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I . INTRODUCTION 

Stability of parallel flow of inviscid fluid was first studied in the last 
third of the nineteenth century. notably by Helmholtz [l]. Kelvin [2] and 
Rayleigh [S] . They considered the inertial instability of a homogeneous 
incompressible fluid. and its modification- Kelvin-Helmholtz instability- 
when there is variation of density of the fluid transverse to the basic flow . 
Subsequent authors have continued this work and gone on to consider 
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other modifications of inertial instability, such as those due to compress- 
ibility of the fluid, to rotation of the system, and to magnetohydrodynamic 
effects. There is a wide class of such problems, which have been considered 
piecemeal by research workers ranging from sanitary engineers to astro- 
physicists. General and particular results by hundreds of authors have 
appeared in dozens of journals, and there has been much duplication of 
work on the same mathematical problems in different physical contexts. 
Our approach will be the fluid dynamical one of studying the phenomenon 
of instability rather than its practical applications or natural occurrence. 
In this way we shall emphasize the unity of the various problems discussed. 

We begin in Section I1 with the fundamental theory of inertial instability 
of plane parallel flow of inviscid fluid. Euler’s equations of motion are 
linearized with respect to small perturbations of the basic parallel flow. 
We first discuss the method of normal modes, whereby it is assumed that 
each perturbation can be resolved into dynamically-independent wave 
components. A linear eigenvalue problem is then posed to determine the 
typical component. Squire’s theorem shows that the most rapidly growing 
component in an unstable flow is two-dimensional. Thus, in seeking a 
criterion for instability, one may assume that the typical wave component 
is two-dimensional, and thereby simplify the eigenvalue problem. The 
eigenvalue problem is singular, and the singularity admits solutions with 
discontinuous derivatives and a continuous spectrum of eigenvalues in ad- 
dition to well-behaved solutions with a discrete spectrum. All these solutions 
are necessary to form a complete set to represent an arbitrary initial dis- 
turbance. The eigenvalue problem for an inviscid fluid is related to that 
for a slightly viscous fluid, though the two are formally independent, this 
relation being discussed briefly. Many general properties of the eigenvalue 
problem are given, the most notable being Rayleigh’s necessary condition 
for instability that the basic velocity profile has a point of inflection. We 
describe these properties both mathematically and physically before giving 
details of stability characteristics for particular velocity profiles. 

In Section 11.3 we discuss the stability problem from the point of view 
of the initial-value problem posed by the linearized equations of motion. 
Rayleigh’s inflection point theorem is reconsidered, and obtained in a quite 
general form. Somewhat more detailed results for particular velocity profiles 
can be obtained by taking the Laplace transform with respect to time of 
the equations, and in this way the relation between the initial-value problem 
and the equivalent normal mode solution is brought out explicitly. 

In Section I11 we briefly pose the analogous eigenvalue problems when 
various external force fields act on the inertial instability. We also give 
the solutions for two important basic flows, those of static equilibrium and 
of a vortex sheet. Unbounded disturbances of static equilibrium are 
neutrally-stable waves, and those of a vortex sheet are instabilities which 
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in some cases may be stabilized by the force field. We add a survey of results 
and literature for each force field. The fields we consider are compressibility 
in a fluid of variable temperature, buoyancy due to variations of density, 
Coriolis force due to rotation of the system in which the parallel flow is 
placed, variations of this Coriolis force transverse to the flow, and magneto- 
hydrodynamic forces. 

The similarity of all these problems is brought out in Section IV. Mech- 
anisms of instability are discussed, and analyzed dimensionally to give some 
general stability characteristics. Some of these dimensional arguments are 
elaborated by physical ones. 

Lack of space and time prevent our treating in detail the case of each 
force field, so we have picked the single case of buoyancy due to variations 
of density for detailed study in Section V. This case is as typical as any, 
and has the advantages of practical importance and of advanced theoretical 
development. We discuss this case in Section V much as we did inertial 
instability in Section 11. Finally, in Section VI,  we give some results on non- 
planar parallel flows. 

“/‘”’”’- ” ” ” 

11. INERTIAL INSTABILITY 

I .  Eigenvalue Problem for Inertial Modes 

The first work on instability of parallel flow seems to be a physical 
remark of Helmholtz [I] in 1868, though he and others had studied neutrally- 
stable waves previously. In 1871 Kelvin [2] gave a complete analysis of 

I 
l b  1 

FIG. 1. (a) Channel of flow. (b) Velocity profile of basic flow. 

the instability of a vortex sheet of inviscid incompressible fluid, allowing 
for surface tension and a discontinuity of density at the sheet. Later 
Rayleigh [cf. 31 wrote a series of fundamental papers on hydrodynamic 
stability, and by the beginning of this century the theory was well formed. 
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A wide range of problems has been solved since, the theory has been extended 
to  viscous fluids, and applications of hydrodynamic stability are numerous. 
This abundance of work makes a chronological account impractical, so we 
develop the subject logically, referring to authors where appropriate. Strictly 
speaking, a logical account should begin with the formulation of the problem 
for an arbitrary, not necessarily parallel, basic flow. However, since the 
vast majority of work in stability theory has been on the parallel flow case 
and only a few general results are known otherwise, we shall defer our remarks 
on non-parallel flow to Section 11.3, and begin here in the traditional manner. 

We consider the stability of a basic plane parallel flow of inviscid fluid 
with given velocity 

f i+ = (@+(Y+)~O~O)  cYi+ < Y+ < YaJ. 

This is illustrated in Figure 1. We take the flow bounded by the two planes 
y+ = ylS,yaI parallel to the flow. Each of these planes is either rigid or free, 
so that either the normal velocity of the fluid is zero or the pressure con- 
stant there. However, we allow one or both of the planes to be at infinity. 
In this section we suppose the fluid is incompressible and homogeneous. 

It is convenient to choose some velocity scale V of the basic flow zi,(y,) 
and some length scale L of its transverse variations in order to introduce 
dimensionless variables. Thus we define in the usual way the dimensionless 
time, position vector, velocity, basic velocity and pressure as 

t = t ,V/L, r = r + / L  u = u, /V ,  ii = (6,0,0) = ii,,/V, 

P = P * / P V a  
respectively, where p is the density of the fluid. Now the Euler equations 
of motion can be written 

aulat + U .  PU = - vp. 
Also the equations of continuity and incompressibility give 

P*u=O. 

The basic flow satisfies these equations and the boundary conditions 
with uniform pressure f i .  To study the instability of this flow one puts 

u(r.4 = i(y) + u'(r,t),  $(r,t) = + p ' ( r 4  

and neglects quadratic terms in the perturbations, denoted by primes. 
Linearizing the equations of motion in this way for small perturbations, 
we find 

&#/at + aa%#lax + virtc2/dy = - apllax, 

a q a t  + navllax = - apllay, 
awllat + nawi/ax = - api/az ,  

a tqax  + avl/ay + awi/az = 0. 
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The stability problem involves the growth of an arbitrary infinitesimal 
perturbation, but it has been generally assumed that such perturbations 
can be resolved into independent wave-like components. Each component 
is supposed to satisfy the linearized equations of motion and boundary 
conditions separately. So we consider a typical wave component with 

for some functions i, 3, where a, y are real wave-numbers and c = c, + ic, 
is a complex velocity. I t  is to be understood that real parts are to be taken 
to get physical quantities, this being permissible for the linear problem. 
Thus each component travels as a wave in the direction of (a,O,y) with 
phase speed ac,/(a2 + y2)1/2 and grows or dies away in time like exp (acit). 
Therefore the wave is unstable when aci > O  and stable when aci Q 0. It 
is said to be neutrally stable when aci = 0. 

This assumption that any disturbance can be represented by wave 
components, according to the method of normal modes, serves to separate 
the variables and reduce the linearized equations of motion from partial 
to ordinary differential equations. 

(2.1) 

(2.2) 

They now become 

ia(G - c)zi + ddG/dy = - i a j ,  

ia(n - c)C = - d$/dy, 

ia(G - c)& = - iy6,  (2.3) 

(2.4) 

The boundary conditions are that B or fi vanishes on each boundary according 
as it is rigid or free. 

ia4 + dd/dy f iy& = 0. 

We shall usually consider rigid walls, so that 

(2.6) 0 = 0 (y = ypy*). 

These four equations and the two-point boundary conditions in general 
pose an eigenvalue problem to determine an eigenvalue or values c for 
given a,y,C(y). If aci < 0 for every wave-number vector (a,O,y), then the 
basic flow G(y) is stable to any wave disturbance, and is said to be stable. 

Some care must be taken in this method of normal modes because of the 
occurrence of "improper" modes associated with concentrated layers of 
vorticity and of the corresponding continuous part of the c-spectrum, as 
well as the occurrence of ordinary stable or unstable waves with the discrete 
c-spectrum. The singularity of the equations where J = c leads to a contin- 
uous spectrum of eigenvalues c, whose eigenfunctions can be found in terms 
of generalized functions. These real eigenvalues are in addition to the 
discrete spectrum of eigenvalues, which may be real or complex. The eigen- 
functions for all these eigenvalues are needed to form a complete set to 
represent an arbitrary initial disturbance with bounded vorticity. The 
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initial disturbance may be represented as an integral of components, some 
of which separately have infinite vorticities. The existence of the continuous 
spectrum was known to Kayleigh [3, pp. 391-4001 but its importance and 
connection with the initial-value problem has been widely appreciated 
only recently. We shall discuss this matter more fully in Section 11.3, 
and assume the method of normal modes meanwhile. 

Squire [4] has proved that for each unstable three-dimensional wave 
component there is a more unstable two-dimensional one (i.e. one with 
y = 0). His proof runs essentially as follows for inviscid fluid. First define 

~2 = a2 + y2, EG = a& + y b ,  $ 1 ~  = $/a, V' = a, C' = c. 

Then equation (2.1) plus the product of y / a  and (2.3), and equations (2.2), 
(2.4) give 

(2.6) i q n  - c)a + v'ddldy = - i E j ,  

and boundary conditions (2.5) give 

(2.9) v' = 0 (r = ypy2). 

I t  can be seen that the eigenvalue problem (2.6)-(2.9) has the same form 
as (2.1)-(2.5) when y = 0, I = 0. Thus C(E) has the same functional form 
as c(a) when y = 0. Thus to each three-dimensional wave, growing in 
time like exp (a@) for given a,y, there corresponds a two-dimensional wave, 
growing like exp ( E C , ~ ) .  Now E a  >aa if y # 0. Therefore to each unstable 
three-dimensiopal wave there is a faster-growing two-dimensional one. 

Lin [ti, pp. 3-41 has described this result qualitatively. A three-di- 
mensional wave travels in the direction (a,O,y), making angle 0 = tan-' (y la)  
with the x-axis. If the coordinate frame is rotated about the y-axis so that 
the new Z-axis is in the direction of the wave, then the basic flow has 
components 

ii = ( J ( y )  cos O,O, - n(y) sin 0) .  

The wave now propagates in the %-direction and is independent of Z. Further, 
the equations governing 6, 5. p are independent of g, t3, so that we have 
essentially a two-dimensional wave-disturbance of a basic flow (G cos t3,O.O). 
Thus the velocity of the basic flow is effectively reduced by the factor cos 8, 
and the growth rate of the three-dimensional is less than that of a two- 
dimensional disturbance by the same factor. 

Henceforth, in seeking a sufficient criterion for instability, we shall 
confine our attention to two-dimensional disturbances. Although the 
fastest growing small disturbances are two-dimensional, it should not be 

- 
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forgotten that three-dimensional disturbances may be of practical sig- 
nificance. In particular, three-dimensional effects are known to be important 
in determining the nonlinear growth of a disturbance. 

With y = 0 = 6, equation (2.4) may be integrated by use of the stream 
function of the disturbance, 

(b'(x,y,t) = y,cY)ek(z - dl 

such that 

M i  = a+'/dy, = - a+l/ax, 

i.e. 

f i = D ~ q ,  6 =  - iag  

where D = d/dy. 
forth. Then equation (2.1) gives 

(2.10) 

Now equation (2.2) gives 

(2.11) (w - c)(D2 - a2)v - (D2w)y = 0,  

which is in fact the perturbation of the vorticity equation of inviscid fluid 
in two-dimensional motion, 

We may also write ti = w(y)  without ambiguity hence- 

6 = yDw - (w - c)Dy.  

Equation (2.1 1) is called the Ruyleigh stability equation. Its generalization 
for viscous fluid is the Orr-Sommerfeld equation, 

(Dz - a2)2p, = iaR{(w - c)(DZ - aZ)y - (D%)p}, 

where H = V L / Y  is the Reynolds number of the basic flow of fluid of kine- 
matic viscosity Y. 

Boundary conditions (2.9) give 

(2.12) acp = 0 (r = Y1J4- 

The eigenvalue problem comprises the singuIar second-order linear 
differential equation (2.11) and the two-point boundary conditions (2.12). 
The equation has two independent solutions q ~ ~ ,  y2 which are analytic func- 
tions of y, ore, c over domains in which the equation is non-singular through- 
out the field of flow, i.e. over domains in which c lies outside the range of 

'p = Aly,Cy ;a2,c) + A,y2(r ;a24 

W ( Y )  for Yr < y <Ye. Thus 
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for some complex constants A, ,  A,. Substitution into boundary conditions 
(2.12) and elimination of A, ,  A ,  gives the eigenvalue relation 

In general this can be inverted to give a many-valued function c = c(a2), 
continuous in any domain excluding the range of w.  

If w or Dw is discontinuous, a t  yo say, then the pressure must be continuous 
a t  the material fluid interface with mean position y = y o .  Therefore, to 
first degree in the small perturbation, 

(2.13) [ (w - c ) D ~  - ( D w ) ~ ]  = 0 

a t  y = yo, where square brackets here and henceforth denote the “jump” 
of their contents at  a possible discontinuity. Also the normal velocity of 
the fluid must be continuous a t  the material interface. Let this interface 
have equation 

y = y o  + q ( x , t ) ,  where q = - c t ) .  

Then 

V’ = Dq/Dt = aq/at + waq/ax = ia(w - c ) V ,  

to first degree in the perturbation. But v = i a v ,  so it follows that 

(2.14) [ d ( W  - 41 = 0 

a t  y = yo .  

We may take yo = 0 without loss of generality. 
(2.1 1) has integral 

Conditions (2.13), (2.14) can alternatively be proved mathematically. 
Then stability equation 

[ (w  - c)Dv - ( D W ) ~ ] ? ~  = a2 (w - c)pldy. 
- 8  1 

- e  i - e  i 
On taking the limit E --+ 0 +, condition (2.13) follows. Division by (w - c ) 2  

and further integration gives 

[ d ( w  - 4Ih. = a2 dy(w - dyl(wl - c ) ~ , ,  

and thence condition (2.14) as E -0 +. These ideas may be extended to 
generalized functions w ( y ) ,  functions which do not represent real flows but 
do approximate some properties of real flows and give sensible stability 
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characteristics easily. 
delta function, we get from the above 
(2.15) c2 [OF] = a8(F)y,  y,, [F]  = 0 

at  y = yo, where F = V/(w - c), a function which has no worse behavior 
than a discontinuous derivative at y = yw 

Explicit solutions of the eigenvalue problem are difficult to find in 
practice for smoothly-varying functions w ( y ) .  However, when w ( y )  is a 
piecewise linear function, one can find exponential solutions of the stability 
equation piecewise, and join them up by use of conditions (2.13), (2.14). 
This method, first used by Kelvin, has led to explicit eigenvalue relations 
for many problems. This use of profiles which do not vary smoothly can be 
justified [6; 7, p. 221 ; 81 sometimes as an approximation to similar smoothly- 
varying profiles when the wave-number is small. 

Note the symmetry of the stability equation and boundary conditions 
in a and I- a) .  So we shall henceforth take a 0 without loss of 
generality. Then the criterion for instability of the basic flow is that there 
be a solution with ci > O  for some a >O. 

Note further that for each eigenfunction q, with eigenvalue c. for given 
a there is another complex conjugate eigenfunction v* with eigenvalue 
c* = c, - ici for the same a. Thus to each damped stable wave. there 
corresponds an amplified unstable wave, and vice versa. This expresses the 
time symmetry of the problem, comprising periodic motion of inviscid 
fluid with steady boundaries. It follows that the condition for stability 
is that c is real, and for instability that c is complex. So we shall write 
c, 3 0 when there is instability and ignore the associated conjugate eigen- 
value, though it should be remembered that on the inviscid theory the 
result ci < 0 equally implies instability. 

We emphasize that we are entirely concerned with hydrodynamic stability 
of inviscid fluid. Since the Orr-Sommerfeld equation is not invariant under 
complex conjugation like the Rayleigh stability equation, stability for 
viscous fluid does not necessarily correspond to real c. Indeed, the relation 
to the solutions of the Orr-Sommerfeld equation is complicated. For this 
we refer to Lin’s book [9, Chap. 81, where it is shown that at least for analytic 
w ( y )  a solution of the Rayleigh equation for ci > 0 is a limit of some solution 
of the Orr-Sommerfeld equation, though its complex conjugate may not be, 
throughout the domain of flow. Further, when solution of the Rayleigh 
equation gives a stable basic flow of inviscid fluid, solution of the Orr- 
Sommerfeld equation may give instability of the same flow of viscous fluid, 
in accord with Heisenberg’s criterion. These and other subtle mathematical 
questions raised by the inclusion of viscosity are important in some cases, 
but are not considered here, so our results must be taken with this in mind. 
Nevertheless, a full understanding of the inviscid theory is a desirable prelim- 
inary to any study of the viscous theory. 

For example, when w*(y)  = d(y - yo), the Dirac 
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The fundamentals of this section are due to Rayleigh [3]. For more 
recent accounts, the book of Lin [9, Chaps. 4,8] and chapter of Stuart [lo] 
are recommended. These two works, and Reid's survey [I l l ,  also place 
the inviscid theory in its viscous context. 

2 .  General Stability Characteristics of Plane Parallel Flow 

Rayleigh [12] proved in 1880 that a necessary condition for instability 
is that the velocity profile w ( y )  should have a point of inflection. This can 
be proved by multiplying the Rayleigh stability equation (2.11) by Q* and 
integrating from y1 to y8. Thus, after use of the boundary conditions (2.12) 

(2.16) 

The imaginary part of this equation gives 

(2.17) 

If c, > O  it now follows that Dew must change sign at one or more points 
in the field of flow. On assuming that Dew is continuous, there must be at 
least one inflection point on (y l ,  y2) and indeed an inflection point a t  which 
the velocity profile crosses its tangent, i.e. a relative maximum or minimum 
in the basic oorticity i3 = - Dw.  With the (weaker) assumption that i3 
is only piecewise continuously differentiable (which has really been tacitly 
made anyway in writing down the stability equation) we can still say that 
6 must have a relative maximum or minimum. 

In 1960 Fjmtoft [13, p. 261 proved the stronger necessary condition 
for instability that (D%)(w - tos) < 0 somewhere in the field of flow, where 
ys is a point at which D f  vanishes, and where w, = w(y,) .  A proof comes 
from the real part of equation (2.16), 

Adding 

J 
YI  
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to the left-hand side, we get 

The result follows. In particular, if w(y)  is a monotone function and D8w 
vanishes only once in the field of flow, a necessary condition for instability 
is that (D%)(w - w,) < 0 throughout the flow, with equality only where 
y = ys; this result is depicted in Figure 2. 

Y Y 

Y 

FIG 2. (a) Stable: D*w < 0. (b) Stable: Dgw> 0. (c) Stable: D’w = 0 at ys, but Dw in- 
creases where w < ws. (d) Possibly unstable: D*w = 0 at ys and (w - ws)Dsw < 0 elsewhere. 

