two impulses, but attains 
zero phase lag only when driven at his intrinsic frequency. Large swarms of P. 
cribelIata congregate in trees and flash rhythmically. 

By perfect synchrony, we mean that the insect can entrain with zero 
phase lag even when the stimulating frequency is not the same as the intrinsic 
frequency. Three tropical Asian species, P. malaccae, Pteroptyx tener, and 
Luciola pupilla appear to be able to achieve this perfect synchronization with the 
stimulus. Hanson [6] describes the difference between these species and P. 
cribella ta: 

... synchrony is attained much differently by the Malaysian firefly Pteroptyx malaccae. Entrain- 
ment does not result in a constant phase angle equal to the difference between pacing frequency 
and free-running period as it does in P. cribellata; instead, P. malaccae nulls all phase angle 
differences during pacing . . . .  The mechanism of attaining synchrony by P. malaccae can be 
summarized. When the pacer changes, this firefly requires several cycles to reach a steady state. 
Once this steady state is achieved, the phase angle difference is near zero irrespective of the pacer 
period. This result can be explained only by the animal adjusting the period of its oscillator to 
equal that of the driving oscillator. 

The range of  frequencies at which the animals can be entrained is very small and 
once the stimulus leaves that range, the oscillator drifts with respect to the 
stimulus. Zero phase shift synchrony is rarely seen; Buck notes that humans and 
certain species of crickets [ 1] are the only other organisms that appear to be able 
to attain null phase lags with respect to the stimulus. P. malaccae is unusual in 
that it can actually alter its period as much as 15% in both directions. 

In a previous paper [ 12], we suggested a mechanism to explain the patterns 
of drift observed in P. malaccae when the stimulating frequency was beyond the 
range of entrainment of  the firefly. The qualitative behavior is identical to that 
of the experimental system after locking is lost, but the model fails to account for 
the fact that the phase difference at the point at which locking is lost is nearly 
zero. In fact, there appear to be no models which will give a zero phase difference 
for a range of  frequencies away from the intrinsic frequency of  the oscillator. 
Related to the insects' ability to synchronize to a periodic stimulation is the 
formation of "firefly trees". Thousands of individual insects will settle on a tree 
and proceed to flash in perfect synchrony. As described by Buck this is a striking 
and beautiful display [ 1]. In [6], Hanson shows a three channel recording from 
a firefly tree in which the recording sites were 4 meters apart; each peak in light 
is perfectly synchronized. A model for phase-locking of many coupled oscillators 
which are coupled "all to all" and in which the frequencies were allowed to vary 
randomly in some interval was described and analyzed in [3]. This model has the 
same deficiencies as [12], the phase-locked patterns are perfectly synchronous 



An adaptive model for synchrony in the firefly Pteroptyx malaccae 573 

only if the frequencies are identical. Similar results hold for coupling in other 
geometries, e.g., nearest neighbor coupling. 

Here we propose a mechanism explaining the ability of the insect to 
synchronize at a nearly zero phase difference. This model has a PRC that is the 
same as that measured for P. malaccae but differs from typical models (e.g. [4], 
see below) in that the frequency of the oscillator is allowed to slowly adapt. 
Eventually, the phase shift between the stimulus and the oscillator becomes O(e), 
where ~ is a small relaxation parameter that could be experimentally measured. 
The size of this phase shift remains small as the limits of entrainment are 
reached. This contrasts with the models of pacemakers that depend only on the 
phase response curve. The most interesting mathematical feature of this model is 
that the phase response curve is identical to one studied by numerous investiga- 
tors [4, 7, 8], but the behavior under sustained periodic stimulus is quite different 
due to the adaptive nature of the model. The phase shift to the stimulus remains 
O(e) in the entire entrainment range except for an O(e) region around the 
boundary of the range. In Sect. 2, we summarize previous models of synchrony 
for the periodically driven and the coupled systems. We show that as the limits 
of entrainment are reached, the phase shift tends to some nonzero value that is 
away from zero. In Sect. 3, we propose a model that has the additional property 
of the ability to modify the intrinsic frequency in order to attain a zero phase 
shift. We analyze the stability and range of entrainment for this model. Section 
4 discusses the collective effect of two or more fireflies coupled together. We 
simulate a pair of insects and then a random collection of insects that can "see" 
all insects a certain distance from each other. We study the onset of synchrony 
and the slow adaptation to the same collective frequency. These results are 
compared to the same interactions without frequency adaptation. We analyze the 
coupled model in the case of all to all coupling with some range of natural 
frequencies when we can average interactions. Finally, we discuss some more 
general questions about synchronization and possible applications of the present 
techniques to circadian modelling. 

