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 VIII. Stability of a Viscous Liquid contained between Two Rotating Cylinders.

 By G. I. TAYLOR, F.R.S.

 Received March 21,-Read April 6, 1922.

 [PLATES 4 AND 5.]

 PART I.--THEORETICAL.*

 Introduction.

 IN recent years much information has been accumulated about the flow of fluids
 past solid boundaries. All experiments so far carried out seem to indicate that in all
 casest steady motion is possible if the motion be sufficiently slow, but that if the velocity
 of the fluid exceeds a certain limit, depending on the viscosity of the fluid and the
 configuration of the boundaries, the steady motion breaks down and eddying flow
 sets in.

 A great many attempts have been made to discover some mathematical representation
 of fluid instability, but so far they have been unsuccessful in every case. The case,
 for instance, in which the fluid is contained between two infinite parallel planes which

 move with a uniform relative velocity has been discussed by KELVIN, RAYLEIGH,
 SOMMERFELD, ORR, MISES, HOPF, and others. Each of them came to the conclusion
 that the fundamental small disturbances of this system are stable. Though it is
 necessarily impossible to carry out experiments with infinite planes, it is generally
 believed that the motion in this case would be turbulent, provided the relative velocity

 of the two planes were sufficiently great.
 Various suggestions have been made to account for the apparent divergence between

 theory and experiment. Among the most recent is that of HOPF, who points out that the
 flow would be unstable if the two infinite planes were flexible, so that the pressure could

 remain constant along them. There seems little to recommend this theory as an
 explanation of the observed turbulent motion of fluids, for there is no experimental
 evidence that instability is in any way connected with want of rigidity in the solid
 boundaries of the fluid. The more generally accepted view that infinitely small

 * A Summary of both parts of this paper will be found at 'Roy. Soc. Proc.,' A, vol. 102, p. 541.
 t All cases where there is relative motion between the fluid and the boundaries, thus excluding the case

 of steady rotation of a liquid in a rotating vessel.
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 MR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

 disturbances are stable, but that disturbances of finite size tend to increase, seem-s to be

 more in accordance with the experimental evidence, for it has been shown by OSBORNNE
 REYNOLDS that the velocity at which water flowing through a pipe becomes turbulent
 depends to a very large extent on the amount of initial disturbance in the reservoir
 from which the water originally came.

 On the other hand it has not yet been shown that disturbances of small but finite
 size do increase in such a manner as to give rise to the large disturbances observed in
 cases of turbulent motion.

 So far all attemrpts to calculate the speed at which any type of flow would become
 unstable have failed. The most promising perhaps was that of OSBORNE REYNOLDS
 who assumed an arbitrary disturbance in the flow and determined whether it would
 tend to increase or decrease initially. As applied by REYNOLDS himself this method
 does not lead to any definite result. It does not determine an upper limit to the speed
 of flow which must be stable because some other type of disturbance might exist wrhich
 would increase initially at a lower speed of the fluid. Neither does it determine a lower
 limit to the speeds at which the flow must be unstable, because the assumed disturbance

 which initially increases might decrease indefinitely at some later stage of the motion.
 It has been shown in fact that certain types of initial disturbance exist for which this
 actually is the case.*

 The method of OSBORNE REYNOLDS has been modified by ORR, who has determinedl
 in two casest the highest speed of flow at which all small disturbances initially decrease.
 At this speed evidently any initial small disturbance will decrease indefinitely.

 ORR's method gives the only definite result which has yet been obtained in the
 subject. The result, however, is merely a negative one, in that it affords no indication as
 to whether flow at high speeds would be unstable. ORR'S result, for instance, in the case

 of flow through a pipe of circular cross-section is that when the mean speed, W, of the
 fluid is less than the value given by W == 180 v/D, D being the diameter of the pipe
 and v the kinematic viscosity, the motion will be stable. The value of W so obtained
 is less than 1/70th of the highest speed at which the flow has been observed to be stable

 under suitable experimental conditions. ORR'S method therefore is of very little
 assistance in understanding the observed instability of fluid flow.

 Indeed, ORR remarks in the introduction to his paper: " It would seem improbable
 that any sharp, criterion for stability of fluid motion will ever be arrived at mathe-
 matically."

 Scope of the Present Work.

 It seems doubtful whether we can expect to understand fully the instability of fluid
 flow without obtaining a mathematical representation of the motion of a fluid in some

 particular case in which instability can actually be observed, so that a detailed
 comparison can be made between the results of analysis and those of experiment. In

 * ORE, " Stability or Instability of Mootions of a Viscous Fluid," 'Proc, Roy. Irish Acad,' 1907, p. 90,
 Loc, cit., p. 134,
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 the following pages a special type of fluid instability is discussed and experiments are
 described in which the results of analysis are subjected to numerical verification.

 The attention of mathematicians has been concentrated chiefly on the problem of
 the stability of motion of a liquid contained between two parallel planes which move
 relatively to one another with a uniform velocity. This problem has been chosen
 because it seemed probable that the mathematical analysis might prove comparatively
 simple; but even when the discussion is limited to two-dimensional motion it has
 actually proved very complicated and difficult. On the other hand it would be
 extremely difficult to verify experimentally any conclusions which might be arrived
 at in this case, because of the difficulty of designing apparatus in which the required
 boundary conditions are approximately satisfied.

 It is very much easier to design apparatus for studying the flow of fluid under pressure
 through a tube, or the flow between two concentric rotating cylinders. The experiments
 of REYNOLDS and others suggest that in the case of flow through a circular tube, infinitely
 small disturbances are stable, while larger disturbances increase, provided the speed of
 flow is greater than a certain amount. The study of the fluid stability when the
 disturbances are not considered as infinitely small is extremely difficult. It seems more
 promising therefore to examine the stability of liquid contained between concentric
 rotating cylinders. If instability is found for infinitesimal disturbances in this case it
 will be possible to examine the matter experimentally.

 Stability of Viscous Liquid contained between .Two Concentric Rotating Cyl4nders.

 Previous work on the subject.-The stability of an inviscid fluid moving in concentric
 layers has been studied by the late Lord RAYLEIGH. Perfect slipping was assumed to
 take place at the two bounding cylinders. If the motion is confined to two dimensions
 his conclusion is that the motion is stable if the liquid is initially flowing steadily with
 the same distribution of velocity which a viscous liquid would have if confined between
 two concentric rotating cylinders. All two-dimensional motions of an incompressible
 fluid, which do not involve change in area of internal boundaries are unaffected by a
 rotation of the whole system, so that this result merely depends on the existence of a
 relative angular velocity of the two cylinders.

 In the case when the disturbances are assumed to be symmetrical about the axis,
 Lord RAYLEIGH* developed an analogy with the stability of a fluid of variable density
 under the action of gravity. In this analogy the varying centrifugal force of the
 different layers of fluid plays the part of gravity and the resulting condition for
 stability is that the square of the circulation must increase continuously in passing from
 the inner to the outer cylinder, just as the density of a fluid under gravity must decrease
 continuously with height in order that it may be in stable equilibrium. This condition
 leads to the conclusion that if the initial flow of the inviscid fluid is the same as that of a

 viscous fluid in steady motion, this flow will be unstable if the two cylinders are rotating

 * "On the Dynamics of Revolving Fluids," 'Roy. Soc. Proc.,' A, 1916, pp. 148-154.
 2 R 2
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 in opposite directions. If they rotate in the same direction then the motion is stable
 or unstable according as Q2R22 is greater or less than Q zR12. 1 , and Q2 are the angular
 velocities of the inner and outer cylinders respectively, while R, and R2 are their radii.

 The investigations of KELVIN, ORR, SOMMERFELD, MISES and HOPF on the stability
 of a viscous fluid shearing between two planes have not been extended to the cylindrical
 case, but recently W. J. HARRISON* has extended ORe's method to find the maximum
 relative speed which the two cylinders can possess in order that the energy of all possible
 types of initial disturbance may initially decrease. In this work HARRISON assumes that
 the motion is two-dimensional. His value for REYNOLD'S criterion therefore contains

 only the relative speeds of the two cylinders. It is unaltered if the whole systen- is
 rotated uniformly at any speed. His criterion is therefore the same whether the inner
 cylinder is fixed and the outer one rotated or vice versa.

 The question has been investigated experimentally by COUETTEt and MALLOCK..
 In the experiments of COUETTE the inner cylinder was fixed while the outer one

 rotated. It was found that the moment of the drag which the fluid exerted on the inner

 cylinder was proportional to the velocity of the outer cylinder, provided that velocity
 was less than a certain value. As the speed of the outer cylinder increased above this
 value the drag increased at a greater rate than the velocity. The change was attributed
 to a change from steady to turbulent motion. RAYLEIGH'S theory of stability of an
 inviscid fluid for symmetrical disturbances makes the case when the inner cylinder is
 fixed stable at all speeds.

 MALLOCK'S experiments yielded the same result as COUETTE'S, but in this case the
 value of REYNOLD'S criterion was higher than that obtained by COUETTE.?

 MALLOCK extended his experiments to cover the case in which the inner cylinder
 rotated and the outer one was at rest. In this case he found instability at all speeds of
 the inner cylinder. This result is in accordance with Lord RAYLEIGH'S theoretical
 prediction for the case of an inviscid fluid, but on. the other hand it seems certain, in

 fact Lord RAYLEIGHII has proved, that at very low speeds all steady motions of a viscous
 fluid must be stable.

 In spite of these differences between theory and experiment there is one point in
 which RAYLEIGH'S " inviscid fluid " theory is in agreement with MALLOCK'S experiments,
 namely, the large difference in regard to stability between the cases when the inner
 and when the outer cylinder is fixed. This shows clearly that in the case when the
 outer cylinder is fixed at any rate, the disturbance is not two-dimensional in character.

 Whether it is actuallAy of a symmetrical type as contemplated by RAYLEIGH, or whether
 it is of some other three-dimensional form, remains to be seen.

 * W. J. HARRISON, 'Proc. Camb. Phil. Soc.,' 1921, p. 455.
 t 'Ann. de Chim. et de Phys.,' 6m" ser., vol. 21, 1890.
 ' Phil. Trans.,' A, 1896, p. 41.
 ? See ORR,' Proc. Roy. Irish Acad.,' vol. 27, 1907-9, p. 78.
 1| RAYLEIGH, 'Phil. Mag.,' vol. 26, pp. 776-786, 1913.
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 The most striking feature of Lord RAYLEIGH'S theory for inviscid fluids is the criterion

 for stability when both cylinders are rotating in the same direction, namely,
 Q2R22 > Q21.R2. Owing to the construction of their apparatus no information as to
 the correctness of this criterion of stability is obtainable from th.e experiments of either
 MALLOCK or COUETTE.

 Author's Preliminary Experiments.

 For this reason I decided to construct a rough apparatus in which the two cylinders
 could be rotated separately. The experiments performed with this apparatus are
 described in a preliminary paper.* The results appeared to show that the criterion
 02Rz2 > tR12 is approximately satisfied in a viscous fluid, but that RAYLEIGH'S
 result is not true for the case when the two cylinders are rotating in opposite directions.
 The experiments also indicated that the type of disturbance which is formed when
 instability occurs is symmetrical. These results encouraged me to embark on the
 complicated problem of trying to calculate the possible symmetrical disturban.ces of a
 viscous liquid contained between two rotating cylinders, and at the same time I started
 to construct an apparatus for observing as accurately as possible the conditions under
 which instability arises.

 The complexity of the mathematical problem arises from the fact that it is necessary
 to obtain a three-dimensional solution of the equations of motion in which all three
 components of velocity vanish at both the cylindrical boundaries.

 Stability for Symmetrical Disturbances.

 Before proceeding to the details of the solution of the problem it may be helpful to
 readers to give a list of the symbols employed. In Table I. the number of the page on
 which each symbol is defined is given.

 TABLE I.-List of Symbols used, with number of page on which they first appear or
 are first defined.

 (V, Q1, 92, R1, RA, A, B, r, u), p. 294; (z, t, u, v, w), p. 294;

 (P, P, , V12, u1, v1, 'w0, X, ), p. 295 ; (J1 (Kr), Wl (Ksr), C1, C2), p. 296;

 (Bo (K,r), B1 (K,r), KI, K2, K, ..,), p. 296; (H,), p. 297;

 (a,n, C3, 04, X', bin, i), p. 298 ; (C,, C6, 07, c,,), p. 299;

 (C5', C ', C07, dn,), p. 300; (SCn), p. 301; (Lt1, A1), p. 302;

 (d), p. 304; (x, CC',C, e'), p. 305; (y, K), p. 306;
 (c, /3,, , j), p. 307; (0, L,l), p. 308; (A2), p. 308; (P), p. 309; (P'), p. 310;
 (A3, e), p. 314; (fi), p. 315; (f., S1P, Pl), p. 316;
 (A, A22,,, .. A8), p. 319 ; (,), p. 321;
 (MI, M2, ... M), p. 324.

 * TAYLOR, C(amb. Phil. Soc. Proc.,' 1921.
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 Steady Motion.

 Let V be the velocity at any point of an incompressible viscous fluid in steady motion

 between two infinitely long concentric rotating cylinders of radii RI and 1R (R2 > Ri).
 If r is the distance of a point from the axis then it is known that

 V- A- -B/r, . ......... (1.0)

 when A and B are constants whlich are connected with the angular velocities Q 'and !2
 of the, two cylinders by the relations

 S,-= A+B/R,, (.)

 a A+B/R22. .....

 Solving these equations A and B can be expressed in terms of R,, Rt, Q, and 122
 an(d

 A = IT12Q1-R2,2I 2 _ Q2 (1 -R,22, /R 2)
 .~- R,"?R t * - :!

 A 1112 ~ 112~~ 1 R2/1{2.(1.3)
 13 _ R 12 ) .... . (1.

 whlere yu =Q 2/2.

 Specification of Symmetrical Disturbance.

 Let u , V-tV;, w, be the components of velocity in a disturbed motion, u is the
 component in an axial plane and perpendicular to the axis, V--v is the component
 perpendicular to the meridian plane and to the axis-that is, in the direction of the
 undisturbed notion-i- is the com-ponent parallel to the axis. The scheme is represented
 in fig. 1.

 Z

 I

 Fig. 1. Scheme of co-ordinates.

 We shall assume that u, v and w are small compared with V, and that the disturbance
 is symmetrical, so that they are functions of r, z and t only ; z is the co-ordinate parallel
 to the axis and t is the time.
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 Equations of Motion.