Fj~rtoft’s extension of Rayleigh’s theorem can be shown to be equivalent 
to the statement: If 6 is piecewise continuously differentiable, a necessary 
condition for instability is that 161 should somewhere have a maximecm 
inside the flow domain. 

Neither condition for instability is sufficient in general. We shall present 
a counter-example (c) to sufficiency with w = sin y in Section 11.4. How- 
ever, Tollmien [14] proved sufficiency in 1935 for symmetric velocity 
profiles in a channel and for boundary layers. The basis of Tollmien’s ar- 
gument is first to show that there exists a neutrally stable eigensolution 
with c = ws, and then to construct unstable solutions for which c -c ws 
as ci + 0 through positive values. 
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Friedrichs [16] has given an elegant alternative proof of the existence 
of the neutrally stable eigensolution, 

Q =ips. a =a,>O. c = ws, 

say. For the proof we suppose that K ( y )  = - D2w/(w - w,) is integrable 
over the field of flow, and put c = w,, A = - a2 in the Rayleigh stability 
equation to get 

DZp, + K(y)p, + Ip, = 0, 

a real non-singular equation which makes up a Stunn-Liouville problem 
with boundary condition (2.12). The associated variational principle gives 
the least eigenvalue 

(2.18) 

the minimum being for functions f that vanish at  the walls and have square- 
integrable derivatives. Therefore a neutral eigensolution with positive 
a = a, = (- As)1'2 exists if and only if I, < 0. There may be a finite number 
of other eigensolutions for larger eigenvalues I, provided these are negative. 
Also there may be other series of eigensolutions when c = w, for other 
values of w, at  other points of inflection, and sometimes eigenfunctions with 
real c not equal to the value of w at an inflection point, though these have 
slightly singular behavior. 

The existence of the neutral eigensolution with I, < 0 follows easily 
when K ( y )  >n2/(y2 - yJ2  everywhere on account of the well-known in- 
equality, 

i (Y2 - Y P !  (war  2 nz PdY. 

Yn 

Y l  YI 

Again, when K ( y )  > O  over the field of flow and w vanishes a t  the walls 
but not between, trial of / = w shows that A,< 0. 

Tollmien also demonstrated heuristically the existence of unstable waves, 
whose limit as ci + 0 is the neutral s-wave above. This has been considered 
alternatively by Lin [7, pp. 223-224; 9, pp. 122-1231 as follows. The 
stability equation for Q, gives 

(2.19) D*p,, + { I ,  - (D2w)/(w - w,)}p,, = 0. 

D(Q& - f@pls) - ( A  - Is)Q% - ( o w { ( w  - c)-l - (w - ws)-'}plqJ, = 0. 

Multiplying this by p, and subtracting vS times the equation for Q, we get 
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Integrating from y1 to ya, we now find 

I1 YI  

To find the unstable solutions near the neutral one, we take the limits 
a +as, c - w,, q +vs. Then 

as ci -+ 0 through positive values, provided (Dw),= ys # 0, where 9’ denotes 
the principal value of the integral. Therefore 

Y: 

(w - wJ2 
Yl  Y. 

(2.20) 

For a known neutral eigensolution this gives eigenvalues c(a) near ws in the 
complex c-plane and thence the associated eigenfunctions in the limit 
ci -+ 0 f .  If K ( y )  > 0 throughout the field of flow, then the imaginary 
part of the denominator is positive, and it follows that (dci/daa)a=. as < 0, 
with instability for a just less than a,. 

Further, it can be proved as follows that there is instability only when 
a <  as. Suppose K ( y )  > O  throughout the field of flow. Then, when cj # 0, 
the real part of equation (2.16) plus (w, - c,)/ci times equation (2.17) 
gives 
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I t  follows that there is stability (ci = 0) when a 
This argument can be extended to  prove the following result, applicable 

to flows for which the function K exists and is non-negative [16]. Let 
&,A2,. . . be the eigenvalues of the Sturm-Liouville problem f" + Kf + 
Af = 0, f(yJ = f(y2) = 0, arranged in increasing order. Then there can 
be no more than rt - 1 linearly independent unstable eigenfunctions of the 
stability problem if az 2 - A,,, Thus if a2 is larger than the absolute value 
of the lowest (negative) eigenvalue Al, the flow is stable; if az lies between 
- jlz and - A, there can be only one unstable mode, if it lies between - A:, 
and - Lz, at most two, and so on. Of course eventually A,, becomes positive 
and thereafter the relevance to the stability problem ceases. In particular 
if A, 2 0, which may happen even for K 0 if the boundaries are suffi- 
ciently close, then the flow must be stable even though it has an inflection 
point with w f f ( w  - w8) < 0. (For a different and interesting approach to 
a related result in the case of a monotone w(y) ,  see [17].) 

We shall next consider the energy of a disturbance. If one multiplies 
the Rayleigh stability equation by y*, integrates from y1 to yz, and uses 
the boundary conditions, one finds 

a,. 

Ys 5 (w - c)((DylS + a2(ollS) + ( D W ( q I 2  - y * ( D 4 ( D q ) d y  = 0. 
Y I  

The imaginaiy part of this gives 

(2.21) c i l  ~Dvla + a2lqlady = (Dw)(vDv* - pl*Dq)dy. 

This is in fact the x-average of the energy equation of the disturbance, 

YS 

Y I  l !  

YI  Y1 

Foote and Lin [18] noted that the average of the Reynolds shear stress 
over a wavelength 

errla 
1 
4 

= - &If = - (a/2n) 5 u'vfdx = -ia(qDy* - y*Drp)e*it. 
n 
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The stability equation now gives 

Since t = 0 a t  the boundaries, the integral of D z  over (yr,y2) is zero: 
this is in fact just the integral (2.17) used to prove Rayleigh’s theorem. 
But consider now a neutrally stable mode which is adjacent to unstable 
modes, that is, suppose we have an unstable mode for some a, and as a -. as, 
say, the corresponding c approaches a real value: ci(a) -. 0. Then for this 
neutral mode, (2.22) shows that D t  must be zero everywhere, except possibly 
at  y = y,(w(y,) = c) where the limit of the right-hand side of (2.22) does 
not exist. By consideration of the nature of the singularity in D t  which 
appears as c, --r 0 + it can be shown that at  the “critical layer” y = yc (or 
layers) z has (in the limit ci --+ 0 -1 ) a jump [t], of magnitude 

Because of the boundary conditions satisfied by t, the algebraic sum of all 
such jumps must be zero. If the profile is monotone, there can be only one 
jump, which must thus be zero, and this implies that D% vanishes at  yc 
since it can be shown that the alternative v(yc) = 0 is impossible. Thus 
for monotone profiles the neutral value of c must be the value of w at the 
inflection point. This is true also for some non-monotone profiles, for example 
the symmetrical jet w = sech2y, but is not always the case. For many 
non-monotone profiles, notably most non-symmetrical jets, there is no 
possibility that D2w = 0 at  all places where w = c. A neutral c adjacent 
to unstable modes doubtless exists in such cases, but it is not the value of 
w at any inflection point, and the corresponding eigenfunction must exhibit 
a certain weak singular behavior so that t can have two compensating 
jumps. This must in fact be regarded as the typical case for non-monotone 
profiles; it is fortunate that many profiles of interest are either monotone 
or sufficiently symmetrical so that the neutral c can be identified at once 
as the value of w a t  the inflection point. In general both the neutral c (ad- 
jacent to unstable modes) and the corresponding a have to be determined 
by numerical solution of the equation taking proper account of the sin- 
gularities at  the critical layers. Some further discussion .of the neutral 
eigenfunctions is given in Section 11.3. 

In 1915 Taylor [19, pp. 23-26] gave a physical interpretation of Ray- 
leigh’s necessary condition for instability. Taylor noted how the frictionless 
slipping of the fluid a t  the boundaries prevented the transfer of x-momen- 
turn necessary to maintain an unstable disturbance when D% is always of 
one sign. Essentially the momentum is transferred by the Reynolds stress, 
which must vanish near the walls and whose gradient can only vanish at  
a point where D2w vanishes. (Lighthill [20] has applied these physical 
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ideas to the instability of wind whereby ocean waves are generated.) Taylor 
went on to note that viscosity allowed momentum to be diffused from the 
boundaries, and suggested that a given basic flow might thus be stable for 
inviscid but unstable for viscous fluid. This suggestion has since been veri- 
fied, for plane Poiseuille flow as an example. 

Lin [7, pp. 226-2271 also has interpreted physically the mechanism of 
inertial instability by consideration of the migration of vorticity. He regarded 
the flow due to a neutrally-stable disturbance in Kelvin’s “cat’s-eye” di- 

FIG. 3. Kelvin’s cat‘s-eye diagram. The streamlines viewed by an observer moving 
with the neutral wave. 

agram [21], the pattern of streamlines viewed by an observer moving with 
the phase velocity c of the wave (Figure 3). This observer sees a stationary 

flow, with 4 = (It should be remembered that 

the physical quantity 4’ is understood to be the real part of its complex 
representation.) Let us assume that the critical layer y = y c  lies within 
the field of flow, and that cp does not vanish in that layer. Then there will 
be some closed streamlines, and the streamline $ = 4 + +’ = 0 will intersect 
at points on y = yc periodically separated by 2n/a. Now the flow is inviscid 
and two-dimensional. Therefore the total vorticity w = d + w’ = - Dw 
- au‘/ay + av’lax is uniform on each streamline, and in particular 
on the intersecting streamline. But aw/ay = 0 at the points of intersection. 
Therefore aw/ay = O(1o‘I) at the critical layer, i.e. (D2w),= yc = 0 to zeroth 
degree in the perturbed quantities, or aw‘/ay is singular. It follows that 
it is possible to find a non-singular neutral disturbance in inviscid fluid only 
if D2w = 0 where w = c. In reality a singular disturbance with large 
a21u’I-law’/ay would be damped by viscosity. Lin [7; 9, pp. 66-68] has 
also gone on to discuss the two-dimensional motion of vortices during in- 

Y 
wdy and 4’ = v(y)eiax. 

YC 
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stability, and a more complete discussion of this physical mechanism has 
been given by Gill [22]. 

Rayleigh limited the possible range of eigenvalues in the complex c- 
plane, proving that wmin < c, < wma, when ci # 0. Howard [23] generalized 
this result with his semicircle theorem. For its proof, suppose F = v / ( w  - c) 
is non-singular, and rewrite the Rayleigh stability equation as 

(2.23) D{(w - C ) ~ D F }  - a9(w - c)*F = 0. 

Multiply this equation by F* and integrate from y1 to ye, using the conditions 
that F vanishes on the boundaries. Then 

Y, 

(2.24) (w - c)s{1DFl2 + aalFla)dy = 0. 

This equation implies that c cannot be real when F is non-singular and 
therefore that c cannot lie beyond the range of w. Next suppose ci # 0 and 
take the real and imaginary parts of (2.24). 

Y I  

This gives 

- c,)' - ci2}Qdy = 0, 2ci (w - c,)Qdy = 0, 1 

Y I  j . 1  Y I  Y, r j .  Y1 

Y I  1 
- - j  { (ci2 + G') - (wmin + wmax)C, + wminwmax}Qdy# 

YI 

YI  Y I  

where Q G lDFla + aalFI2 > O .  Therefore 

UQdy = &dy, dQdy  = (Q' + c,')Qdy. 

But 

0 2 (W - wmin)(w - wmax)Qdy 

Y I  

the maximum and minimum being taken over the field of flow yl < y < y2. 
Therefore 

cia + cva - (wmin + ~max)cr + w&wmx < 0, 

i.e. for unstable waves c lies in the semicircle 

(2.26) {c, - +(wmin + wmax)}' + ci2 < {i(wmax - wmin))' (ci> 0)- 



18 P. G. DRAZIN AND L. N. HOWARD 

This shows that any eigenvalue c ,  real or complex, must lie in or on the 
circle with center t(w,, + wmin) and radius i(wmx - wmin). 

Again, with G = q/(w. - c)Y2, the stability equation can be written 

(2.26) D((w - c)DG} - (40% + U'(W - C) + )(Dw)*/(w - c)}G = 0. 

This has an integral 

(w - c)(lDGI2 + aalG12} + &(D2w)IG/' + ) ( D W ) ~ ( ~  - c+)lC/(w -c)l*}dy=O, 
Y. j. 
whose imaginary part gives 

because lw - C I - ~  = {(to - c,)% + < ci-'. It follows that 

aci < amax IDwl. 

This result is due to Hailand [24, p. 111, this proof to Howard [23]. A more 
general analogue will be given in Section 11.3. 

The stability problem has certain symmetries when the basic flow is 
symmetric, i.e. when it is possible to choose coordinate axes so that y1 = - ya 
and w ( y )  is an even function. In that event, if ~ ( y )  is an eigenfunction 
with eigenvalue c for any given a, it follows that the even part 

9 8  = Hvpcy) + d- Y)) 

vo = H d Y )  - 9-4- Y ) }  

and the odd part 

of v are also eigenfunctions for the same c ,  a. This can be seen at  once from 
the symmetric stability equation and boundary conditions. It can be shown 
further that either v0 or 9' is identically zero. To show this, we multiply 
the stability equation (2.11) for pe by yo, and subtract ye times the same 
equation for vo. This gives 

v P v 0  - v p v .  = Q 

where w # c .  Therefore 

@hpo - q&pS = constant = value at wail 

= 0. 
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Therefore (p',~,, are linearly dependent in general, which is only possible 
if one of them is identically zero. Thus we have proved that an eigenfunction 
is either odd or even, except possibly when c is real. 

In fact both even and odd eigenfunctions are found for the same symmetric 
basic flow, but they have different eigenvalues c for each a. An even eigen- 
function is associated with a disturbance named sirruous by Rayleigh, the 
pattern of streamlines being antisymmetric about the line y = 0. Similarly, 
an odd eigenfunction is associated with a varicose disturbance, the stream- 
lines being symmetric. This oddness or evenness of 9 allows one to assume 
that (p is even (or odd) and reduce the effective field of flow to the half 
range, 0 < y < ya. applying the symmetry condition Dg, = 0 (or Q = 0)  
at y = 0 and the original boundary condition v = 0 at y = ya. This is a 
convenient method to find eigenvalues for the sinuous and varicose modes 
of instability. It can be seen from the variational principle (2.18) with 
even K ( y )  that the least eigenvalue 1 corresponds to an even function f ,  
and that therefore the first sinuous submode is more unstable than any 
varicose mode of a given basic flow. 

Next we suppose that the profile is antisymmetric, with y1 = - y o  
and odd w ( y ) .  Then for each eigenfunction ~ ( y )  with eigenvalue c there 
is an eigenfunction y*(-  y) with value - c* = - c, + icj  for the same a. 
When the eigensolution is unique, this Hermitian symmetry implies that 
c, = 0 and g,*(- y )  = (p(y). Otherwise, there may be a pair of eigen- 
solutions with phase velocities f c,(a) and the same ci(a), one function the 
Hermitian conjugate of the other. Howard [26] gave a physical argument 
for a situation when the latter must occur. In Section 11.4.1 we give an 
example of a discontinuous shear layer for which it occurs. We also 
know that it may occur for the s-eigensolution at least when the profile 
has a point of inflection, other than that at y = 0. where w, # 0. A t  any 
rate for the neutral eigensolution with yo = 0. K ( y )  is an even function. 
and the variational principle (2.18) gives the greatest wave-number a, for 
an even eigenfunction (ps ; Lin's argument to deduce the perturbation formula 
(2.20) gives (dc,/daa)a-as-o = 0. So one might conjecture that for this mode 
associated with the point of inflection y ,  = 0 there is exchange of stabilities 
such that c, = 0 when cj # 0, i.e. when 0 < a< a,. This can in fact be 
proved for monotone antisymmetric profiles with K ( y )  >O; cf. [16]. 

Let us now revert to general basic flows, not necessarily with any sym- 
metry. Equation (2.24) was derived on the assumption that F = v / ( w  - c) 
had a square-integrable derivative over the interval [yl,yo]. I t  shows that, 
when c is real and F not identically zero, c lies in the range of w and either 
(i) a = 0, F = constant = A, say, or (ii) DF is not square-integrable. In 
the latter case, Q itself might be singular where w = c or it might have a 
lower order zero than (w - c). Our previous work now shows that as ci -+ 0 + 
either a - 0  + or a +a,  -. 
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If a = 0 and F = A, we get the trivial dgensolutim with $' = Q = 
A(w - c) .  This is really a form of the basic flow, for the total x-component 
of the velocity of the perturbed flow is 

and the y-component is ZI = - a#/& = 0. Thus the trivial solution is 
really the basic solution displaced laterally by the small distance A. In 
fact, for any solution it is readily seen that the vertical displacement at 
(x . t )  of the material surface with mean level y is 

q(x, t )  = F(y)eiacX - ct ) ,  

The trivial solution appears as the first term in a power series expansion 
of Q for small a. Heisenberg [S] found formally two solutions of the Ray- 
leigh stability equation : 

q+(y;a*,c) = (w - c ) { q i d y , c )  + aaq,l(y,c) + . . . + a*q~,d.y,c) + . . .} (i = 1,2) 

where 

qlo(y',c) = 1, qeo(y,c) = 

In these formulae the lower limit of integration is arbitrary, but may con- 
veniently be taken as yl .  The zeroth approximation for small a2 gives the 
eigenvalue relation 

(2.27) (w - c)-%y = 0. 1 
YI  

However this result depends only on heuristic analysis and is equivocal 
[7, pp. 220-2211. In fact Heisenberg used the series chiefly for the viscous 
solution at high Reynolds numbers. 

Heisenberg was not concerned with the case of one infinite boundary, 
for which it can be seen that his series are not uniformly convergent. On 
taking the limit as a + 0 for fixed w b ) ,  the stability equation in the form 
(2.23) gives 

(w - c)*DF = constant = value at boundary = 0, 
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and therefore F is constant between critical layers y = yE. Therefore F = 0 
from infinity down to the largest value of yc. On the other hand, the stability 
equation and boundary condition (2.12) at infinity give 

F-constant x e-=Y as y + w 

for any positive a, however small, provided that w .+ constant smoothly. 
Thus the order of the limits a + O ,  y --+ w cannot be changed without 
changing the limit of the eigenfunction F, which, like c a y ,  does not admit a 
power series expansion in aB uniformly for y large. 

In 1962 Drazin and Howard [S] considered long-wave disturbances of 
unbounded and semi-bounded flows. The basis of their work for unbounded 
flows is as follows. The stability equation (2.23) has two solutions F, (y;a,c) 
defined by their asymptotic properties 

F ,  W e F a y ,  DF, N F a e F a Y  as y+ f 00. 

These solutions are defined by the stability equation for given a,c,w(y), 
and are in general independent. However, for an eigenfunction which 
vanishes at y = f w, 

F E K+F+ K - F -  (- W < Y <  W) 

for some complex constants K,, the solutions F, being linearly dependent 
when c is an eigenvalue corresponding to given a. Therefore the Wronskian 

(2.28) F+DF- - F-DF.+ = 0 

at each and every point y ,  and at y = 0 in particular. This is the exact 
eigenvalue relation. At this stage one may assume a is small and seek to 
expand F, as power series in a. To avoid the non-uniformity of convergence 
at y = & w we put 

m 

F, = eTaY 2 (& a)"X+,,(y,c) (0 < f y< 4, 
r = o  

the two series being used in semi-infinite intervals which just overlap at 
y = 0. The coefficients x ,  ,, can be found formally from the stability equation 
as repeated integrals of w h ) ,  c etc. Now the eigenvalue relation (2.28) can 
be expanded in powers of a, the coefficients involving c, w(y )  in explicit 
integrals. This method can be shown to give one mode for which 

(2.29) c + Q { w ( w )  + w (  - a)} + i i l w ( w )  - w ( -  w)I as a -0. 