2. Simple first order models 

Consider a single periodically forced oscillator of the form: 

dO~dr = co + P( t / z )  A(O) mod(1). (2.1) 

Here, co is the intrinsic frequency of the unforced oscillator, P(qS) is the periodic 
forcing stimulus, and A(O) is the phase response curve (PRC). All functions are 
periodic with period 1. When P(q~) is a periodic Dirac ~-function, (2.1) becomes 
a map: 

0,+ ~ = 0 n + co~ + A(On + 09~). ( 2 . 2 )  

0n is the phase of the oscillator after the nth stimulus. Alternatively, if P(qS) is 
smoother and the forcing is not large in magnitude or the PRC, A(qS), is shallow 
one can average (2.1) to obtain the following: 

dO/dt = co + H ( t / z  - 0), (2.3) 

where 

g(dp) = P(s) A(s - ~)  ds. (2.4) 
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We proceed to look for 1'1 phase-locked solutions of (2.2) or (2.3). The 
phase-locked solution of (2.2) is: 

On"'+ ~ A ( O +  oJ'c) = 1 --0)27. (2 .5)  

Thus as long as the term 1 - cot does not exceed the maximum of A or fall below 
the minimum of A, we can solve (2.5): 

t~ = 1 - coz + A -1(1 - coT). (2.6) 

If  we suppose that A(0) = 0, then synchrony occurs only if coz = 1, that is, the 
forcing frequency is the same as the intrinsic frequency. As the forcing frequency 
diverges from the intrinsic frequency, the phase shift between the oscillation and 
the stimulation increases in magnitude. In Fig. 1 (next section), we sketch 0 as 
a function of ~ for A(qS)=- ( f l /2n)  sin(2~q~). The critical frequency at which 
locking is lost occurs when 1 - cot exceeds the maximum or minimum of A(O). 
For this A, we find that the critical phase at which locking is lost is: 

In particular, for fl small (which is the case for P. malaccae), the critical phase 
is close to a quarter cycle. The PRC for this species is qualitatively similar to a 
small amplitude sine curve, thus, if one applies the simple PRC model, one must 
conclude that there is a critical phase at which locking is lost and this is close to 
a quarter cycle. For  frequencies within the critical range, the phase varies from 
zero to the critical values, zero occurring only when 1 - cot -= 0. We also note that 
for the PRC model, as long as - 1 < A '(0 + mz) < 0, this solution is stable. 

For  the continuous model, the phase shift between the periodic forcing and 
the firing of the oscillator is given by: 

_ _  . 

As above, if H(0) = 0, the phase shift vanishes only if cot - 1 - 0; otherwise it 
increases in magnitude as I 1 -co~[ increases. We note that a good model for 
Pteroptyx cribelatta is Eq. (2.3) with H the piecewise linear map with slope 1. 
For, then, the phase shift is matched by the difference in periods. 

Both the map and the continuous model exhibit similar behaviors for 
frequencies outside of the range of entrainment although the map has, in 
addition, very complex behaviors (see e.g. Glass et al. [4, 8]). Both predict that 
the phase shift between the forcing stimulus and the forced oscillator should 
increase as the forcing frequency deviates from the intrinsic frequency of the 
oscillator. 

Similar considerations hold for coupled oscillators. The analogue of (2.1) for 
N oscillators coupled together with differing frequencies is: 

N 
dOg/dt = ~+ + ~ ek/(Ok) A(Oy). (2.8) 

k=l  

Here, Pkj(~b) depends on the relative influence of oscillator k on oscillator j. If P~j 
is small, then one can apply the method of averaging to (2.8) by making the 
change of variables 0j = cot + 0j, where c~ is close to the mean frequency. 
Averaging (2.8) and, dropping the hats and rescaling time results in the analogue 
of (2.3): 
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N 

dOfldt = coj + ~ Hkj(Ok -- Oj). (2.9) 
k = l  

This was analyzed in [3] (and by numerous authors, see [13] and [3] for other 
references) for Hkj(~b) = H(q~) = (fl/N) sin(2~(~b + ~)). One of the main results is 
that there can be phase-locking, but the phase differences between two oscillators 
can be as large as half a cycle before locking is lost. This type of model is 
therefore inadequate for explaining firefly trees which synchronize with almost 
no phase shifts between oscillators. 

