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Abstract. The possibility that a significant part of the energy of the planetary-wave disturb- 
anees of the troposphere may propagate into the upper atmosphere is investigated. The propa- 
gation is analogous to the transmission of electromagnetic radiation in heterogeneous media. 
It is found that the effective index of refraction for the planetary waves depends primarily on the 
distribution of the mean zonal wind with height. Energy is trapped (reflected) in regions where 
the zonal winds are easterly or are large and westerly. As a consequence, the summer circumpolar 
anticyclone and the winter circumpolar cyclone in the upper stratosphere and mesosphere are 
little influenced by lower atmosphere motions. Energy may escape into the mesosphere near the 
equinoxes, when the upper-atmosphere zonal flow reverses. At these times tunneling of the energy 
through a reflecting barrier is also possible. Most of the time, however, there appears to be little 
mechanical coupling on a planetary scale between the upper and lower atmospheres. 

Tropospheric sources of wave disturbances in the zonal flow are baroclinic instability and the 
forcing action of zonally asymmetric heating and topography. The transmissivity of the upper 
atmosphere increases with wavelength and is greater for the forced perturbations than for the 
unstable tropospheric waves, whose lengths must be smaller than the critical length for instability. 
The analysis indicates that baroclinically unstable wave disturbances originating in the tropo- 
sphere probably do not propagate energy vertically at all. 

When energy is propagated to great heights, nonlinear vertical eddy transports of heat and 
morlaentum associated with the vertically propagating waves should modify the basic zonal flow. 
However, when the wave disturbance is a small stationary perturbation on a zonal flow that 
varies vertically but not horizontally, the second-order effect of the eddies on the zonal flow is zero. 

1. INTRODUCTION 

Motions in the upper atmosphere are of two 
kinds, those whose immediate sources of energy 
are in the upper atmosphere itself and those 
whose energy is transmitted from the lower 
atmosphere. An example of the former is iono- 
spheric turbulence. An example of the latter is 
the solar semidiurnal tide, in which the gravita- 
tional attraction of the sun, acting on the lower, 
massive, part of the atmosphere, produces an 
upward-propagating gravity wave. Certain irreg- 
ular motions in the D and lower E regions of 
the ionosphere, which have been revealed by 
observations of meteor trails, may also, as has 
been suggested by Hines [1959], be due to the 
propagation of gravity waves from the lower 
atmosphere. 

Little is known of the long-period, planetary- 
scale motions in the upper atmosphere, although 
motions of this type in the troposphere contain 
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the bulk of the atmosphere's energy. To what 
extent are such disturbances coupled to the 
motions in the troposphere? To what extent is 
the so-called breakdown of the polar-night jet 
in the stratosphere associated with motions in 
the troposphere? (The causes of the breakdown 
are discussed by Murray [1960].) How much of 
the energy in the troposphere propagates into 
the upper atmosphere? The answers to these 
questions would seem to be central to an under- 
standing of the planetary-scale motions of the 
upper atmosphere. Thus it has long been a source 
of wonder to one of us that the upper-air motions 
are not coupled in a more obvious manner to 
those in the lower atmosphere, as, for example, 
the motions in the solar chromosphere and 
corona are thought to be coupled to those in 
the convective layer of the sun [cf. Kuiper, 
1953]. The tidal oscillations, as well as the gravity 
waves studied by Hines, travel upward with a 
slowly decreasing kinetic energy density. If the 
large-scale tropospheric motions were to propa- 
gate in this manner, then, because of their 
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vastly greater energy, an atmospheric corona 
would in all likelihood be produced. The kinetic 
energy density in the lower troposphere is of 
the order of 108 ergs cm -8. If this energy were 
to travel upward with little attenuation and be 
converted into heat by friction or some other 
means at, say, 100 km, where the density is 
diminished by a factor of 10 -6, it would raise 
the air temperature to about 100,000øK. At 
such temperatures most of the atmosphere 
would escape the earth's gravitational field. It 
is important for the understanding of the upper 
atmospheric motions to know why this does not 
occur, i.e., why the tropospheric energy is so 
effectively trapped. 

The reverse problem, the mechanical propaga- 
tion of energy from the upper into the lower 
atmosphere, has received some attention because 
of hopes of associating weather changes with 
fluctuations in electromagnetic or corpuscular 
radiation from the sun. At the moment it seems 

that these hopes are doomed to disappointment, 
for by any physical consideration so far advanced 
the energies involved are insignificant. 

Vertical propagation in planetary wave sys- 
tems has previously been studied by Charney 
[1949], who found the speed of energy propaga- 
tion in the vertical (vertical component of group 
velocity) to have a maximum value of about 5 
km per day at middle latitudes. This work was 
extended by Ooyama [1958] to the downward 
propagation of a pulse in a resting atmosphere. 
I-Its results 'lent little support to proposals of 
the existence of anomalous solar-weather rela- 

tionships.' 
Charney was concerned with the upper atmos- 

phere only as a boundary for the lower atmos- 
phere, and both he and Ooyama took the 
atmosphere to be at rest with respect to the 
moving earth. But it can be shown that the 
transmissivity of the upper atmosphere to 
planetary waves is exceedingly sensitive to the 
mean zonal wind structure. Indeed, we shall 
show in the present paper that it is primarily 
the variation of mean zonal wind with height 
that gives rise to the energy trapping. In the 
following, we present the results of an investiga- 
tion into the vertical propagation of planetary- 
wave disturbances in an atmosphere with 
arbitrary vertical gradients of temperature and 
mean zonal wind. 

2. DERIVATION OF THE WAVE EQUATION 

We shall be concerned with wave disturbances 

whose horizontal wavelengths are comparable 
in size with the earth's radius and whose orbital 

periods are large compared with the period of 
the earth's rotation. Such disturbances are 
certainly quasi-hydrostatic in the sense that the 
vertical components of the forces of pressure 
and gravity are nearly in balance. That they are 
also quasi-geostrophic, i.e., that the horizontal 
components of the pressure and Coriolis forces 
are nearly in balance, may be seen as follows. 
Let U be a characteristic horizontal particle or 
phase velocity, S a characteristic horizontal 
length, and 9 the angular speed of the earth's 
rotation. We construct the Rossby number 

Ro ---- U/95 
which measures the ratio of the horizontal com- 

ponent of the inertial force to that of the Coriolis 
force. Since this number is of the order 10 -• or 

less for the planetary waves, the flow is quasi- 
geostrophic. 