Thus there is instability when w(- w) # w ( w ) ,  or the flow is of shew- 
kryc* or halfjet type. On the large scale of the long wave (with small a) 
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a general smoothly-varying shear layer behaves like the vortex sheet with 
basic velocity 

Indeed the limit (2.29) of c gives the exact result for this vortex sheet, as is 
given in Section II.4.d. In fact there is also instability (but of smaller 
growth) when w ( -  00) = ~ ( o o ) ,  i.e. when the flow is of jet by@, the next 
approximation then giving 

Other modes were also considered 181, it being found that 

as a 4 0 ,  where 

at y = y,,,. 
In discussing the eigenvalue relation for a general profile, bounded or 

unbounded, we mentioned that c(a) may be a many-valued function. The 
variational principle (2.18) suggested that there might be many values 
of a for each c = ws and many values of c = w,. For symmetric profiles 
we mentioned sinuous and varicose disturbances, when c is at least double 
valued. We shall meet many-valued c in several examples of the Section 11.4, 
finding that each branch of c(a) is well behaved and corresponds to a distinct 
mode of instability. By continuity in a one might expect that for each 
neutral eigensolution with c = ws, and therefore for approximately each 
point of inflection, there is one mode of instability. Drazin and Howard [8] 
considered unbounded flows and associated heuristically the neutral eigen- 
solutions having c = w, for each zero ys of D'Jw with the small-a eigen- 
solutions having c = w(y,,,) for each zero y,,, of Dw. However the general 
problem defies oversimplification, and the modes have not been satis- 
fact oril y classified . 

3. The Initial-Value Problem, and the Stability of Non-parallel Flow 

Hydrodynamic stability theory is by far most highly developed for the 
case of a parallel basic flow, but there are a few more general results and we 
insert here a brief description of some of these. We shall also in this subsec- 
tion regard the problem as an initial-value problem, though elsewhere 
in this article we generally follow the more usual normal mode approach. 
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In the parallel flow case, the flow domain is taken as the strip 
- do < x < do, y1 < y < y,, and the boundary conditions are usually 
taken to correspond to rigid walls at y = y1 and y,. In the general case, 
it seems appropriate to take the flow domain to be some region R in the 
plane or in space, and to allow the possibility of flow across the boundary 
B of R. In this case, more attention has to be given to the boundary con- 
ditions. We shall assume that R is fixed and that we have given in R a basic 
flow U, which is steady, incompressible, and inviscid. We shall also 
not consider any body forces. The stability problem is then formulated as 
follows: given some initial conditions which differ from U, by a small 
amount, in terms of some appropriate measure (e.g., the L,  norm of the 
difference), we find the time dependent flow U determined by these initial 
conditions and some suitable boundary conditions which are satisfied by 
U,. The flow is stable if U continues to differ from U, by a small amount 
in terms of the selected measure. By “suitable boundary conditions” we 
mean such as assure that the initial-value problem for the flow equations 
will have a solution, and a unique one. The mathematical questions of 
existence and uniqueness of the initial-value problem for the inviscid flow 
equations with various boundary conditions do not appear to have received 
as much study as they deserve, but it is not appropriate here to embark 
on such a discussion. We shall give only some brief heuristic remarks. The 
most familiar case is that the boundary B consists entirely of a rigid wall, 
so that Us n = 0 on it. This condition probably is, in itself, a “suitable 
boundary condition” in the above sense. More generally, if the flow crosses 
B,  we should expect to prescribe U n as a boundary condition on B ,  sub- 
ject only to the requirement that its integral over B should vanish (other- 
wise the cohtinuity equation alone would have no solution). However, 
this condition alone is in general not sufficient to insure uniqueness of the 
solution to the initial-value problem-consider for instance the plane 
flows in the annulus 1 < r < 2 (polar coordinates) whose radial velocity 
component is l / r  and whose azimuthal component is ( l / r ) f ( r2  - 2t) where 
f is a function which is zero for values of its argument 2 1, but is otherwise 
arbitrary (it may be as smooth as desired). It is easily checked that these 
velocity fields do satisfy the flow equations, they all have the same normal 
component on the boundaries of the annulus, and are identical at t = 0. 

In the example just given (two-dimensional and axisymmetric flow in 
an annulus), uniqueness can be insured by prescribing, in addition to the 
normal velocity component on the complete boundary, the tangential com- 
ponent on the part (r = 1) of the boundary through which the fluid enters 
the flow region, for all t > O .  I t  is clear that this additional information 
is just sufficient to determine the function f .  Note also that this example 
shows that one may not in general prescribe the tangential component 
where the fluid leaves the region (r = 2) .  
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We shall now show that these boundary conditions, namely the pres- 
cription of the normal velocity component over the complete boundary 
(in a manner consistent with the continuity equation) and of the tangential 
velocity components over that part of the boundary where the flow is inward, 
together with one additional assumption, are sufficient to insure the unique- 
ness of the solution to the initial-value problem for general three-dimen- 
sional incompressible inviscid flow. 

Let U, be such a flow, in a region R with boundary B, and let 
U = U, + u be another. We assume that U and U, satisfy the same bound- 
ary conditions, so that u * n = 0 on B and u = 0 on that part B, of B on 
which U, n < 0. Write B, for the rest of B,  on which U, . n 2 0. Consider 
now the deformation tensor D of U, , with components Dij = U&,j + U , ,  . 
Since Djj has zero trace, at least one of its eigenvalues is < 0; let C(t)  be 
the supremum over R of the absolute value of the most negative eigenvalue 
of D-we call C(t) the maximum shear of U,, and we assume that C(t)  is 
finite, initially and thereafter. Writing + for the difference of the pressure 
fields of the flows U and U, , divided by density, one obtains the following 
equation for the “perturbation” u by subtracting the momentum equation 
for U, from that for IT: 

(2.31) Ut + U-Vu + U *  m, + v+ = 0. 

Note that the “perturbation” u is not necessarily small. Multiplying (2.31) 
by u and using V o  U = 0 we get 

Integrating this over R,  applying the divergence theorem to the last term, 
and using the boundary conditions, we get 

Write E(t)  J )luladV; we call this the “energy of the perturbation,” 

and shall use it as a measure of how large the perturbation is. Since U,. n 
2 0 on B, and - u -  Do u < C(t)Iu),, (2.33) gives 

R 

(2.34) 

and thus 
t 

(2.36) 
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Inequality (2.36) shows that if the perturbation is initially zero, i.e. if U 
satisfies the same initial conditions as U,, , then it remains zero, and so the 
solution to the initial value problem is unique. 

(2.36) can be applied in another way. Suppose U, is a steady flow, whose 
stability we are studying. In this case C(t) is constant and we see that the 
growth of the energy of any perturbation is limited by an exponential with 
growth rate C, and this is true not only for the initial growth in the range 
of the linear stability theory, but also for any subsequent non-linear 
development of the initial perturbation. In the particular case of parallel 
plane flow with velocity profile w ( y ) ,  the quantity C is easily seen to be 
max IDwJ; for a linear perturbation with exponential growth rate aci, the 
energy E (per wave-length, say) has exponential growth rate 2ac,, and the 
result given by (2.36) thus reduces to Hpriland’s estimate ac, < 4 max IDwl 
given in Section 11.2. 

Though we do not have the existence theorem that ideally should ac- 
company it, this uniqueness theorem suggests rather strongly that the boundary 
conditions of prescribed U -  n over all of B and prescribed U over the “in- 
coming” part of B are “suitable boundary conditions” in the sense of the 
formulation of the stability problem given above. However, this is not to 
say that these are the only suitable boundary conditions; in particular, 
it is probable that instead of giving the tangential velocity components on 
the incoming part of B one might equally well prescribe instead the tan- 
gential components of the vorticity vector there. This becomes particularly 
clear in the case of plane flow. Formulating the problem in terms of the 
stream function Y(U = W x k) ,  and eliminating the pressure by going 
over to the vorticity equation we have the pair of equations: 

(2.36) A Y + $ . R = O  

(2.37) Rt + u*  VrR = 0. 

Now one might imagine the following step-by-step process (similar to 
one used in numerical weather forecasting) for computing the solution to 
the initial-value problem: Using the initial values of the velocity field for 
U, integrate the first-order equation (2.37) to find Q at a slightly later time. 
It is clear from the structure of (2.37), which says that the vorticity field 
moves with the fluid particles, that what is needed to do this is the initial 
values of R in R (which follow from those of U), plzls the values of R carried 
by the new fluid particles which enter the region. Having found the vorticity 
a t  the slightly later time, we then calculate the new flow field by solving 
the Poisson equation (2 .36) ;  to do this, we need a boundary condition, 
and the most natural one is to prescribe Y on B ,  which is equivalent to 
giving U. n on B.  Thus this hypothetical computation scheme suggests 
quite definitely that suitable boundary conditions, with which one might 
expect to be able to prove existence and uniqueness of the solution of the 
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initial-value problem for equations (2.36) and (2.37), are the prescription 
of Y (or U n) on B,  and of R on B,. In fact, with these boundary conditions 
and the assumptions that (U,( and R, remain finite, one can prove unique- 
ness by a method similar to that used above for the case of the tangential 
velocity components being given on B,. 

We now consider the stability problem for plane flow, using this vorticity 
boundary condition, to establish a result which may be regarded as giving 
a generalization to non-parallel plane flow of Rayleigh’s inflection point 
theorem. Its vorticity 51, 
= - AY, is constant along streamlines, and we shall write Ro = /(Yo), 
though in some cases such a representation is not literally possible unless 
f is regarded as multiple valued-different streamlines might carry the 
same value of Yo but different values of a,. We are going to prove that 
if f’(Y,) < 0 throughout the field of flow, then the flow is stable to two- 
dimensional disturbances. As with Rayleigh’s theorem, this will be a suffi- 
cient, but not necessary, condition for stability. The perturbation momen- 
tum equation is: 

Let the basic steady flow be U, = vYo x k. 

(2.38) U$ + Qk x u + wk x U, + Vh = 0, 

where h is the perturbation H - H ,  of the total head H = ilU21 + P. 
From (2.38) we deduce: 

(2.39) -”(’ at Z Iul2) + wu* (k x U,) + (uh) = 0. 

The -perturbation vorticity equation is 

(2.40) W# + u. v w  + U *  VR, = 0, 

and from this we get: 

(2.41) 

Now 

WU. VQ, = f ’ (Yo)wuo W, = f’w(u x k) (W, x k) = /’COU* (k x U,). 

If we now assume f’< 0 we can rewrite (2.41), using the fact that f’ is in- 
dependent of t and constant along the basic streamlines, as: 

Subtracting (2.42) from (2.39) and integrating over the flow region R ,  using 
the divergence theorem and the boundary conditions U. n = 0 on B and 
w = 0 on B, we get: 



HYDRODYNAMIC STABILITY OF PARALLEL FLOW OF INVISCID FLUID 27 

So far we have not assumed that the perturbation is small. We now 
note that the second integral on the left in (2.43) is of third order in the 
perturbation, while the remaining terms are of second order. Thus within 
the framework of the linear stability theory, this second integral is to be 
dropped relative to the other terms. Since U,= n 2 0 on 3, and f' < 0 we 
thus obtain, for the linear stability theory : 

(2.44) 0 2 / f ' ] d A  < 0. 

Since /' < 0, this integral is positive definite, and it follows that the energy 
of the perturbation, though it may possibly increase somewhat over its 
initial value at the expense of the term J - w2/2f'dA, must remain bounded; 

thus the flow is stable. It is interesting to note that the restriction to the 
linear stability theory is not necessary for the (rather special) class of basic 
flows which have f' constant and negative. 

The relation of this result to Rayleigh's theorem is easy to see. For a 
parallel flow with velocity profile .I&) we have 

R 

If there are no inflection points, w" is of one sign, say w f f  >O. By adding 
a suitable uniform translation if necessary which obviously does not affect 
the stability properties of a parallel flow, we can assume that w > 0 through- 
out, and so f'c 0 and the flow is stable. (If w"< 0 we can add a suitable 
uniform translation so that w < 0; but if w" changes sign this is not possible.) 
If there is just one inflection point we can assume that w = 0 there, and 
our result thus implies stability if w"/w >O; we thus also obtain Fjertoft's 
extension of Rayleigh's theorem. 

The above argument is not applicable if f' E 0, i.e. for constant vor- 
ticity (in particular irrotational) flows. However such flows, like their 
parallel prototype the plane Couette flow, are always stable, a t  least with 
the boundary conditions we have assumed here. For when VQo = 0, the 
vorticity equation (2.40) shows that the perturbation vorticity w is constant 
following particles. Since no new perturbation vorticity is brought in by 
entering fluid particles, w cannot grow, and since the perturbation stream 
function is determined from the Poisson equation A$ + w = 0 with t,4 = 0 
on B ,  4 cannot grow either. 
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We conclude this subsection with a brief account of some investigations 
in which a direct attack on the initial-value problem for plane parallel flow 
is made. 

First we take the solution for plane Couette flow due essentially to  Om 
[26. pp. 2&27; cf. 16, p. 2091 in 1907. Here we put w(=  a) = y (- 1 < 
y < 1) in the perturbation of the vorticity equation for two-dimensional 
flow to get 

(;+.;)(%+!$)=a. 

Therefore 

for an arbitrary function F differentiable with respect to x .  Now any given 
well-behaved initial velocity distribution satisfying the equation of continu- 
ity and the boundary conditions can be expressed in terms of the Fourier 
integral in x and series in y ,  

m 

@ ( x , y , ~ )  = da cos a x  2 bn(a) sin +nn(y + 1 ) .  .l' n - 1  
- m  

This given initial distribution determines F ( x , y ) ,  and thence F(x - yct,y). 
The resultant time-dependent equation for +' above and the boundary 
conditions can be shown to have the solution 

#(x,y,t) = da 2 #,,(aB + +fi2na) cosech 2a 
- w  i m:l 

* [(sinh 2asin {ax + ( tan - at)(y + 1)) 

- sinh a(l - y )  sin a x  - sinh a(y + 1) 

* sin {ax + 2 (inn - at)})/{a2 + (inn - act)'} 

- (sinh 2a sin {ax  - (inn + at) (y + 1)) - sinh a(l - y)  sin a x  

- sinh a(y + 1) * sin {ax - 2 (ifin + at)))/ {aa + (inn + #t)a)l. 

Evaluation of this solution for large t shows that @ = O(t-1) and therefore 
that plane Couette flow is stable. 

A more systematic approach to the initial-value problem, more suitable 
for application to basic flows other than plane Couette, comes from use 
of the Laplace transform with respect to time. This approach has been 
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developed for stability problems by Miles [27], Carrier and Chang [28], 
Case [29. 301 and Dikii [31. 321. It has been reconciled with the method 
of normal modes, both for inviscid and slightly viscous fluid, by Case [33] 
and Lin [34]. 

First let us take Case's [29] solution of plane Couette flow, for comparison 
with the other solution above. Let the Fourier transform with respect to 
x and the Laplace transform with respect to t give 

p(y,a,t) = e- %,h'(x.y,t)dx, 1 
Y(y;a,p) G e- ~'!P(y,a,t)dt. 

0 i 
Equation (2.46) has the Fourier-Laplace transform 

(2.46) (6 - a8) U/(y;a,p) = 1 (G - a') p(y,a,o). 
P + iay 

Next invert the Laplace transform, using the results that 

where C is a Bromwich contour parallel to the imaginary axis and on the 
right of all singularities of the integrand. Then 

Given the conditions that +' = 0 on the boundaries for all x,t and therefore 
that 

!P,P=O ( y =  *I), 

we show in the usual way that the solution is 
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where the Green's function 

sinh a(l + y )  sinh a(l - yo) 
a sinh 2a (- 1 < Y  <Yo) I- 

sinhall + v,,) sinhall - v )  
\d" .d a sinh 2a 

In principle we know S/(y,a,O) as the Fourier transform of $'(x,y,O), the given 
distribution of $' at 1 = 0. So we have q(y,a,t), and $'(x,y,t) on inverting 
the Laplace transform, for all t 2 0. To study the behavior of $' for large 
t ,  Case [29, p. 1451 evaluated the inverted transforms asymptotically and 
showed that $' = O(l/t) for fairly general +'(x,y,O). This result agrees with 
Orr's solution above and with the solution in Section II.4.a below, obtained 
with normal modes. 

To extend this approach for a general basic velocity profile w(y), we 
follow the work of Case [29] and Dikii [32]. Here the Fourier-Laplace trans- 
form of the linearized vorticity equation is 

(2.48) = H(y,a)/($ + iaw), 

say, where we may suppose H known in terms of the Fourier transform of 
the initial distribution $'(x,y,O). The transforms of the boundary con- 
ditions are 

(2.49) W.Y ;a,$) = 0 (Y = yl,ya). 

The solution of (2.48), (2.49) 

PU(y;a,$) = G(y,yo)H(Yo,a)/($ + iaw0)dro; j. (2.50) 
Y I  

where 
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(2.51) 

such that 

As in the case of plane Couette flow, we can now invert the transforms, etc., 
to find $'(x,y,t) as an explicit multiple integral of #'(x,y,O). 

The crucial integral is the inversion of the Laplace transform, 

(2.52) 

We seek to evaluate this integral for large t to see whether the flow is stable. 
When 1 is large, (ept( is large along C where Re p > 0. However, as we shall 
see, cancellation of the large components of the integrand means that the 
integral may not be large. The cancellation makes it advantageous to move 
the contour close to the imaginary axis and thereby reduce the magnitude 
of lePtI. Following the usual method of deforming the contour C, we must 
study the singularities of Y, which is given by equation (2.50). Since Yl,!P, 
satisfy equation (2.&51), their only singularities can be at the singularities 
of this equation, namely where w ( y )  = ip/u = c. These singularities lie 
only on the imaginary axis of the p-plane. Thus it is convenient to take 
a new contour on the imaginary axis with indentations to the right of each 
singularity or just to the right of the imaginary axis, say from E - ioo to 
E + ioo for small E .  To find P in terms of the integral along the new contour 
we must know the other singularities of the integrand in the half-plane 
Re $ > 0 ;  these coming from zeros of the denominator of the Green's func- 
tion G(y,y,), i.e. from the solutions of 

W(Y1.Y2) = 0 (ReP>O). 

This can be seen to be just the eigenvalue relation for the discrete spectrum 
of normal modes with ci >O. [Of course, equation (2.51) is essentially the 
Rayleigh stability equation with p = - iuc.] Supposing these eigenvalues 
are already known, we may evaluate the residues at  these singularities of 
the integrand in equation (2.52) and find 

E + i W  

exponentials 
!P(r;u,t) = - 1 Yb,a,+)ePtdt + 2ni 

e - i w  

The fastest growing component will be dominant for large t.  It will come 
from the discrete spectrum if there is one, being the term growing like 
8' for the largest value of uc{. Case [29, p. 1481 and Dikii [33, p. 11801 
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have indicated that the integral above over the continuous spectrum decays 
like l / t ,  so the discrete spectrum alone is associated with instability. Thus, 
in seeking a criterion for instability, we h a y  use the method of normal 
modes and ignore the continuous spectrum. 