The model of Strogatz and Mirollo [14] can synchronize with no phase lag 
even in the presence of  frequency inhomogeneities. But, the model is probably 
not a good analogue to the behavior of P. rnalaccae for several reasons. First, the 
integrate and fire model that Strogatz et al. use can only be forced at frequencies 
higher than its intrinsic frequency. P. malaccae has a range of frequencies above 
and below the natural frequency at which it can entrain. The ability to entrain 
with no lags requires that the stimulus be very strong and when entrainment 
occurs, it occurs within a few cycles. In contrast, the PRC of P. malaccae is quite 
small and entrainment requires many cycles [1]. 

3. An adaptive frequency model 

We now suppose that the insect has a preferred frequency of firing, which we call 
conat, and a maximum (comax) and minimum (comin) frequency to which it can 
adapt. We replace (2.1) by: 

dO/dr =co, (3.1) 

where co is a time-dependent variable frequency. We will assume a slow damping 
of co to the natural frequency in absence of any stimulation. We furthermore 
require that if the stimulus comes early in the cycle then co will be pushed toward 
a maximal frequency and if the stimulus comes late, it will be pushed toward the 
minimal frequency. Thus, co satisfies the differential equation: 

dco/dt = ~(conat -- co) + P(t/z)G(co, 0). (3.2) 

The parameter e measures the rate at which the oscillator returns to its natural 
frequency. The form of G must conform to the requirements that the system 
(3.2) have a PRC like that of the firefly and that it push the frequency high or 
low depending on where the stimulus occurs. Before continuing the analysis, we 
show that in some limiting cases, (3.1-3.2) tends to (2.1). Suppose that G(co, O) 
is O(e) and independent of co, e.g., G(co, 0) = e A(O). Differentiation of  (3.1) leads 
t o :  

d20/dt2 = e(con,t - dO~dO + eP(t/~) A(O). (3.3) 

Divide by ~ and let e ~ ~ .  Clearly, (3.3) tends to (2.1). Since we wish to avoid 
the behavior of (2.1), we must assume that adaptation is slow or that the 
formation G(co, 0) is not independent of  co. 

Consider the response of (3.1-3.2) to an instantaneous pulse. In absence of 
any forcing, co = co.at" Thus, the response will be an instantaneous shift in the 
frequency by an amount G(con,t, 0o~d) where 0old is the phase at which the brief 
pulse is given. Thus, co = conat + G(conat, 0o~d). After t ~ O(1/conat), the phase of 
the oscillator is 0old + G(conat, Oold)/conat. This little calculation shows that the 
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function G must behave proportionally to the PRC. In much of what follows, we 
will suppose that G(co, 0) has the specific form: 

g +(0) ( (Dmi  n - -  (D) -q- g -(0)((_Oma x - -  CO), ( 3 . 4 )  

where g+(O) are periodic functions satisfying: 
1 g + ( 0 ) = 0 ;  g+(~b)>0, 0<gb<½;  g+(q~)-0,  ~ < ~ b < l  (3.5) 

1 1 ( 3 . 6 )  g-(0)=0; g-(~)>0, ~<~<1; g-(~)-0, 0<~<~. 
One can crudely interpret these in a physiological manner. Each g -+ is non- 
negative and thus behaves as a gate or channel which forces co upwards or 
downwards. This could be due to ionic effects. Recent results of Kepler et al. [9] 
show that attaching a hyper- or depolarizing source to an oscillator can alter its 
intrinsic frequency. 