The equations of motion in the small Rossby 
number regime may be greatly simplified by 
the systematic use of the hydrostatic •nd geo- 
strophic approximations to 'filter out' the 
irrelevant high-frequency motions [Charney, 
1948]. Let p be the pressure, p the density, v the 
velocity, g the acceleration of gravity, z the 
upward-directed vertical coordinate, k a unit 
vector in the direction of z, and q• the latitude; 
then the hydrostatic and geostrophic equations 
are 

-- g -- p-• Op/Oz -- 0 (2.1) 
-! 

lvh X k-- p gradhp = 0 (2.2) 

where f = 29 sin •, and the subscript h is used 
to denote the horizontal component of a vector. 

We assume that the atmosphere is a perfect 
gas. Its specific entropy 

s = c• In • •- constant 

-- c, In p -- c, In p -]- constant 

where • is the potential temperature, and c, 
and c• are the specific heats at constant volume 
and constant pressure, respectively. For adiabatic 
motion 

D In 6/Dt -]- w 0 In •/Oz = 0 (2.4) 
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where w is the vertical velocity component and 
D/Dt is the operator O/Or q- va.grad. 

For small Rossby numbers, the equation for 
the vertical component •' of the relative vorticity, 
curl v, 

D(•' q- l)/Dt q- (•' q- I)div va 
--1 

= --div [(wOva/Ogq- p grad•p) >( k] 

simplifies to 

D(•' + l)/ Dt + ! div v• = 0 (2.•) 

it being understood that •' and the va appearing 
in D/Dr, but not in the divergence term, are 
to be evaluated from the geostrophie equation. 
In the derivation of the above equation it is 
tadfly assumed that the Richardson number 

Ri---- g D2[O In •/Oz] U-'>> 1 
-- 

where 0 is a horizontal mean of 0 and D is 

either the vertical scale height or the characteris- 
tic vertical scale of the disturbance. Actually 
the Richardson number is of the order 10', so 
that (RoRi) -• is also small. If, in addition, D is 
small in comparison with the vertical scale of 
variation of 0, it may be shown that the hori- 
zontal variations of p, p, and 0 are small compared 
with their respective mean values, so that p 
in equation 2.2 may be replaced by •, a function 
of z alone, and that the hydrostatic equation 
may be replaced by 

g /i(ln 0) ---• (2.6) 
where the /i denotes a deviation from a hori- 

zontal mean value, i.e., /ip = p -- p(z) and 
-- 

/•(ln 0) • In 0- In O(z). 
A second tacit assumption is involved in the 

derivation of equation 2.5. It has been pointed 
out by Burger [1058] that the horizontal scale 
of the disturbance must be small compared 
with the scale of variation of the Coriolis param- 
eter f. This might make it appear that disturb- 
ances on a truly planetary scale are precluded. 
It is found, however, that the regions to which 
the disturbances are confined are sufficiently 
limited laterally to make the assumption valid. 

With the definition X = gP/•f, the foregoing 
approximations permit the hydrostatic and 
geostrophic equations, 2.1 and 2.2, to be written 

g 6(ln 0)/! = OX/Oz (2.7) 

v• = k X gradax (2.8) 

the latter giving 

•' = div grad• X (2.9) 

The approximations also lead to the simplified 
forms 

gwO,n '• '•z q- ! Oz = 0 (2.10) 
and 

• div va q- a(•w)/Oz = 0 (2.11) 

for the adiabatic and continuity equations, 
respectively. Elimination of div v• between 
equations 2.5 and 2.11 gives 

D(•' q- l)/ Dt = ! O(•w)/• Oz (2.12) 

which, together with the adiabatic equation 
2.i0, eompietely determines the motion if the 
variables v• and •' are evaluated geostrophically 
by means of equations 2.8 and 2.0. 

For simplicity we refer the motion to the 
Rossby /• plane, a device that enables us to 
ignore the unimportant but complicated geo- 
metrical effect of the earth's curvature while 

retaining its dynamical effect. The curvature of 
the earth is ignored, but the variability of f is 
retained on the right-hand side of equation 2.12; 
elsewhere it is set equal to a mean value fo 
corresponding to a mean latitude •0 which is 
usually taken to be 45 ø. We take a Cartesian 
coordinate system with the x axis directed 
eastward and the y axis northward. The velocity 
components in these directions are denoted by 
u and v. 

In the undisturbed state of the atmosphere 
the potential temperature is assumed to vary 
vertically and horizontally according to the law 

In 0o(y, z) = In •(z) q- y A(z) (2.13) 

where the subscript 0 denotes a quantity in 
the undisturbed state. Differentiating (2.7) 
with respect to y and substituting from (2.8), 
we obtain 

OUo/ OZ = -- g A (z) / ]o 

Hence if u0 is constant at one level, as we shall 
assume, it is a function of height only. 

Denoting perturbation quantities by primes, 
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we may write for the perturbation forms of 
equations 2.12 and 2.10 

0\ + uo 

and 

bX'__ [o(O___ 1)w , + •-•x •Oz- • (•.•4) 

N2 O OX' Ouo OX' q_ w' Uo• Oz Oz Ox •o =o 
ß (2.15) 

where •h is the horizontal grad operator, H is 
the scale height, --[O(ln •)/Oz] -•, and N is the 
Brun•-Vais/•l/• frequency for the undisturbed 
motion 

N 2 --• g In •/Oz (2.16) 
The quantity/• ---- df/dy is assumed to have an 
appropriate constant value corresponding to 
the latitude for which f -- f0. The important 
dynamical effect on the planetary motions of 
the variation of temperature with height is 
determined by N, which may be interpreted 
physically as the frequency of a vertical buoyancy 
oscillation. The scale height H is given by 

I g _]_lO•T,• g (2.17) H RT T Oz -- RT 

where R is the gas constant referred to unit 
mass of air and T is the absolute temperature. 
Since H in equation 2.14 only measures the 
inertial effect of the variation of density with 
height, it is permissible to replace it, where 
convenient, by a mean value corresponding to 
a characteristic average temperature T; it is 
well known that the exponential law of decay 

•(z) = •(0)e -"• 

approximates the observed distribution of density 
well in the first 100 km. 