4. Stability Characteristics of Variozcs Basic Flows 

As will be seen, most of the basic flows with known stability charac- 
teristics are piecewise linear. However, the characteristics of many smoothly- 

zw ( a )  --tf ( b )  

Y Y 

W 

FIG. 4. (a) Plane Couette flow: w = y. (a) Plane Poiseuille flow: w = 1 - ya. 
(c) Sinusoidal flow: w = sin y. (d) Vortex sheet: w = VS(cd, 2 y > 0). w = V,(O> 
y 2 - dJ. (e) Rectangular jet: w = I(lyl c I), w = O(lyl> 1). ( f )  Thin jet  w = (d(y))l/*. 
(9) (i) Symmetric jet in channel. (g) (ii) Antisymmetric shear layer in channel. 
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( k )  

Y 

Y 

( 0  1 ( P I  

FIG. 4. (continued) (h) Unbounded symmetric-trapezium jet. (i) Double jet. (j) S p -  
metric separated double jet. (k) Shear layer. (m) Bickleg jet: IV = Sech' y. 
(0) Hyperbolic-tangent shear layer: m = tanh y. (p) Boundary layer with auction: 
w = 1 - 6-y. 
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varying basic flows are partially known, and the advent of electronic com- 
puters is allowing many to be found completely in numerical terms. Diagrams 
of the basic flows accompany the examples below. 

(a) Plafie Cozcette Flow 

We follow the treatment [35] of Fjertoft and Heiland. When 

w = y  ( - l < y < l )  

the Rayleigh stability equation becomes 

(y - c ) ( P  - aa)q = 0. 

Unless c = y in the domain of flow, i.e. unless - 1 < c < 1, this gives 
only 

(D2 - a2)g, = 0, 

which has no solution vanishing at both y = f 1. Thus the basic flow is 
exceptional in that it has no eigensolutions of the discrete c-spectrum. 
However, when - 1 < c < 1, the stability equation also gives 

(D2  - a2)q = S(y - c ) ,  

(b) Plane Poisezlille Flow 

When 
w = l - y S  ( - l < y < l )  

there is no point of inflection, so the flow is stable (though the flow is unstable 
for viscous fluid at  large Reynolds numbers by Heisenberg's criterion). It 

where 6 is the Dirac delta-function. This representation in terms of a general- 
ized function is admissible because the typical component of wavenumber 
a is really only one component in an integral. It gives a solution of the 
continuous c-spec trum with eigenf unction 

sinh a(c - 1) sinh a(y  + 1) 
a sinh 2u (- 1<Y<C) 

v =  I 
sinh a(c + 1) sinh cr(y - 1)  

a sinh 2a (c < Y < 1) I 
for each value of a and for each value of c in the interval (- 1,l) .  The set 
of eigenfunctions is complete so that an arbitrary initial disturbance of the 
velocity field can be represented as a sum orintegral of them [cf. 36, pp. 11-12]. 
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seems that no further examination of the stability characteristics has been 
made except through the viscous problem. 

(c) Sinusoidal Basic Flow 

When 

the stability equation becomes 

Now D%J = 0 where y = ys = mz (n = 0, f 1, f 2,. . .). If there is no 
value ys  in the interval (y1,y2) the flow is certainly stable by Rayleigh's 
criterion. If there is at least one value, we may suppose ys = 0 without 
loss of generality, so y1 < 0 < y,. To find the s-solution we put c = w, = 0. 
Then 

siny{& + (1 - as*)vs} = o 
where 

pla = 0 (y = Y l J 2 ) .  

In finding the s-solution we ignore the factor sin y (and thereby discard the 
stable eigensolution corresponding to c = 0 in the continuous spectrum) 
to get 

v s  = sin M Y  - Yl)/(Y2 - Y1))> 

as = (1 - nznz/(yz - y1)2}1/2 

for each positive integer 12 < (y, - yl)/n. I t  follows that the flow is unstable 
if (r, - yl)  >n, but stable otherwise although the point of inflection lies 
a t  y = 0 in the field of flow. This counter-example to  the sufficiency of 
Rayleigh's necessary condition for instability is due to  Tollmien [14; see 
also 7, pp. 219-2201, 

(d) Vortex Sheet 

When 

the eigenvalue relation is [2; 3, p. 3791 

(e - V J 2  coth ad, + (c - VJZ coth adl = 0 
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and the eigenfunction 

Therefore 

c = { V, coth ad, + V, coth adl 

+ ilVa - V1l [coth ad1 coth ada]l/e)/{coth ad, + coth ad,}. 

This gives complex c and instability for each a. 
When d,,dg = m,V2 = 1 = - V,, this gives c = i. This is an example 

of an antisymmetric flow with c, = 0. It also gives the limiting eigenvalue 
(2.29) as a -P 0 of any smoothly-varying flow with w (  00) = 1 = - w ( -  cm). 
The elevation of the material surface with mean level y = 0 is q = 

If V,+ V ,  = V and dl,da = 00, one finds c = - V and q = (A + Bt)e”(x - vl) 
for arbitrary constants A , B .  This has been described as the instability of 
a flapping flag. 

(e) Rectalsgzclar Jet 

When 

there is [3, pp. 380-3811 a sinuous mode with 

c = (1 + i(coth a)1/2}/{1 + cotha} 

and a varicose mode with 

c = (1 + i(tanha)’/2}/{1 + tanha}. 

Each mode is unstable for all a. 

(f) Thin Jet 

When 

w = {s(y)}’/a (- -< y <  00) 
W 

the velocity is infinite at y=O. but the total momentum flux J wady=l .  

With piecewise solution of the stability equation and use of conditions (2.12) 
at infinity and (2.16) at y = 0. we find 

- w  

c = &a)W 
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and 

Although w is an even function, there is only the 
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sinuous mode above. It 
is unstable for all a, and is in accord with limit (2.30) for a smoothly-varying 
jet of the same momentum flux. 

(g) Channel Flows 

Rayleigh [3, pp. 386-3901 found eigenvalue relations for a general 
continuous piecewise-linear velocity profile in a channel, there being two 
discontinuities of the velocity derivative between the walls of the channel. 
In each case the eigenvalue relation is a quadratic equation for c. We give 
a few examples below. 

(i) For a symmetric-trapezium jet with 

w = (  V (Irk ib’) 
Vb-’(b + $3’ - Y )  ( ib’  < IYI G b + 8 0  

Rayleigh found 

c = V - V{ab sinh a(2b + b’)}-l{sinh ab sinh a(b + b‘) f sinha ab}. 

Thus both the sinuous and varicose modes are stable, as was to be expected 
for this flow which approximates a smoothly-varying profile with curvature 
of one sign. 

If further the middle layer is absent, then b’ = 0 and 

c = V - Va- b-1 tanh ab. 

(ii) For an antisymmetric shear layer with 

V + W Y  - ib’) (ib‘ < y  < b + i q  

(IY I< tb‘) 
- V + nv(y + ib’) (+b’ 3 y 2 - b - gb‘) 

w =  [ 2Vy/b’ 

Rayleigh gives [3, p. 3881 

cB = P {[(A - 2/b‘) sinh d sinh ab’ + a sinh a(b + b‘)]* 

- aB sinha ab}/{as sinh ab’ sinh a(2b + b’)}. 

Thus there is instability for some a only when - l i b<  A < - l / b  + 2ib’. 
This result in some sense exemplifies Fjmtoft’s result for smoothly-varying 
profiles represented in Figure 2. 
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(h) Unbo%nded Symmetric- Trapeziwn Jet 

When 

0 (IYl>1) 

(1 > IYI > 4 
(a > IY I) 

a)@ - 4 

the eigenvalue relation is [3, p. 3971 

4(1 - - 2(1 - a)ac{2(1 - a)a ‘f e-*(l - e-2(1-a)a)} 

+ {- 1 +2(1 - a)a + r 2 ( 1 - a ) a }  

= 0, 

e-*{1 - [I + 2(1 - a)a]e-2(1-a)a} 

where the upper sign is for the sinuous and the lower for the varicose mode. 
When a = 1 we get an example of the rectangular jet (Section II.4.e). 

When a = 0 we get a triangular jet, with 

2aW + a(1-  2a - e-%)c + (a(1 + e-2”) - 1 + e - a )  = O 

for the sinuous mode, and 

c = (2a)-1(1 - e-”) 

for the varicose mode. Here the varicose mode is always stable, but the 
sinuous mode is unstable for O <  a <  as + 1.8. The logarithmic growth 
rate aci of the sinuous mode is greatest when a = 1.2. 

(i) Doltble Jet 

When 

0 (IYl>1) 

1 (O< Y < 1) 

w = I u  ( - l < y < O )  

the eigenvalue relation is [S, p. 2691 

(1 - C)~{C% + (1 - c ) ~  tanha}{c* tanha + (U - c)~} 
+ (U - C ) ~ ( C %  tanh a + (1 - c)%}{ca + (U - c)% tanh a} = 0. 

This gives three modes unstable for each a, with 

c = i(i(1 + Ua)a}l/Z + . . . , 1 + i(ia)1’2 + . . . , 
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or 

U{1 + i(ta)'/* + . . .} 
for small a. 

(j) Syrrametric Sepuruted Dauble Jet 

When 

0 ( I r l>2  or I r l a  
w = (  1 Irl<2) 

the eigenvalue relation is [8, p. 2691 

{c/(l - c))*(l + {c/(l - c))* tanha) + 1 + {c/(l - c))*cotha = 0 

for the sinuous modes and 

{c/(l - c)}*({c/(l - c ) } ~  + cotha) + {c/(l - c)}* + tanha = 0 

for the varicose modes. This gives four modes unstable for each a. 

(k) S k a r  Layer 

When 

= { rllrl (Irl> 4 
Yla (Irl< a) 

the eigenvalue relation is [3, p. 3931 

c* = (4~*a*)-~{(1 - 2 4 *  - e-&}. 

Only two special cases are of interest : a = 0 and a = 1. The former gives 
Kelvin-Helmholtz instability of the vortex sheet (Section II.4.d). When 
a = 1, c is pure imaginary for a< a, I 0.64 and real for a 2 a,. The 
logarithmic growth rate acj is greatest when a = 0.4. 

(1) Double Vortex Skeet 

When 

the eigenvalue relation is [a, p. 2701 

{d + (1 - c*)*} tanh 2cr + 2 4 1  + c') = 0. 
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There are two modes unstable for each a. For a < 4 tanh-1 (6l/* -- 2) both 
unstable roots c are pure imaginary; for a > 4 tanh-l (S1le - 1) both are 
complex. Thus an antisymmetric profile does not neceSSarily give c, = 0. 

(m) BickZey Jet 

When 

w = sech*y (- w < y <  m) 

the s-eigensolution for the sinuous mode is [36] 

qs = sechz y, ws = Q, a, = 2 

and for the varicose mode [37] 

cps = sech y tanh y, 

The Lin perturbation (2.20) then gives [8, p. 2811 

ws = #, a, = 1. 

ac/aa2 = 0.0423 - i 0.0278 (a = 2 - 0) 

for the sinuous mode, and 

ac/aas = - 0.0264 - iO.0836 (a = 1 - 0) 

for the varicose mode. For small a the sinuous mode has [8, p. 2811 

c = a + i{#a - a* - i d l o g  (24a-1) - &azni}l/* + . , , 
and the varicose [8, p. 2791 

c = 1 + e(2/a)d(&a)21a(l + gC(Wa)"(#n2a2)1/8 + O(a)}. 

Numerical values of q,c, for some a have been given by Lessen and Fox 
[38; cf. 81. We give results of a somewhat more complete recent calculation 
in Table 1. 

Stability Characteristics of other jet or wake profiles have been computed 
by Hollingdale [39], Haurwitz and Panofsky [40], and Sato [41]. 

(n) Astisymmetric Dozcble Jets 

When 

w = Sech"'y t a h y  (- OO< y <  00, m >, - 1/2) 

the s-eigensolution is [41] 

pt = sechm+l y, w, = 0, q* = 2m + 1, 
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It seems that solutions corresponding to inflection points other than y = 0 
are not known. Numerical results are given in Table 2 for w = )V%sechay 
tanhy. Note that the “propagating mode”, though associated with the 

TABLE 1. INSTABILITY CHARACTERISTICS OF THE BICKL~Y JET 

Sinuous Mode Varicose Mode 

a cr c i  Cr c i  

0.06 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0.030 
0.086 
0.166 
0.229 
0.280 
0.323 
0.362 
0.396 
0.424 
0.461 
0.475 
0.620 
0.669 
0.597 
0.632 
0.667 

0.169 
0.216 
0.267 
0.267 
0.263 
0.262 
0.236 
0.218 
0.198 
0.170 
0.169 
0.121 
0.086 
0.053 
0.024 
0 

0.931 
0.889 
0.826 
0.780 
0.746 
0.719 
0.700 
0.686 

0.667 

0.079 
0.104 
0.121 
0.119 
0.108 
0.092 
0.074 
0.056 

0 

- 
TABLE 2. INSTABILITY CHARACTERISTICS FOR UJ = 913 sech* y tanh y 

Standing Mode (c, = 0) Propagating Mode 

a c i  a 6, c i  

0 
0.1 
0.2 
0.3 
0.6 
0.7 
1 .o 
1.5 
1.8 
2.0 
6 

0 
0.270 
0.362 
0.426 
0.495 
0.612 
0.472 
0.317 
0.199 
0.114 
0 

0 
0.05 
0.1 
0.2 
0.3 
0.4 
0.6 
0.6 
0.7 
0.8 
0.9 

1 .o 
0.944 
0.903 
0.831 
0.775 
0.732 
0.700 
0.678 
0.660 
0.648 
0.641 

0 
0.071 
0.103 
0.133 
0.139 
0.130 
0.116 
0.098 
0.077 
0.062 
0.044 
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inflection point at  w = 2-lI2, does not have c, + 2-lI2 as ci + 0. This is a 
case where the Reynolds stress for the neutral mode has two compensating 
jumps. There is of course another propagating mode, associated with the 
inflection point at w = - 2-li2, for which the sign of c, is reversed. 

(0) Hyperbolic- Tangent Shear Layer 

The special case m = 0 of the example in Section I1.4.n gives the shear 
layer 

which has better known stability characteristics [S, p. 2811. The s-eigen- 
solution is [43, 441 

vs = sechy, is = 0, as = 1. 

The Lin perturbation gives 

ct = (2/n)(l - a) + 0(1 - a)B as a + 1 - 

and for small a 

~d = 1 - 1.786a + 1.52W + . . . . 
Numerical calculations for this case have recently been given by Michalke 

Stability characteristics of some other smoothly-varying profiles of 
shear-layer type have been computed by Hollingdale [39], Carrier [cf. 461 
and Lessen and Fox [38]. Their results are similar to those for the hyperbolic 
tangent shear layer. 

[&I. 

(p) Bounda~y Layer with Suction 

When 

Lin pointed out [47, p. 901 that the Rayleigh stability equation can be 
transformed into the hypergeometric equation, a result used by Chiarulli 
and Freeman 1471. 
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111. WAVES AND STABILITY OF PLANE PARALLEL FLOW OF INVISCID FLUID 
UNDER THE ACTIONS OF VARIOUS FORCE FIELDS 

1. Introrlzcction 

The theory in this section consists chiefly of developments by Scandina- 
vian meteorologistsin the 1920’s and 1930’s of Kelvin’s paper [2] of 1871. Their 
work is collected in a book by Bjernes, Bjerknes, Solberg, and Bergeron [48] 
of 1933. It may be more accessible to the reader in Chapter X of the book by 
Godske. Bergeron, Bjerknes, and Bundgaard [49]. which also has a biblio- 
graphy of relevant meteorological papers published by 1960. These me- 
teorologists have considered the equations, boundary conditions, and eigen- 
solutions for piecewise-constant velocity profiles under the influences of 
combinations of density variation, compressibility, and rotation. Haunvitz 
[SO] has considered the equations and boundary conditions under the same 
combinations of force fields for smoothly-varying profiles also. 

The very generality of these combinations and their meteorological 
context has obscured some of the fluid dynamics and enabled other authors 
to duplicate their work in ignorance of it. So we shall consider the force 
fields separately in order to simplify the understanding and to compare 
the effects of different force fields. Of course any combination of these 
force fields can be considered, and. indeed, there are dozens of papers dealing 
with various combinations. However these combinations need no special 
techniques in their treatment, so we shall not describe then. If the reader 
is interested in a physical problem of stability of parallel flow affected by some 
combination, he may readily adapt the methods used for the fields separately. 

Again, we have ignored the effect of surface tension on an interfacial 
boundary condition. This may be physically important, but it is a simple 
matter to apply the method of Kelvin [2] to cater for surface tension. 

Treating one external force field at a time, and finding its effects on the 
inertial instability discussed in the previous section. we first give the stability 
equation and boundary conditions for two-dimensional wave-disturbances, 
and comment on the validity or invalidity of Squire’s theorem. Then we find 
the eigensolutions for two unbounded basic velocity profiles, that of static 
equilibrium (w = 0), and that of a vortex sheet (w = y/lyl). It is found 
that for static equilibrium a neutrally stable wave motion may occur for 
most of the external force fields. For example, sound waves may occur 
when the external “force” is due to compressibility of the fluid. Such a 
wave motion is important both for its own sake and for its representation 
of some stability characteristics of profiles with shear. The example of a 
vortex sheet is also important, because a vortex sheet is the simplest flow 
with shear, and because its stability characteristics represent those of any 
smoothly-varying shear layer for long-wave disturbances. Finally we sum- 
marize briefly the literature on stability problems for each force field. 
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Thus the section is a rapid survey of problems within our purview. 
Their juxtaposition emphasizes their similarities. In the next section we 
shall emphasize those similarities further, with dimensional and physical 
arguments. Then we shall choose one example of the external force fields, 
that of buoyancy of a fluid of variable density, as a prototype and discuss 
its stability characteristics in detail. 

2. Internal Gravity Waves and Stability of a Fl& of Variable Density 

Following Kelvin [2], many authors have studied the stability of parallel 
horizontal basic flows of incompressible fluid with piecewise-constant 
velocity and density distributions (i.e. with velocity and density uniform 
in layers but varying from layer to layer) under the action of gravity. 
Rayleigh [61] was the first to consider the stability of fluid of smoothly- 
varying density distribution p,,,(y*) at rest, y* being the height. For the 
particular density distribution p* = po exp (- By) (- bo < y* < bo, con- 
stants Po, f i  >O), he found neutrally-stable internal gravity waves of phase 
velocity 

( 3 4  c* = a, = (gp/a,*)'lS, 

on neglect of a&, i.e. on neglect of the variation of inertia due to the 
variation of density but not of the buoyancy. 