Let z denote the forcing period and (~o n denote the frequency between the nth 
and (n + 1)st impulses. Let O, denote the phase after the nth stimulus. Then: 

0.+1 = 0. + co.~. (3.7) 

We need an equation for co.. We assume that if the (n ÷ 1)st impulse is ahead of 
the stimulus (i.e. in the interval 0 < 0 < ½) then we will slow down the frequency 
and if it is behind the stimulus, we will speed it up. Thus, co. will satisfy: 

(L).+ 1 ~" (.O. "]" ~(O.)na t - -  (.On) ,], g+(On "]" ZO)n)(O)mi n - -  (.On) 

- I -g - (On  "]" ZCOn)(COma x - -  COn)" ( 3 . 8 )  

This model implies that without forcing (i.e., g -+ = 0), the frequency will relax to 
its natural frequency, conat- Suppose, e is very small. Then if the oscillator is 
consistently ahead of the forcing stimulus, g ÷ is positive and g -  is zero so that 
co, will tend toward comi,- Equations (3.4-3.6) suggest a PRC for this model. 
Suppose that the oscillator is unforced so that co,--~conat. A single stimulus 
comes at a phase q~ in the cycle. This will alter the timing of the next spike by 
an amount: 

~(conat - -  conat)  ÷ g +((/))(comin - -  (/)nat) ÷ g - ( q ~ ) ( c o m a x  - -  conat)" 

Thus, then new phase is the old phase plus the above amount; hence the PRC is 
given by: 

A ( ~ ) )  = g + (q~) (comi .  - -  conat )  ÷ g - ( q ~ ) ( c o m a x  - -  conat)" ( 3 . 9 )  

The experiments on P. malaccae do not indicate whether the actual frequency 
change of the insect is the same size as the PRC. Unpublished data provided by 
Frank Hanson shows that, for a driven insect, a single change in the period of 
one of the stimulating flashes is enough to alter the period and several cycles are 
required before it returns to the driving period. If  we choose 

g+(~b) = max(  1 sin(2r@), 0)  and g-(qS) = - m i n (  1 sin(2rc~b), 0)  

then, the general shape of the PRC is the same as that in Sect. 2 and of the firefly 
P. malaccae. 

There can be 1 : 1 locking if and only if co, z = 1 since this requires that 
O. = 0.+1 mod 1. Thus, we must have co. ~ l/z, and O. ~ d?, where ~b satisfies: 

/3(cona t - -  I/z) ÷ g + ( ~ ) ( c o m i n  - -  l / Z )  ÷ g - ( ~ b ) ( c o m a  x - -  1/~) = 0. (3.10) 
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Suppose that (/)nat > 1/27. Then, 4, satisfies: 

• ( (Dna t - -  1/27) 
g + ( ( ~ )  - -  ( 1 /27  - -  ( D m i n )  " ( 3 . 1 1 )  

As long as (1/z -COmin) >> e, this phase difference will be small. Only when the 
forcing is extremely close to the critical frequency will there be significant 
phase shift with respect to the stimulus. Similar results hold for ~Onat < 1/27. 
Although P. malaccae has a narrow range of possible frequencies, this adaptive 
mechanism can support large differences in frequencies with negligible phase 
differences by choosing COma x and (Dmi n appropriately. For P. malaccae these 
frequencies are narrowly constrained so that the insect can synchronize only to 
a narrow range of periodic stimuli. If  the insect has a very labile intrinsic 
frequency, then ~ may be very close to zero. (For humans attempting to follow 
a rhythm such as hand-clapping, the range of frequencies to which perfect 
synchrony can be attained is almost infinite; for such a task there may be no 
fixed intrinsic frequency and thus e may be zero [1].) In Fig. 1, we plot the 
phase shift q5 as a function of the frequency within the range of admissible 
frequencies. It remains close to 0 for all but a region that is O(e) around the 
endpoints. Compare this to the analogous behavior for Eq. (2.1) with A as 
defined by (3.5) (note that T = 1 / O n a t ) .  The range of entrainable frequencies is 
much greater and the phase shift remains small for a large percentage of the 
entrainment range. In Fig. 2, we show the evolution over many cycles of the 
frequency and the phase as they approach equilibrium. If, e.g., g+(~b)= sin q5 
then the value of q5 at which locking is lost will be +g/2.  