 Neglecting terms containing products or squares of U) v, W, the equations of disturbed
 mlotion mnay be written

 I a31 v = _ = + 2 A+ v +v VI- a2 q-) p ac ? at r2 7

 atr

 (2.0)

 (2.1)

 . (2.2)
 p Z_

 where p represents pressure, p density, v is kinematic viscosity, and V12 represents the
 a2 i a

 operator - + -. -
 equation o continuity is

 The equation of continuity is

 u + u + . = .
 -ar r- - or r oz

 The six boundary conditions which must be satisfied are

 u = v = w = 0 at r = R1 and r 1= It.

 Assume as a solution

 't = , cos zO et 1t

 v = vU cos Az e (l .Co. . C. t

 Iv = wl sin XZ et,J

 where ui, vi and w, are functions of r only.
 Eliminating p between (2.0) and (2.2) equations (2.0) (2.1) (2.2) and (2.3)

 + w, . .. . . . . . . . .
 r (r

 _N2

 Jvhe b r c tV= 2Au1,. ...

 -2(The boundary conditions are
 The boundary conditions are

 I1 = = w = 0 at 'r = RI and r = R2. . . .

 .. . (2.3)

 (2.4)

 .(2.5)

 reduce to

 (2.6)

 . (2.7)

 (2.8)

 295
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 TI'he fact that there are no terms containing z in these equations shows that the
 normal modes of disturbance are simple harmonic with respect to z, the wave-length
 being 2n/2. a is a quantity which determines the rate of increase in a normal
 disturbance. If a is positive the disturbance increases and the motion is unstable.
 If a is negative the disturbance decreases and the motion is stable. If a is zero the
 motion is neutral. It will be seen from the way in which a enters into the equations
 that it cannot be imaginary or complex unless ua, vu, w1, are complex.

 Bessel FunEctions used in the Solution.

 The solution of equations (2.6), (2.7) and (2.8) is developed by mleans of a type of
 BESSEL functions of order 1 which vanish at r = R1 and r = R,. Let J1 (K,r) and
 Wi (K.r) be two independent solutions of the BESSEL equation,

 V+ -Ks- - 0 . ........ (3.0)

 The general solution of (3.0) is

 f = (J1 Kr) + (KKr) C... (. . (3.01)
 where C, and C2 are constants.

 Let us now choose C, and C2 so thatf vanishes at r == R1 and r 1 tR; we then obtain
 two equations which suffice to determine C,/C2 and

 The equation for K, is

 W1 (KsR) R (3.10) W, (t41) -2J (45r)

 Let the roots of this equation be Kl, K2, K3 * . . . in ascending order of magnitude.
 The equation for C1/C2 is

 C, W J(K,R,) (3.11) c. . . . A >....
 Writing B, (K,r) for

 C,J1 (Kr)- C,W , ...... . (3.12)

 and Bo (c,r) for the corresponding BESSEL function of zero order, namely,

 Bo (K,r) = C1Jo (KCo) ? .2W0 (K), .. (3.13)
 we notice that

 BO(K,r)= -B(c), ...... (3.14) K,ar

 and that Bo (Kc,r) does not vanish at R1 and R2.

 296
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS. 297

 In order to develop any function of r in BESSEL-FOURIER expansions valid between
 the limits R1 and R2 the following formulm will be used* :-

 Jn, (iKr) J (Kc,r) r r KtJn (K 2) J'n (Kt1)- KsJn (KtR2) J n1 (KsP-) }
 REiZ KK K-t.

 - 2 2 {KtJ (K1) J'n (KtRI) -KJn (KtR1) Jn (KsR)} . (3.20)
 Ks -Kt

 anld

 ('12 2 rn/ 2a
 2 J,2 (K,r) r dr = - (12) J2 (K ig - -22 i) J2 (Ks2)
 JRj_ 21\ Ks^/ J2

 -2 J1 n (KSR)+(l )J * * 1(3.21)

 where J, (K8r) is any BESSEL function of order n, and K. and Kt may be real or complex
 numbers. Particular cases of (3.20) and (3.21) when n 0 and n = 1 and K, and Kt
 are roots of (3.10) are

 FBo0 (Kr) Bo (rtr) r dr , . . (3.22)
 R1

 I( B1 (K.,r) B1 (Kr) r dr O, ..... .... (3.23)
 R1

 B02 (Ksr) r dr -= 1 {2Bo2 ( ss )12)} = H21 . . . (3.24) 21(

 B1 (K,) r dr = 2 {RiBo0 (K , )- Bo (K,11)} H ( . (3.25)
 vRB

 Any continuous functionf (r) of r which vanishes at Ri and R, may be developed in
 a BESSEL-FOURIER series

 f(r))= a, , (.) ....... . . (3.30)
 s=1

 This series is valid between the limits R1 and R1 and

 c --j f (r) Bi (Kr) r d.. . . (3.31)

 On the other hand any continuous function F (r) of r may be developed in a BESSEL-
 FOURIER series

 F(r) = bo+ : bB (Kr). . . ..... (3.32)
 s= 1

 ? GRAY and MATHEWS, ' BESSEL Functions,' p. 53.
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 This series is also valid between the limits Rt and R, and

 b= - F[ (r) Bo (Kr) rdr. ..... . (3.33)
 1 Hs R3

 It will be noticed that a constant term occurs in (3.32). At first sight this appears
 surprising. In most BESSEL-FOURIER expansions this extra term does not appear
 because it is possible to express a constant as a BESSEL-FOURIER expansion containing
 all the other terms. In the case of the expansion (3.32) it will be found that it is not
 possible to do this. The functions Bo (1Kr), B0 (K,r), . . do not form a complete
 set of normal functions without the constant.

 Development of Solution of (2.6), (2.7) and (2.8) in Bessel Functions.

 It is found convenient to express ul, v1 and w1 as series of types (3.30) and (3.32)
 because when these series are introduced into the equations (2.6), (2.7) and (2.8) they
 yield linear relations between the coefficients of the various expansions. At the same
 time the form (3.30) is specially convenient because a series of that form automatically
 satisfies the boundary conditions at R1 and R2.

 Integral of (2.7).

 Assume the following series for u1
 c0

 2 = a,,B (r) . ........ (4.0)

 This satisfies the conditions ul - 0 at R, and R2. Substituting this in equtation (2.7)
 ,it will be seen that the complete solution of (2.7) is

 , = C3J (iX'r) + C4 (iX'r) + b,,B, (Kr), . . (4.10)
 m? = 1

 where i is /-1 and C3 and 04 are the two arbitrary constants occurring in the
 complementary function

 X'+X2 /. ... ...... .. (4.11)

 andhe~~" b c o = - (at .. .. ..v) T b a c t v at ZR/ (4.12)

 The boundary condition v, 0 at R1 and R, gives

 3 = C4 = 0. .

 298
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 Integral of (2.8).

 The complete solution of the equation (2.8) may be written in the form

 w, = C5+ C,0 (ix'r) + C7Wo (iX'r) + Z cmBo (Kmr) .. (4.20)
 m = 1

 where C5, C0, C7 are the three arbitrary constants which occur in the complementary
 function-that is, in the solution of

 x ar (V2__X2__ W = 0, (4.201)

 J0 (iX'r) and Wo (iX'r) are two independent solutions of

 (V12_-X2) J (iX'r) = 0.

 Substituting (4.20) in (2.8) the following equation is obtained to determine the
 coefficients cm

 z v (Kmc2 X2) c, Bo (K,r) 2 (A + B b mB (m ) m = 1 a r r ' 't = I

 -- z (Kn aX/2)(,IB1 (Kmr). (4.21)
 mn = 1

 Substituting for bm from (4.1.2) and using the relation

 Bo (Kmr) -K ^BI (K r) ar

 (4.21) becomes

 2 Cr (-) (X ? +K2) B, (K) = (K 2 + x'2) a,IB, (Kmr)

 + 2(A + ) 2 B,1 (r). (4.22) 2m = 1 . (KM 2+X )

 -Treatment of the Equation of Continuity (2.6).

 Substituting for u, from (4.0) and for w1 from (4.20)

 l + aU, becomes ,amBo (Kr), . . . . . (4.30)
 r ar

 so that (2.6) becomes

 0 = z (Kma+-Xcm) Bo (Kmr)+X {C5+C6J0 (iX'r) +C7,W (iXr)}. . . (4.31)

 In order that we may equate coefficients of Bo (Kmr) for all values of m it is necessary to

 expand the terms inside the second bracket in (4.31) in a BESSEL-FOURIER series of
 the form (3.32).

 2 s 2
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 Excpansion of C, + C6J0 (iX'r) + C,7W (iX'r).
 Let

 C,- tCJo (iXr)+C0Wo (ixr)= C-, 2 d,,,r),. . . . (4.40)
 m 1

 then from (3.33)
 1 rl~2 dl, 4 HJ Bo ()C o(') Jo (Wo (X')} d . 41) drit Bo (ic,Ijm~~~~ R(4.41)

 This integral is a particular case of (3.20). Rememberirng that

 B'o (Dn,,Rl) B'o (,R2.) = 0,

 it will be seen from (3.20) that

 di - C6 {Ra2BO (K,DR2) J'O (i'Rl) -R,Bo (K.R Tj) J'O (i'RIj)}
 d H, (1 ([,, +C 7 {R2B ( n,,R2) W/' (iX'R2)- R,Bo (KRt) W'o (Wix}'R)} 4.42)

 The constant term is

 C5_ C I 2c i2; [ 2c {J'o ( ,) -R,J/o (x.Rl,)} c'~ = ~+ (n2-R.12) X'
 +C,7 {R,W'/ o(XR,) -R,W/O (X/P1,)}1 . (4.43)

 Writing
 C'6 ='R {CJ'o (iX' R2) + C7W. (iX'2)} .(4.44)

 C'7 -i'AR, {C6J'o (ix'R) + C7W'o (ix'R)} ..... (4.45)

 The expansion may now be written

 C5 + C,Jo (Aixr) + C,WO ( =X'r)C C'6 : - (2) Bo (Km')

 -+ C 'Bo(Kc,x)) B (r) . (4.46)
 I = 1 M (KM 2 +"IA2

 Since C5, C6 and C,7 are entirely arbitrary constants, and the coefficients of C'6 and C',

 are independent functions of r, we can regard the right-hand side of (4.46) as being the
 complementary function of (4.201), the three arbitrary constants now being C',, C',
 and C'7.

 We are now in a position to make effective use of the equation of continuity (4.31).
 Substituting (4.46) in (4.31) we can equate coefficients of Bo (Klcr). In this way

 C'5 =O
 andHm (+ KCa p Bo (KcaR) p Bo K Ri) r, * -) - *(4.47)

 0 Hr ~T +c&2 + H/2) HD?, (K+' n, (2+ ' /)

 These equations give Cm in terms of a, and C'6 and C'7.

 300
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 Equations for Determining Coefficients a,.

 Next substitute in (4.22) the value of c, given by (4.47).
 There results an equation containing only a, a2, ... a,,, ... and Cnd C'7. It

 is not possible, however, to equate coefficients of B1 (Kr) directly on account of the
 factor A+B/r2 which occurs on the right-hand side. In order to equate coefficients it
 is necessary to expand every term of type (A B/r2) B1 (K,,r) in a BESSEL-FIOURIER
 series of type (3.30).

 Let

 (A-B/r2) B, (r) ,, B1 () +- c,,, () +r) +... 4t- ,Bl (4.50)
 so that

 2ml" (A +B/ 2) B, (K,,r B, (Kr) r r .. ..(4.51)

 Substituting these series in (4.22) and also substituting for cm from (4.47), (4.22)
 becomes

 00 WM (X'2+Kl"2) (Y/Hm (KMP;+) B' n K7:., K+
 f {(-f (+K) ()(6 XB (Km2)2 ,+ 7 - B, (K,aI) + n) ' ) aK1a B1 ( ,, r)

 =4A S ( a * 2 B ,2Bl (Ks.)). (4.52)
 1\ \ K, 2z + X)2 s= 1-

 We can now equate coefficients of B1 (K,r) in (4.52). The result is

 o -A 1 ,,nel al + ' .3 C3 + ~ 3 ' +"'
 _ _K1 2 -t+ X/ K22+)/2h K32+t . .

 +C' t6 B ) (K,) +C'7 B (KInl) + (K' x2) (K-+X') a. . (4.53)

 We have now a system of linear equations connecting a, a2, ... a,,a, C' and C'7. It
 will be noticed that there are two more unknowns than there are equations. There
 are, however, two more conditions of which no account has yet been taken which must

 be satisfied by the solution: w1 must vanish at R1 and at R2.
 Using the equation of continuity (2.6) it will be seen from (4.30) that the conditions

 that w, vanishes at R1 and R2 are

 ,z ,A,Bo,B ( )= .. . . . (4.54)
 m = I

 and

 Cs B, (KR^ ) 0. 0 . . ... (4.55)
 2 = 1
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 Determination of a.

 We have now used all the boundary conditions and differential equations available. We have also the same number of
 equations as unknowns, and since the equations are homogeneous, all the unknowns can be eliminated from them. The
 resulting equation takes the form of an infinite determinant equated to zero. It can be regarded as an equation to determine a. It is

 0  0

 0  0

 K B0 (K11)

 KIBO (K1R2)

 V - -[ Bo (K]I,), - B (,), (2)x2 4- () + xI + 4A X11i, K 14AXH 0 4Kpu jAX 2 K ) (KIX +_aa'
 2~~~~~4x,K +x1

 V KS2 _Bo (KR) 1 A BK (2KR2)A 4AXHT2 4Ax12
 IC 2+

 K]s x 1

 K2Bo (K2R1)

 K2B, (K2R2)

 KC2
 K) +- '2

 K3Bo (K3RI)

 K3Bo (KR2)

 1C3

 K32 +2

 2

 (K2 + X2) (K2 ? X'2) + 3 1.2c
 KKK3+X' K *A

 This may be written
 0

 0

 0 K1 (Kl 2+X/2) Bo (,R), 2 (K22 + 2) B (K2 ) . ...

 0 K (K + x'2) B ( 2), 2 (C?2 + x o ) (.. .

 0 Bo (K{) 0 H Bo1 (K-A2 ), HI HI okI-)j  1C2  1C3

 Ka K K2, (K,R,jK H Bo (K2t), - Bo (KR) ! H2 H2

 Where

 L6m = A 2 + ) (x2 2 + X )2 + mC7

 A, is written to represent the whole determinant, and - = X'2? -.
 1/

 1 (4.60) O

 o

 z

 H

 H

 r-4

 * (4.61) ?
 ( 6 2

 U

 (4.62)

 CO
 C)

 2e1

This content downloaded from 206.253.207.235 on Sat, 31 Mar 2018 08:31:13 UTC
All use subject to http://about.jstor.org/terms



 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 Stability of Symmetrical Disturbances.