Taylor [62], Goldstein [63], and Haurwitz [60] considered two-dimensional 
disturbances of parallel horizontal flow of incompressible fluid under gravity 
with smoothly-varying profiles of velocity and density. Their angysis 
leads to the stability equation with dimensionless form, 

(w - c)(D* - a*)p, - (0%)~ + J y / ( w  - c) - K{(w - c)Dy - ( h ) p , }  = 0; 

(3.2) 

(3.3) 

(3.4) 

where the local Richardson number of the basic flow is 

Jcy) = - ( g L B d p * / d Y * ) / W ,  8 

K ( Y )  = - LdF*/ij*dY* , 

a measure of the characteristic ratio of the buoyancy to inertia; and 

is a measure of the characteristic ratio of the variation of inertia due to 
heterogeneity of the fluid to the inertia. (Note that the Froude number, 

(3.6) F E gL/Vp = J(~) /WY) ,  
is independent of y.) The stability equation can be seen to reduce to the 
Rayleigh stability equation for a homogeneous fluid, i.e. for dii,/dy, = 0. 
A t  the walls (or infinity) we use boundary conditions (2.12) as before. At 
a discontinuity of w, Dw or j the continuity of the normal velocity component 
and of the pressure imply respectively that 
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In fact Squire’s theorem may be extended to this case [54], giving for 
each three-dimensional wave making angle 0 with the basic flow a two- 
dimensional wave of the same growth rate but effective Richardson number 
Jcos*O and Froude number Fcos*0. Usually density variation with 
dp,/dy, < 0 acts as a stabilizing agent, so we seek criteria of stability with 
minima of J or F. Thus two-dimensional disturbances are the most unstable 
usually, and anyway the stability characteristics of any three-dimensional 
disturbance follow at once from knowledge of the characteristics of all 
the two-dimensional disturbances , 

The outstanding problem of this case is Kelvin-Helmholtz instability of 
the basic vortex sheet with 

(3.7) 

Here the eigenfunction can be shown [a] to be 

where the eigenvalue 

Thus the flow is always unstable if there is heavy fluid above lighter 
< A*). If there is heavy fluid below lighter, the flow is stable to those 

waves with 

(3.10) 

but unstable to all shorter waves. 
If V = 0, then we have 

(3.11) ‘* = f k @ 8 *  - Pl*)/a*(Pl* + P8*))” 

for neutrally-stable internal waves at the interface of the fluids. Taylor [66] 
recognized that the same analysis gives 

c* = f {(g - g’)@** - Pl*)/a*(Pl* + P**)}’” 
when the interface has constant acceleration g‘ downwards. Thus there is 
instability when (g - g‘) and (pa* - pl*) have opposite signs, i.e. when the 
resultant acceleration (g’ - g) is directed from the lighter toward the 
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heavier fluid. This is called Raylcigh-Taylor instability on account of 
Taylor's work and the paper by Rayleigh [61] on waves in a heterogeneous 
fluid at rest, which he showed unstable when dp*/dy, > O  somewhere. For 
an example, the surface of water in a bucket is subject to Rayleigh-Taylor 
instability when moved downwards with constant acceleration greater in 
magnitude than g. 

If pa* = pl*, then eigenvalue (3.9) reduces to the value (Section II.4.d) 
for a homogeneous fluid. 

In many geophysical problems the effects of variation of inertia are 
negligible though the buoyancy is not, so we may approximate K = 0 with 
J # 0. Then the stability equation becomes 

(3.12) (w - c ) ( P  - aa)p, - (D%)q + J ( y ) y / ( w  - c )  = 0. 

When p* = p,, exp (- By,,), it can be seen that J(r)  = g,dLa/Va, a 
constant. When further we = 0, we get Rayleigh's internal gravity waves 
with 

y = constant, c = f (J/a*)1/2 = f a. 

When p+  = po exp (- By*), w* = y*/Iy*J it can be shown [48, 60, 661 
that the eigenfunction is 

(c - 1) exp (- (1 - d / ( c  - l)a)112ay) (r > 0) 

(Y < 0)  
(3*13) 'P = { (c + 1) exp ((1 - a*/(c + l)a)l/Zay) 

where 

(3.14) (C - l)*{l - u*/(c - l)'}'" + (C + 1)'{1 - d / ( c  + 1)*}'Ia = 0. 

The square-roots must be chosen with non-negative real parts in order that 
the eigenfunction (3.13) is bounded at y = f 00. If a square-root is pure 
imaginary. its sign must be chosen so that there is outward radiation of 
energy at infinity; however, this occurs only for real c, in which case there 
is stability anyway. It now follows from squaring up equation (3.14) that 

(3.16) c = O  and 8 2 1 ;  c*/a*=l and at= 00; 

or 

ca = - 1 + &as. 

The second mode represents Rayleigh's internal gravity wave with I' = 0 
and c,, = f a,. The first and second modes are isolated from one another, 
and from the third mode, which is the only one that can give instability. 
It can be seen that there is stability to all waves only when 

(3.16) as 2 2, i.e. aa < +gp/Va. 
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We shall not discuss the stability characteristics when K = 0 further 

The case J = 0, K # 0 is also not without interest, and it may represent 
now, because we shall take them up in detail in Section V. 

instability of vertical flames. Kere the stability equation becomes 

(w - c)(D* - a 2 ) p  - (D2w)q  + K ( y ) { ( w  - c)Dp - (Dw)pl} = 0. 

For a vortex sheet with exponential density, 

w = y / (y l  and j j  = exp (- Ky) (constant K >  0), 

the eigenvalue can be shown to be 

c = (- K2/2aZ + i ) / ( l  + K2/2a2)1/e, 

giving instability for all K.a .  

shear layer w = tanhy. 
Menkes [67] has considered such a problem for the smoothly-varying 

3.  Souad Waves and Stability of Compressible Flzcid 

Stability of a basic parallel flow of compressible perfect gas with 
piecewise-constant temperature and velocity was first studied by Bjerknes 
et al. [as] and Haurwitz [60]. Haunvitz also found the stability equation 
for basic flows with smoothly-varying temperature and velocity. He in 
fact considered external fields due to buoyancy and rotation as well as 
compressibility, but in our special case for two-dimensional waves in adiabatic 
motion it has the dimensionless form 

(3.17) D({ (w - c)Dpl - (Dw)p}/{aa - (w - c)") - a%r2(w - c)pl = 0. 

Here pl is defined by the equation for the lateral velocity, 

v' = iapl(y) exp {ia(z - ct)}. 

because two-dimensional motion of a compressible fluid has no stream 
function. Also the local inverse Mach number of the basic flow is u(y)  = 
a+(y*)/V, a,  being the local speed of sound. In general a, vanes with the 
basic temperature T,(y,) of the perfect gas so that a, = (yRT,)'l2, 
where y is the ratio of its specific heat at constant pressure to that at constant 
volume, and R is the gas constant. Note that the stability equation 
(3.17) above reduces to the Rayleigh stability equation as a + 00, i.e. as 
the fluid tends to be incompressible. 

The boundary conditions (2.12), at the walls are valid for compressible 
fluid as well as incompressible fluid. The boundary conditions at a discon- 
tinuity of w ,  Dw, a ,  or Da can be shown in the usual way to be 

(3.18) [pl/(w - 41 = 0, 

[{ (w - c)Dp - (Dw)pl}/{az - (w - c ) ~ } ]  = 0. 
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A generalization of Squire’s theorem for this case is valid, giving [68] 
each three-dimensional disturbance of the basic flow with w+(y+) ,  a*@+) 
the same growth rate as a two-dimensional one for a basic flow with w+ cos 8,  
a*, i.e. with velocity scale V cos 8 and therefore Mach number V cos 8/u, = 
u-1 cos 8 < a-1. Thus to each two-dimensional disturbance there corre- 
sponds a three-dimensional one of the same growth rate but higher Mach 
number. It follows that if a flow of slightly compressible fluid is unstable 
to some two-dimensional disturbances then the same flow is unstable at all 
Mach numbers to some three-dimensional disturbances. Thus, although 
we shall find the cushioning effect of compressibility a stabilizing one by 
and large, it can never stabilize waves nearly perpendicular to the basic 
flow. However, it is fruitful to examine the stability characteristics of com- 
pressible fluids, and it is again sufficient to consider two-dimensional dis- 
turbances only, because their characteristics trivially imply those of all 
three-dimensional disturbances. 

The important problem of a vortex sheet has been treated by Landau [69], 
Hatanaka [60], and Miles [27]. With 

the stability equation (3.17) solved piecewise with 
(2.12). (3.18) gives eigenfunction 

(c - 1) exp (- a{l - (c - l)s/ala}1/2y) 
(c + 1) exp (a{l- (c + 1)*/%*}1/2y) 

al-*(c - l )S{ l  - (c - 1)*/a1a}-1/2 

boundary conditions 

(3.20) + ae-a(c + 1)a{1 - (c + 1)a/a9*}-1/2 = 0, 

where the square-roots have non-negative real parts, etc. 

Then ua = a,, = a say. Therefore 
For illustration, let us take the special case of uniform basic temperature. 

(3.21) 

and it follows that 

(C - l)a{~9 - (c + 1)2)’’2 + (c 4- 1)*{aa - (C - 1)’}11” = 0 

(3.22) 
c*/a*>, 1 and a9= w; 

c = O  and ag<1; 

or 
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The first mode represents a sound wave with c, = f a, when V = 0. The 
second mode c = 0 gives a root of the unsquared equation (3.21) only when 
the square-roots are pure imaginary and have opposite signs. In fact, it 
represents the steady flow of supersonic streams on both sides of a thin 
wavy rigid wall coincident with the stationary interface between the two 
streams (cf. Liepmann and Roshko [61], art. 8.6); all streamlines have the 
same shape and size, but wave crests are out of phase, lying on Mach lines. 
These stable modes are isolated from one another and from the unstable 
third mode, which exists for all values of a. As a 00 (which may be effected 
by letting V + 0 or a, + m) the third mode gives c + i or f 21'2a. The 
former limiting root corresponds to the instability of a vortex sheet in an 
incompressible fluid. As a -, 0, c = f 1 & a + O(aB); these four roots 
correspond to stable sound waves superposed on the upper and lower streams 
of the basic flow. The vortex sheet is stable to two-dimensional disturbances 
if and only if c is real for all a, i.e. 

(3.23) a < 2-112. 

Kuchemann [62] has studied the stability of a piecewise-linear profile 
representing a boundary layer in a compressible fluid. Lin [63] has con- 
sidered general stability characteristics, and particular ones of a shear 
layer. Eckart [a] has generalized Howard's semicircle theorem for com- 
pressible fluid. 

4. Planetary Waves and Stability in a Rotating System 

If the equations of motion of inviscid fluid are referred to a frame 
rotating with constant angular velocity a, the Coriolis acceleration must 
be addedrto Euler's equations, but the centrifugal force may be put with 
the pressure, giving 

&*/at, + u*. VU* + 2 a  x 11, = - VP,, 

where p*P, is the pressure plus the centrifugal potential. Thus the vorticity 
with respect to a non-rotating (inertial) frame is 2n plus the relative vorticity 
O, = V x u*. Using the modified vorticity equation and the usual methods 
of normal modes, Johnson [66] has found the stability equation of a three- 
dimensional disturbance, 

(3.24) 

where pl is defined by v' = iav(y) exp {i(ax + yz - act)}, x is the angle 
between = (a,O,y), and the Rossby number is 

(3.26) Ro --= V/2LR, 

(W cos e - c ) % ( D ~  - a9)cp - cos qrar cos 8 - c ) ( D * w ) ~ ~  

+ Ro-1 cos x(R,,-l cos x + sin 8Dw)cp = 0 ;  

and the wave-number vector 
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a characteristic ratio of the inertial to Coriolis forces of the basic flow. 
When cos x/Ro and 8 are zero this equation becomes the Rayleigh stability 
equation for two-dimensional disturbances in a non-rotating system. When 
8 = 0, cos x/R,  # 0, the equation has the same form as equation (3.12) 
for a heterogeneous fluid. However, Squire’s theorem is invalid in this case, 
the above equation for 8 # 0 differing essentially from its form for 8 = 0. 

The boundary conditions (2.12) at a wall are still valid. At  a discontinuity 
of w or Dw, continuity of normal velocity and pressure at the material 
interface give respectively, 

[v/(w cos e - c)] = 0, 
(3.26) 

[ (w cos 8 - c ) D ~  - cos B(Dw)tp + R,-l cos x tan @,I = 0. 

When w = 0 (- 00 < y < 00) the solution is [cf. 49, p. 3361 

(3.27) v = constant, c = f cos~ /aR ,  = f a, 

say, giving plarcetary (or iwertial) waves with phase speed 

a, = 2Q cos x/a*. 

For the vortex sheet w = y/lyl (- ao< y <  ao) the 

(c - cos 8)  exp (- ay(1 - a2/(c - cos 8)z}1/2) 1 (c + cos 8) exp (ay(1 - a’J/(c + cos 8)2]1/2) 
(3.28) 9, = 

and the eigenvalue relation is 

(3.29) 
(c - cos e)yi  - ay(c - COS e ) y  

eigenfunction is 

, I  + (C + cos e)z(l - u ~ / ( c  + cos 8)z}1’z = 2a sin 8. 

When 8 = 0 this eigenvalue relation has the same form as that of (3.13), 
(3.14) for a heterogeneous fluid in a non-rotating system. On squaring up 
(3.29) etc. for general 8, we get the cubic equation in cz, 

o = ~ ( C Z )  4 cosz ec6 + (8 cos4 e - a 2 ( i  + 3 cOSa e)}c4 
(3.30) 

+ ( ~ ~ ~ S ~ ~ - ~ U ~ C O S ~ O ( ~ - C O S ~ O )  + U ~ } C ~ + U ~ ~ ~ ~ ~ ~ ( ~ ~ - C O S ~ O ) .  

As a + 0, the three roots are: cB = i a z  tanz 8 + O(a4) or - cosz 8 f 
2ia sin 8 + O(az). This gives only two admissible roots of the unsquared 
equation (3.30) with square-roots having non-negative real parts, namely 
c = & i cos 8 + a sin 8 + O(a8). As a --* 00, cz + - sin* 8, or 

(a8/8 C O S ~  e){i + 3 C O S ~  8 f sin e(i - 9 C O S ~  8)1lz}. 
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The first root is inadmissible. The latter pair give only a complex conjugate 
pair of roots c when cos2 8 > 1/9, implying instability. When cos2 8 \< 1/9 
there is stability provided a sin 8 2 0 but not otherwise. 

The Scandinavian meteorologists [cf. 48,491 have considered the stability 
characteristics of various piecewise constant velocity profiles and Johnson 
[66] has treated the shear layer w = tanhy. 

6. Rossby Waves and Stability of Fluid in a Rotating System with Variable 
Coriolis Parameter 

For large-scale (w lo3 km) motions of the earth’s atmosphere or oceans 
it is customary to neglect the kinematic effects of the earth’s curvature and 
use rectangular Cartesian coordinates, but to retain the more important 
dynamic effects of the variation of the Coriolis parameter f 2Q sin 1 
with latitude 1. This is done in the 8-plane method of Rossby [cf. 661. 
With this approximation it can be shown that the only modification to the 
stability of an eastward horizontal basic flow fi,,, = w*(y*)i relative to the 
earth is the addition of f i  to the relative vorticity D,w,k, the earth having 
angular velocity R(cos Aj + sin A). Kuo [66] has shown that this leads 
to the stability equation, 

(w - c)(DB - a 2 ) v  - (D% - 8 ) ~  = 0 

by the usual methods for two-dimensional disturbances, where 8, = D*f 
is usually approximated by a constant and y* by the product of the local 
value of 1 and the radius of the earth. 

The boundary conditions (2.12) at  a wall hold in this case. A t  a dis- 
continuity of w or Dw conditions (2.13), (2.14) still hold. 

Squire’s theorem gives each three-dimensional disturbance of the basic 
flow with w,(y,) ,p,  the same growth rate as some two-dimensional one of 
the basic flow with wpI* cos O,p, cos 8.  Hence it is sufficient to consider 
two-dimensional disturbances only as in Section 11. 

(3.31) = constant, c = - 8/a2 3 - a. 

When w = 0 (- bo< y <  a), we get the solution 

say. Rossby 
waves travel westwards and are dispersive. They are really a form of neutrally- 
stable inertial oscillation on the rotating earth. 

For the vortex sheet w = y/lyl (- 00 < y<  bo) the eigenfunction is 

This represents a Rossby wave of phase speed a* G fi*/a*2. 

re71 
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and the eigenvalue relation is 

(3.33) 

On squaring up, etc., it follows that c/a 2 - 1 and a = 00 or 

(3.34) 0 = f(c) = c(c2 + 1 )  + a(3ca + l ) / 4 .  

The former mode is isolated, giving the Rossby wave with c = - a when 
w* = 0 (i.e. V = 0). The cubic has one real root, admissible only if 2 < a  < 00, 
for which- there is stability with - 1 2 c 2 - fa. However, there is also 
an unstable mode with complex conjugate pair of roots of the cubic, for 
which c -, f 3-'/% as a + 00 and c + f i as a -+ 0. Thus the rotation 
is a weakly stabilizing influence. 

Kuo [66], Lipps [68] and Howard and Drazin [67] have considered 
other problems of this case. 

(c - 1)2{l + a/(c  - 1 ) } 1 / 2  + (c  + l ) a { l  + a/(c + 1)} l l2  = 0. 

6 .  Magnetohydrodynamic Waves and Stability of an Electrically-Conducting 

Many problems of stability of parallel flow of an inviscid incompressible 
electrically-conducting fluid in a magnetic field have been considered. 
They may be classified by use of the magnetic Reynolds number, 

Fluid in a Magnetic Field 

RM G VL/1 ,  

an overall measure of the ratio of the convection of the magnetic field to 
its diffusion, where 1 is the magnetic diffusivity of the fluid. Thus stabil- 
ity problems may be specified by RM as well as the variation and magnitude 
of the basic magnetic field H. 

We shall restrict our attention to problems for which 

(a) the basic magnetic field is uniform and steady, so that the variables 
may be separated to yield a tractable stability equation; 

(b) RM is zero or infinite, so that the stability equation is of second 
order, like the other stability equations discussed in. this paper; 

(c) the basic magnetic field is directed in the (x,y)-plane of flow, because 

With these restrictions we may state three eigenvalue problems typical 
Squire's theorem is invalid otherwise, 

of magnetohydrodynamic stability of parallel flow of inviscid fluid. 

( 1 )  When RM = do (i.e. the fluid is a perfect conductor) and the basic 
magnetic field H = (H,,O,O) is parallel to the flow, the stability equation 
can be shown [69, 70, 711 to be 

(3.36) D({(w - c ) ~  - aa}D{y/(w - c ) } )  - aa{(w - c ) z  - as}{y/(w - c ) }  = 0,  
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where 

(3.36) as E pHo2/4nVapp,, 

a characteristic ratio of the magnetic to kinetic energy of the basic flow, 
p being the magnetic permeability of the fluid. 

The boundary conditions (2.12) at a wall hold as usual. At  a discontinuity 
of w, Dw. or a the conditions are [71] 

(3.371 . .  
[{l- u4/(w - c)2} { (w - c)Dp - (Dw)q}] = 0. 

When w = 0 (- do < y < cm) the solution is 

(3.38) p = constant, c = f a. 

This represents A l f v k  (or magnetohydvodynarnic) wuves of phase speed 
a* G (pH0a/4np*)'/2. 

For a vortex sheet w = y/Jyl(- 00 < y < cm) the eigenvalue is n13 

(3.39) c = * (as - 1)I". 

Therefore the flow is stable if and only if aa 2 1. 

(2) When RM = 0 and the basic magnetic field is parallel to the flow, 
the stability equation can be shown to be [70] 

where 

(3.41) N pHo2LL/4np,/V. 

The boundary conditions are the same as with no magnetic field. There 
is no progressive wave possible when w = 0, and the vortex sheet is unstable 
for all values of H,, however large, although the magnetic field reduces 
the instability [cf. 721. 

(3) When RM = 0 and the basic field = HJ perpendicular to the 
basic flow, the stability equation can be shown [73] to be 

(w - c)(DP - a2)p - (0%)~ - iNDaq = 0. 

However, in this case the chief effects of the magnetic field on the stability 
characteristics occur through change of the basic flow itself rather than 
through change in the mechanism of instability. 
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IV. HEURISTIC THEORY OF INSTABILITY 

1. Dimensional Analysis 

The instability we have described is essentially a manifestation of three 

(a) the inertial instability of the basic flow, whereby the basic balance 

(b) the kinematic constraints of the boundaries, which by and large 

(c) the external force field, such as buoyancy or the Coriolis force. 