Suppose that 1/z < COmin and that we try to get locking. Then, it is clear that 
(3.10) can never be satisfied since the right hand side is negative and the left is 
positive. Similarly, no locking can occur if 1/27 > COm~ x. In Fig. 3, we depict the 
solution to (3.7-3.8) for v larger than the maximal entrainable period ( ~  1/ 
~Omi,). The frequency shows little variation from its natural value and the 
phase shift from the stimulus drifts over all phases. 
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Fig. 1. The phase versus the stimulus period for the adaptive (solid) and the nonadaptive (dashed) 
models for locking. For the nonadaptive model, ,6 = 0.25 and for the adaptive model, e = 0.004, 
(Drain = 0.8, (Dmax = 1.2, (D,~t = 1.0 
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Fig. 2. Phase (a) and frequency (b) as functions of time for the adaptive model. Parameters as in Fig. 
1 w i t h r = l . 0 4  

W e  briefly address  the s tabi l i ty  o f  s o l u t i o n s  for (/)min -]- O(~) < 1/'/7 ~ (J)nat' 
S imi lar  results  wi l l  h o l d  for to.at ~ 1/~ < ~ m a x -  O(e).  L i n e a r i z a t i o n  a b o u t  an 
e q u i l i b r i u m  va lue  o f  ~o = 1/~ and 0 = ~b ~ O(e) y ie lds  a 2 x 2 m a t r i x  w i th  
d e t e r m i n a n t  and trace g iven  by: 

1 7 0 ) n a  t - -  "170)mi n 
D E T  = ~ (  1 - ZO~mi.) - -  e 

1 - l ' ( D m i  n 

lT(Ona  t - -  'lTgOmi n 
TR = 1 --  e ( 3 .12 )  

1 - -  T g O m i  n 

f¢ is the der ivat ive  g +  eva luated  at ~b. The  c o n d i t i o n  for s tabi l i ty  is that  
2 > 1 + D E T  > I TR I. F o r  ~ suff ic iently smal l  and 1/~ a w a y  f r o m  (Omln, TR > 0, so 
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Fig. 3. Phase (a) and frequency (b) as functions of time for the adaptive model when outside the 
range of entrainment. Parameters as in Fig. 1 with z = 1.31415 

the s t ab i l i t y  c o n d i t i o n  becomes :  

T O ) n a t  - -  ~ O ) m i n  "CO)na t  - -  " g O ) r a i n  
1 > ~ (1  - "CO)min)  - -  ~g > - - e  (3 .13)  

1 - -  Z ' O ) m i  n 1 - -  ~ O ) m i n  

A s  long  as the  t e r m  f q ( 1 -  120)min )  is n o t  t oo  large ,  ( i .e. ,  the  P R C  is n o t  t oo  
sharp) ,  t hen  s t ab i l i t y  h o l d s  a w a y  f r o m  the  r eg ion  where  1 -"[O)min ~ 0 ( ~ ) .  

4. Collective behavior 

Le t  us  n o w  r e t u r n  to  Eqs.  ( 3 . 1 - 3 . 2 ) ,  b u t  i n s t ead  o f  p e r i o d i c a l l y  fo rc ing  the  
osc i l l a to r s ,  we a l l o w  c o u p l i n g  b e t w e e n  m a n y  such osc i l l a to r s  wi th  s l ight ly  
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different frequencies. Consider: 

dOi/dt = coj (4.1) 

do~fldt = s(&j - coj) + ~, Pkj(O~)Gj(o~j, Oj), (4.2) 
k 

where Pkj(O) represents the "strength" of  a pulse of  the k th  oscillator observed 
by the j t h  oscillator. &j is the intrinsic frequency of  the j th  oscillator and G 
measures the effect of  a pulse on the intrinsic frequency. Buck et al. [2] note that 
the flash of a firefly is somewhat Gaussian in shape so that we have chosen Pkj 
to have the same qualitative form. In Fig. 4 we show how the phase difference 
between two fireflies that have different intrinsic frequencies slowly tends to zero 
as the flashing frequencies become equal. The final frequency is not the same as 
the intrinsic frequency of  either; the faster insect slows down and the slower 
speeds up. This is not a necessary consequence of our model, rather, it is due to 
our choice of functions g-+. The collective frequency can be faster or slower than 
the intrinsic frequencies depending on these functions. 