 Equation (4.61) may be regarded as a criterion for the stability of given initial
 disturbances of the type specified by equations (2.5). If the value of a determined from
 (4.61) is real, then the motion is stable or unstable according as a is negative or positive.
 If a is complex the motion is unstable if the real part of a is positive. The motion is
 then an oscillation of increasing amplitude. A complete discussion of stability necessi-
 tates a search for complex roots of (4.61) as well as real ones.

 Reasoning on the lines of RAYLEIGH'S analogy it will be noticed that the type of
 instability which ensues when a liquid whose density increases with height is disturbed
 from its position of unstable equilibrium cannot be an oscillation of increasing amplitude.
 Though RAYLEIGH'S analogy cannot be applied without modification to viscous fluids,
 it seems unlikely that unstable oscillations of this type can exist when the disturbance
 is symmetrical. It will be seen moreover in Part II, that careful experiments over a
 wide range of speeds have failed to detect them. It does not seem worth while, therefore,
 to embark on the extremely laborious and difficult work which a search for complex
 roots of (4.61) would entail. I have, therefore, limited the work which follows to a
 discussion of the real roots of (4.61).

 Direction in which it is Profitable to Continue the Discussion of (4.61).

 The object with which this work was undertaken was to search for a mathematical
 solution of some case of fluid instability which can conveniently be subjected to
 experimental investigation.

 It is known that all possible types of steady motion of a viscous fluid are stable at
 very low speeds.* If, therefore, one is examining experimentally the stability of any
 type of steady motion which is dynamically possible at all speeds, it is convenient, in
 carrying out the experiment, to start the flow at a slow speed and to increase the speed
 slowly. If the motion is ever unstable it will become so at some definite speed, and the
 experiment would naturally involve measuring that speed. The instability which then
 sets in is that particular type of instability which occurs at the lowest speed, and
 evidently for this type of instability a 0. O.

 If a be put equal to 0, so that 2 -- 2', (4.61) may be regarded as an equation giving the
 point at which instability will first appear when the speed of the initial steady motion
 is slowly increased. Equation (4.61), however, gives us more information than that.
 Up to the present the wave length of the disturbance which is equal to 2n/ 2 has been
 considered as entirely arbitrary. Equation (4.61) determines the speed at which
 instability of arbitrary wave-length 2 first appears. One particular value of 2 will
 correspond with the minimum speed at which instability can appear. In experiments
 made with viscous fluids this value would be the one which would be observed

 * RAYLEIGH " On the Motion of a Viscous Fluid," ' Phil. Mag.,' 1913, vol. 26, pp. 776-786.
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 MR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

 when the instability first appeared. Probably it is the only one which could ever be
 observed.

 It will be seen that equation (4.61) can therefore be used to predict the dimensions
 and form of the disturbance as well as the speed at which it will appear. Accordingly
 in the numerical work which follows, when a = 0 (4.61) is regarded as an equation in
 two variables. The ratio of the speed of the outer cylinder to that of the inner is
 regarded as a constant, ,u; the speed of the flow is then proportional at all points to
 the speed of the inner cylinder, Q1, which is taken as one of the variables. This enters
 into the equation in the quantities A and ,.c. The other variable is 2. To determine
 the instability which will first appear with any particular value of /t, i.e., Q2/1 ,
 various values of 2 are inserted in (4.61) and. the one which yields the minimum value of
 Q, is taken.

 To prove that the steady motion is unstable at slightly higher speeds, and stable,
 so far as real roots of (4.61) are concerned, at slightly lower speeds of the cylinders, it
 is necessary to show that a slight increase in 0Q. gives rise to a small positive value of
 a, while a slight decrease in Q1 gives rise to a small negative value. It is shown later
 that this is the case.*

 Approximate Formulae.

 If any particular values of R1 and Re be taken, and also a particular value of u, it
 would certainly be possible to find the corresponding numerical values of QI and i from

 (4.61). The labour involved would, however, be so great that it might take months
 to perform the computation in a single case. To complete the investigation would
 necessitate finding solutions for various values of R2/R, and for a complete range of
 jt from large negative to large positive values.

 These considerations show that it would be practically impossible to undertake a
 complete numerical discussion of the problem. On the other hand it will be shown in
 the second part of this paper that the dimensions of the apparatus which was constructed
 to investigate the problem, impose a limitation on the range of ratios 1R2/R1 with which
 it is possible to perform satisfactory experiments. In that apparatus it was found
 that if the radius of the inner cylinder was much less than half that of the outer one,
 effects due to the ends of the apparatus began to be appreciable and difficult to
 eliminate, so that the initial motion ceased to be the same as that between two infinite

 cylinders. Most of the experiments were therefore conducted with cylinders for which
 R2-Ri was considerably smaller than either R1 or R2, that is to say the thickness of
 the space between the cylinders was small compared with their radii.

 Under these conditions it is possible to reduce (4.61) to an approximate form which
 can be used effectively for numerical calculation. Writing d for R2-R, the work can
 conveniently be carried to the second approximation, so as to include small terms-
 involving the first power of d/R,, but not those involving (d/R,)2.

 * See p. 311.

 304

This content downloaded from 206.253.207.235 on Sat, 31 Mar 2018 08:31:13 UTC
All use subject to http://about.jstor.org/terms



 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 Approximate Expressions for Bo (Kmr) and B1 (Kmr).

 Writing K,,r -x it will readily be seen that in order that B1 (Kmr) may vanish at
 r = R1 and r = R2 when d/R1 is small x must be a large number. Hence the ordinary
 asymptotic expressions for BESSEL functions can be used.

 The asymptotic expansions used are correct to the second approximation, i.e., they
 include terms in l/x but not terms in 1/x2. They are*

 2VIx J1 (x) -

 4/ ?rxW1 (X) -

 / 7r\ 1 7r

 cos x- 4-8x sin s^x- , ,,? (,_ 4 8x 4

 sin x- + 8-cos x-4 )
 7 7r\ 3 . / 7 \

 -cos x-4 +8 sln - 4 .

 (5.0)

 v'KnB1 (x) = {CAlJ1 (X) + C'2W (X))}2 ,

 and let the constants C', and C', be chosen so that

 I/KnB1 (x) - (X)-- siil (x--7r + e).
 Then from (5.0)

 and

 3 d C' + 8-- C'2 = cos
 83 ?.

 -C,2 + I3 cC = sin !'.
 0 8 .

 Solving (5.13) and neglecting terms in 1/x2 e' can be regarded as constant
 range of values of x corresponding with the space between the cylinders,
 following expressions are obtained for C'] and C'2

 (5.11)

 (5.12)

 .(5.13)

 over the

 and the

 3
 (C' = Cos e! -+ sin e,

 8x

 3
 C0 = - sin e+ - cos E'

 8x

 To find the corresponding expression for Bo (x), note that

 vKLBo (x) = {C'1J-o (X) + C'2Wo (X)} V/2,

 substituting from (5.14) and (5.0)

 Vi, jBo. (x) = X- {cos (X-T 7+ e') + sin (x -P er)} .

 See JAHNKE and EMDE, "Functionen Tafeln," p. 99.
 VOL. CCXXII,--A, 2 T

 Let

 (5.14)
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 Next replace x by K,,r and put r = Ri -y. y is then the distance of any point from the
 inner cylinder. Choose e' so that

 KnaRl-4r + e = 0.. . (5.16)

 B1 (Kmr) then vanishes at r R1, and (5.12) becomes

 Bi (Ksr) = (R, 1y)- si+ll K^y,, . . . (5.17)
 and (5.15) becomes

 Bo (Kr T') == (R1 y)- -cos Ky +2 (, silli Ky . (5.18) L 2 (RIi+ ?) K, J

 The values of K^, are found by putting B1 (,,,R2) 0, i.e., sin (K,d)- 0. Hence
 evidently

 K11 = mrd, . . . ..... (5.20)

 where m is a positive integer. The successive values of K,, are

 7r/d, 27/d, 3,/d,....

 Writing K for a/d so that Kr =r m the asymptotic expression for the BESSEL
 functions up to and including first order small terms are

 B, (K,r) = (R1 + y) sinmKy, ...... . (5.21)

 Bo (r,fr) = (RI+y)-" {cos mnKcy+ [2mK (y+gR)]- sin mky}.. . . (5.22)

 It will be noticed that if we had attempted to proceed beyond the second approxima-
 tion it would not have been found that K m- Mnc, and the work would have been much
 more complicated.

 Approximate Expressions for the Terms in (4.61).

 In the first two rows of the determinant we can replace

 Bo(KmnR,) by (R1)- and Bo0(R2) by (-)mIR- .. (5.30)
 Km = mK and X' is the same as X since - = 0.

 In the first two columns of (4.61) appears H,. From (5.30) and (3.24)

 H, = (R,-R1) = .. . ... (5.31)

 It remains to find the approximate expressions for C, and L',m. At this stage some
 care is necessary. On referring to equation (4.51) it will be seen that ,,, is an integral
 containing the expression A+B/r2 which represents the angular velocity of any annulus
 of liquid in the undisturbed state. When d is small compared with R1 and when
 neither 0Q nor Q2 are very large the quantities A and B/r2 are both large and nearly
 equal in magnitude, but of opposite sign. For this reason therefore it is necessary to
 express Ad-B/r2 in terms of 02, u, d and R,. This has been done, the expansion being
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 carried to the second approximation was to include terms containing the first power
 of d/R,. It is

 (5.32)
 3d)

 2}RI

 where =- R2/R1.
 This expression is now substituted in (4.51) which becomes

 sC H- Jo +

 If Ks

 + y dsin mKy sin sKyKdy,

 Y= - (1-).
 KR1

 Let Ky = n, thenl

 scm = -- fOa+3 +? '7 sin mn sin d. . .
 HIfs i not eual to

 If s is not equal to m

 ' sin mm, sin s dr = 0,
 0

 J'1 sin m,sin s,i d? = 0, when n + s is even,
 0o

 - 4ms
 = (92s\2)2 when m + s is (m2_ 82)2

 2fsin m, s in sin dr + s e-ve J0o~~ (m2_-s2)2, + s even,
 - 47rSins
 = m- s~)2, m + s odd.
 (M- s)2

 odd, I

 sin2m'i di =- r.1

 J sin2 m dE = ' 2,

 2 sin3 7r

 ar

 Inserting the values of a, f, y, Hn, it will be found after some reduction that

 sCm (8ms2 (1-M) S odd, SC (_s )2 7., m + s odd,

 8ms'1(1I 3d '

 ,d

 8,r,(1-t)) Rn+- 4evn, '( J
 2 T 2

 where

 (5.33)

 (5.34)

 (5.35)

 . . (5.36)

 If s- m

 . . . . (5.37)

 (5.38)
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 308 MR. G. 1. TAYLOR ON STABILITY OF A VISCOUS LIQUID

 Approximate Expression for Determinant,

 On replacing the terms in the first two columns and the first two rows of the
 determinant A1 by their approximate values, some reductions can be made immediately.
 The first column can be divided by 2Kd-'1R1- , the second by 2KdllR2-, the first row
 by K3R,-' and the second by K3R2-!. If 0 be written for A/K (4.6) becomes

 0 0 l(12+02) 2(22+02) 3(32 +02)

 0 0

 1. -1

 2 2

 3 -3

 1 (12402)

 I/

 2(2 + 02) 3 (32 2)

 1C2  1C3
 (5.40)

 L'2

 3C1  3C2  L'3

 Next perform the following operations on this determinant :-

 (1) Divide the (n+2)th column and the (m+2)th row by m.
 (2) Add and subtract the first two rows and the first two columns. This reduces

 every alternate term to zero.
 (3) Multiply all terms by 2{ 8Q1 (1 -u) } - but divide these factors out again from

 the first two rows and columns. The equation A, = 0 may now be written.

 0 0

 0 0

 12+02

 0

 0

 22+ 02

 32+02

 0

 I  0 Li

 1
 0 I 1

 (22_ 12)2

 3d

 211, (32 12)2

 0 1 (- 1) (4 2_12)2

 1 3d

 ( 1 -2 )2 2 1 R1 ( 12_32)2

 ? 2- ? R( 2 2_ 32)2

 1
 :L (32- 22)2

 3d 1

 2R, (42-22)2 (42-32)2

 Where A2 is used as a symbol to represent the determinant and

 L, 7r28(1-492 4v2(M + 2)3+ Q-+ 1 -+-l ( +-m \
 8Qi(I-t) m2t 4Ad402 +1 2 R(1/ 4+n2 '

 (5.41)

 I
 I
 I

 ? ?
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 Remembering that

 lR,2 , 11( 2\-r

 it will be found that

 l l r2 d Pl _M 2 +2 03 )+ ) ' LI - i {_ R (1? 2m _ " . . } . (5.42)
 where

 7r4v2 (R1+ 1l2)
 p Q 2 2 2M/RJ2) (5.43) 212d3R12 (1 -R22/R12) (1 -,) . .. (

 Since aQ only occurs in A2 through the term P, P may be regarded as the variable.
 It is required therefore to find the maximum possible value of P consistent with (5.41).
 To do this it is necessary to insert a number of different trial values of 0 in A2 and
 then to solve (5.41) to find P in each case. The value of 0 for which P is a maximum
 determines the dimnensions of the eddies into which the flow will resolve itself when

 instability sets in. At first sight this seems to be a very complicated piece of work,
 but it is possible to perform certain operations on A2 which greatly increase the rapidity
 with which its roots converge to definite values. These operations will now be
 explained.

 Limiting Case when is nearly equal to 1.