In Section I1 we discussed mechanisms (a), (b) extensively in our review of 
inertial instability of parallel flow. The action of mechanism (c) alone is 
also well known, for it gives wave motions, such as sound. In  this section 
we shall discuss qualitatively the interaction of mechanisms (a), (c). We 
shall exclude mechanism (b) because it is subsidiary and complicates the 
discussion. To understand the interaction better we shall relate the stability 
characteristics under both mechanisms to those under each separately by 
use of dimensional analysis. 

To illustrate the use of dimensional analysis it seems clearest to consider 
one specific case, and we have chosen that of the stability of parallel flow 
of a fluid of variable density under the action of buoyancy, with stability 
governed by equation (3.12), 

mechanisms : 

of vorticity is upset: 

reduce instability; 

The methods we shall use for.this problem can be readily applied to the 
other stability problems of Section 111, which have a similar form. The 
stability equation above shows that gravity occurs only in the product 
- gD,p+/p+, for J ( y )  = - g(D,p,)La/p,Va. Therefore the eigenvalue 
problem (3.12), (2.12) gives eigenvalues of the form 

for the class of similar profiles w(y) ,  p(y) ,  where Jo* is the value of J+ 3 
-gD,p,/p, at any specified point y .  Now dimensional analysis implies 
that 
(4.2) c = c(a,Jo) 

where Jo = Jo+La/V~ acts as a characteristic value of J ( y ) .  To solve a prob- 
lem we find this relation explicitly, and, in particular, find the values Jo(a) 
for which ci(a,Jo) = 0 but for which ci(a,Jo) > O  nearby. These values 
Jo(a) define the curve of neutral stability (or ~eutral curve or stability boundary) 
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in the (a,Jo)-plane. This neutral curve is important, because it separates 
the unstable from the stable disturbances and hence shows at once whether 
there is instability or not for any given wave and flow defined by the point 

Now consider the limit as Jo - 0 for fixed a # 0. Then (some of) the 
(a, Jo)  * 

eigenvalues 
(4.3) c - c(a,o), 

which limit we suppose to exist and to equal the eigenvalues c(a) of the 
Rayleigh stability equation (2.11), which is equation (4.1) with Jo 0. 
It should be borne in mind that internal gravity waves exist for all Jo >O, 
however small, but not for Jo = 0; so we cannot expect there to be an 
eigenvalue with Jo = 0 for each eigenvalue as Jo - 0. However, know- 
ledge of c(a) from the theory of section 11 now tells us the behavior of 
some of the branches of the eigenvalues c(a, Jo) as Jo -. 0, i.e. as the buoyancy 
becomes small, as the velocity scale becomes large, or as the length scale 
becomes small. 

To consider mechanism (c) alone let us take the limit as w* + 0 for an 
unbounded flow, i.e. as V - 0 for fixed w(y) ,  p (y ) ,  L, Jo*, u,,. In this limit 
we suppose that c* tends to a function which is independent of w*, and 
therefore of both L and V ,  because as w* vanishes its length scale and shape 
cannot be relevant physically. Therefore c* is some function of a*, Joe 
which has dimensions of velocity. This implies that 

c*-kJi$/a*, as V 40, 

where k is a (many-valued) dimensionless constant independent of wCy) 
but dependent on pCy). But when V = 0 and the flow is unbounded it is 
well known that there are internal gravity waves whose speeds do depend 
on p b ) .  These speeds will give k. For example, when 

P* = Po* exp (- BY*), 

cs = (gS)"%* : 

it can be shown [Sl] that 

therefore k = 1 if we choose Jo* = gfi. (Of course the arbitrary multi- 
plicative constant in Joe affects k, because it is only the product k Ji:/+" that 
is determined physically.) 

To determine mechanisms (a), (c) together let us again suppose that 
the flow is unbounded. We can now let the length scale L of the velocity 
profile tend to zero without altering the infinite domain of flow. Thus we 
let L - 0  while a*, V ,  w ( y ) ,  g, p(y) are fixed. Then a = a,L + O  and 
Jo = - gL(Dp/p)o/Va + 0, although Jo/a is fixed. Thus if we write 

c = c(a,Jo/a) 
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and let L - 0  we find 

c -c(O,Jo/a) as a 4 0 ,  

for fixed smoothly-varying profiles w ( y ) ,  p (y )  and for fixed Jo/a. In this 
same limit we find 

w*(r* )  = WY*/L) (-- m< Y* < 

cr* > 0) 

cr* = 0) 

V w ( -  w) w * ( -  -4 (Y* < 0) 

Vy*/ly*l (for shear layers) 

=(0 (for jets), 
on ignoring the isolated point y+ = 0 which can have no physical signif- 
icance. It is understood that 

w*( -  w) = - w*(..) = - v 
for profiles of shear-layer type and that 

w*(-  m ) = O = w  *(MI 

for profiles of jet type, as can be effected without loss of generality by a 
Galilean transformation if necessary. Thus for a shear layer w* represents 
a vortex sheet in the limit as L - 0  and for a jet w* represents no flow in 
the limit. Similarly we find 

(Y* > 0) 

P*(Y*) + P*o (Y* = 0) 

[::'Q (Y*<O) 
as L + O  if these limits exist. 

Now let us review what happens in the limit as L - 0  for a profile of 
shear-layer type. We have found that then c - c(O,J,,/a) as a 4 0 for fixed 

fixed a*. However, we know the value of c* for the vortex sheet from Kelvin- 
Helmholtz instability (3.9), which gives 

W(Y) '  P M  and also w* - vY*/lY*l, P* +P+olcy* >O) or P*-a&* < 0) for 

C* = f V(Jo/a - 

on choosing Jo = (Lg/V2)[p*-,  - ~ * ~ ] / j 3 * - ~  + p*J and neglecting the 
variation of density (but not buoyancy) of the fluid in the inertia. We 
conclude that for any profile of shear-layer type 
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c + c(O,J,,/a) = (Jo/a - 1)1/2 as a -0 

for fixed Jo/a. We shall confirm this result analytically in the next section. 
For a profile of jet type we similarly identify c(O,Jo/a) as the speed of 

internal waves when w* = 0 and p* = pa&* >O) or p*-&y*< 0). as 
given in equation (3.11). Thus 

c -c(O,Jo/a) = f (Jo/a)*/2 as a + O .  

We shall also confirm this result analytically in the next section. 
Similar dimensional arguments for each of the force fields discussed in 

the last section can be used to apply the results for zero basic flow and for 
a vortex sheet to profiles of jet and shear-layer type respectively with long 
waves. In each case, on the large scale of a long wave (L  << a*-') every 
shear layer looks like a vortex sheet and every jet like no flow; so their 
stability characteristics should correspond as a .+ 0. Unfortunately these 
arguments do not seem quantitatively correct for all force fields. For example, 
in the case (Section 111.5) of a rotating system with variable Coriolis parame- 
ter, we expect that for each smoothly-varying shear layer w ( y )  the eigenvalues 
c(a,a) -+ c(0,a) as given by equation (3.33) for the vortex sheet, where 
a = @/a2, the Rossby wave speed. Thus it would seem that each shear 
layer is unstable as ic -+0 for fixed a, as a vortex sheet is. However, an 
exact solution for the shear layer w = tanh y seems [67] to imply that the 
neutral curve touches a = 1 as a + 0, i.e. that there is stability for u > 1 
as a + 0. This type of inconsistency occurs for some other force fields and 
has not been satisfactorily resolved. Possibly the resolution may come 
from there being more than one mode of instability for a smoothly-varying 
shear layer, yet only one for a vortex sheet; again the limits c,  -. 0, a - 0 
may not be uniform. 

2.  Physical Argtcmnts 

The mechanism of instability of a vortex sheet w* = Vy*/ly*I in a 
compressible fluid at uniform temperature will now be described, essentially 
in the way attributed to Ackeret [cf. 74, p. 2401. Consider a small irrota- 
tional two-dimensional disturbance of the velocitv field in which the interface 
between the two streams of speeds V ,  - V is distorted. Thus the interface 
has small bends. If the streams are subsonic ( V <  a*), then by continuity 
the speed on the convex side of a bend has a small increase over its basic 
value, and the flow on the concave side a small decrease. Now Bernoulli's 
theorem for irrotational unsteady flow of barotropic inviscid fluid plausibly 
suggests that the pressure decreases on the convex side and increases 
on the concave side of the bend. This pressure difference induced across the 
bend increases the curvature of the bend and thus causes instability of 
the interface. By the theory of the Laval nozzle [cf. 74, 8 3.61 the speed 
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is decreased on the convex and increases on the concave side of a bend if 
the streams are supersonic (a,< V). Hence the trend is reversed and the 
flow is stable. This heuristic argument indicates that there is instability 
for all a >1. 

This sufficient condition for instability of a vortex sheet is confirmed 
by an analytic argument of Lin [63], which gave this condition for a smoothly- 
varying shear layer subject to two-dimensional disturbances. However the 
condition apparently contradicts the result (3.23) that the vortex sheet is 
stable for all a < 2-112 and unstable for all a >2-l12. The disturbances 
considered for equation (3.22) are in fact irrotational on either side of the 
vortex sheet, the rotational disturbances being part of the continuous 
spectrum. Any contradiction may be due to the difference between the modes 
of instability of a vortex sheet and of a smoothly-varying shear layer in 
the limit as a + 0, a difference similar to that for flow with variable Coriolis 
parameter discussed at the end of the last section. 

Another physical argument may be applied to jets. We take the qual- 
itative argument of Backus [cf. 8, p. 2641 for inertial instability of a homo- 
geneous fluid, make it quantitative, and generalize it for a fluid of variable 
density under gravity. Let us suppose the jet has profile w,(y,) where 
w,(f do) = 0 in a fluid of basic density p&,) such that (D,p,)+m = 0. 
We shall consider only long-wave disturbances of this jet. 

For long waves the effective width L of the jet is much less than a wave- 
length 2n/a,. Thus the jet oscillates sinusoidally like a string. Far away 
from the core of the jet the flow is irrotational, because the basic flow is 
uniform and the disturbance of finite origin receives no vorticity. Therefore 
the amplitude F ,  of the oscillation of a particle path dies away exponentially 
at y* = f do with scale height l/a,; the height of a material surface 
above its basic level is 11, = F,(y*) exp(ia,(x, - cat,)} where F, -FO*e-OL*IY*I 
as y, -. f 00. The density is j,-= below the jet. Close to the jet, within 
a distance of order of magnitude L from the jet, i.e. much closer than a 
wavelength, the long waves seem locally like a vertical translation of the 
jet. Thus the jet oscillates like a string with form 

110, = FO, exp {ia*(z* - c*t*)h 

for q,  is approximately constant on any vertical line near the jet. 
In this motion the vertical mass-acceleration of the fluid on both sides 

of the jet is in balance with buoyancy and the centrifugal force due to the 
(small) curvature of the jet. The buoyancy comes from lifting fluid below 
the jet a height 7, into space previously occupied by the lighter fluid above 
the jet and vice versa. In this way the buoyancy gives rise to a pressure 
disturbance across the jet 

to first order for small q,. 
= g{p*-a ,  - p * m } q o * s  
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The centrifugal force exerted by a volume element of the jet of vertical 
thickness dy, and unit horizontal area is the product of its mass, curvature, 
and the square of its horizontal velocity. namely j&dy*(- apLll+/ax*2)w+* 
to first order in q*. This builds up the pressure difference across the jet 

m 

= a*2 P*W*%*dY*. s 
- m  

Now over the effective width of the jet q+ = qo*, because a* is small; in 
the distant regions where q* -+ 0 exponentially w* is small anyway. Therefore 
this pressure difference 

m 

= a*%* I P*w*2dY* 
- m  

for small a*, qs. 
The vertical mass-acceleration of the flow over unit horizontal area 

Now /3, changes rapidly from its value at the origin to its values 
a t  infinity, whereas q,, changes slowly like Fo,e-"*lY*l +"*(+* - c*t*) . There- 
fore, for small a*, this expression for the mass-acceleration 

m 0 

= - a*cla{jkm + P*-m)qo*. 

Finally the balance of pressure and mass-acceleration per unit area gives 

1.e. 
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as a* + O  for fixed 

g{P*-m - i j*m}/V8a*@*-c P*mh 

This result will be verified analytically for a sinusoidal disturbance in the 
next section. In particular, we now see that long waves are stable when 

g { A - m  - P * m )  2 a* P*w*'~Y** .j - m  

In this argument we have approximated the buoyancy force with only 
the change of density from one side of the jet to the other. Thus we have 
neglected the modification of the buoyancy due to the density structure 
of the jet, which should be of order of magnitude a*L times our first ap- 
proximation g(j5*-m - pmm)qo*. This modification may lead to the addition 
to  equation (4.4) of a term larger than the last included term unless the 
first term of the right-hand side of (4.4) is of comparable or lesser magnitude 
than the second term in the limit as a,L + O .  

Holmboe [76] has given other physical descriptions of the instability 
of parallel flow of fluid of variable density under gravity. In particular, 
he has looked at the development of symmetric waves in terms of real var- 
iables rather than in the usual way with normal modes. 

V. INSTABILITY OF AN INCOMPRESSIBLE FLUID OF 1 ARIABLE DENSITY 

1. General Stability Characteristics 

In this section we consider the instability of a basic steady plane par- 
allel flow of an inviscid incompressible fluid of variable density under the 
action of gravity. We take the basic velocity ii* = w*(y,)i and density 
&, = p*(y+) as before, y,, being the height. Also we neglect the variation 
of inertia due to the variation of density of the fluid, i.e. we take K ( y )  = 
- Ldp*/p*dy, = 0 but retain J(y)  G - L8g(dj5,/dy,)/p'*V* # 0. This is 
similar to the Boussinesq approximation and can be justified for many 
practical applications of the theory in which K is small and J of order one. 
We have shown in Section 111, by the usual methods of hydrodynamic 
stability with normal modes, that the instability is described by the di- 
mensionless eigenvalue problem : 

(6.1) (w - c)(D8 - aS)p, - (D8w)cp + J(y)p,/(w - c) = 0; 

(6.2) cp = 0 (Y = YIJY'). 

We shall consider general and particular properties of the eigensolutions 
in the two subsections of this section, following the methods of Section 11. 
As in Section 11, we have dynamically independent two-dimensional waves, 
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each having a stream function of the form +' = ~ ( y )  exp { ia(x - ct)}. 
The eigenvalue problem is again invariant under complex conjugation, so 
there is stability only when c is real, and instability when c is complex, 
one of the conjugate solutions growing like exp (w i t ) .  

We can proceed to generalize Rayleigh's theorem and some other results 
of Section 11.2 as follows. Assuming that ci >O. let W = w - c,  H 
W"-'V, some definite branch being chosen when n is not an integer. Then 
the stability equation becomes 

(6.3) . .  + W-zn(n(I - n)(Bw)2 - J ) ) H  = 0. 

Multiply this equation by H* and integrate from y 1  to y 2  to get 

We(l-*l(lDHI2 + a2lH12) + nWl-"(D%m)IHJ2 

+ W-%{n(l - ~ ) ( D w ) ~  - J))HI2dy = 0. 

Y, T 
(5.4) 

This result of Howard [23] can lead to various properties according to the 
value of n chosen. 

When n = 1 we have 

(5.6) [ ( D q ~ l ~  + oc21pl12 + W-'(D2w)(cp(' - W-2J1~\adr = 0. 

Y I  

The imaginary part of this gives 

(5.6) ci j{D2w - 2(w - c,)JJWJ-B}JWI-2)91)2dy~ = 0. 

Y1 

Therefore 

(5.7) 

somewhere in the field of flow. If D2w # 0 in the field of flow we further 
have 

(6.8) ci < (W(  < max ((1 - ct)JI(WllDBwl} < max ]2J/D%(. 

These results (5.7), (5.8) are due to Synge [76]. When J = 0 they give 
Rayleigh's necessary condition for instability that D2w = 0 somewhere 
in the field of flow. Unfortunately when J # 0 they are not so simple, 
because they involve the unknown c.  

Dew = 2(w - c , ) J ( y ) / ( ( ~  - c,l2 + ci*} 
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When n = 0 we have H = y/W = F ,  and 

(6.9) r ( w  - c)*((DFI* + a*lF(*) - JlFl*dy = 0. 

This leads to the proof of the semicircle theorem, as in Section 11.2. The 
extra term in the present case only strengthens the inequalities used provided 
J 0 everywhere. Thus, when ci > O  and J ( y )  2 0 in the field of flow, 

Y l  

(6.10) {c, - a ( ~ &  + Wna.)}~ + cis < { a ~ ~ m a s  - wultn)}** 

Howard proved this result [23] for a heterogeneous fluid originally. Even 
when J <  0 somewhere, it follows that wulti,< c,< wmx. When J ( y )  < 0 
everywhere, equation (6.9) shows that no non-singular neutral mode can 
exist, i.e. that either ci # 0 or c lies within the range of w and F is therefore 
singular. However, when J(y)  > 0 somewhere, it is possible that non-singular 
neutral modes exist with c outside the range [w-,w-] of w(y) ;  these 
isolated neutral modes in fact occur as internal gravity waves. 

When n = 4 we have 

j., - c){lDHl* + a*lHl*} + i(D2w)lHl* + W-l(t(Dw)* - filHl*dy = 0. 

Y1 

(6.11) 

The imaginary part of this gives 

(6.12) - IDHIa + a31HIB + IWl-*{J - ,(oW)*}1Hl*dy = 0. 

YI 

Therefore, when ci >0, 

(6.13) 0 > - lDHlady = (aa + {J - f(Dw)*}/lW(*)IHl*dy. P P  
Y, 9, 

Therefore J C y )  < $(Dw)* somewhere in the field of flow. This gives Miles' 
[77] sufficient condition of stability that J - t (Dw)* should be everywhere 
non-negative. Further from inequality (6.13) we have 

(6.14) a*ci' < a*lWl* < max {i(Dw)* - I@)}, 
a result due to Howard [23]. 
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The results of Section 11.2 about s-eigensolutions in the case J = 0 
have no simple generalizations for the present case J # 0, because the 
singularities of the stability equations for the two cases differ. We cannot 
now form a Sturm-Liouville problem to find ips after choosing some particular 
value c = I,. However the neutral s-solutions which occur for J = 0 will 
be modified as J increases and give some stability boundary of the form 
Jo = Js(a);  where Jo is some characteristic value of J ( y ) ,  such as 

gW*(Yi*) - P*(Y2*)ll(P'*(~i*) + L(Ya*)}B 

for dynamically similar basic velocity and density distributions. If wCy), 
J (y )  are analytic functions in the real interval bl,ya], then the solution 
p(y;a,Jo,c) of the stability equation (5.1) will be an integral function of 
a, Jo, c over any fixed domain of y within b1,ys] which excludes a neigh- 
borhood of the singularity w ( y )  = c, if any. It follows that the eigenvalue 
c is a continuous function of a and Jo [78, p. 2111. This result, together 
with the semicircle theorem in the limit as ci +O, implies that a stability 
boundary consists of singular neutral modes, i.e. modes for which ci = 0 
and w = c in (y1,ya) [77, p. 6061. Further, for a certain class of basic velocity 
and density distributions at any rate, every singular neutral mode has a 
contiguous unstable mode in the (a.Jo)-plane [78, $41. In general the 
stability boundary Jo = J,(u) is both many-valued and has many branches, 
as will be indicated by examples in Section V.2. As yet there is no 
general theory to find this stability boundary, but it has been found for 
many special velocity and density profiles. 