Since the coefficients of the terms in the 

perturbation equations are functions of z alone, 
we seek perturbations with independent wave 
components of the form of a product of some 
function of z and exp i(kx d- ly -- kct). Let us 
use capital letters to denote the functions of z; 
thus 

x,= X(z)e 

pt = e etc. 

Substituting these into equations 2.14 and 2.15, 
and then eliminating 

] dz dz V (2.18) 
we get 

(d 1)t 1 I dV duo 11 •ø• •z- • • (u o-c) •z •z • 
-- (k •' '-[- i')(Uo -- c -- u•)V = 0 (2.19) 

where 

u, • •/(e' + P) (e.eo) 

is the Rossby critical velocity. When H, N•, 
and duo/dz are constants, equation 2.19 reduces 
to an equation found by Charney [1947]. Our 
derivation of this equation for V from the 
a priori quasi-geostrophic equations is essentially 
equivalent to his derivation from the general 
equations of motion by the systematic use of 
small Rossby and large Richardson number 
approximations. 

Wave equation in spherical polar coordinates. 
An alternative treatment can illustrate the 

nature of the/•-plane approximation. If z is the 
radial coordinate, •b the latitude, X the longitude, 
and a the radius of the earth, the wave equation 
in spherical polar coordinates can be found as 
follows. The zonal velocity u - --0x/a0• and 
the meridional velocity v -- Oxfa cos •b 0X now, 
if z -- a << a. With 

In 0o '- In •(z) -]- B(z) sin' •b (2.13') 
we get 

Uo = a•o(Z) cos • 

where dwo/dz: -- gB/2•a• in order to satisfy 
the mean hydrostatic and geostrophic equations. 
Elimination of w' from equations 2.14 and 2.15 
expressed in spherical polars gives 

O O•V• ' 290x' a 

_ 
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without the need to assume that f or/? is con- 
stant. However, we must now make the assump- 
tion that f is constant on the right, hand side 
of (2.14) and in (2.15) in order to separate the 
variables with • 0x' 0x ' 0Uo -- •Ox Oy Oy 47' 

X' = X(z)e'("a+")P,,"'(sin 

where P2 is the associated Legendre polynomial 
f f OX' OX' OUo + • N: O x Oz Oz 47' 

P.•(sin ½b) ---- cos • qbd•P.(si n ½b)/d(sin ½b) ' 

being the ordinary Legendre polynomial. Then 

- • o + dz & 

- - eo•---•(n• l) X= 0 a m 

(2.•') 

The analogy with equation 2.19 is apparent. 
In spi•e of the geometrical difference of the 
coordinate frames, the equations are in fact 
identical if we set fi = 2• cOS•o/a, Uo = moo cos•o, 
k2 + l: = n(n + 1)/a:, and--c = aa cos 
for the mean latitude •o at which f = %. 

Energy equation. We conclude this section by 
deriving the equation for the time rate of change 
of the perturbation energy. Define a typical 
perturbation a' such that 

a = ao(y, z, t) + a'(x, y, z, t) 

where 

•/X'w' dS (2.21) 

where r denotes a volume and S a horizontal 

surface. The first term in the integrand on the 
left-hand side is the perturbation kinetic energy, 
and the second, the perturbation 'available' 
[Lorenz, 1955] potential energy. The first integral 
on the right is the rate of conversion of mean 
flow kinetic energy into perturbation kinetic 
energy; the second is the rate of conversion of 
mean flow potential energy into perturbation 
potential energy; and the last is the rate of flow 
of perturbation energy into the volume. From 
the definition of x this last term may be written 
in the more familiar form 

-- p'w' dS (2.22) 

We note that the kinetic energy of the vertical 
motion and the vertical eddy stresses are absent. 
This is because the vertical velocities are ex- 

tremely small in long-period planetary flows. 

f a' dx = 0 
the integral extending over a period of the 
motion. If equations 2.12 and 2.10 are averaged 
with respect to x and subtracted from the 
unaveraged equations, one obtains 

3. SOLUTION OF THE WAVE EQUATION 

Use of analogies. The differential equation 
2.19 

uo- dz/ 

•v. • Ox'/Ot = I a(•w')/Oz - •[v. %(1' + I)]' 

N •atoz- -• v.V• 

Multiply the first by --x', the second by ox'/Oz; 
add, and integrate over the atmosphere between 
the levels z• and z2. After some manipulation, 
integration by parts, and use of the geostrophic 
relationship (2.8), the perturbation energy 
equation is obtained' 

+ (uo - v = o •0 U• 

for barodini½ waves in an inviscid atmosphere 
can be transformed into the canonical form 

d2•/& 2 + n2• = 0 (3.1) 

if 

• • (•/N2)'/2V 
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and 

n" ---- '(k• q- f) N' d • - + 

N • {•o• I d (• duo• + - (3.2) 

We shall often find it conve•ent •o make this 

equation dimensionless. Thus we define r • 2H0n, 
• • z/2Ho so that 

d:Z/d•: • r•Z = 0 (3.3) 

where Ho is some (constant)characteristic scale 
heighL There is no solution of the equation in 
•erms of known functions for general v(•). 
However, anMogies with the electromagnetic and 
SchrSdinger w•ve equations are useful. The above 
equation is like that of one-dimensional wave 
propagation in a medium of variable refractive 
index r(•), and of one-dimensionM •mnsmission 
of particles by wave mechanics. Further, the 
boundary conditions we shall derive determine 
the direction of the energy flux, as in the theories 
of electromagnetic waves and particle beams. 
So the analogies indicate the qualitative n•ture 
of our solution (we shall confirm these indica- 
tions later). In regions where the 'refractive 
index' v is pure imaginary there •re externM 
waves (i.e., V varies exponentially with z) and 
vertical propagation of energy is inhibited, there 
being some •rapping (i.e., reflection) of waves. 
An inflate layer in which v is imaginary will 
reflect waves totally, so that •he net vertical 
propagation of energy is zero in a steady state. 
In regions where v is reM there are internal waves 
(i.e., V is osc•la•ory in z) and vertical propaga- 
tion of ener• is freely per,fred. If v: is positive 
near the ground and high up, bug negative in an 
intermediate layer, •here will be p•rtial reflection 
in •he middle l•yer, •s occurs in the tunnel 
effect of wave mechanics. 