 When ,u is nearly equal to 1 the diagonal terms of A, which contain the factor (1 -^)-1
 become large compared with all the other terms. Consider the determinant obtained
 by taking the first m+2 rows and columns of A2. If this determinant be expanded
 each term will contain m+2 factors, and the greatest terms will be those containing the
 maximum number of factors Lm from the diagonal. In the limit when u -- 1 these
 terms will become infinitely great compared with all the others. Since two of the factors
 of each term must come from the first two rows and two fromn the first two columns,

 neither of which contained any of the Lm terms, it follows that no term can contain
 more than m-2 factors of type Lm. The limiting value of the determinant will
 therefore be found by taking all terms which can be obtained by choosing a term from
 each of the first two rows, a term from each of the first two columns and m -2 diagonal
 terms.

 Each term is of the form

 LIL )... L+6; (LL2Lm) (S2 +- 02) (t2 + 02),

 where s and t are two integers, one of which is even and the other odd. It is evident
 therefore that the limiting value of 2 can be expressed in the form

 LtA = T x12 + 02 32+ 02 52+02 /22 4 + . (5.50) lLUt A2 = (4LL2L.... .L,1.. II) (12?0? ?+ _+_202 42- + . (5.50)
 /x->-1i \ 4 A4 4L, 2
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 310 MR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

 Evaluation of the Greatest Root of (5.41).

 It is clear that the greatest value of P consistent with the equation A2 O" is the
 greatest root of the equation

 1 +02 32 02 (51 + .. = O. (5.5.) 1I L3
 Writing

 P' l- P. .. (5.52)
 1+/

 Neglecting - (I-7) which -> 0 as , + 1 (5.51) becomes

 12 (12+02) + 32 (3202) + 0)(553) l^ l^28") _ 3+ (3^0) + ... = o . (5.53)
 P_ (12+02)3 1i_ (32+02)3 1- - -( 02 02

 For any particular value of 0 it is a simple matter to approximate to the greatest root
 of (5.53), which evidently lies between P' = 2 (12+02)-3 and P' = 02 (32+02)-3 After
 a few terms the 1 in the denominator becomes small compared with

 (m2 + 02)3.

 Neglecting it, the 2 (m+-l)th term is then

 m202

 pt (m2?+ 02)2'

 The rest of the series including this term is then

 02 m2 2+ (m+2)2 1 5
 Pf (M( + 202) ( + )2 + 02)2 * (5. 4)

 After a few more terms it will be possible to neglect the 02 which occurs in the
 denominator of each term. If the first term inside the bracket of (5.54) for which
 it is possible to do this is

 82

 (2 + 02)2'

 the remainder of the series including this term is

 1 1 1

 s2 (s+2)2 (s +4)2+.

 This series can be summed exactly.
 Proceeding in this way it was found in a rough calculation that the greatest roots of

 (5.53) are associated with values of 02 in the neighbourhood of 1. Accordingly the
 22+ - 02

 * The greatest root of -L + ... = can easily be shown to be less than the greatest root

 of (5.51).
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 values of P' were calculated to three significant figures for the series of values
 02 -0-8, 0*9, 1.0, 1-1, 1 2. The corresponding values of P' are 0-0562, 0-0569,
 0-0571, 0.0569, 0-0563. The variation of P' with 0 is shown in a curve in fig. 2. On

 .0570 ....

 ,0565

 0,560 -0-- -
 0'8 0*9 1'0 *1 1,2

 Fig. 2.

 looking at that curve it will be seen that the maximum value of P' is 0-0571. It
 occurs when 02 - 1 00. There is no reason to suppose that the correct value of 02
 is exactly 1, but it almost certainly lies between 0-98 and 1 02.

 Stability when the Cylinders are rotating in the same direction with slightly different
 velocities.

 We are now in a position to make some definite predictions about the stability of
 the flow when It is nearly 1-that is, when the cylinders are rotating in the same
 direction with slightly different velocities. In the first place the motion changes from
 being stable to being unstable when 01 passes through the value given by*

 v (Ri+R ) a
 (Tr ?R) '(I-< ? 0571 (5.6) 2 Q,2d 3R-2 (I ;]". 2] 2) (--/t) 1~ 0 0

 It seems evident that at speeds below this the motion must be stable while at higher

 speeds it must be unstable, but it is perhaps worth while to prove that this is the case
 by writing down the equation for a and showing that it changes from a negative to a
 positive value as Qi increases through the value given by (5.6).
 Retaining terms in a from (4.61) the equation equivalent to (5.53) is

 m 2(m2 + 02 + x) 0 = Z --- (m2+O2+) . . . . . (5.61)
 ? d_ P (Ff2 + 02) ( + 02 + x)2

 0

 where x = . If P' differs from the value it would have if a were 0 by a small
 KV

 quantity P', x will also be smnall and from (5.61) it will be found that

 2 (2t+ ( )32 (M+ ?02)-
 { n odd PI 2 + )} = 2 L 2 (in 02)1.1.| (5.62)

 _ o,u =/ -2 __ (n,2 1 02)3 02

 * From (5.43) and (5.52).
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 Since the series inside the square brackets are positive when P' is positive, it appears
 that x is positive when WP' is negative. Also from (5.43) and (5.52)

 jP' 3Qf
 p= -2 ,

 where 6Q 1 is the change in Q2 corresponding with 65P. Hence when 6Q1/21 is
 positive, i.e., when the speed increases above the speed for which a == 0, a is positive
 and the lmotion is unstable. When the speed is slightly less than the speed for which
 a 0, the steady motion is stable for symmetrical disturbances.

 Equation (5.6) gives a positive value for i12 if p, is less than R,2/R22. If, therefore,
 2/l 1i < R,2/R,2 the motion is unstable for values of 0Q greater than that given by
 (5.6). If Q2/ Q, > R12/R22 the value of ?1i given by (5.6) is imaginary and the mnotion
 is stable unless a negative root of (5.53) can be found. It is obvious that there are no
 negative roots of (5.53) because a negative value of P' makes every term in the series
 on the left-hand side of the equation positive. The sum of the series, therefore, cannot
 vanish.

 Equation (5.6) shows that Lord RAYLEIGH'S criterion for stability of an inviscid fluid
 is a limiting case of the criterion for a viscous fluid. Lord RAYLEIGH'S criterion was
 that a fluid would be stable at all speeds if Q2/ Ql > R12/R22, and unstable if
 Q2!/ Q1 < R12/R22. The former of these is equally true for viscous fluids, but the
 latter is modified in the sense that if Q2/ 1 < R42/R12 the motion is unstable only
 if OQ is greater than the value given by (5.6). It should be noticed that if the analogy
 on which Lord RAYLEIGH based his theory is strictly adhered to, the case when
 2/ Q, < R w2/R2 would be unstable at all speeds, even in a viscous fluid; for a
 heterogeneous fluid in unstable equilibrium under gravity is not more stable when it is
 viscous than when it is inviscid.

 The second prediction which can be made is that in the unstable case the type of
 instability which will form is periodic along the length of the cylinder, with a wave-
 length almost exactly equal to twice the thickness of the layer of fluid between the
 cylinders. This is a consequence of the fact that 0 = 1, for the wave-length of the
 unstable disturbance is 2t/- = 2n0 = 2d/0 and this is

 2d when 0 = 1. ....... (5.7)

 It will be shown in the second part of this paper that the symmetrical type of
 instability does actually occur under experimental conditions, and that both these
 predictions are verified with considerable accuracy.

 Numerical Approximations when 1 -, is not small.

 When 1 - - is not small the first few diagonal terms may be of the samle order of
 mnagnitude as the neighbouring terms which are of the form (m2 -n2)-2, but on passing
 down the diagonal of A 2 the (m + 2)t1` term contains a factor of order of magnitude
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 Pm4, while the other terms in the neighbourhood of the diagonal decrease with the
 factor (m2-n2)-2. This is largest when m -n 1, when it is of order m-2. The diagonal
 terms, therefore, rapidly become very great compared with all other terms. It appears,
 therefore, that in this case the effect of the parts of the determinant which are situated
 far from the top left-hand corner may be expected to be of the same kind as that of
 the same terms in the case when 1-,u is small. The difference is that in the case

 when 1 -u is small all the diagonal terms are large, whereas in the case where 1- e
 is not small, all except a few terms near the top left-hand corner are large.

 We have seen that in the case when t -> 1 no terms are of importance except those
 in the first two columns, the first two rows and the diagonal terms.

 Hence in this case

 0 0 12+a 0 32+02

 00 0 2a2+-0 0

 1 0 LI 0 0
 Lt A= . . . (6.00)

 0 1 0 L, 0.

 10 0 0 L3

 / . 22 02
 = L1L2L3 Li4... -qL?0+3 -+2T...) +- ?IL ?...). . . . (6.01) \ 2 L 3'' ( a La ) I 22 4 ) ( -

 The product form (6.01) of A2 was obtained from (6.00) by direct expansion of A2,
 but it might equally well have been obtained by performing the following series of
 operations on it: Change the signs of the first two columns. Next divide the third
 column by L1, the fourth by L2, the fifth by L3, ..., etc., then to the first column add
 the third, fifth, seventh, ..., columns, and to the second the fourth, sixth, eighth, ...,
 columns, so that

 12+02 32+02 12+02 3a+02
 t+ ... +0 0

 L1 L3 L L3

 22a + 0 42 + 02 22a 0 82 0 -+ +... o 0

 Lt A,= L4 . (6.02)
 0 0 1 0 0 ...

 0 0 0 1 0 ...

 The effect of all the distant terms is now concentrated in the first two diagonal terms

 which are the same as those in (6.01).
 VOL. CCXXIII.-A. 2 U
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 The same operations may be performed on A2 when 1-,/ is not small. In this case a determinant is obtained which
 does not reduce to the first two diagonal terms, but, on the other hand, all the other terms contain factors of the form
 (ma-2)-2 For this reason the determinant derived in this way, which will be called A,, converges very:much more
 rapidly than A2. 3

 1 1

 L +i3 3 +2 )

 LL, (1-32)2+ L5 (12- 52)+2 '

 1 1 .

 LI (2i2-122 L3 (22_ 32)

 0  12?0+
 V + e

 22 + 42+0

 1 1

 1 (1

 kLX (2-4')2 + L, (2-2) +" **' L (2 WL4 2-42 L2 (22,.6 2)2 J} L1 (2

 0

 0

 32 + 0e

 L3 '

 0

 1 e

 I 1

 2_ 12) I L (22'-32')

 e I - + l1 1 e 1
 LI(328 12)2 + L (3252) * '' ' L2 (3 -22)2) , 32-2)2 ,34) L1(32- ' L(32 )'

 1

 (6.03)

 0 z4 H

 H

 Z4

 C2

 0

 ?j2
 cz

 where e is written for 3d
 12E

 **s
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 Determination of Roots of A^ = 0.

 To determine the roots of the equation A3 = 0 it is necessary to assume a value
 for 0 and a value for P, and to calculate the values of the determinant formed by
 taking the first 1, 2, 3, 4, ..., rows and columns of A3. Owing to the fact that
 all the diagonal terms after the first two are equal to 1 the actual numerical value of
 the determinant converges to a definite limit. Taking a value of 0 and a series of
 suitable values of P, the value of P for which A3 changes sign is found by interpolation.
 This is the root of A3 0 which corresponds with the particular value of 0 chosen.
 By taking a series of suitable values of 0 the maximum root of A3 = 0 is found, and
 also the corresponding value of 0.

 In evaluating A3 for any value of P and 0 the method adopted was first to find the
 numerical values of the terms, then to eliminate successively the third, fourth, fifth, etc.,

 rows and columns. The effect of this procedure was to alter the values of the first
 four terms in the top left-hand corner of A3. It was found, however, that after this
 operation had been repeated a few times no further alteration occurred, the effect of
 the distant terms being too small to be appreciated. By treating the determinant in
 this way it became obvious how many rows and columns should be taken in order to
 evaluate the root to the order of approximation which was desired.

 Evaluation of P and 0 for the case when y lies between 0 and 1.

 The case first solved was that for which d is negligible compared with R1-that is
 to say, the space between the cylinders is very small compared with their radii.
 Taking u = 0 and 0 = 1 it was found that if the first term only of A3 is taken, the
 root is P = 0 0571. This result has already been given (see p. 311). On taking four
 rows and columns the root is P = 0-0577, an increase of 1 per cent. On taking six rows
 and columns the further change in the root is of order 0.1 per cent. It appears,
 therefore, that if an accuracy of 1 per cent. is desired it is unnecessary to take more
 than four rows and columns of A3. Moreover, it was found that practically the whole
 change from 0 0571 to 0 0577 is due to the terms involving the factor (22 -12)-2.

 Under these circumstances it appeared probable that the root of A3 = 0 could be
 obtained by adding a small correction of about 1 per cent. to the highest root of f = 0,
 wheref1 is written for the first term of A3, namely,

 12+ 02 32 +02
 Li L3 ..

 It has already been pointed out that as ,u -> 1 the root of A3 = O approaches that
 of f 0O. It is clear that for all values of t between 0 and 1 a small correction to
 the root of f O = 0 can be found which will give the root of A3 = 0.

 2 2
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 316 MR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

 The value of this correction which will be called 6,P may be found as follows : Taking
 four rows and columns of A3 the part of A3 due the extra terms containing (22 -12)-2
 is found to be

 (. 12+02)(fl 22-?02

 - (2-- 2)4 L-)L (^-iTIA~~

 where f2 is the second diagonal term in A3, namely,

 22+02 42+02
 - + + ....

 La L4

 If P1 is the root of fJ- 0, P,+-1P is the root of A3 = 0, if

 12+02 /2 2?- 02,

 8P5 1 a LL2(22-2) o aP 1L,L, (22_ r2)4 -  . . . . (7.00)

 The approximate value of A3 is flf2 so that

 aa3, f2 Of ap
 ap alap aP '  (7.01)

 and since f, = 0,
 A3, afI
 ap ap.  . . . (7.02)

 Differentiating f; it is found that

 aI _ (12+02 L,
 aP L12 aP

 ?32+ 02 L .
 L3a2 P- ...

 -t-~~~~

 ap aP..)

 And, since in this case L, = 162" (?1 - 2 (2C+02)3)

 ILIn _ 7r(ma+ 02)3
 aP 6Im20

 Hence

 ap aP
 7r2 (m2 + 02)4

 1602 , o, 2L 2 m ' L 1JV )fld Od I(LJ

 Hence combining (7.00) and (7.05)

 ,1P =
 ( - 12+02A _- 22+a02 \l L1 L /

 (2'-- 12)4 LLfL, 72 (m2+ 02)4' \ -^ . ) 1 ^S ] t02 ) i 2Ly J mb6 od,, WI L,,a

 (7.03)

 (7.04)

 . . . . (7.05)

 (7.06)
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 12 3+ 82 22 __
 In this expression f,-' L- , -2+ 0 L2 and f2 are negative while Li is -L Ij

 positive. Hence S3P is positive.