However, supposing the stability boundary to  be known, Howard [26] 
gave a heuristic method to perturb it and find neighboring unstable solu- 
tions. The method generalizes the argument leading to equation (2.20), 
which was for the case J = 0. Proceeding as in that argument but with 
fixed J ( y )  # 0, we find 

(6.16) 

where q~ is any eigenfunction with eigenvalue c. When c is real, care must 
be taken in evaluating these integrals because Q is singular. Examination 
of equation (6.3) shows that p behaves like W1-" when W + 0, i.e. near 
y = yc, f i  being a root of the equation n(l - n)(Dw)a = J evaluated at 
y = yc. We have found that J / ( D w ) ~ <  f somewhere in (y1,ya) in order that 
a singular neutral mode should exist; in that event there are two roots n be- 
tween 0 and 1, which coincide at n = & when J/(Dw)8 = t at y = yc. Thus 

Y ,  

d d l d c  = (2 J - WD%)papV2dy/ j @dy, I Y I  Y I  

(0%) w- ymY + ~ ( 1 -  * w a y ,  P (da*/dc)b = lim j. (2JW- 1--zn- 

e+a, 
Yr Y I  

(6.16) 
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where H = W”-lg, behaves smoothly at y = yc as a -c a,, c + w, for a 
fixed function J ( y ) .  For definiteness let us suppose that - n< arg (w - c) 
c 0 for ci >O, so that 

Now it follows that the denominator of equation (6.16), 

lim i w2(1- q p d y  = WF(1- n)Hsadr, i (6.18) 
a+a# 

Y I  Y l  

which we are supposing to be known. The integral of the numerator of 
(5.16) diverges at y = yc in the limit, so care is need to approach the limit 
with ci 4 0  through positive values. In this way Howard [26] was able 
to evaluate the right-hand side of equation (6.16) and thence find 

(dclda), = (da/dc),-’ = 2ec,(daa/dc),-’. 

We can use this result to find further stability characteristics. In general 
we seek the function c = c(a,Jo) and thence criteria of stability. But by 
partial differentiation we see 

We suppose that the stability boundary ci(a,Jo) = 0 is known and gives 
Jo = JS(a). Thus, on that boundary, 

(5.20) 

In the previous paragraph we have shown how to determine (ac/aa),-from 
knowledge of the neutral s-eigensolution, so we now can find c(a,Jo) on the 
unstable side of the neutral curve. Howard [26] derived these results and has 
applied them to two examples of shear layers. 

The dimensionless Reynolds stress is t = faj(g,*Dq --‘g,Dq*)eeaCi’, as 
for a homogeneous fluid, where here j varies with y but its derivative is 
neglected except in the buoyancy term, i.e. KCy) = 0. Whence one finds 
from the stability equation (5.1) that 

(6.21) 
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The boundary conditions imply that T vanishes a t  y = y1,y2. Therefore 
&lay vanishes somewhere in between, which when ci # 0 gives Synge's 
generalization (6.7) for heterogeneous fluid of Rayleigh's necessary condition 
for instability. Equation (5.21) also shows that, when ci = 0, T is constant 
except for possible discontinuities where w = c. These discontinuities do 
not occur for non-singular modes with c outside the range of w(y) .  For 
monotonic profiles w ( r )  only one discontinuity y = yc is possible, but the 
boundary conditions give t = 0 on either side of the possible discontinuity, 
so t = 0 everywhere. 

The occurrence of modes when J f 0 is somewhat like that for the case 
when J 0 discussed in Section 11. Unstable modes that exist for Jo = 0 
continue to exist as Jo increases from zero. By and large, increase of Jo 
decreases their instability, as would be anticipated from the physical effects 
of buoyancy. When J ( y ) / ( D w ) a  > $ everywhere all modes are stable. In 
addition to modification of the modes present when J = 0, variation of 
density gives rise to new modes. These are the internal gravity waves, 
which are isolated modes not associated with instability. Profiles with 
even functions w ( y ) ,  J (y )  f 0 have sinuous and varicose modes as when 
J 0. For odd functions w(y)  with even function J ( y )  there is often exchange 
of stabilities with c, = 0 when ci >O.  However, there may be exceptions 
when the unstable mode is not unique [26]. Similar arguments to those 
valid when J 0 may be applied to problems when J $ 0. We shall 
illustrate them by examples in the next subsection. 

Drazin and Howard [79] have considered the stability characteristics 
of unbounded flow for long waves. Their method is a natural generalization 
of that for a homogeneous fluid with J = 0. The eigenfunction must be 
such that p, - constant x exp (F ay) as y -+ f m, when DP - 0 smoothly 
at infinity. Proceeding for this case J f 0 in the manner of Section 11.2, 
one can show that the eigenvalue relation for small a is 

1 2 0 = a(W-,  + Wma) - 2J0+ {a(W2 - Wm2) 
- - m  

(6.22) 

where 

(6.23) A(Y) {p-m + F m  - 2P(Y)}/{F-m - F m }  

and 

+ Jo(l - A)){a(W2 - W t m )  + Jo(l + A)}W-*dy + . . . ; 

Jo gL(F--m - P m ) / W P - m  + P m ) ,  

so J(y) =JODI. 
relation gives 
(6.24) 

For profiles of shear-layer type with wfao = f 1, this 

c2 = Jo/a - 1 + , . . as a ---* 0 for fixed Jo/a. 
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This result in the limit as a --+ 0 agrees with that of (3.9) for Kelvin-Helmholtz 
instability of a vortex sheet when (p-m - Pm)/(P-m + Pm) << 1 ,  i.e. when 
K ( y )  For profiles of jet type with wim = 0, relation (6.22) gives 0. 

m 

ca = Jo/a - aa 1 ( W z  - c ~ ) ~ / W ~  + 2Jo(Wa - ca)/aWa 
- - m  

(6.26) + Joa(l - 12)/a2W2dy + . . . . 
When w E 0 everywhere this relation in turn gives the speeds of the internal 
gravity waves. For w(r) not identically zero, these internal gravity waves 
are modified and become isolated stable modes. There are also at  least 
two unstable modes for sufficiently small a,Jo. When Jo is of order aa, 
equation (6.26) gives the sinuous mode with 

(6.26) 
- m  

in agreement with the physically deduced 

as a -0, 

result (4.4) when 

So the sinuous mode has stability boundary with 
m 

(8.27) wady as a - 0 ,  

- - m  

there being stability to long waves when Jo is greater than this value. 
It is physically realistic to have a model for which p ( r )  tends to constants 

as y - f 00. However, in many circumstances it is practical to suppose 
p tends to zero or infinity. For example, one might suppose that P = po 
exp (- By) for constant p > O  to represent the atmospheric density in a 
problem of instability that occurs effectively in a finite range of y ;  in this 
case J ( y )  = gpLZ/Va  is independent of y .  We have shown (3.1) that then 
internal gravity waves have speed a = J1I2/a. I t  can also be seen from the 
stability equation (6.1) and boundary conditions (6.2) at infinity that 

(6.28) q-constant x exp (T aL*y) as y --+ f 00, 

where L ,  = + (1 - U ~ / W ; , ) ' / ~ ,  provided that w(r) --+w,, smoothly as 
y - f m. Now a direct generalization of the method of Drazin and Howard 
[79] described above gives for small a and fixed a the eigenvalue relation 



HYDRODYNAMIC STABILITY OF PARALLEL FLOW OF INVISCID FLUID 07 

2 0 = L+wma + L - w - ,  + a 
0 

J 
- w  

J 
0 

0 

- L+L-Wm' 5 1 - Wt-mjw'dy} + . . . . 
- m  

For a shear layer with I-, = - w ,  = - I, this relation in the first ap- 
proximation gives the same stability characteristics (3.15) as a vortex sheet. 
Higher approximations are obscured by the difficulty discussed at the end 
of Section IV.2 for a compressible fluid. For a jet with w + ~  = 0, relation 
(6.29) gives 

0 = 2Lcs + a (Wa - ca)(1 - L*c2/Wa)dy + . . . , 5 (5.30) 
- -oo  

where L = + (1 - U ~ / C ~ ) ) ' / ~ .  

gives an unstable mode with 
In the first approximation for small a this 

W 

c - - l i ( a / u )  1 wady as a -0. 
2 (5.31) 

- - m  

and an internal gravity wave with 

(5.32) ca - a' N !.. (ag/aa) ( 1 w' - Sawdy as a -0 .  
4 

- -m 

In this special case with constant J and unbounded flow, we can find 
a sufficient condition for stability. We have required that the real parts 
of L ,  be non-negative in formula (6.29) in order that (p does not exponentially 
increase at inwity. In fact the solution of tb initial-value problem must 
die down as y + f 00, so isolated modes may have non-zero or even un- 
bounded eigenfunctions at infinity, but any dense set of waves must have 
eigenfunctions which tend to zero there. Therefore, when c is real, only 
isolated waves may be not exponentially damped as y + f 00. It follows 
that in the limit as ci --* 0,  L+ and L- are real and non-negative. Therefore 
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1 - aa/(w, - c)a,  1 - aa/(w-= - c ) ~  2 0 for eigenvalues c on the stability 
boundary. Therefore a* < (w, - C ) ~ , ( W - ,  - c)* on the stability boundary. 
Therefore a sufficient condition for stability is that 

(5.33) 

Now the semicircle theorem gives wmin < c < w-,. 
sufficient condition for stability is that 

aa> max { (wm - c)~, ( w - m  - c)~} .  

Therefore another 

(6.34) a2> (Wma - w*p. 

2 .  Stability Characteristics of Various Basic Flows 

In Section 11.4 we have given some stability characteristics of several 
basic flows of homogeneous fluid. In Section 111.2 we gave the stability 
characteristics of heterogeneous fluid in a state of rest and in the motion 
of a vortex sheet. In this subsection we shall exemplify the interaction of the 
inertial instability of some other flows of Section 11.4 and the effects of 
buoyancy due to various basic density distributions. 

(a) InterHal Gravity Waves 

The stability of heterogeneous fluid in a state of rest (w = 0) is 
governed by buoyancy alone, there being no shear in the basic flow. This 
problem is simpler, being a regular Sturm-Liouville problem. If the hasic 
density anywhere increases with height there is instability. Otherwise 
neutrally-stable internal gravity waves occur. Their structure and speeds 
depend on their wavelength and the distribution jib) of basic density. 
These waves also occur as isolated modes for velocity profiles with shear, 
and are treated in detail in some of the papers we refer to. However, by 
and large, we shall exclude any detailed treatment of internal gravity waves 
from this review. Here we shall merely refer the reader to the classic paper 
of Fjeldstad [SO] and to a more recent survey of the literature by Davis 
and Patterson “1. 

(b) Plane Couette Flow 

The stability of a heterogeneous fluid in the basic flow with velocity 
w = y(yl < y < ya) was first considered by Taylor [SZ]. He took p = 
po exp (- by) so that J ( y )  is a constant, and then showed that the stability 
equation was essentially Bessel’s equation of order v (& - J)l/*. With 
one of the boundaries a t  infinity, he found there were no eigensolutions 
when O <  J < 4 and only stable ones when J > &. Taylor [SZ, 9 41 con- 
sidered also the stability of plane Couette flow with three and four layers 
of homogeneous fluids of different densities. 
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In a more complete investigation Eliassen et al. [36] have shown that 
when p = p,, exp (- By) plane Couette flow, whether bounded, semi-bounded, 
or unbounded, is stable if J > 0 and unstable if J < 0. They considered 
the initial-value problem as well as normal modes. When - 2 < J < if there 
is no discrete spectrum of normal modes. These results seem natural in 
view of the known stability of plane Couette flow when J = 0 and of the 
anticipated stabilizing influence of buoyancy. 

Also Heriland [82] has considered stability of plane Couette flow when 
J is a quadratic function of y. 

(c) Sinccsoidal Flow 

When 

(5.35) w = sin y ,  J = constant (rl < y < ye) 

certain exact neutral parts of the solution are known [83] for 0 Q a Q 1 .  
The stability equation (6.1) has the following solutions. 

(6.36i) c = 0, 

(5.36ii) c = 0, 

(6.36iii) c = 0, J = )(aa - t), 
where Y G (& - J)’“. 

For y 1  = O,ya = z the flow is known to be stable when J = 0. However, 
solutions (i)-(iii) are all eigensolutions. It is presumed [83] that the associated 
neutral curves in the (ct, J)-plane are not stability boundaries. 

For y ,  = - z,yg = 3t there is instability for J = 0 when O< a <  3llZ/2; 
the limiting eigensolutions being 

J = (1 - a2)1/z - 1 + az, 

J = 3(1 - aZ)ll2 - 3 + a2, 

q~ = lsin ~ l ( l l Z ) + ~ ;  

q~ = cosy [sin y1(1/2)+v; 

q~ = Isin +yl(llO) +*Ices 4 ~ 1 1 -  (1 /2 )v ;  

c = O ,  a = O ,  g ~ = s i n  y and 

c = 0, a = 3‘l2/2, q~ = cos 4y. 
(6.37) 

Again (5.36 i-iii) are eigensolutions, but it seems [83] that none is a 
stability boundary. 

(d) Thin Jet 

Applying the method of derivation of “jump” conditions (2.16) to  the 
stability equation (5.1), one can show that when 

(6.38) w = ( b C y ) ) ” Z  (- -< y <  w) 

in a heterogeneous fluid, the conditions a t  y = 0 are that 

(6.39) cg [OF] + Jo [A]F = aaF, [F] = 0, 
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where 

F q /W# J ( y )  J$A 1 5 {p-m + p m  - 2p(y)}/{p-m - j m } .  

With these conditions one can solve the stability equation (6.1) piecewise 
for y > 0 and y < 0, join up the solutions at y = 0, and find the eigenvalue 
relation. When 

the eigenvalue relation can be shown to be 

(6.41) ca = - t a  + Jola. 

It can be seen that this result also follows exactly from relation (6.26), and 
gives stability of the thin jet when Jo 2 ia*. This result is typical of the 
stability of jets to long waves, and will have to serve for other results on 
jets. which the literature lacks. 

(e) SLar Layer 

The stability of heterogeneous fluid with basic flow 

- 1  (Y< -1) 

(6.42) W = l Y  ( - l < y < l )  

i Pm ( 1  < Y )  

1 (1 < Y )  

was first considered by Taylor [62, $31 and Goldstein [63, $53, 61. They 
took essentially 

8-m (ye-1) 

(6.43) p =  A ( - l < y < l )  

and found the eigenvalue relation. When p,, = i@-= + p-) and 
(p-- - pm)/@-aD + pm) << 1, there is instability if and only if 

(6.44) 

where Jo -ggL@-, - &)/V*(p-, + pm). When Jo = 0 this reduces 
to Rayleigh’s result [cf. Section II.4.k] that there is instability if 0 < a < a, =k 
0.64. For general values of Jo,a the stability boundaries etc. are shown in 
Figure 6, after Goldstein. It can be seen that any wave unstable when 
Jo = 0 becomes stable when Jo is sufficiently large. However, other waves 

2a/(l + e-%) - 1 <  J0< 2a/ ( l  - e-*) - 1 
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are made unstable as Jo increases, some n a o w  band of waves being unstable 
however large Jo is. 

Goldstein [63, 5 61 further considered the shear layer with the continuous 
density distribution 

(Y< - 1) 

p =  p - m e - b ( y + l )  (- l < y <  1) r p-  w (1 < Y)l 

(5.6) 

where again j? is negligibly small except when multiplied by gravity. 
Goldstein’s solution, involving Bessel functions, is complicated. In brief, 

I I I ‘ I  

it gives stability to all waves if and only if Jo g,8,La/Vn >, t. This condi- 
tion is in agreement with Miles’ sufficient condition J/(Da)P >, for stability. 
When a << 1, it can be shown from Goldstein’s work that is there is stability 
when 

(6.46) ..., J~ 2 - 2 - -as 4 - -a4 I6 - 
3 9 46 

in agreement with relation (6.22). Recently Miles and Howard [a] have 
clarified an obscure point in Goldstein’s paper and given some numerical 
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results for this example. The principal stability characteristics are shown 
in Figure 6. 

Holmboe [78] studied the model of Taylor and Goldst+ with density 
distribution (6.43) by his method of symmetric waves. Holmboe also con- 
sidered density distribution (6.40) with a single discontinuity at y = 0. 

0.8 

0.7 - 

a 

0.5 - 

0.4 UNSTABLE 

0 . 3 -  

- 

0.2 - 

JO 

characteristics of the shear layer with w = y/ ly l ( ly l> 1). w = 
j = p-,&< - 1). j = j-me-fl(y+l)(lyl< 1). i = P-me-w* 

2 4 16 

3 46 
=a- -aB- -  a 8 - - a 4 .  (b) Stability boundary. 

Then the eigenvalue relation [76, equation (7.6) essentially] can be shown 
to be 
(5.47) 4 a V  - c a {( 2a - 1 ) 2  - ,-*a + 4aJ0} + (Jo/a)(2a - 1 + e-k)a = 0. 

I t  follows that ca is complex only when 

(2a - 1 + 3 e - 9  - 2{2e-k(2a - 1 + e-h)]l/g 

(5.48) < 4aJo/(2a - 1 + e-&) 

c (2a - 1 + 3e-&) + 2{2e-”(2a - 1 + e-k)}l/e. 

The curves representing equalities above are shown in Figure 7. Both 
curves touch Jo = a at the origin and Jo = a - 1 at infinity. For values 
of Jo,a between these curves, ca is complex and therefore c,,ci # 0, i.e. there 
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is overstability. On the curves, cz = f (J0/2a3(2a - 1 + e-ea). It follows 
that there is stability (c2 >O) between each curve and an axis except be- 
tween the upper curve and the a-axis for 0 < a < as = 0.64. In that region 
c, = 0, c, # 0, there being exchange of stabilities a t  a = 0, a = a, when 
Jo = 0. This is accordingly an example of a flow with odd function w ( y )  

- 
1 , 1 , 1 , 1 , I . I  

0 0.2 0.4 0.6 0.8 1.0 1.2 
JO 

FIG. 7. Stability characteristics of the shear layer with w = y/lyl( lyl> 1). w = 

= y ( l y l <  1) and j = i O D ( y >  01, = j - = ( y <  0). 

and even J ( y )  where there is not everywhere exchange of stabilities, this 
being possible because there is not a unique mode of instability. 

(f) Double Shear Layer 

Another flow for which w is an odd function and J even, yet for which 
there is not exrchange of stabilities has been pointed out by Howard [26]. 
When 

- 1  PO(1 + 4 
(6.49) 

cr> 1) 

and J,, 
(5.60) 

Howard [26] found stability with four real roots c when 

gLs/V*,s << 1, it can be shown that 

(2c2 + 1 - Jo/a)g - 4c2(1 - e-kl)  = e-"(1 - Jo/a) .  

(5.61) 

On the stability boundary, the curve with equality in the above, 

c = f (1 - e-*a)@(l - e-h)1/2 + 2 - 2e-49-112. 
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There are waves with c = 0 ;  in fact they occur when Jo = a ;  however, 
this locus lies within the stable region and is not adjacent to parts correspon- 
ding to instability. These results are illustrated in Figure 8. 

JO 

FIG. 8. Stability characteristics for the double shear layer 
I = O(lyI < 1) with density = pa(’ + e) (y  c - l), = po(lyl < I), p = 

po(l--E)@> 1). 

(g) Sicliley Jet 

eigensolutions for 
(6.52) w = sechly (- oo<y< oo), 

with various density distributions. 

(5.52i) 

where 

(6.62ii) 

w = y/!y) ( ly l> l), 

Howard and Drazin [83] have found various exact parts of the neutral 

When J (y )  is constant, the following solutions may be verified. 