Solution for consent velocity and temperature. 
More information comes from the exact solution 

of the wave equation in the s•plest c•se, that of 
constant mean velocity and temperature. In this 
ease 0(ln •) Oz = -- 1/H and N• • g(• -- 1)/•H 
are constants, and so the dimensional equation 
for V becomes 

d:V I d V •:(Uo -- c -- u•) 
V=0 

dz • H • •f u•(uo -- c) 
(•.•) 
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•, being the ratio c•,/c, of the specific heats. 
Therefore 

V = (Ae"" 

for some complex co•an•s A, B, where 

n = --}H -• N•io -• 

ß {(k' + l') -- •l(uo -- c)} (3.5) 
withRen• O, orRen= 0andlmn•0, for 
definiteness. The condition n• • 0 for internal 
waves when c is real is 

0 < Uo -• < •/{(•' + 

say. If Uo -- c < 0, or u0 -- c > U,, the w•ves 
are external. 

It can be seen tha• the temperature affects 
U, through H•N • = g(• -- 1)H/• only. Now 
the variation of •he scale height is quite sm•11 
(• 25 per cent) in the atmosphere's lowest 
100 •, and so Uo is nearly independent of the 
temperature and depends principMly on the 
wave numbers. 

In the qu•si-geostrophic approximation the 
horizontal mean of a• + v 'a) is the •me as 
that of •(1 + ka/la)v '•. Therefore the horizontal 
mean of the kinetic energy density in the case of 
constant mean velocity and temperature, 

where asterisks denote complex conjugates. 
Also the horizontal mean of the vertical energy 
flux 

w 

= ne(•o•'/•)n•(-Io•(.o - c) o•'/Oz) 

_ 1 2k-1 i - •o •-%•e':"(.+n*)(I 

__ A,Be-,(n+n*) 

•o • N-auon•e '/• 

= '(IAI" - Isl•)e •'• (.•e•l) 
14 2k-1 •o N-auon• e'/• 

ß (AB* -- A*B)e •" (n imaginary) 
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The meridional velocity perturbation v' be- 
haves like •-,•'e *•"'. Therefore W, is independent 
of height, and Qk varies like 

{lal' + •B**'•'"' + A'Be-""'+ lB["} 
for internal waves (real n), and like 

I AI '• ,='" + AB* q- A*B 

for external waves (imaginary n). We shall 
find that the damped solution (V 
is preferred when the energy source is below 
(el. the tunnel effect of wave mechanics). Then 
the energy flow through a reflecting layer (i.e., 
a region with imaginary n) of thickness h is of 
the order of e -•2h"• times the incident energy 
flux. The values of v = 2Hn in the atmosphere 
can be seen from Figures 15 and 8, and give an 
idea of the rate of trapping. 

Other exact solutions. (i) When 

Uo = constant H = Ho 

• = po(z + Ho/O-" +'-') 

N 2 

we find 

Therefore 

d '• V 1 dV b 

dz•' -- K(z + Ho/•) dz '4- z + Ho/K 
where 

V=0 

ß [(•' + •') - •/(•o - d] 
Therefore 

V = (z + io/•) •+•-• 

ß Z•+,-, (2[b(z q- Ho/K)] •/') 

where Z•+,_. is a Bessel function of order 
(1 q- /•-1). 

The asymptotic solution 

V •-' (z •- Ho/K)(•+2•-')/4 

ß exp {2[--b(z q- Ho/•)] '/' --•r(i + 
The waves are internal if b > 0, i.e. if 0 < u0 -- 
c < uc. We find (using the condition of bounded 

kinetic energy density Qk, and assuming that 
c is real) that, as z-• •, 

• •constant X z -•/• 

W, --* f cønstant (internal waves) 0 (external waves) ' 

(ii) When 

Uo = Uo -•- Az H = constant 

d'•V 1 dV ,• Uo -- C -- •c V 0 •2- H dz a = •o -- c 

where 

and 

a '•----' g(k '• '4- f)(q,- 1)/'•Io•H 

• -- u• + Ma'H 

It has been shown [Charney, 1947] that the 
solution 

V = i exp [(•H-' -- a)z] 

if •p(•; r) satisfies the confluent hypergeometric 
equation 

•q,• - • + rf = o 

where 

• -- (2a/a)(.o - •) 

_2 a 2 H-2 

Two independent solutions are 

q•,(•; r) 

i -- rl•M(1 -- r, 2, •)[ln• 

+ r'(-O/r(0 - =r'(1)/r(1) 

+• i = 1 ,-• ,-o -r v+ 1 

.-¾1 - O '" (-r + n - 1)•. 
(n - 1)•n! 

•-g •ng+ • (r = •) 

•,(•, r) • -rgM(• - r, =, g) 
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where 

M(1--r, 2,•) -- I 
(1 _r) 

1!2! 

+ (1 -- r)(2-- r)•. + ..., 
2• 3• 

The asymptotic expansions of g/• and g/2 are 

q,, ..• [(-•)'/r(r)JG(-r, • - r;- •) 

•. ,.• [•-• •/r(-r)]G(1 4- r, r; ,•) 
where 

G(tz, •;•) ---- I 4- 

•_ /•(/• •- 1)•(• + 1) 2! • q- '" 
Hence Q• --- exp {-(4a• + H-a)'/az}, and the 
waves are exte•l at i•nity where Uo is inflate. 
However, vertical energy propagation bdow the 
branch point • = 0 of the loga•thm is possible 
(cf. an e•mple in section 7). 

So• asymptotic solutions. We can gain a 
little more insight from the as•ptotic solution 
of the wave equation. A few cases of asymptotic 
solutions in terms of •own functions follow. 

(i) •en 

Uo = constant H = Hoe •z/m (• > O) 

we find • • poe -•z/•ø, N • • g•/Ho as z • m. 
Therefore 

V • e (l/2•/Hø•in) • 

where 

2 

n = --•a/4Ho a-- O•[o-•Ho -• 

ß 1(• + •) - •/(•o - d} 
When c is real the waves are internal if 

o < •o - c < ½/•(• + lb + •o•o/4g•] 
(ii) uo = constant, H = Hoe -•z/uø (• > 0). 