To mimic a "firefly" tree, we consider the following simple model. We 
randomly distribute N insects in a two-dimensional grid. According to Hanson 
(personal communication), the insects will stay no closer than about a foot from 
each other. Hanson also notes that the insects have nearly a 360 ° field of vision 
and respond to other insects as far away as three feet. Thus, we allow the 
randomly spaced oscillators to interact with all other oscillators that are within 
a radius of three feet. The oscillators are each endowed with a narrow range of  
frequencies to which they will entrain. The model that results is (4.1-4.2) with: 

aj(o)j, Oj) = g +(0j)((Djmin - -  (/)jnat) -}- g - (0 j ) (0 ) jmax  - -  0)jnat), (4.3) 
__1 

w h e r e  ~o~i  n, ogj . . . .  (Djnat = 2(0)jrnin + (-0jrnax) 

31142 I 

~o.ooo 

-3 .142  

0 100 200 300 
t ime  

J 
400 

Fig. 4. Phase-difference between two adaptive oscillators as a function of  time. The equations are 
(4 .1-4 .2)  with Pt2(0) = P2~ (0) = min(p  . . . .  (0.5 + 0.5 cos 0)% v) and g +(0) = max(sin  O, 0), 
g-(O)=-min(sinO, O), v = 0 . 7 ,  pmax=0.5 ,  e = 0 . 0 1 ,  092rain=0.9, 092 . . . .  =1 .3 ,  O)lmin=0.8, 
691max = 1.2, O~2nat = 1.1, O91,~t = 1.0 
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are the minimum, maximum, and natural frequencies of the j t h  insect. The 
functions g -+ are as above. In the following figures, we use Eqs. (4.1-4.3) with 
the term: 

PkAOj)aj(COj, Oj) 
k 

replaced by: 

maX('max 
j sees k 

This latter form says that the insect responds to all nearby insects in precisely the 
same way and that the animal does not vary its response once the nearby 
illumination exceeds the value Smax. The contribution of a single insect is Pmax 
and the sharpness of the stimulation is governed by the parameter m. In Fig. 5 
we show several frames from a simulation of  120 oscillators distributed on a 
65 x 65 grid. Initially, very few are synchronous but at later times more and 
more become recruited into the oscillation. Eventually, they all fire at nearly the 
same time. Finally, we quantitatively depict the synchrony in Fig. 6. This shows 
the summed output of the oscillators: 

N 

S(t) =- ~ P(Oj(t)), 
j = l  

where P(O) =pm~,(0.5 + 0.5 COS 2rOOk) m. If  the oscillators are perfectly synchro- 
nized, then S(t) has a maximum of NP(O). The figure shows that close to 85% are 
synchronized. By way of comparison, we have simulated (2.8) with A given by 
(3.9) and plotted S(t). Without adaptation, S(t) is much broader and achieves a 
maximum of  less than 30% of complete synchrony. 

One can gain some analytic insight into the collective oscillations by simplify- 
ing the problem slightly. Because the response to a flash is weak for P. malaccae, 
we can average Eq (4.2) without losing too much information. This leads to an 
equation of the form: 

where 

dcoj/dt  =  (Coj - coj) + y HkAO,  - Oj, 
k 

(4.4) 

Hkj(~, CO) = ~ Pkj(s + qS)G(coj, s) ds, Tj = 1/~j. 

For ~ sufficiently small, we expect that the phase shift between oscillators will 
remain O(a) and all oscillators will tend to a locked frequency, ft. We assume 
that/-/kj(O, co) = O, since no change should be made in the intrinsic frequencies if 
the oscillators are in phase. Let 

Oj = f2t + eOj, coj = f2. 