Sinuous mode c = (6 + as)/16, J = aa(4 - aa)(Q - aa)/225, 

p = (sechs y - c)h(sechy)m 

k 

(0 < aa < 4) 

m -= 6aa/(6 + aa). 3(4 - aa)/2(6 + aa), 

Varicose mode c = (3 + aa)*/3(3 + 5x3, 

J = aa(l - a*)(9 - aa)(3 + a*)”9(3 + 6aP)%, 

tp = tanh y(sech’y - c)*(sech y)” (0 < aa < 1) 
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I '  ' where 
k 

m = 4aa/(3 + aa). 

3(1 - aa)/2(3 + as), 

The neutral curves are sketched 
in Figure 9(a). Howard and 

1.315- - Drazin [a] argued that the 
curve for the varicose mode (ii) 
is a stability boundary, but that 
at most the upper part of the 
curve for the sinuous mode (i) 
is a stability boundary. 

When J = Jo  secha y ,  eigenso- 
lutions may be verified as follows. 

(6.63i) 

1.5 - 

Q 
- 

- 

1 
3 

Jo = 3aa(2 - a)(3 - a), 

q = (sechy)=(sechPy - +a)* - (1/2)a 

(0 < a < 2). 

Sifiuous mode c = -a ,  

STABLE 1 

0 0.05 0.1 .K)9 .I27 
JO 

Fig. 9a. 

STABLE 
(6.63ii) Varicose mode 

c = (3 + aa)/3(1 + a). 
Jo = a(l  - a) 
* (3 - a)(3 + aa)/Q(l + a) ,  

1.5 - 
q = tanh y(sech y)' 

. (sechay - c)(l@)(*-a) (0 < a  < 1 ) .  

The neutral curves, shown in 1.157-  

Figure Q(b), are both thought [83] 

FIG. 9 (a). Stability characteristics 
for Bickley jet w = sech* y when 
J = const. (i) Neutral curve for 
sinuous mode: J = aa(4 - a*) 
( 9  - a*)/226. (ii) Neutral curve for 
varicose mode: J = a*(l - a*) (9 - as) * 
(3 + a9'/9(3 + &*)a. (b). Stability 
characteristics for Bickley jet w = 
sechs y when 1 = Josech*y. (i) Stabil- 
ity boundary for sinuous mode: Jo = 
a*(2 - a)(3 -a)/% (ii) Stabilitybound- 
ary for varicose mode: Jo  = a(l -a)  - 
. (3 - a)(3 + a*)/9(1 + a). 

UNSTABLE 

a 

5 -  

0 0.1 a156 a 2  a231 
JO 

Fig. 9b. 
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to be stability boundaries for their respective modes. Further information 
on this example, and others, can be found by use of the formula (6.26) 
for small a and the perturbation (5.20). 

(h) Adisymmetric DoMble Jet 

When 

(6.64) w = sechy tanhy, J = Josechsy (- ce< y <  ce), 

JO 

FIG. 10. Stability boundary of one mode for to = sech y tanh y, J = J,, sech* y ( -  00 

< y <  do): Ja = a9(9 - a9)/9. 

it can be seen [83] that a neutral eigensohtion is 

1 
c = 0, Jo = 3a2(3 - a*), 9 = (tanhy)l-(lls)='(sechy)l+(l/*)" 

(0 < a* < 3). 

This seems to be a stability boundary of one of the modes. It is shown in 
Figure 10. 

(i) Hy$erbolic-Tange& Shcav Layer 

distributions with velocity profile w = tanh y(- 00 < y < 00). 
Various exact neutral solutions have been found for various density 
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When J is constant, corresponding to basic density of the form p = 
exp (- Py), Drazin [86] verified that an eigensolution is given by 

c = 0. Jo = a2(l - a2), q = (sech y)@ltanh y1' - 
(6.66) 

(0 < a  < 1). 

It gives the stability boundary, shown in Figure l l(a).  , 

I 

a 
0 UNSTABLE 

0. I 0.2 
J JO 

FIG. Illa). Stability boundary for w = tanh y, J = constant ( -  m< y <  a): J = 
= aa(1 - a*) (b). Stability boundary for w = tanh y.  J = Josech3 y(- ao< y < ao): 
Jo = a(l  - a). 

When J = Jo sech2 y ,  corresponding to ji = po exp (- f i  tanh y), Holm- 
boe [cf. 781 found the eigensolution 

(6.67) c = 0, Jo = a(1 - a ) ,  q = (sechy)altanhyJ1-a (0< a< 1) 

for the stability boundary shown in Figure ll(b). It is somewhat similar 
to the boundary of the example in Section V.2.e shown in Figure 6. 

exp (- f i  tanh3y), Garcia [cf. 76, 781 found the eigensolutions, 
When J = 3 Jo sech* y tanh2 y, corresponding to density 13 = po 

c = 0, 

c = 0, 

Jo = +a(a + 31, 

Jo = &(a - l)(a + 2), 

q = tanh y(sech y)"; 

q = (why)'. 
(6.68) 
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These define a stability boundary, shown in Figure ll(c). It is somewhat 
similar to the boundaries of the example in Section V.2.e shown in Figures 6 
and 7. Some waves are unstable for each value of Jo, however large. Thus the 

STABLE 

a 

- 

0 1 2 3 4 1 6  
JO 

FIG. 1 l(c). Stability boundary for ru = tanh y ,  J = 3J0 sech' y tanh9 y(  - 00 < y < 00) : 
Jo = a(a + 3)/3 and J o  = (a - l ) (a  + 2)/3. 

flow cannot be stabilized. This occurs because J ( ~ ) / ( D W ) ~  vanishes where 
w = c, i.e. at y = 0, and therefore cannot be everywhere larger than for 
sufficiently large Jo. 

Miles [78] has considered combinations of the above two density distribu- 
tions, with local Richardson number J ( y )  = Jo(l - r + 3r tanh8y) sechsy. 
Thus r = 0 corresponds to Holmboe's case above, and Y = 1 to Garcia's. 
Miles showed that, when Y >i, the relation Jo = Jo(a) on the stability 
boundary is no longer single valued, because the neutral curve turns away 
from the a-axis. Further, when 0.896< I <  0.968, there are two distinct 
branches of the stability boundary. As I + 1, the number of distinct 
branches increases to infinity. 

(j) Free Surface Flows 

A class of flows with important applications comprises those with a 
free surface, i.e. with p = 0 for y 2 0, say. Esch [86] has considered a few 
examples of this class with further variation of p ,  
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VI. STABILITY OF OTHER PARALLEL FLOWS 

1. Discussion 

So far we have considered the stability of plane parallel flows, with 
basic velocity ii*(y*)i, to which in fact the literature is largely confined. 
There is a little work on the more general parallel flows, with basic velocity 
tZ*(y*,z*)i, partly on the basis of known properties of plane parallel flow 
[87], [88], partly by use of general properties like the energy and vorticity 
integrals [89], [64]. We give an example of this (the proof of the semicircle 
theorem) in Section VI.2. However it seems essential to reduce the linearized 
partial differential equations of motion to ordinary ones in order to analyze 
them thoroughly. For plane parallel flow, this is possible by the techniques 
of transforms and normal modes, discussed in Section 11.1. It seems that 
the only other class of parallel flows for which this is possible is those with 
an axisymmetric basic velocity zi*(r*)i, where r+2 = Y , , ~  + z,2 -the round 
jets. Although their instability has some significant differences from that 
of plane parallel flow, both the mechanisms and the mathematics are similar 
in the two cases. It thus seems sufficient for our purposes to present only 
a brief account of the instability of axisymmetric jets in an inviscid in- 
compressible fluid. This is given in Section VI.3. 

2. The Semicircle Theorem for General Parallel Flow 

The most general discussion of the semicircle theorem appears to be 
that given by Eckart [64], who has derived it for compressible flow, with 
gravity, which is parallel (w(y,z)i) or circular (w(r,z)$). However since 
Eckart’s notation is rather personal, we give here a sketch of another version 
of the proof with more traditional terminology, restricting ourselves to 
parallel incompressible flow though the compressible case is almost as 
easy. Our proof is essentially the same as one constructed by H. Schade 
and Howard (1963), and independently by Hocking [88]. We mention, 
also that while Eckart’s proof seems to cover about as general a case as 
one might expect to find, there is a t  least one other case in which the semi- 
circle theorem holds: non-parallel flow which is parallel and uniform in 
layers, but varies both in magnitude and direction from layer to layer-for 
example the Ekman boundary layer flow. 

We assume that the flow is in a cylindrical region {- m< x <  m,(y,z) 
in S}, where S is some connected region in the (y, z)-plane with a sufficiently 
smooth boundary. The basic flow is w(y,s)i; since the coefficients of the 
stability equation are independent of x and t we look for normal modes 
of the form f(y,z) exp ia(x - ct ) ,  just as in the plane case. The stability 
equations become : 



80 P. G. DRAZIN AND L. N. HOWARD 

(6.1) 

(6.2) 

(6.31 

where V2 is the transverse gradient operator, 9' is the perturbation pressure 
divided by density, and I0 and v' are the longitudinal and transverse parts 
of the perturbation velocity vector. The boundary conditions are v'. n = 
O,n being the normal to the boundary B of S; from (6.2) this can be expressed 
instead as 

ia(w - c ) d  + v'. F'p + ia$' = 0 

ia(w - C)V' + P2$' = 0 

i ad  + P2a V' = 0 

Using (6.2) to eliminate v' and (6.3) to eliminate zb', (6.1) isreadily transformed 
into: 

(6.6) I729 [ (w - c ) - V 2 p ' ]  - Ctyw - c)-2$' = 0. 

Multiplying by p', integrating over S .  and using the boundary condition 
(6.4) we obtain 

This is of the same form s(w - c)aQ = 0 with Q > O  as in the plane parallel 
case, and the semicircle theorem thus follows immediately, as before. 

3. Ifiertial Isstability of Axisymmetric Jets 

The work of this subsection is analogous to that of Section I1 on inertial 
instability of plane parallel flow. By reference to the motivation and methods 
of that section, we may state results briefly here. We take the basic axi- 
symmetric parallel flow of inviscid incompressible fluid, with velocity 
1* = U,(r,)i Q Y* Q r2*). This represents a jet between the rigid 
coaxial cylinders r* = y1*,rB*, where y1* may be zero and yB* infinite. It 
is again convenient to choose dimensional scales V of U*(Y*) and L of its 
variation, and to render all variables dimensionless by scaling. Then the 
basic flow of the jet is 

(6.7) 1 = U(r)i  (rl < Y < ra). 

With use of cylindrical polar coordinates ( x , ~ , ? )  and associated velocity 
components ( N % , N , , U ~ ) ,  the equations of motion may be linearized much 
as before to give the perturbation equations, 
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at4;lat -I- vauzi/ax + u;du/ar = - apilax, 

aw;lat + uau,i/ax = - apt/&, 

a q a t  + uau;lax = - aptIraq, 

a q a x  + a(Yu;)lra + auci/ray = 0. 

With the method of normal modes one assumes that 

ull.u,',upl,p' = Re [{F(r) ,  ZG(r), H(Y), P(r)}e'W+++--)], 

where a is a real wave-number, c a complex velocity, '~t any integer which 
represents the azimuthal Fourier component, and F ,  G, H ,  P are eigen- 
functions to be determined. Then the linearized equations reduce to the 
ordinary differential equations, 

a(U - c)F + (DU)G = - aP, 

a(U - c)G = DP, 

a(U - c)H = - nP/r, 

aF + DG + G/r + nH/r = 0,  

where now D 3 dldr. On elimination of F ,  H ,  P one may get the single 
linear ordinary differential equation for G: 

(6.8) D{rD(rG)l(n2 + a%')} - G - (rC/(U - c))D(yDU/(n2 + a%,)} = 0. 

The boundary conditions are that the normal velocity u,' vanishes on 
the coaxial cylinders r = vl,rp 

(6.9) G = 0 (Y = y1,rg). 

However, when Y, = 00 we require that all perturbations vanish there in 
order that the energy of the disturbance of finite origin be bounded. For 
this it is sufficient that G --* 0 and is well behaved as Y + m; and thus 
we may use condition (6.9) at infinity. = 0 the continuity of 
u,p implies that u,',$' are independent of ip and that u,',u+,' vanish at r = 0 
(except for n = 1, when u,' and u i  need only be bounded, but G(0) + 
H ( 0 )  = 0, from the continuity equation). Therefore F(0) = P(0) = 0 (n # 0)  
and G(0) = H ( 0 )  = 0; and thus we may use condition (6.9) at Y = 0 except 
when n = 0. In fact it can be seen that in general equation (6.8) gives 
G N constant x r"-' (n # 0) and G - constant x Y (n = 0) as Y + 0. 

If U or DU is discontinuous, at yo say, then the pressure must be con- 
tinuous at  the material interface with mean position r = y,. It follows that 

Therefore, in general, 

When 

(6.10) [(U - c)D(YG) - (DU)(rC)] = 0 (r = Yo). 
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Also the normal velocity must be continuous at  this material interface. 
Therefore 

(6.11) [G/(U - c)] = 0 (Y = YO) .  

Note that when U is piecewise constant it is easier to work with the amplitude 
@ = JGdr of the velocity potential rather than with G directly [W]. 

The eigenvalue problem ( 6 4 ,  (6.9) is essentially due to Rayleigh [9l]. 
It has prompted surprisingly little later work, in view of the scores of papers 
on the analogous problem (2.11), (2.12) of plane parallel flow. Perhaps the 
similarity of the two problems and their methods of solution has discouraged 
duplication of work, perhaps the greater physical importance of plane parallel 
flows has overshadowed that of round jets. However, there is one important 
difference between the two eigenvalue problems, namely the essentially 
three-dimensional nature of instability of a round jet. Experience of plane 
parallel flows suggests that varicose instability (axisymmetric disturbances 
with n = 0) of a round jet should be less than sinuous instability (n = l), 
so it comes as no surprise to find that there is no analogue of Squire’s the- 
orem. In fact, in a recent examination of non-axisymmetnc disturbances, 
Batchelor and Gill [go] found that a certain jet is most unstable to the 
mode t z =  1. 

The eigenvalue problem ( 6 4 ,  (6.9) is symmetric in a and (- a), so we 
can again take a 2 0 without loss of generality. There is also a symmetry 
in G,c and G*,c* for the same a, so c is real for stability and complex for 
instability. Again, we write c, > 0 when there is instability, bearing in mind 
the initial-value problem and the inviscid limit of the viscous problem 
P21, C90, §23. 

Rayleigh [91] found a necessary condition for instability, analogous to 
there being a point of inflexion in the velocity profile of a plane parallel 
basic flow. Essentially by multiplying the stability equation (6.8) by 
&*/(U - c), integrating from Y ,  to Y,, and taking the imaginary part, he 
found that 

(6.12) ci  lglzDQdr = 0, 

TI 

where g E rG/(U - c ) ,  Q = r(DU)/(na + a%*). Therefore a necessary 
condition for instability (ci >O) is that DQ = 0 somewhere in the field of 
flow. This is equivalent to U having a point of inflection with respect to the 
variable p = s(n* + aara)/rdr = n8 log Y + )a%*. This reduces to Ray- 
leigh’s condition for plane parallel flow if one regards the round jet as being 
plane parallel flow locally when y1,r2 -+ 00 and Y, - y1 = y ,  - y1 is fixed. 

The following general stability characteristics are due to  Batchelor and 
Gill [go], who give details of the proofs. 
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On multiplying the stability equation (6.8) by YG*/(U - c), integrating 
from r1 to r,, and taking the real part, they found that 

Is 

(6.13) 1 ( g ( W  - c,)DQdr < 0. 
rl 

Therefore, when ci > O .  equation (6.12) gives 

(6.14) 

U, being the value of U(r )  at  r = r,, where DQ = 0. Therefore, when DQ 
changes sign only once, a necessary condition for instability is that 
(U - U,)DQ < 0 throughout the flow. 

The semicircle theorem follows much as in Section 11.2, giving 

(6.15) {cr - i(wmin + ~ m a x ) } '  + ci2 < { i ( ~ m a x  - wmin)} a (Ci>O) .  

It can be shown that the Reynolds stress tensor, averaged over one 
period 2n/a of x and one 2n/n of v, has orthogonal components 

(6.16) tlr y'u,' E (n, + u%a)-1/2(nu; + aru,')u; 

(6.17) = h-l(n2 + azra)1/eWe20LCi', 

where 

~ 

W = ir(n2 + aW)-I((rG*)D(rG) - (rG)D(rG*)); 

and 

(6.18) 

(6.19) 
- nc,(DU)lGla - 

2a(n2 + aPra)l/z{ (U - c,), + cia} 

The stability equation (6.8) gives 

(6.20) 2c,ra[G laDQ 
D W = -  (U - c,)' + Cj' * 

I t  follows that, as ci - 0  through positive values, W is piecewise constant 
and 

(6.21) [W] = - ~z(Y'~G~'DQ/DU),,,~, 
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where U(r,) = c, in the limit, provided that (DU),=#, # 0. Now W = 0 
at r = rl,ra, Therefore, in the limit as c, --+ 0,W = 0 at Y = r1,r2. There- 
fore, in the limit as ci +O,W = 0 everywhere if U = c, at only one point 
1 = r,, or, in particular, if U(r )  is monotonic. In that event [W] = 0, and 
therefore either DQ = 0 or G = 0 at I = r,. The latter equality is compatible 
with the stability equation (6.8) only if G f 0. Therefore DQ = 0 at Y = Y,, 

i.e. r, = Y/ and c, = Up 
If we put c = U, and look for neutral solutions that are limits of unstable 

solutions, the task is more difficult than that of (2.18). However, Batchelor 
and Gill [go] showed as follows that there is no such singular neutral solution 
for sufficiently large B.  Equation (6.8) now can be written as 

Therefore, if 

the solution (rC) of the stability equation will be monotonic and cannot 
satisfy both boundary conditions. Thus a necessary condition for the exist- 
ence of the singular neutral solution is that f i  is not so large that 
max {rDQ/(U, - U)} < 1. 

Very few examples have been treated in- the literature. First we take 
the exact solution of the Navier-Stokes equations for a viscous fluid as our 
basic flow, namely Poiseuille flow in a pipe with 

(6.23) 

Rayleigh [91] investigated the stability of this basic flow in an inviscid 
fluid. I t  gives Q = (2Br4 + C)/(n2 + a W ) ,  which varies monotonically 
with r .  Therefore the flow is always stable. 

In fact this condition is quite restrictive. 

U = Ara + B log r + C (rl < r < r2). 

For the cylindrical vortex sheet, 

(6.24) 

Batchelor and Gill [go] used the velocity potential on each side of the 
discontinuity to deduce that the eigenvalue is 

(6.26) 

where &,(a) - K,,(a)I,,’(a)/K,,’(a)l,,(a) in terms of the modified Bessel 
functions I,,,K, of the first and second kinds and their derivatives. This 
flow is unstable for each pair of values %,a. As a 00 (i.e. as the radius 

c = (1 + iLnl’z(a)}/(l + L ( a ) } ,  
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L of the vortex sheet -, oo for fixed a*), L,(u) -. 1 and the result c = #(l + i )  
for a plane vortex sheet is recovered. 

For the profile of a realistic round jet, 

(6.26) I7 = (1 + Y y  ( O < Y <  w) 

DQ does not vanish anywhere when n = 0, so the axisymmetric disturbances 
are stable [W]. Further, max (YDQ/(U, - V ) }  < 1 when n 2 2, so the 

only possibility of instability occurs when n = 1. In fact there is instability 
when n = ,l [go], the singular neutral mode occurring for a = u, = 1.46 
and (arc)* = 0.57; i.e. c = U, = 0.62. Thus there is instability only for the 
sinuous mode with o r <  1.46. 

O < r <  m 
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