Here 

• = po exp (•z/Ho -- Ho/•H) 

•• g(• - •)/• 
ß This • is the same as Charney's •x multiplied 

by •/sin (-r•). However, through • e•or, the 
function tabula•d in his table I is actually the 
present •x. 

Therefore 

V r e -b•z 

where 

(ba-K/Ho) z+Ho/•H 
or e as z--• oo 

•_ g(•- •) = io2.y {(k 2 q- 1 -•) -- i•/(uo -- c) } 
the waves being always external for real c. As 
Z ---> co, Qk r• e -Ho/,•H. 

(iii) uo = Uo q- Az, H = Ho q- Kz (• > 0). 
Here 

V • g 1/4(l+2K-a) 

where 

exp { q-2(b•z/•) 
as Z• oo 

If c is real the waves are always external and 

qk "" z •/• exp { -- 4(baz/t½) •/•} as z --• •o 
(iv) uo = 

Here 
Uo q- Az, H = Hoe'z"ø(g > 0). 

V o• e (1/2•/Hø*in) • 

•-- g(.•- •)(• + •-•)/Io• 
All waves are external. 

General solution. For cases where there is no 
exact solution we must use direct numerical 
integration or some method of approximation. 
Because • changes considerably in a scale height 
of the real atmosphere, the W.K.B. and hke 
methods do not seem suitable (cf. Eckart [1960] 
for a discussion on the use of these methods for 
gravity waves in the atmosphere). It seems best 
to use solutions in layers in which uo, H are 
constant or vary linearly with height. The 

or 

where now 

exp {(a •'-- g/tIo)z + Ho/•H} 

V r e -5•z 

where 

• •/4Ho • -• • k 2 n --= -- -- [o g• IIo- ( q- l •) 
as in case ii. All waves are external. 

(v) u0= U0q- Az, H = Hoe -•z/u (K > 0). 
As in case ii, 
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boundary conditions of continuous pressure and 
vertical velocity enable solutions in adiacent 
layers to be ioined up. The advantages, and 
limitations, of this method are illustrated by 
Eckart's [1930] exact solution of Schr'6dinger's 
equation for a class of smoothly varying functions 
which approximate the potential well. 

4. METHODS OF EXCITATION OF 

PLANETARY WAVES 

Planetary wave perturbations may be pro- 
duced by the action of an external force or 
may be generated spontaneously by some form 
of hydrodynamic instability. Forced perturba- 
tions are produced mechanically by the action 
of continental elevations on the undisturbed 

zonal flow [Charne•t and Eliasser•, 1949] and 
thermally by the action of differential heating 
over the continents and oceans [Srnagori•sky, 
1953]. Self-excited perturbations are due pri- 
marily to baroclinic instability [Charley, 1947; 
Ead•, 1949]. Let us first consider the forced 
perturbations. As we are concerned only with 
the general nature of the vertical propagation 
of disturbances and not with their detailed 

structure, we may assume that the surface 
topography and the distribution of the sources 
and sinks of heat have a sinusoidal variation. 

The influence of topography may be expressed 
simply as a boundary condition on the vertical 
velocity at the mean elevation of the ground 
(• = 0): 

0) = .o(0) 

where we assume the height of the earth's surface 

h = ho• • cos l• (4.2) 

From the data given by Char•] and Eliassew 
[1949] we estimate ho = I km, •o(0) = 5 m see -•, 
and 2•r/k = 14,000 kin, corresponding to the 
azimuthal wave number m = ka cos •bo = 2 at 
•bo = 45 ø, i.e. to two continents and two oceans. 
From these values we obtain 0.2 cm sec -• for 

the amplitude of w'. It is assumed that h is 
small in comparison with the vertical scale of 
the disturbance and that uo(0) is not too small. 
A critical appraisal of these assumptions is 
given in the Appendix. 

Thermal effects may also be represented by 
a condition on the surface vertical velocity if 
it is assumed that the heating •nd cooling occur 

in a relatively thin layer near the surface and 
that the horizontal heat transport in this layer 
is negligible. The first assumption is founded 
on the facts that differential heating takes place 
mainly by condensation, evaporation, and 
turbulent conduction and that the horizontal 

gradient of heating by infrared and solar radia- 
tion is small. Under these assumptions the flux 
of heat, F, into the heated layer must be re- 
moved from the top of the layer by large-scale 
convection. Hence if wl' is the vertical velocity 
component in the planetary wave, pl the mean 
density, and • the mean temperature at the 
top of the layer, 

Smagorinsky's [1953] estimate of 0.3 cal 
min-• for the amplitude of F gives 0.1 cm sec-' 
for the amplitude of w/. However, this estimate 
is at best an upper bound on the magnitude of 
w/, for one cannot justify the neglect of hori- 
zontal heat transfer within the heated layer. It 
has been shown merely that the perturbing 
effect of differential heating is at most comparable 
in magnitude to that of topography. 

At temperate and subtropical latitudes in the 
northern hemisphere the bulk of the tropospheric 
kinetic energy is distributed about equally 
between the low azimuthal wave numbers 

1, 2, 3 and the middle azimuthal wave numbers 
5, 6, 7, 8. At high latitudes the distribution is 
skewed more toward the low wave numbers 

[Saltzman, 1958]. The disturbances in the former 
category are mechanically or thermally forced. 
Those in the latter are a consequence of the 
baroclinic instability of the strong middle- 
latitude westerlies. It is unlikely, however, that 
energy in the latter category is propagated to 
very high altitudes, because the critical wave- 
length beyond which the waves are stable is 
too small to permit vertical transmission, except 
in circumstances where the mean zonal velocities 

at high levels are very small and positive. 
To see this let us examine the case where the 

mean zonal velocity increases linearly with 
height up to the tropopause (z -- h•) and remains 
constant thereafter, N' being assumed constant 
in each layer. It was shown by Char•] [1947] 
that the stability criterion is then nearly the 
same as that for an atmosphere in which the 
zonal velocity continues to increase to infinity. 
One may therefore use the criterion for the 
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latter case, which is expressed concisely by the 
inequality [Gambo, 1950; Kuo, 1952] 

r = (f/ioA + 

o• 

k • + l' > •/2AH + •'N'/4IoZA ' 

where A = dm/dz. It was shown in section 3 that 
the criterion for tra•mission (n= • 0) in an 
atmospheric layer with co,rant N • and constant 
uo is 

k • + f • fi/(Uo - c) - Io=/4H'N ' 