 Greatest root of f = 0.

 The root, P', of the equation

 x ~ _m22r = 0 (707) m odd m {-P' (,+ 02)3/02} ... 07)

 has already been evaluated for a certain range of value of 0.
 It is evident that the root of

 ~2{ ma2+0 ) =
 2 {+A P (1 + 0 )/O2

 m 1--

 In the case when 0 = 1, the root of f;=0 is, therefore,

 P = 0-0571 i1_ . ..... . (7.08)

 Evaluation of Correction to Root off1 = O and to 0.

 Using this value (7.08) in evaluating the various constituents of (7.06) it is found
 that

 rP= o000056( ) ..... . (7.09)

 This correction tends to zero when / -> 1 as was to be expected.
 The next step is to find out whether this correction varies sufficiently with 0 to alter

 the value of P which corresponds with the maximum root of A3 = 0. On inserting
 the values 02 = 12 and 02 = 0 8 in (7.06) it was found that 61P increases with
 increasing values of 0, but that the increase is not sufficient to alter materially the
 maximum value of P. It is found that there is a slight increase in the value of 0 which
 corresponds with the maximum value of P, but in the range of , from 0 to 1 it is too
 slight to be worth discussing.
 For the case when d is negligible compared with R, the greatest root of A3, therefore,

 occurs when 0 - I and it is

 P = 0-0571(1+ +- 000056 ( ). ". (7.10)
 U-M/ ' M+a/
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 Root of A3 0 twhen d/R, is small, but is not neglected.

 Returning now to the expression (6.03) for A3, it will be seen that the ratio d/R1
 occurs in every term, either in the factor e or in L, . The terms containing e are small

 compared with the terms which give rise to the terms 0-00056 (--+) in (7.10) and as

 we are only considering at present the range of value of I,# for which this is small compared

 with 0.0571 (1+-/), it follows that all the terms in e can be neglected. The correction

 to the expression (7.10) due to the fact that d/RI is not indefinitely small therefore
 appears in the analysis only as a change in the values of the terms L. ; and in these

 terms it always appears as a correction to be subtracted from the factor 1 - . This
 1-/-

 correction may be divided into two parts.

 (a) The part d/2R, which is the same for all values of m, and (b) the part 3d
 2m27,2

 which becomes very small when m is large, but amounts to 4 of d/2R1 for m 1. If
 the second part (b) did not exist, then evidently the approximate root of A3 0 given

 by (7.10) would still apply if 1+ 2d were substituted for 1 /.
 1-u 2R1

 On looking at the expression (5.42) it will be noticed that owing to the factor (m2-i 02)3
 which occurs associated with P in the expression for L,,, the part contributed by the

 whole of the factor 1-} R - (+ 2 32a) becomes very small compared with
 (02+m2)3 P/02 as m increases. Hence it appears that if the part (b) were taken as

 3d
 constant and equal to d for all values of m, very little error would be caused. To

 estimate its magnitude, the errors in L1, L2, L3 and L4 due to this erroneous approxi-
 mation have been calculated for the most unfavourable case which will be required,
 namely, P = 0.05, 0 = 1, , = , dlR =- . The errors are: in L1, 0; in L2, 0-7 per
 cent.; in L3, 0-1 per cent.; in L4, 0 02 per cent. The errors in L1L2 ... are therefore
 never so great as 1 per cent. if this approximation is used.

 The object with which these approximate calculations were undertaken was to provide
 a basis for comparison with experiments. As measurements of the speed at which
 instability sets in can hardly be expected to attain an accuracy greater than 1 per cent.
 it does not seem worth while to attempt to attain greater precision than this. We

 / 3 \.d d in (5\42) shall therefore substitute i+ 22 r 0 or 0*652 d for (- in (5.42).

 The value of P is therefore to this order of approximation given by the expression

 P= 0.0571 (1+' -0O652 d)O00056(? o281)5d. . (7.11) - +0-00056 1 -0652 . . (7.11) I1--, RI/
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 This, together with the definition of P,-(5.43), forms the criterion for stability. The
 expression (7.11) may be expected to hold for positive values of It from 0 to 1, but it
 holds over a greater range than this. It holds in fact till the second term ceases to be a

 small correction. In calculating numerical values for P it was found that this occurred,
 in the cases considered, at about the value , =- 0.5.

 Evaluation of the Root of A3 = 0 when t is Negative.

 In the case when -t is negative, that is when the cylinders rotate in opposite directions
 it is necessary to take account of several rows and columns of A3. Being unable to
 discover any approximate formula of the type given in (7.11), it was decided to select
 particular values for ,u, R, and R2, substitute in equation (6.03), and determine the
 maximum value of P and the corresponding value of 0 by arithmetical exploration.
 It was expected that the results so obtained would bear a qualitative resemblance to
 the results obtained with any other negative value of au.
 The particular values chosen were t = --1.5, R1 - 3*80 c.m., R2 - 4 035 c.m.

 These values were chosen because, at the time this part of the work was begun, some of the
 measurements to be described in the second part of this paper had already been carried
 out by means of an apparatus which consisted of two cylinders of these two radii.
 A certain amount of preliminary exploration was first undertaken. Assuming the

 value = 1 the values of the determinants formed by taking the first 1, 2, 3, 4, ... etc.,
 rows and columns of A3 were found. Calling these A1, A 22, A3, ... it was found that
 they formed a series which appeared to converge rapidly to a definite limit after the
 fourth or fifth terms; it was found also that the limit towards which the series
 appeared to converge changed sign as P passed through a value in the neighbourhood
 of 0 001.

 Further exploration seemed to show that the root increased as 0 increased; accordingly
 after a number of trials to determine more precisely the range within which the root
 lay, the values of A^1, A 2, A, A8were calculated for values of P which appeared to
 lie on opposite sides of the root. These calculations were performed for the following
 values of 02, 1 5, 2-0, 2 25, 3 0, 4 -0; 5 0. In this way the table (II) was constructed.
 In this table the values of 0 and 02 are given in the first two columns. The third
 column contains assumed values of P. The fourth to the eighth columns contain the
 values of A4, A55, A^, A, and A8g. The last column contains the value of P obtained
 by assuming that A88 varies uniformly with P in the small range between the two
 calculated values on either side of the root.

 On inspecting the table it will be seen that the convergence of the determinant is
 very rapid after the fourth row and column, and that very little advantage is gained
 by using eight rows and columns instead of six or seven. On the other hand it was
 necessary to carry the calculations as far as A8 in order to be certain that this was the
 case.
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 TABLE II.-Values of Determinants used in calculating Roots of A3 - 0 whe

 0.

 1 225

 1.414

 1.50

 1 73

 2-0

 2 236

 02.

 1.5{

 r-0

 2.25{

 3(0
 L

 4.0

 5 I

 P.

 0-0012

 0-0013

 0-0012

 0-0013

 0'0013

 0-0014

 0-0013

 0-0014

 0-0012

 0-0013

 0-0014

 0-0012

 0-0013

 0-0014

 0-0015

 A44 X 10-4.

 -0-55

 +1*08

 --0 08

 +0-88

 +0-96

 +2*07

 +2'38

 +3-50

 +4-61

 +6 81

 +41-40

 A-13-91

 +16-1

 +16-9

 +17-5

 A55 X 10-4

 4 -

 L---

 -1-33

 +0-66

 -2-12

 -0-58

 -1 07

 +0-57

 -2-36

 +0-09

 -7 30

 -0-67

 +2-48

 --3 61

 +2-8

 +6 5

 +9 65

 A6 X10-4

 -0-86

 +1-06

 -1-30

 +0-10

 --019

 +1-03

 -1 06

 +1-09

 -6-18

 -0-35

 +3 37

 -0-83

 +4-8

 +8-3

 +10.9

 A77X 10-4.

 -1-19

 +0-17

 -0 14

 +1-19

 -0-90

 +1 23

 -4-57

 -0-12

 -0-41

 +5.2

 +8 4

 +11.0

 A88 10-4

 -1-18

 +0 20

 -0-13

 +1 22

 -0-86

 +1 26

 - 4 63

 -0-07

 -0-31

 +5-3

 +8-5

 +11.1

 3n U = -1-5.

 Calculated
 Root.

 }0o00124

 }O-001286

 J

 )0-00131

 }0.00134
 I

 T0 00130

 00121 I0.00121

 [

 To find the maximum value of P the roots given in the  last column of Table II. were

 plotted on a diagram, the ordinates being the corresponding values of 0. This diagram
 is shown in fig. 3. It will be seen that a smooth curve can be drawn through all the

 *001 35 .p ~

 *00130 -

 ?00125 -

 .001 20. ...
 125 1,5 157 15 2'0 2*25

 Fig. 3.

 points, and that the maximum height of this curve occurs when 0 = 1 73, and that at
 this point

 P== 0-00134, ...... ... (7.13)

 I

 - -

 I

 I - 1

 .

 :f
 I
 i

 i
 I

 I

 I

 i
 I

 __

 I
 I
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 In calculating the determinants given in Table II it was found that the effect of the
 correction due to all the terms containing e in A3 was small compared with the correction

 0 652 d/R1 which is subtracted from ,--. If the effect of the terms containing e be

 neglected, the work just described is applicable to other values of d and R1, but the

 value of u must be altered so that the value of 1 -- -0 652,- is the same as it was
 in the case which has been calculated.

 In this way, for instance, in the case when R1 = 3 55, R2 4 035 it is found that
 the values 0 -173, P 0-00134 apply when

 - p= - 1- 347. . ... .(7.14)

 Stream Lines when Instability sets in.

 The results which were obtained in the preceding section will be used later in
 comparing the actual disturbances which arise in unstable fluid flow with those predicted
 theoretically. In the meantime it is of interest to construct some diagrams showing
 the stream lines which are to be expected when instability sets in. These diagrams
 are useful in designing apparatus for testing the mathematical predictions, because
 the selections of the most suitable experimental method for demonstrating the instability
 of the flow, if it exists, will depend on the particular type of instability which is
 expected.

 The particles of water flow in complicated three-dimensional curves. On the other
 hand the component of velocity in any meridian plane through the axis can evidently
 be represented by the Stokes Stream Function r. In the general case r is related to

 u by the relation u K= , so that
 - " ** *r dr... . .. .

 r(3r

 = e cos (xz) I a3,,B (K,,r). .. (7.20)

 Dropping the factor et/2L which does not affect the forms of the stream lines, in the
 approximate case when the asymptotic expression (5.21) is used for B1 (,Kfr), this
 becomes

 . = (Ri+t2)S cos (OKZ) 2 a, Sill McY. . .. . (7.21)

 To construct the stream lines it is necessary therefore to calculate the constants a,,,.
 Two cases will be considered: (a) the case where ,u is nearly equal to 1, and (b) the case
 where p - 1'5.

 (a) Stream Lines when u = 1, 0 = 1 .-In this case the values of am can be obtained
 directly from an inspection of equation (6.00). Retracing the operations by which
 6.00 was derived from (5.43) and leaving out an arbitrary constant which determines
 the magnitude of the disturbance, it will be found that when mn is odd
 VOL, CCxxIII.-A, 2 X
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 where

 when mn is even

 =02+L1 a=.

 -2-

 L = -- {1-0-0571 (Mn21-I)f},
 16n2

 a.-=O. J

 (7.22)

 The values of a,, obtained from (7.22) are given below (Table III).

 TABLE III.

 Using these values of a?,
 ranging from 0 to d, or 7t/K.

 the values of lan sin lnKy were calculated for values of y
 These are given in Table IV, and are plotted in the curve

 TABLE IV.

 18y/d 0 and 18 0-5 and 17-5 1 and 17. 2 and 16. 3 and 15. 4 and 14.

 Ea,n sin mnKy 0 0 0038 0.0109 0 0408 0 0733 0.1138

 18y/d 5 and 13 6 and 12 7 and 11 8 and 10 9

 ia,, sin inKy 01513 0-1855 0-2136. 0-2300 0-2347

 of fig. 4. It will be seen that the curve touches the
 be expected.

 axis at y = 0 and y = d, as was to

 Fig. 4. Radial velocity u1 on an arbitrary scale. Case when cylinders rotate in same direction,
 p positive. Figures on under side of base line are values of ry/d in degrees.
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 The value of g was next calculated for the case when d is small compared with R,

 so that the factor R/R,ly in (7.21) can be regarded as a constant. Curves were then
 drawn for various equidistant values of *, the numbers given in Table IV being
 multiplied by a factor so as to make + = 1 at the centres of the pattern and f = 0 at

 Fig. 5. Stream lines of motion after instability has set in, p positive.

 the boundary. These curves are shown in fig. 5. Their spacing gives an idea of the
 velocity of the flow at any point. It will be seen that the circulation in a section of
 the fluid by an axial plane consists of a series of vortices which fill square compartments

 2x2
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 MR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

 extending from the inner to the outer cylinder. Alternate vortices rotate in opposite
 directions as though they were geared together.

 (b) Stream Lines when t 1 - 15, 0 = 1 73.-In the case when t =-1-5 it was
 necessary first to calculate the minors of A3. Using the values ,u -1. 5, 0 = 1*73,
 P - 0-00134, R = 3-80, R2 = 4-035, the values of L, were first calculated, and the
 complete expression for As, given below (7.23) was written out.

 559-2 0 24-0 0 174 0 113 0

 Oft t'"~ I ~ ~ I a A , "" 1 1 ,f i~ O"' U 6OUl 1

 02i 1-899

 1-258 0-005

 0- 008 0-832

 0- 374

 0-005

 0-065

 0 117'2

 -1 1- 862

 0 669 -1

 0.008 0-670

 0-011 0-027 0

 0-153 0 0

 0-001 0-005 0

 O01l

 U 14H U 5 8

 0-21 0-35 0 0-002

 0-580 0-005 0.009 0

 -1 0-160 0 0-002

 0-296 -1 0050 0

 ?038 0-005 0-097  -1 0-018

 0-020 0-001 0-033 -1

 Using the first seven rows and all the eight columns, the eight minors formed by leaving
 out successively the 1st, 2nd, 3rd, ... 8th columns were then found. Denoting them
 by M1, M2, M3 ... MA their values are given below (Table V).