Then (4.4) becomes to lowest order in ~: 
N 

0 = (hi -- (2 + ~ flkj(Ok -- Oj), j = 1 , . . . ,  N, (4.5) 
k = l  

where fikj = H;j(0,  ~2). This is a set of N linear equations in the N + 1 unknowns, 
0j and Q. But, we have the additional constraint that Ok + C is a solution for any 
constant C, thus, we must set 0o = 0, e.g. Eq. (4.5) can be solved in various 
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Fig. 5. Frames from a stimulation of(4.1-4.3) for N = 120 insects in a 65 x 65 grid. Blackened circles 
represent animals in their firing cycle. Times are chosen to maximize the number of firing oscillators 
for that period. The times are: 45.8, 59.0, 91.0, 122.8. Parameters are e = 0.01, Pmax = 0.5, v = 0 . 8 ,  

m = 16. The interactions are as in Fig. 4. The frequencies are randomly chosen from a uniform 
distribution: o) .... = 1.2 _+ 0.1, (Dmin = 0.8 ~- 0 . 1 ,  and (Dna t = l((.Ornax ~- (Dmin)  for each oscillator 

geometries.  We will consider only all to all coupling; for  small densely packed  
"firefly trees",  this is not  a bad  approx imat ion .  In this case, /~kj = c~/N, a 
constant ,  and we can thus easily solve (4.5): 

0 = ( & j ) ,  ~ j  = (&j  - 0 ) / ~  (4.6) 

Recalling the definition o f  ~j, we see that  all the oscillators synchronize to a 
f requency which is the mean  of  all the individual oscillators and with a 
phase-difference that  is O(e). 

The  present  calculat ion requires that  G be differentiable with respect to qX 
The  specific model  given by (4.3) is not  differentiable at 0. I f  we assume that  the 
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Fig. 6. Measure of  synchrony of  the 120 insects (see text). Solid line is for the adaptive model and 
dashed line is for the nonadaptive model 

maximum and minimum frequencies are the same for all oscillators with only the 
free-running frequency variable and assume all to all coupling, then we can solve 
the synchrony equations. In the Appendix, we show that synchronization occurs 
within order e as long as the intrinsic frequencies lie within the range of 
entrainable frequencies (C0min, ~0max). 

5. Discussion 

This model provides a number of  predictions. The most obvious experiment to 
try is to plot the interflash interval before the entraining stimulus, during the 
stimulus, and after the stimulus. There should be a decay in the interflash 
interval after entrainment as the insect returns to its intrinsic frequency. If it is 
possible to measure the behavior near criticality, then the model predicts a 
phase shift that is not close to zero as the limits of  entrainment are reached. But, 
this may be difficult to achieve since the range of entrainment is very small and 
the time to reach entrainment can be very long. (From a recent conversation 
with Frank Hanson the first of these predictions appears to be true; the firefly 
slowly regains his intrinsic interflash interval after the stimulus is removed.) Like 
P. malaccae, large swarms of P. cribellata congregate in trees and flash rhythmi- 
cally, but whether they indeed synchronize and the mechanisms responsible for 
synchrony (if  it exists) are not clear. 

Altering of frequencies has been observed in some mammalian circadian 
systems. Mice which are entrained to a twenty hour cycle maintain a faster cycle 
for many days after being returned to a completely dark regime (see [10], pp. 
46-47). Indeed, it takes more than one hundred days before the periods of 
animals entrained to a twenty-eight hour cycle and those entrained to a twenty 
hour cycle merge in a dark environment. These aftereffects as they are called in 
the circadian literature could be due to a mechanism such as the present one. 

There are other instances of apparent synchrony in nervous system behavior. 
Most models of  coupled and forced nonlinear oscillators lead to significant 
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phase shifts as the stimulus is detuned from the intrinsic frequency of the system. 
Relaxation oscillators are capable of maintaining nearly zero phase shifts over a 
range of frequencies, but this occurs only when forced below or above the 
natural frequency and never both (work in progress, L. Abbot, personal 
communication). The mechanism we describe here could be put into biophysical 
terms by assuming that some parameter controlling the frequency of the oscilla- 
tor is allowed to change due to external perturbations of the oscillator. Thus, this 
type of model represents a form of learning the simple task of synchronization. 

In a broader context, the equations we consider in this paper are similar to 
those describing an interconnected oscillatory neural network. Indeed, each 
firefly flash is controlled by an endogenous neural oscillation [2]. The interaction 
between these neural oscillators is also neural as it is mediated through the visual 
system. The only significant difference between the firefly tree and an oscillatory 
neural network is in the time scale (milliseconds for the neural network and 
seconds for the firefly tree) and the space scale (microns for the neural system 
and meters for the insects). Ultimately, a goal is to couch these abstract adapting 
oscillators in strict biophysical terms. 