This Nequality must therefore apply to the 
stratosphere in the present case where u0 = uo(h•). 
Now it may be shown (cf. Kuo [1952]) that 
c -- u0(0) = 0 at the critical wavelength, and 
that its real part is positive for amplifying 
disturbances. Hence uo(h•) -- c = Ah• at the 
critical wavelength, and the condition for the 
above inequalities to be satisfied simultaneously 
is 

or 

+ (fi/AH -- fi/Ah•) < 0 

In the atmosphere h• > H, and fi/2f• >> fo/2NH, 
•/AH) TM. Therefore the inequa•ty cannot be 
satisfied. It may be concluded that the unstable 
waves are external and cannot penetra• very 
far into the upper atmosphere. 

If the zonal wind were to decrease with height 
above the tropopause but remain positive, 
upward propagation co•d take place. There is 
arc the possibility that the upper atmosphere 
may itself be unstable, as in the case of the 
polar-night jet. Although these possib•ities 
cannot be discounted, we shall con•e the r• 
mainder of our analysis to forced stationary 
perturbations whose wavelengths may be suffi- 
ciently long to permit upward propagation. 
Such waves are limited laterally by the fiNte 
la•ral extent of the perturbing forces as well 
as of the zonal current wNch, in reality, is not 
•form but has a maximin in middle latitudes 
and decreases to the north and south. The 

mathematical analysis of currents with horizontal 

as well as vertical shear presents great difficulties. 
For the present we shall provide for the lateral 
variation only by selecting the predominant 
Fourier component of the perturbing forces, 
as in equation 4.2. As it happens, the y half-wave- 
length of this component corresponds fairly 
well to the lateral dimension of the zonal current. 

In the following analysis one might think of the 
currents as being confined by vertical rigid 
walls at y = -q-•r/l, since no stationary oscillation 
is possible where u0 vanishes. 

5. BOUNDARY CONDITIONS 

Ground condition. We shall assume here that 

w' = Woe •k• cos ly (z = O) 

for some vertical velocity W0. Its causes, such as 
variable elevation of the ground and heating 
near the surface, are immaterial. 

When W0 = 0 there are free oscillations. Then 

the ground and upper boundary conditions are 
each linear and homogeneous. Therefore there 
is a problem of hydrodynamical stability to 
find the eigenvalues c, and hence the growth 
rates of the waves. From equation 2.18 we obtain 
the boundary condition 

d V duo V = 0 (z = O) (Uo - c) dz dz 
When W0 • 0, a forced oscillation with c - 0 

is imposed by the ground condition. There is a 
steady solution, representing standing waves, 
for each pair of wave numbers unless resonance 
with a free oscillation occurs. On such a steady 
wave may be superposed the small-amplitude 
instabilities of other wave numbers, i.e. the free 
oscillations which are not stable. As these 

instabilities grow, nonlinear effects become 
significant, and the instabilities may dominate 
the steady waves or merge with the mean flow. 
When the steady waves are not obscured by 
instabilities we may use the condition 

Wo d V duo V = -- •o N 2 (z = O) Uo dz dz 

Interfacial conditions. Discussion of the solu- 
tion of the wave equation suggested the use of 
layers at whose interfaces u0 and H or their 
derivatives are discontinuous. The solutions 

for V in the layers can be joined together by the 
boundary conditions that the normal velocity 
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and pressure are continuous (these physical 
conditions could be alternatively proved by the 
theory of the differential equation when n' 
tends to a discontinuous function). Let an inter- 
face have equation 

z= •--•(y)+•' 

where 

h'(x, y, t) = hoe •('-c') cos ly 

First the mean flow must satisfy the boundary 
conditions at the mean interface. The mean 

normal velocity is zero, and is therefore con- 
tinuous at the interface. In order that the mean 

pressure p = R•T be continuous, 

[•/] = 0 (z = •) 

where square brackets are used to denote the 
difference of their contents across the interface. 

The slope of the interface is implied by the 
relation [t•p] = 0, where the increment t• comes 
from any small translation in the interface. 
This leads to Margules' formula 

•U•y = --•o[•o]/g[•] (•.•) 

unless [g] = O. If [•] = O, and the interface is 
not vertical, then [u0] = O. In this case [6p] = 0 
and the second difference [(•] = 0 may be 
used to get 

d•/ dy = --/ouo/g 

The condition that the perturbed interface is 
a material surface is 

•)(z- •,)/ot = o (•.•) 

If u• • c, this gives 

h' : (w' -- v' d•/dy)/ik(uo -- c) (z = •) 

to first order. For continuity of the normal 
velocity, h' must be the same on each side of the 
interface, i.e. 

[(w' -- v' d•/dy)/(Uo -- c)] = 0 

For continuity of pressure, 

o: [• + p'] (z = •) 

(5.3) 

: [•' op/oz + p'] (z = •) 

--- -- gh'[•] d- 1o[•V']/ik 
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With the use of the kinematic condition and a 

little algebra, it can be shown that this yields 

[•w'] = 0 (z: •) (5.4) 

The slope of the mean interface is neglected 
after the conditions have been derived. This may 
be justified by the conditions in section 2. 

If [•]/• << 1 we may approximate the dynamic 
condition by 

[w']: 0 (z = •) (5.5) 

If u0 = c in a layer, the wave equation gives 
V = 0. Therefore W = 0. At the bottom of 

such a layer the boundary condition gives 

w' : 0 h': --v'(dh/dy)/ik(uo- c) 

Thus the layer acts as a rigid horizontal ceiling, 
although the interface really slopes. This totally 
reflects energy, as might have been expected 
on account of the fact that n--> q-i •o as 

u0 -- c-• 0 through negative values. The pertur- 
bation pressure varies at the sinusoidal interface, 
but only nonlinear disturbances are generated 
above it. 