 TABLE V.

 m M +1 -4-1.9l60 x 104 4 M3--9980xso4 0 =X -3.47 X 104 M = --0 09 X 104

 I =--160x104 M4 +6 -75x104 M6-= 0- 82X104 M -0 06 X 104*

 To calculate a, a2, ... from these minors it was necessary to take account of the
 operations which were performed on the determinants A1, A2 and A3, after the constants
 a, had been eliminated. Retracing these operations it was found that when m is odd

 am (M+1 Ml +2) (02 m2)2 (mLm)- . ..... (7.24)
 and when m is even

 , = -(M+M,?M.2)(0^+m2)?) (mL- .. (7.25)
 Since all the terms can be divided by any factor without altering their relative values,

 the first factors of (7.24) and (7.25) were divided by 1 60 which is the numerical value of
 Ml or M2. For large values of m the first factor in (7.24) then becomes equalt to 1 and

 a, (02+m2) (mL,l . ....... (7.26)
 * Ms is probably slightly inaccurate owing to the method of reduction, but as will be seen later such an

 inaccuracy would have no appreciable effect on the result.
 t The'part due to Mm +2 is small compared with the part due to M1, so that errors in a, due to errors

 in M.,+2 become unimportant as m increases.

 A 88  (7.23)
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 Using the formulae (7.24) and (7.25) for the first six terms and (7.26) for the higher
 terms, the following series of values were -found for am (see Table VI).

 TABLE VI.

 a1--123-5 3 --67-8 5=21-6 a7= 9 4 a9 4-6

 a2---189 a4 =182 a6 --13-8 as 6 4 a10= 3 4

 Using these numbers for am the values given in Table VII for Za, sin mKcy were
 found. In Table VII, d, the space between the cylinders, is divided into 18 equal parts
 corresponding with changes of 10? or rr/18 in Ky.

 TABLE VII.

 18y/d 0 and 18 1 2 3 4 5

 ?a,, sin miny 0 55 164 284 348 341

 18y/d 6 7 8 9 10 11

 an, sin mRy 288 213 121 39 -14.6 --47 8

 18y/d 12 13 14 15 16 17

 a,, sin mKy -59.0 -51.0 -38-8 -28.1 -16-8 --50

 From these numbers the value of uz is found by dividing by (Rdiy)-<.
 The curve given in fig. 6 shows the relation between u, and y. It will be noticed that

 . .... .

 400

 ~- -_ \ - d -- - -

 20 -I - ....
 t 0 30 60 90 2>0 120 -180 .

 -200Fig. 6. Radial velocity an arbitrary scale case wen cylinders rotate in opposite directions

 Fig. 6. Radial velocity u on an arbitrary scale; case hen cylinders rotate in opposite directions,
 JL = 1-5.
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 as was to be expected the curve touches the axis at either end. The interesting thing
 about it, however, is that it crosses the axis at a point roughly half-way between the
 two cylinders. At this point the radial component of velocity is zero. This means
 that there is a certain cylindrical surface between the two rotating cylinders which
 divides the flow. The instability therefore produces a flow which is divided into two
 separate regions.

 The stream lines of this flow were next calculated in the same way as in the previous
 case. They are shown in fig. 7, which is printed on the same scale as fig. 5 to facilitate

 Fig. 7. Stream lines of motion after instability has set in, / -- 15.

 comparison between them. It will be seen that the circulation now consists of two
 types of vortices. An 'inner region which extends out from the inner cylinder,
 about half-way to the outer one, is filled with vortices rotating alternately in opposite
 directions. These are very similar in character to the vortices found in the case when
 u == 1. They still fill rectangular compartments, and these compartments are still
 nearly square, though not so accurately square as in the case when u =- 1. An effect
 of restricting the inner circulation to a region which is only about half the thlickness of
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 the total space between the cylinders appears to be to reduce also the spacing of the
 other sides of the rectangular boundaries of the vortices so that the compartments
 are still nearly square.

 In the space outside the inner system of vortices is an outer system which is very
 much less vigorous than the inner system. These outer vortices rotate in the opposite
 directions to the inner ones with which they are in contact.

 It seems probable that the physical explanation of this phenomenon is that the
 surface where the velocity is zero in the steady motion divides the space between the
 two cylinders into two regions. In the inner region the square of the circulation decreases
 outwards, so that centrifugal force tends to make the flow unstable. In the outer
 region the square of the circulation increases so that centrifugal force tends to make the
 flow stable. The surface where the fluid is at rest in the steady motion is not coincident
 with the surface separating the two systems of vortices in the disturbed motion. In
 fig. 7 the section of the former surface is shown as a dotted line, and it will be seen that
 the inner system of vortices extends outside the region where centrifugal force tends to
 produce instability. That this would be the case might have been anticipated on
 general grounds.

 A remarkable feature of the vortex systems shown in fig. 7 is thle great difference
 which exists between the vigour of the inner and outer systems. The stream lines are
 drawn for values of ty differing by 50 units on an arbitrary scale. There are six of these
 in the inner system and only one in the outer system. To show up more clearly the
 general features of the circulations, two intermediate stream lines have been drawn for
 the values vy = -25 and y = -25. These are dotted to differentiate them from the
 other stream lines. The shaded portions of the diagrams, figs. 5 and 7, will be referred
 to in the second part of this paper.

 PART II.-EXPERIMENTAL.

 Previous Experimental Results.

 The stability of the steady motion of a viscous liquid between two concentric rotating
 cylinders has been studied experimentally by MALLOCK and by COUETTE. These
 experiments have already been mentioned. The object which both these experimenters
 had in view was to determine the viscosity of water by measuring the drag exerted by a
 rotating cylinder on another concentric one which was at rest, the space between them
 being filled with water. The instability noticed by both of them was inferred from the
 fact that the relation between speed of rotation and viscous drag of the liquid ceased
 to be a linear one when the speed of rotation was increased beyond a certain limit.
 Using this test for instability, MALLOCK found that steady flow was unstable at all
 speeds of the inner cylinder when the outer one was fixed, but that when the outer
 cylinder was rotated the flow was stable for low speeds, unstable for high speeds,
 and sometimes stable and sometimes unstable over a range of intermediate speeds.
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 No indication of the existence of any sharp or definite criterion for stability was
 observed.

 These results disagree entirely with the theoretical predictions made in the first part
 of this paper. According to the foregoing theory the motion should be stable even at
 high speeds when the inner cylinder is at rest. When the outer cylinder is at rest the
 flow should be stable at low speeds of the inner cylinder, and there should be a definite
 speed at which instability should suddenly make its appearance as the speed is increased.

 This disagreement between theory and experiment may be due to a variety of causes.
 It may be that the types of disturbance which actually arise are not symmetrical
 about the axis. On the other hand there are other possible causes besides instability
 which could give rise to a non-linear relation between speed of rotation and
 viscous drag in MALLOCK'S experiments. In the first place the lengths of MALLOCK'S
 cylinders were very little greater than their diameters. His outer cylinder for instance
 was 7-8 inches diameter while the depth of water used was only 8 5 inches, and the
 thickness of the layer of water between the cylinders was 0 915 and 0 42 inches, in his
 two sets of experiments. If the cylinders were infinitely long or if the thickness of the
 layer of fluid were very small, the steady two dimensional flow contemplated in
 MALLOCK'S experiments would no doubt occur, and a linear relation might be expected
 between speed and viscous drag. On the other hand in the neighbourhood of the bottom
 of the liquid the flow cannot be two-dimensional, and unfortunately the cylinder on
 which MALLOCK measured the viscous drag extended practically down to the bottom
 of the liquid. It therefore certainly penetrated into the region where the linear law
 does not hold. MALLOCK recognised this, for in the course of his experiments he
 substituted an ingenious mercury bottom for the rigid bottom with which he began.
 By this means he hoped to eliminate, partially at any rate, the effect of the bottom.
 The very large effect which this device had on his results showed that in his original
 experiments, at any rate, a large part of the drag which he observed might be
 attributed directly to the effect of the bottom. On the other hand, there is little
 evidence to show that it succeeded in eliminating this effect completely, or even that
 the bottom effect was not still large in the case when the outer cylinder was at rest.

 It appears therefore that MALLOCK'S experiments do not afford conclusive evidence
 of the existence of instability in the case when the outer cylinder is at rest, at any rate
 at slow speeds of the inner cylinder.

 In the case when the inner cylinder is at rest MALLOCK'S experiments appear more
 conclusive, because he observed sudden and violent changes in the drag on the inner
 cylinder. On the other hand it is by no means certain that this instability would have
 occurred if the inner cylinder had been supported differently. It has been shown by VON
 HOPF that instability may arise from flexibility in the bounding walls of a fluid in
 steady motion. In MALLOCK'S experiments one of the cylinders had to be supported
 so that it could turn without resistance. This condition must, I think, have prevented
 this cylinder from being held so rigidly that small lateral movements were impossible.
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 Design of Apparatus.

 In designling apparatus for testing the conclusions reached in the first part of this
 paper, care was tal-en to eliminate as far as possible the disadvantages from which,
 in the author's opinion, MALLOCK'S apparatus suffered. In the first place the cylinders
 were made as long as possible so as to eliminate end effects. They were 90 cm. long
 and the outer one was 4-035 cm. radius. In most of the experiments the thickness of
 the layer of liquid between the cylinders was less than 1 cm. In the second place both

 0

 --s

 -D

 Fig. 8.

 cylinders were held in heavy plane bearings at each end by heavy iron supports fixed
 to a stone floor and to the walls of the Cavendish Laboratory.

 The general arrangement of the cylinders is shown in fig. 8. In that diagram the
 various parts of the apparatus are indicated by letters. The weight of each cylinder
 was taken by a steel ball, B, resting on a flat plate, C, below, and fitting into a conical
 centre in the end of the shaft which it supported. The bearings, J, were long and of
 exceptionally good fit, so that lateral motion could only occur by bending of the whole
 VOL. CcxxTIi.-A. 2 Y
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 apparatus. In order that this might be minimised as far as possible the inner cylinder
 was fixed on a mild-steel shaft, A, of large diameter (A inch).

 It is clear for the reasons given above that the methods of previous observers would
 not give the information required. It was necessary to devise some method which would
 show not only the exact speed at which instability occurs, but the type of motion which
 ensues.

 The method employed by OSBORNE REYNOLDS in the case of flow through a circular
 pipe was to inject a.thin continuous stream of colouring matter into the centre of the
 stream. When the breakdown of steady flow occurred the motion of the water could
 then be studied in some detail. In the present case a similar method was used, but
 certain modifications were necessary in view of the special type of motion which was
 expected. The actual streaml lines in the cases calculated in Part I. are complicated
 spiral curves which are not symmetrical about the axis. A method designed to show up
 or mark a single stream line would therefore yield results which would be difficult to

 interpret. On the other hand if colouring matter could be emitted simultaneously at
 all points of a circle placed symmetrically in the fluid, the motion of the sheets of
 colouring matter so produced would, if the motion were symmetrical, give exactly the
 information required, namely, the component of motion in an axial plane.
 This condition was attained by emitting coloured liquid from six small holes placed

 on a symmetrical circle near the middle of the inner cylinder. The inner cylinder, I,
 was made by threading a large number of turned and bored sections made of paraffin
 wax on to the central steel shaft. These were held and pressed together by brass discs,
 L, of the same diameter at each end of the cylinder. In one of the paraffin sections
 were six very small symmetrical holes, K, which were connected together by means of
 a small groove, M, turned on the inner curved surface of the section. The coloured
 liquid was supplied to this groove by means of a small brass tube, N, which was let into

 a slot cut in one side of the central steel shaft. This duct led finally through a small
 central hole, 0, in the upper end of the central shaft to a brass box, P, which was filled

 with the coloured liquid. To force the coloured liquid down the duct the milled head,
 Q, was turned. This pressed on a diaphragm of thick rubber, R, and so forced the colour
 out through the six small holes, K.

 In order to see the colouring matter it was necessary to make the outer cylinder of
 glass. This requirement gave rise to considerable trouble on account of the difficulty
 of producing an accurately turned, bored, ground and polished glass tube 90 cm. long.
 The difficulty was surmounted by Messrs. Powell, of the Whitefriars Glass Works, who
 succeeded in producing a satisfactory glass tube 8 inches long, 8 07 cm. bore and 10 5
 cm. external diameter. This was turned, bored, roughly polished, and the ends faced
 square. It was then mounted in iron castings, S, which were fitted accurately on to the
 upper and lower sections, T1 and Tg, of the outer rotating cylinder. These castings
 will be seen at the top and bottom of the photographs, figs. 9--16, Plates 4 and 5. The
 inside bore of the outer cylinder did not vary by as much as j mm. in its whole length,
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 The whole apparatus was driven by an electric motor fitted with a governor so that
 the speed could be kept constant. The ratio of the speeds of the cylinders could be
 varied by means of a continuously variable speed gear.

 Method of performing Experiments.

 In performing an experiment the box, P, was filled with a solution of fluorescene,
 which was usually made of the same density as water by mixing with ammonia or alcohol,
 though in some experiments it was made slightly heavier. This fluorescent solution was
 found to be very good for eye observations, but it was useless when photographs were
 to be taken. A solution of eosin made up to the same density as water by mixture
 with alcohol was found to be the best for photographic purposes.

 The space between the two cylinders was filled with water from which air had been
 expelled by boiling. In cases when the fluorescene solution was slightly heavier than
 water the liquid coming out of the six small holes fell down in six streams which kept
 fairly close to the inner cylinder. In cases where the fluorescene solution was of the
 same density as water some of the water was run out from the bottom of the apparatus,
 and at the same time fluorescene or eosin was forced out through the six holes. The
 downward movement of the water drew the fluorescene out into six thin vertical streams,

 which were found to be extremely close to the surface of the inner cylinder. The
 apparatus was then immediately started rotating at a slow speed and the shearing
 motion of the liquid in the annulus between the cylinders caused the six vertical lines
 of colour to broaden laterally till after a short times all the coloured liquid formed a
 uniform thin sheet on the'surface of the inner cylinder.

 The ratio of the speeds of the two cylinders was fixed during each experiment by
 the setting of the variable speed gear. The speed of the motor was then gradually
 increased till instability occurred.

 Case when Cylinders are Rotating in the same direction.