The ability to synchronize plays an important role in the mating repetoire of 
fireflies (see Buck [1] for some of the many theories); hence it is important for 
a mechanism to evolve that can allow for synchrony to stimuli that are close to 
the native frequency. We have suggested one possible method by altering the 
notion of a PRC to include adaptation of the natural frequency. 
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Appendix 

Here, we derive an integral equation in the cont inuum limit for Eqs. (4.1-4.3).  This is then reduced 
to a differential equation that is easily solved. The existence of  the phase-locked solution becomes a 
question about the solvability of  a scalar transcendental equation. Let ~o o = ½(com,x + COmin), and shift 
all frequencies by an amount  co 0. Thus, the phaselocked frequency will be shifted by co o as will all 
other frequencies. (This can be done since the interactions between oscillators depend only on the 
phase-differences.) Let comax - coo = ~ = coo - comin" Thus,  with respect to the new shifted frequency, 
comax = ~ and comi n = - ~ .  Since coupling is all-to-all, we can order the oscillators in ascending 
frequency so that  e~ 1 ~ co2 ~ " " " ~ cou. We make the reasonable ansatz that oscillators that have 
faster intrinsic frequencies will be phase-advanced with respect to those that have slower frequencies. 
With these assumptions and the above ordering of  the oscillators, we seek solutions to: 

1 J 1 N 
0 = e(~j - 12) + --Nk=~. g+(Oj -- Ok) ( --o~ -- O) + ~rk~_jg-(O j _  -- 0k)(c~ -- O). (A1) 

(A1) holds because g + vanishes if the phase difference is between ½ and 1, thus, only oscillators which 
are "slower" than 0j will contribute. Similar considerations hold for the g -  term. We next assume 
that  @ tend to some monotonic  function co(x) and N - *  oo. If e ~-0, then the solution to (A1) is 
0j -= O k, so we expect O(e) synchrony. As in Sect. 4, we look for solutions of the form: 

0j =nt +~,j. 

Substituting this into (A1), collecting O(e) terms, and passing to the cont inuum limit yields: 

O = ~o(x) - O + fl + ( - = - O) ~ qJ(x) - q~( y) dy - fl - (~ - O) f j O(x) - q~( y) dy. 
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Here, f l+---g+'(0) ,  f l - - = - g - ' ( 0 )  are both positive numbers. This is a linear integral equation. 
Differentiation with respect to x yields a linear differential equation: 

~o'(x) + fl +( - - e  -- O)x~k'(x) - fl - (a  - 0 ) (  1 - x )O ' (x  ) = 0. (A3) 

This is easily solved: 

f( O(x) = dy e~,(y)/[yfl+(a + O) + (1 - y ) f l  (~ - O)l --- q(x, 0) .  (A4) 

This integral is defined as long as - c~ < f~ < e. q(x, O) is a monotonically increasing positive function 
since e ) ' ~  0 and the denominator  is positive. To find ~, we must use (A2). Set x = 0 in (A2) to 
obtain: 

f2 = a~( O) + fl - (a  - O) q(x,  f2) dx  --- ~(O). (A5) 

~(f2) decreases monotonically with ~(a) = co(0) and ~ ( - a )  > 09(0). By rescaling the time-variable, we 
can assume without loss of generality that a ~- 1. When fl+ = f l -  = fi (as is the case in our example), 
and when oJ(x) = ~o(0) + xx, then if(f2) can be explicitly determined: 

~ -  l - f 2  I / ' I  + (2'~ 1 ¢((2) = n (1 + (2) l o g ~ ] - ~ )  -- 1 + ~o(0). (A6) 

~(1) =09(0) and ~ ( - 1 ) = ~ o ( 1 ) .  Thus, as long as ~0(0)< 1 and o J ( 1 ) > - 1 ,  we can find a unique 
solution to (A5). In the more general case, one would have to explicitly integrate (A4) to check for 
solutions to (A5). 

As long as O lies in the range of frequencies to which the insect can entrain, the solution q/(x) 
is well defined as is therefore O(x) =- eft(x) + f2t. Despite the insects having a possibly O(1) spread of 
intrinsic frequencies, the phase-difference between individuals stays extremely small. 
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