Upper boundary condition. We deduce the 
upper boundary condition from the physical 
assumption that no wave component may 
propagate energy downward at infinity. This is 
the Sommerfeld radiation condition. (See Elias- 
sen and Palm [1954] for its application to the 
similar problem of gravity waves.) If the verti- 
cal energy propagation is necessarily zero (as for 
external waves), the kinetic energy density at 
infinity must be bounded in a physically ad- 
missible solution. 

The ground condition and the equation are 
symmetric in time, there being periodic or steady 
motion of an inviscid fluid. The time asymmetry 
of the upper condition is necessary to permit 
any net energy propagation at all. It is customary 
to regard waves as the asymptotic time limit of 
a component of an initial disturbance, or as the 
inviscid limit of a wave in a slightly viscous 
fluid. The former alternative has been used for 
diverse wave motions and has confirmed the 
radiation condition in each case. The radiation 

condition has also been confirmed by use of 
Rayleigh's 'fictitious viscosity' (a simplified 
viscosity that permits energy dissipation without 
raising the order of the equations of motion) in 
the inviscid limit. 
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We shall verify the radiation condition for q = h{ 1 q-i(k '• -• 12)2KN2/2kn 
bareclinic waves in an atmosphere of constant 
velocity and temperature by use of a real hori- '(Uo -- C)[o 2 q- 0(K2)} 
zontal viscous stress, which acts as a Rayleigh for small K. It follows that B = 0 in order that 
fictitious stress. We shall then takesucha uniform the kinetic energy density Q• be bounded at 
atmosphere above a certain height and use the 
interfacial conditions to join together the solution 
in the region below, where uo and H may vary. 
This will give in all two boundary conditions 
(one at the ground, one at the top interface) 
linear in V and dV/dz for the second-order wave 
equation in V. 

This artificial use of a uniform upper layer, 
where the real atmosphere is by no means uni- 
form, is justified if all energy reaching that layer 
is absorbed in it and not reflected down. The 

model solution will then describe faithfully the 
real flow below but not above the top interface. 
We add the proviso that the top interface be 
below the region where mechanisms, such as 
viscosity and hydromagnetic heating, not in our 
model are important. For a perfect gas the mean 
kinematic viscosity is proportional to T•/'-• -•, 
so that the viscous dissipation per unit volume 
in planetary waves is proportional to 

+ (ooz) i.e. to F-•T •/2, 

which increases rapidly with height. We estimate 
that viscous dissipation becomes important 
above 100 km or so, according to the wavelengths. 
The dissipative effect on the large-scale motions 
of small-scale eddies is more difficult to gage. 
Ohmic dissipation by hydromagnetic effects 
occurs higher up. 

To deduce the radiation condition, take the 
equation for bareclinic waves in a uniform atmos- 
phere with horizontal viscous stress coefficient 
K (of. Kuo [1952]) 

d=V 1 dV 
dz" H dz 

Therefore 

q_ I(k' q- l')(u,, -- Uo q- c)N' (Uo -- C)Io" 

+ 5;550' o 

V = (Ae iqz q- Be-'qZ)e 
where 

q ---- n q- i(k' q- KN'/k/o'(Uo c) 

and n is as previously defined for an inviscid 
fluid. Therefore 

infinity. When K-4 0 this concurs with the 
Sommerfeld radiation condition. 

To find the upper boundary condition, we 
join the solution Vs = As e (•+•s)z•"n above 
the interface (z = hs, say) with the solution 
below. (We use the subscript J for quantities in 
the upper layer; and define •'s -- 2Hns.) On 
elimination of As from the boundary conditions, 
we find 

( Uo dz 
aUo _ \(=zt , 2v IUo, 
dz V)•'• • ins q- d•/dy 

• Uoj Uoj 
• Uo /J •o 

STANDING WAVES IN LAYER AT•OSPH•grS 

v= o (z= 

Many-layer atmosphere. Suppose that the 
atmosphere is isotherma.1 with piecewise con- 
stant velocity; i.e., suppose that 

Uo -- Uoi r -- ri ---- 2Hni 

(hi-x <( z <• hi; ] -- 1, 2, ß ß ß , J) 

with constant H, N • throughout the atmosphere 
in accordance with the neglect of inertial effects 
of temperature variation. Then the general 
steady solution of the wave equation in the j th 
layer may be written as 

Vi = (Di sin niz -}- .El cos niz)e 

(j= 1,2,... ,O r-- 1) 

whether n i is real or pure imaginary. In the 
upper layer, 

Vj : A•e 

in order to satisfy the condition of upward 
energy flux or bounded energy density. 

The ground condition gives 

d•o D• q-e•oE• = --2HN"Wo//•,Uot • Qo (R•) 

say, where 

Ci• • cos ni• Sit • sin 
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The approximate dynamic interfacial con- 
dition, [w'] - 0, gives 

ri(dii Di -Jr- eiiE•) Qk = 
-- (di+•.i Di+• -[-ei+•,iEi+•) -- 0 

= 2,....r - 
where 

ri ---• Uoi/Uo. i+1 

The kinematic interfacial condition, after a 
liffie simplification with the aid of the dynamic 
condition, gives 

(dii -- qiri-l•ii) Di .qt_ (eli _ qiri-•Cii)Ei 

.qt_ qi(Si+l, i Di+l .qt_ Ci+l,iEi+l ) __ 0 

where 

qi ----- 2HN2/g•li 

= -2HN"(al;/ay)/Io(1 - 
and 

= 

The upper boundary condition is 

(dz-l,Z-1- qz_lrz_l-18j_1,J_1) Dj-1 

-{- (ez-l,Z-1- qz_lrz_l-lCz_l,Z_l)Ez_l 

'4F qj-1Aj = 0 (R2j-1) 
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imaginary v (i.e. for external waves). Also the 
kinetic energy density 

(1 + •VC')H•'2V•Wo•'(•e •"') 
02U02 

X fe 1 (n real) 2i, z (n imaginary) 

Two-layer atmosphere. In this case (J --- 2) 
the equations are 

dlo D1 n t- eloE• : Qo 

r(dil Di -• ellEl) -- (1 -]- ir2)A2 -- 0 
and 

(dll -- qr -1S•l) D1 

']-(e• -- q'r-lC11)• -]- qA• ---- 0 

Their solution is 

D1/Qo- (ellt- qr-1C11)/A ' 

E1/Qo-- --(d•t- qr-l•l•)/A ' 