 In this case we have seen that the type of motion to be expected when instability
 sets in is the same for all positive values of , less than RJ2/R22. The flow in meridian

 planes consists of vortices contained in square partitions and rotating alternately in
 opposite directions. The effect which this system of vortices might be expected to
 have on the film of coloured fluid close to the inner cylinder can be seen by referring
 to fig. 5, Part I. Since the motion is evidently to the first order of small quantities
 a steady motion, the coloured liquid which lies close to the surface = 0 will remain
 close to that surface. The surface ==- 0 consists of the square partitions within which
 the vortices are contained. The coloured liquid will therefore mark out the edges of
 these square partitions. In fig. 5 the shaded portion represents a possible form of the
 coloured region after instability has set in.

 2 Y 2
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 General Result.

 On observing the apparatus from the side it was found that provided the experiment
 was carefully carried out, the instability made its appearance at a certain speed in every
 case when it was expected and in no case when it was not. This speed was quite definite,
 and the measurement could be repeated on different occasions with an accuracy of
 about 1 or 2 per cent.

 The phenomenon which was observed was the same in each case. The layer of coloured
 liquid suddenly gathered itself into a series of equidistant films whose planes were
 perpendicular to the axis of rotation. These films were in each case spaced at a distance
 apart nearly equal to twice the thickness between the cylinders. The films seemed to
 spread out till they reached the inner surface of the outer cylinder. They then spread
 upwards and downwards close to that surface till they covered it with a thin film of
 coloured liquid. This film was almost invisible because it could not be seen edge-on.
 On the other hand, when the upward and downward flowing sheets met at the points
 half-way between the out-flowing films they formed inward-flowing films of the same
 type as the outward-flowing ones. The resulting appearance after the motion had
 been going on for about two or three seconds was that of a series of thin equi-distant
 planes of coloured fluid spaced at a distance equal to the thickness of the space between
 the cylinders. In fact, after the first few seconds the motion appeared to get to a steady
 state in which it was impossible to distinguish the outward-flowing films from the
 inward-flowing ones, though all of them were extremely sharply defined.

 Photographs of the Stream Lines.

 Considerable difficulty was experienced in obtaining satisfactory photographs of the
 phenomenon because when eosin was used instead of fluorescene a more concentrated
 solution was necessary; and it was found difficult to make up this solution so that its
 density remained the same as that of water when it was surrounded by water. It
 frequently happened in fact that the coloured liquid formed two columns, one going up
 and the other down, when strong eosin solution mixed with alcohol was used. In
 spite of this and other difficulties some fairly good photographs were obtained.

 Fig. 9, Plate 4, shows the appearance of the films shortly after their formation.
 This photograph shows a motion which is not so regular as most of those observed, but
 it has the advantage that one can see some of the intermediate stream lines marked
 out by some colouring matter which had got away from the surface of the inner cylinder
 before the instability set in. A particularly noticeable one occurs in the third partition
 from the bottom on the left-hand side. The photographs were taken with an ordinary
 magnesium flashlight apparatus.

 Verification of Predicted Spacing of the Vortices.

 It will be noticed that the partitions shown in figs. 9, 10 and 11, Plate 4, appear square.
 This square appearance, however, is deceptive. The refraction of the glass and water
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 magnify the horizontal dimensions without altering the vertical dimensions of objects
 in the water. On the other hand, the outer edge of the pattern is cut off altogether
 by refraction. These two effects neutralise one another so that the general appearance
 of the partitions in the photographs is square.

 The photograph (fig. 9, Plate 4) was taken when the radius of the inner cylinder, R,,
 was 2 93 cm. ; R2, the radius of the outer cylinder, was the same in all cases, namely,
 4 035 cm. The distance apart of the partitions as measured on the original photograph
 was 0 47 cm., the external diameter of the glass cylinder on the photograph was 4 7 cm.
 and its true diameter was 10-5 cm. The true distance apart of the partitions was,
 therefore, 10 5x0-47/4-7 1- 05 cm. The difference between the radii of the two
 cylinders was 4 035 -2 -93 =- 1 * 105 cm. Hence we have our first numerical verification
 of the theory of Part I.

 Predicted spacing of vortices .. 1105 cm. or pe ent.
 Observed ,, ,, .. 105

 To show the effect of change in thickness of the layer of fluid a photograph of the
 bands or partitions, taken when R1 3 25 cm., is shown in fig. 10, Plate 4. On
 measuring this spacing on the original photograph it was found that twelve of them
 occupied 3-95 cm. The magnification was 0-4095. Hfence

 True spacing of partitions was .. 0-804 cm. 1
 Predicted spacing was 4 035--3 25 0 785 2 per cent.

 In order to show the accuracy with which these bars of coloured liquid space them-
 selves when the experimnents are carefully performed the photograph (fig. 11, Plate 4)
 is shown. The fineness of the partitions shown; in this photograph approximates to the
 fineness which can easily be obtained with the fluorescene used for eye observations,
 but it is not actually quite so good.

 Case when the Cylinders Rotate in Opposite Directions.

 When X, is negative-that is, when the cylinders rotate in opposite directions, only
 one case has been worked out completely, namely, that in which = -1 -5, R1 = 3-80,
 R2-- 4-035. The characteristic differences revealed by the analysis between the
 motion in this case, and that in the case when u is positive, are:

 (a) The spacing of the vortices is reduced in the ratio 1-73: 1. The predicted
 spacing of the vortices in this case is in fact (4 035 -3 80)/1 73 - 0136 cm.;
 and

 (b) The vortices in contact with the inner cylinder only extend out about half-way
 to the outer cylinder instead of extending right across the fluid annulus.

 (a) Spacing of Vortices.-To verify the conclusions reached in regard to the spacing
 of the vortices a number of measurements were taken when the radius of the inner
 cylinder was 3-80 cm., the values of / ranging from +0- 65 to -1'78.
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 The results are given in Table VIII. and they are shown in the form of a curve in
 fig. 12. In this curve the abscisse represent p and the ordinates represent the corre-
 sponding spacing of the vortices in centimetres. The predicted points, i.e., theoretical

 TABLE VIII.--Giving the Observed Spacing of the Vortices for various values of J, in
 the case when R, = 3 80 cm. and 1R2 4-035, so that d 0.235 cm.

 / . E Observed Spacing of Vortices.

 0.65 0-241, 0.245.
 0.596 0-25, 024, 0238, 0-25.
 0.40 0-244, 0-250, 0'244.
 0 0-236, 0 235.

 --0388 0-230, 0-24, 0*236.
 --0 492 0 237, 0 238, 0 235.
 --0640 0-232, 0 228.
 -0-716 0-201, 0 203, 0-198.
 -1-00 0 150, 0 165, 0 -160, 0 157.
 --1-20 0 156, 0165.
 --1 37 0-143, 0-1046.
 --1-78 0-09, 0-105, 0-115.

 values of d/0, are shown by means of circles and the observed points by means of dots.
 The curve is drawn roughly through the dots. Unfortunately, owing to an oversight,
 no observation was taken for the value u- --1 5, but it will be seen that the calculated
 point lies almost exactly on the observed curve.

 d
 0

 - , , ____ I , 250
 - -/ - - / '

 _____"*~~~~~ *10

 Observed points.

 Calculated points 0
 05

 j i~~~~~~~~~~~1

 -1-5 -1 0 -05 0 05 1 0

 Fig. 12. Comparison between observed and predicted spacing of vortices for various values of /;
 case when BR == 3.80 cm., R2 = 4 035 cm.
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 It will be noticed that the predicted result that the spacing of the vortices should
 be the same for all positive values of pt and equal to the thickness of the layer of fluid
 is also strikingly verified. It will be observed that the spacing of the vortices does
 not begin to decrease much till , has a considerable negative value, about -0.5.

 (b) In the case when R1 3-80 it was found difficult to verify the prediction that
 'the vortices in contact with the inner cylinder should extend no further than about
 half-way out to the outer cylinder because the refraction of the glass cylinder prevented
 the extreme edge of this region from being seen. A simple calculation showed that
 this cause would make it impossible to see the outside edge of the inner circulation
 if it extended to within 0-37 cm. of the outer cylinder. For this reason, therefore,
 the inner cylinder was reduced to a diameter of 4 /cm. and the photographs shown in
 (Plates 4 and 5) figs. 13, 14, 15 and 16 were taken. The values of a were not measured
 very accurately but in figs. 13 and 14 it was about -1'05; in fig. 15 /e- -2-0;
 and in fig. 16 = - 2- 3.

 On looking at the photographs it will be seeni that the results predicted by theory
 are completely verified. The inner vortices do not penetrate to the outer parts of
 the fluid, the spacing of the vortices decreases as - , increases, and the inner partitions
 remain of the same shape, approximately square, while they decrease in size with
 increasing values of -/u.

 The " spacing of the vortices" is half the wave-length-that is, half the distance
 apart of the centres of the ring-like figures shown in the photographs 13-16 into which
 the coloured liquid, initially close to the surface of the inner cylinder, suddenly forms
 itself when instability sets in.

 Critical Speeds at which Instability appears.

 Perhaps the most successful feature'of the analysis contained in the first part of this
 paper is the accuracy with which it predicts the critical speeds at which instability
 appears. A number of sets of measurements were made covering a range of values
 of u from - o to + o. These will now be discussed in detail.

 Case whern , is positive and > 1 or infinite, i.e., when the Outer Cylinder Rotates Faster
 than the Inner One and in the same Direction, or when the Inner Cylinder is at
 Rest.

 Under these circumstances the motion was found to be completely stable even at the

 maximum speed of which the apparatus was capable.*
 This result is in direct contradiction to that of MALLOCK, though it is in accordance

 with the theoretical prediction which takes account only of symmetrical disturbances.
 The difference might be attributed to the greater rigidity of the present apparatus,
 and perhaps to its greatly increased length.

 * Five revolutions of the outer cylinder per second.
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 Critical Speeds when , is less than RI2/R,2.

 Three complete sets of observations were taken: (1) with R, == 3 00, (2) with
 RE = 3-80, (3) with R, 3 55. Each observation consisted in observing the speed
 of rotation of the cylinders at which the vortices appeared, i.e., the speed when the
 partitions between the vortices suddenly spread out from the inner cylinder. In each
 case one or two rough readings were taken to find the approximate speed at which
 instability appeared. The governor was then set for this speed so that large changes
 in current produced only small changes in the speed. The final reading was then made
 by increasing the speed fairly rapidly* till the instability was on the point of occurrinrg,

 then increasing the speed very gradually. In this way it was found that readings
 could be repeated with an average error of about 2 per cent.

 When it was found that this order of accuracy could'be obtained, it became clear
 that the temperature would have to be read with an error of 0- 2 C., or less, in order
 that viscosity might be known accurately enough to make full use of the accuracy of
 the stability measurements.

 The speed of -one of the cylinders was measured both just before and just after the
 instability occurred, and the observation was rejected if it was found that too great
 a jump in speed had been made. With the governor employed on the motor it was
 found that the variations in speed with a given setting of the apparatus were less than
 2 per cent. The ratio, , of the speeds of the cylinders was measured by timing them
 over a period of two or three minutes.

 In order to make the results comparable with one another it is necessary to divide
 the speed in each case by the coefficient of kinematical viscosity.t These coefficients
 were taken from KAYE and LABY'S physical tables. The results are given in Tables
 IX., X. and XI. In column 1 of each table is given the value of a. In columns 2 and 3
 the observed values of i,/v and Q2/V, where Q1 and Q2 are the angular velocities
 of the inner and outer cylinders, and r represents the coefficient of kinematical viscosity
 which is equal to (the coefficient of viscosity) - (density). In column 4 in each table is
 given the theoretical value of QI calculated for the corresponding value of u from the
 criterion given in (7.11), Part I. On comparing columns 3 and 4 it will be seen that
 the agreement between theory and observation is extremely good in the cases where
 R =- 3-80 and RI = 3-55. It is not quite so good in the case where R = 3 0, but
 as the observations in this case were made before it was realised how high a degree of
 accuracy could be obtained in stability measurements, the temperature was only
 observed roughly once or twice during the experiments. Some uncertainty, therefore,
 exists as to the exact value of v in this series of measurements.

 * The governor did not begin to act till a certain speed had been attained.

 t Two geometrically similar motions are also dynamically similar if the speed, divided by the coefficient
 of kinematic viscosity, is the same in the two cases
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 TABLE IX.-Showing observed and calculated speeds at which instability first appears
 when R, = 3-00, R2 = 4035 cm.

 *. ' observed. observed. calculated. observed, observed.

 0.552 83.7 152.0 -1-48 -130-0 87.9
 0.530 51.6 97.0 105-2 --167 --163-0 97.0 '
 0-520 40-1 77-2 84-9 -2-0 -236-0 118.0
 0-455 28.8 63-5 50.5 --237 -326-0 137.0
 0-423 21-6 51-1 44-5
 0-415 18-6 44-9 43.5
 0-410 19-3 47-1 42-6
 0-359 14.4 40-2 37-5
 0.245 8-6 35-3 31-6
 0 0 30-3 27-6

 --0-33 --10-6 32-1 30-0
 -033 -11.1 33 5 30-0
 -0'565 -21-0 37'2
 -0-60 -24-8 41.4
 -0-703 -29-8 42-3
 -0-905 -47-1 52-0
 -1-073 --67-0 62-8
 -1-285 -102-6 79'6

 TABLE X.-Observed and calculated speeds at which instability first appears when
 R1 3.80, R2 4.035 cm.

 P-p? ~n,l/f.l/Y ~l/P 2/,,. Jn1 1 "l/y ~' - 2/"' observed, calculated, ' observed. calculated.

 ..... 064. 790-0 914.0 860-0 -0-553 --121-6 219-1 2220
 0-846 530-0 626-0 669-0 --0621 -141-0 227.0 230-0
 0.810 362-2 447 0 477.0 -1-0 -312 0 312.0
 0.788 340.0 431.5 424-0 -1.0 --320-0 320-0
 0-764 298-5 390-5 383.0 --10 --313-0 313-0
 0-788 278-0 353-0 424-0 -1 16 -400-7 345.3
 0.741 245-3 330-8 354-0 --126 --462-0 367-0
 0-666 196-3 294'0 294-0 --136 -539 2 396-6
 0-666 190-2 284-3 294-0 -1-428 -592-0 415-5
 0-631 172-8 273-8 276-0 -1-605 -718 0 447-5
 0.554 136.2 246-0 248-0 --1'714 -845-0 493-0
 0-450 99.1 220-1 225-0 -1-766 --8760 496-0
 0-422 90-7 217-0 220-0 --1916 -1005-0 524.0
 0-397 83,0 209-0 - -216-0 --1-953 -1056-0 540-4
 0-274 54-9 200.1 203-0 -1-996 -1104-0 553-0
 0-160 30-4 190-2 196-0 -2-24 -1362-0 608-0
 0 0 190.8 191-5 -2-51 -1672-0 666-0
 0 0 189-2 191-5 --2865 -2113-0 737.0
 0 0 193-1 191-5 --2891 -2120.0 733'0

 -0-082 -15-7 190-8 191-5
 -0-145 -27-8 192-0 192-3 calculated calculated
 --0-164 -31'0 189-5 193-0 -1-50 -712-0 475-0
 -0-214 -41-5 192-0 194-5
 -0-378 -80-4 212-5 204'0
 -0-46 -101-5 219-0 209-0

 L . . . __ . ...... . . _
 VOL, CCXXIII.-A.  2 z
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 TABLE XI.-Observed and calculated speeds at which instability first appears when
 RI = 3 55, R2 - 4-035 cm.

 Q2 2/vl-jlfl2/p ^^JV tA* S22/r, ' observed. calculated. observed. observed,

 0-765 303-0 396-0 470-0 -0-689 -66 2 96-2
 0-7535 245-5 326-0 313-0 --0793 -84-4 106-5
 0-755 242-3 321-0 325-0 -0-800 -84-4 105-6
 0-748 202-7 271-0 278-0 -0-843 -92-2 109-4
 0-745 182-9 245-5 264-0 --100 -128-9 128*9
 0-718 135-7 189'1 191.0 -1-00 -125-8 125-8
 0-664 93-9 141-5 139-1 --1129 -153-4 135-9
 0-639 80-2 125-6 126-5 -1244 -184 1 148.0
 0-643 84-2 131-0 130-8 -1-302 -209 6 161.1
 0-569 60-3 106-0 105-3 -1-489 -264-0 177.3
 0-542 55-3 102-1 1001 -1-63 -299 0 183-7
 0-476 44.5 93-5 91-2 -1-795 -376-0 209-4
 0-419 36-5 87-2 84-5 --1925 --419-0 215-0
 0-376 32-6 86-8 81-4 -2-00 -475-0 237-3
 0-322 26-0 80'8 781 --217 -511-6 235-9
 0-276 21-5 77-8 75-9 -232 --579-5 249-8
 0-213 16-1 756 735 -2-53 -709-0 280-2
 O 0 70-7 69.8 --2*68 -820-0 306*0

 -0-144 -10-24 71-1 701 -2-84 -903-5 318-0
 -0-236 -17 2 72-9 71-4 -3 25 -1278-0 393-0
 -0-349 -26 9 75-6 74-1 _
 -0 479 -38-6 80-7 79-0* Calculated
 -0 585 -52-6 89-9 84-8t -- ----- --
 -0-591 -53-5 90-5 84-0 -x1347 -232-3 172.8
 -0-591 -53-8 91.0

 P art due to second term of (7.11) 14 per cent. of whole.
 t , . . 33 ,,
 + 35 4,5??,??,?35 ,

 In spite of this uncertainty there seems to be some evidence in the figures of column
 4, Table IX., to show that the mathematical approximation on which (6.03) is based is
 getting appreciably inaccurate when d/R, is as large as 3, for the numbers in column 3
 are systematically greater than those in column 4 from ,u +0-5 to te = --0-3.
 In working out the calculated values of l/rv for negative values of , by the
 formula 7 11, Part I., it is assumed that the formula ceases to be applicable when the
 " correction " term is more than 20 per cent. of the main term. In Table II. it will be
 seen that when the correction is 33 per cent., the value of fQl/v is too low.
 The calculated values of Ql/v and Q2/V for t I -1 5 in the case where R1 = 3-80,
 and ,for M =-1 347 in the case where R, = 3-55 are given at the end of Tables X.*
 and XI.t

 * See Part I. (7.13).
 t See Part I. (7.14).
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 In order to give an idea of the uniformity of the experimental results and the accuracy
 of the theoretical predictions, two diagrams, figs. 17 and 18, have been prepared. In
 these diagrams, which may be called stability diagrams, the abscissae represent Q2/1

 .. .. .- 1 . 8 1000 - -,- it- *. - r0

 , .~1- . .. ?QI ,- .- ,.??- ; . BOO 9 ---00 -

 Calculated Points o R- 2 130
 Observed Polnts * o ,/ .Q2 R 1a

 -2000 16 -1200 -800 -400 0 400 800
 -1800 -1400 -1000 -600 -200 200 600

 Fig. 17. Comparison between observed and calculated speeds at which instability first appears;
 case when R1 3-80 cm., R = 4 035 cm.

 Q,> /

 - 200 -2:------ - y
 .^ //

 Un s t able /

 ^ . \ r __ 1 5. 0 ^_ - ... .. . r 1 : -15 o . /

 *. , -100.- . ..

 Stab/e /

 Oh.erveot 'Iot. t, ? _ ,,Y

 -250 -200 -150 -1 00  - 50 0 50 100  150 200
 1

 Fig. 18. Comparison between observed and calculated speeds at which instability first appears;
 case when R1 = 3-55 cm., R2= 4 -035 cm.

 while the ordinates are Z, /l. Every point in the diagram therefore represents a possible
 state of motion of the cylinders. The speeds at which instability sets in as the speed

 2 2
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 MAR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

 of rotation is slowly increased are represented by points on a curve. The observed
 points are shown as dots while the calculated ones are shown as circles centred at the
 points to which they refer. All points above the curve represent states of the apparatus
 in which the flow is unstable while those below it represent stable states.

 The accuracy with which the observed and calculated sets of points fall on the
 same curve is quite remarkable. Attention is specially directed to the points corre-

 sponding with u -1.5, - 475, 2 -712, in the case when R1 = 3 80,

 and = -- 1347, = 172.8, 2 = 232 3, in the case when Ri = 3-55. These
 v v

 were calculated from (7.13) and (7.14), Part I. The accuracy with which these points
 fall on the curves appears remarkable when it is remembered how complicated was the
 analysis employed in obtaining them.
 The curve, fig. 17, shows the relationship between Ql/y and p2/p when R, = 3*80
 for the whole range over which measurements were taken. In the curve, fig. 18, which
 is the stability curve when R, = 3 55, the extreme measurements have been left out
 in order that the curve might be drawn on a scale large enough to give an idea of the
 accuracy of the results.

 A noticeable feature of the results is the way in which the curves, figs. 17 and 18,
 approach asymptotically the lines Q/Q -- R22/R12. These lines are marked as dotted
 straight lines. The prediction of the late Lord RAYLEIGH that an inviscidl fluid conltained

 between two concentric cylinders would be stable if Q2/ Q1 > R12/R22 is therefore true,
 and is applicable to viscous liquids.
 The conclusion deduced from his theory that an inviscid liquid would be unstable
 if the cylinders rotated in opposite directions is not applicable to viscous fluids. In
 fact it is a remarkable feature of the curves that if the outer cylinder is rotating in the
 opposite direction to the inner one, the speed which it is necessary for the inner cylinder
 to attain in order that instability may arise is greater than it would be if the outer
 cylinder were at rest.

 Spiral Form of Instability.

 In many cases a spiral form of instability was observed. In cases when the space
 between the cylinders was small compared with the radius, this form was very similar
 to the symmetrical type, except that each vortex in its square-sectioned partition was
 wrapped as a spiral round the inner cylinder. In this way a double-threaded screw or
 spiral was formed, the two " threads ' being vortices in the cross-sections of which the
 fluid rotated in opposite directions. It was noticed, however, that one of the vortices
 was usually wider than the other. The larger one was always the one for which the
 component of vorticity in the direction of the axis was the same as that of the steady
 motion. For instance, in the case when the outer cylinder was at rest the appearance
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 CONTAINED BETWEEN TWO ROTATING CYLINDERS. 4:

 of the spiral would be that shown in fig. 19. The direction of rotation in the cross-
 sections of the spiral vortices in an axial plane is shown by means of curved arrows.

 In the case where u was < -1 the two vortices become
 so different in size that one of them almost disappeared
 altogether. The appearance of the coloured fluid was
 then that of a vortex rolled in a single-thread spiral on
 the inner cylinder. It was difficult to obtain photographs
 of this type of instability because there was no point from
 which the apparatus could be viewed so that the sheets of
 coloured fluid could be seen edgewise. One fairly good
 photograph was obtained; it is shown in fig. 20, Plate 5.
 It will be seen that the spiral form is a very definite form
 of instability.

 It was found that the formation of spiral instability
 was always connected with a circulation in the axial planes
 during the steady motion before the instability appeared.
 In order therefore to avoid the formation of spiral
 instability it was necessary to avoid such a circulation in
 the part of the apparatus where the observations were
 being made. Various methods were discovered for pro-
 ducing this effect, but it seems hardly necessary to go into Fig. 19. Spiral form of in-
 such details here. stability which appears when

 Since a very small component of velocity in the axial steady motion is not strictly limited to two dimensions
 plane during steady motion was found to produce spiral

 *J- ~~ z^~ ~~ * ?1~ a~ r . , . ~ before instability sets in.
 instability, the formation of the symmetrical type of
 instability is, in itself, a good test for knowing whether the steady motion which exists
 in the apparatus before the instability sets in is a good approximation to the ideal two-
 dimensional motion which would exist if the cylinders were infinitely long.

 Subsequent Motion of the Fluid.

 Though no attempt has been made to calculate the subsequent motion of the fluid
 certain observations were made. In all cases where R, was greater than 3-0 cm., it
 was found when fu was positive that if the speed of the apparatus was kept constant and
 very slightly higher than the speed at which the vortices formed, the vortices were
 permanent. They remained in perfectly steady motion so that the partitions marked
 by the coloured fluid were fixed. The photograph shown in fig. 11, Plate 4, is one of a
 steady motion which had been going for eight minutes when the photograph was taken.
 I do not remember to have heard of any other case in which two different steady motions

 are possible with the same boundary conditions. In this case evidently one of them,
 the two-dimensional one, is unstable; while the symmetrical three-dimensional one is
 stable.
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 A moderate increase in the speed of the apparatus merely increased the vigour of
 the circulation in the vortices without altering appreciably their spacing or position,
 but a large increase caused the symmetrical motion to break down into some kind of
 turbulent motion, which it was impossible to follow by eye.

 The calculations in Part I indicate that at the exact speed at which instability begins
 the vortices form themselves infinitely slowly. In other words the calculated three-
 dimensional motion is steady, to the first order of small quantities, and is, to the first
 order, in neutral equilibrium. To determine whether it is really steady or whether it
 is unstable one would have to go to the second order, a matter of extreme difficulty in
 hydrodynamics. The experiments described above indicate that the effect of the second
 order terms is to prevent the vortices from increasing indefinitely in activity. In some
 such way one might explain the formation of the true steady motion, consisting of
 alternate vortices, which is observed in the case when , is positive.

 Even when u is negative the vortices formed when instability occurs appear to be
 permanent, provided yu is numerically less than a certain number which appears to vary
 slightly with R1/R2. In all the cases when R1 > 3.55 cm. it was found that the motion
 in alternate vortices was stable provided -, < 1, i.e., when the speed of the outer
 cylinder was numerically less than that of the inner cylinder.

 When the speed of the outer cylinder increased above this value, however, the sym-
 metrical rings of coloured fluid which invariably appeared in the first instance if the
 experiment was carefully performed, were found to break up shortly afterwards. In
 order to find out if possible how the fluid moves during the breakdown of the first
 symmetrical motion a careful examination was made into the nature of the flow when
 y was nearly equal to -1. With a value of u very slightly greater than this it was found
 that the breakdown occurred sufficiently slowly to enable the process to be observed
 by eye. Unfortunately attempts to photograph it failed, but it was sufficiently definite
 to be described.

 Shortly after the symmetrical vortex system had formed itself, it was seen that every
 alternate vortex began to expand on one side and to contract on the opposite side of
 the cylinder. On the other hand the intermediate vortices began to expand, to fill the
 spaces from which the first set had contracted and to contract in the parts where the
 first set had expanded. The effect is represented in sketch, fig. 21.

 As seen in side elevation the effect was curious; it looked as though each vortex was
 pulsating so that its cross-section varied periodically, though with an oscillation of
 increasing amplitude. After a time it became impossible to follow the motion, owing
 partly, no doubt, to the fact that the system adopted for marking the liquid was not
 really suitable for observing any but symmetrical motions.

 When experiments were tried with slightly greater values of -, it was found that
 the breakdown occurred in a very similar manner, but that in this case each vortex
 seemed to expand in several points, equally spaced, round the cylinder. The appearance
 of the colouring matter was then similar to that shown in the sketch, fig. 22. The
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 Fig. 9. Fig. 10.

 Fig. 13. Fig. 11.
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 Fig. 14. Fig. 15.

 Fig. 16.  Fig. 20. b'

This content downloaded from 206.253.207.235 on Sat, 31 Mar 2018 08:31:13 UTC
All use subject to http://about.jstor.org/terms



 CONTAINED BETWEEN TWO ROTATING CYLINDERS.

 general impression gained by observing the phenomenon was that each vortex grew
 into the shape of a regular polygon, that these polygons were threaded on the inner

 Fig. 21. Sketch illus-
 trating appearance of

 vortices when they
 begin to break up;
 case when - -= -1
 approximately.

 Fig. 22. Appearance of
 vortices when they
 begin to break up
 immlediately a f t e r
 their formation: case

 when / is less than
 --1.

 cylinder and rotated in the same direction, and that the corners of each polygon were
 placed over the sides of the one below.

 DESCRIPTION OF PLATES 4 AND 5.

 Fig. 9.

 Fig. 10.
 Fig. 11.

 Figs. 13

 Fig. 15.
 Fig. 16.

 Fig. 20.

 Vortices when R1 - 2-93 cm., R2 = 4.035 cm., P positive.
 Vortices when R1 = 3-25 cm., R2 = 4 035 cm., e positive.
 Vortices when p = 0.

 and 14. Vortices when R1 = 20 cm., R2 = 4 035 cm., pt = - 1-05 approximately.
 Vortices when R1 - 2 0 cm., R2 = 4 035 cm., p = -- 2-0 approximately.
 Vortices when R1 =- 2-0 cm., 12 = 4 035 cm., p == - 2.3 approximately.
 Spiral form of instability.
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