A2/Qo = --•2q/A 

where the discriminant 

A •_ (1 q- i•2) A' 

L•! ---• dlo(ell t -- qr -1 Cll) -- elo(dll t -- qr -1 •gll) 

t-=-- i q- qr/(1 q-i•'O 

We can calculate the transmission coefficient 
The conditions R• (k -- 1, 2, ... , 2J -- 1) of energy flux as follows. The complex amplitude 

are an inhomogeneous system of (2J -- 1) linear A1 of the inciden• wave (with meridional velocity 
algebraic equations to find the (22-- 1) un- varying as e (•*l/•'mz) is «(El- ida), that of 
knowns Dx, Ex, D•., ... , A•. There is a unique 
solution unless the discriminant vanishes, in 
which case there is a free mode with eigenvalue 
½-0o 

One-layer atmosphere. For a one-layer atmos- 
phere we at once get 

the reflected wave, B• (varying as e (-•"•+•/•')z) 
is «(El -• ida), and that of the transmitted wave 
(varying as e (i"•+•/•')•) is A2e-in, •. It can be 
seen that 

V- l nt_ip -- 
Therefore the upward energy flux 

Wz = •'HN•' 
kuo(1 -]- •') 

for real y (i.e. for internal waves) and is zero for 

ß (1 n t- i•, n t- qr) -- qr-l(1 qt_ i•,)} 

:ie'"•{(1 q- i•l)(1 q- i•,. n t- qr) 

-- qr-•(1 q-i•,.)} :-- 2•,,.qA,.e -'•'•' 

If •.,. is pure imaginary, the upper layer is a 
perfect reflector, [All: = and W, = 0 
everywhere. In fact, the transmission coefficient, 
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the ratio of the energy flux of the transmitted 
wave to that of the incident wave, 

W • 

ß 0 (•2 imaginary) 

(•,, •, real) 

•,1 A,.e-'"'"I'N,'/r•(A,B,* -- A,*B,) 
(v: real, v• imaginary) 

0 

2 3 2 2 •--1 _ 4N•a q/rNay•{[l+ qr-- 
1 2 

• •]• • [• -- • • qry• • qr-•] 
• 2 21 • 2 2 

--IVl Y2 /rlv 2 r• 

respectively. 
Two-layer atmosphere with rigid top. If there 

is a three-layer atmosphere with Uo = 0 in the 
upper layer, the boundary conditions can be 
shown to give 

d•o D• + eioE• : Qo 

CHARNEY AND DRAZIN 

+ q,(S=, 

The solution is 

•, =•, q•(t a,, - q,r, -• 

where the discriminant 

d2= D2 q-e==E= = 0 

The solution is 

•)•/Qo = t/a •/Qo = u/a 

Dff Qo = --e22•q q/A E,/Qo = d,2•q q/A 

wilere the discriminant 

Two-layer atmospheres with shear. We shall 
also use the exact solution of the wave equation 
for an atmosphere with constant N a and linear 
zonal velocity. We shall take two two-layer 
models of the stratosphere and troposphere, the 
velocity vanishing at the ground and being 
continuous in each. In the first, the velocity has 
constant shear in the troposphere and is constant 
above the troposphere. In the other the shear 
is constant, positive below and negative above 
the troposphere. 

In each case tile boundary conditions are: 
(a) V = N•,aWo/foA• ß ---- Ro, say (ground, z = 0); 
(b) [V], [W] = 0 (tropopause, z = h); (c) the 
Sommerfeld radiation condition at infinity if 
energy propagation is possible there, otherwise 
the boundedness of the kinetic energy density. 

0) 

H = f H• N = {N• Hs Ns 



PROPAGATION OF PLANETARY-SCALE DISTURBANCES 97 

,,o = f 5z (z < h) 5•, (z>h) 
In this case 

Vs = RoAse •+•'•'/• (z > h) 
After some Mgebm it can be shown •hat 

--(P, 4- Q,)/(P,. 4- Qe) 

(imaginary rs) 

[-(P•P•. 4' Q•Q,) 

+ (Q•r•.- QW•)q/(•C + 

(real Ys) 
where 

P, ---- 2ag,,' -- {a- -}He-' 

+ «(•v • -1 •/•v•) i• + •- } •, 

Q, -- « !,•! (N•/N•)'g,, (• = •, i = 1, 2) 
Also 

As/Ro = e 

(•) 

constant N = {Nv Ns 

A rz (z < h, A • > O) -- 

•s = DsRo•,(l•s , rs) 

Here 

and 

It can be shown that 

-- 

and 

D• = •"•-'"•{• + D•,O/•},.• 
where 

b_ 2as •ks ' [.A,./uo + l/2H-- a] s Ns • •s + N • 
When z • •, •s > 0, and we use the principal 

value of the logarithm in •,. As z decreases to 
< h, •s becomes negative, and one of the branches 
of the logarithm must be chosen. To find the 
correct branch we t•ke the limit of •n amplified 
disturbance (i.e., one with c• > 0) as c• • 0, 
the •le established for hydrodynamicM stabStry 
[cf. Lin, 1955; Kuo, 1952] to get the proper 
inviscid limit. Consider a slightly amplified 
solution of the tMe•ependent equation with 
•= 2•(u0-- c)/A•ndc= c,+ • (c•> 0). 
As z increa•s through the zero of u0 -- c, the 
•rgument of • in the complex plane decreases 
from nearly = to nearly 0 in the upper hMf of 
the complex plane, since • = • + i•, where 
• = -2•dA, •nd A is negative. Hence the 
proper branch of the logarithm is 

This •lection is confirmed by the condition that 
the energy flow in the stra•sphere be upward 
for small A. Thus we find that 

sign •' ' w = • signrsAs•s 

according • In $s = In [$s[ • =i. If [As[ is not 
so large that r is positive we obtain eonfimation. 
If [As[ is so large that r is positive, there w• be 
a conversion of potential energy in the stratm 
sphere and downward ener• propagation below 
the zero of •. Thus we take 

= { ,,k,; •) (•, > 0) 
where •, is compu•d with the principal value of 
the logarithm it contains. 

. 

7. So• Nu•axcan Sonu=oss o• 
LAYER ATMOSPHeReS 

In section 6 we gave a number of models of 
layer atmospheres. Subject to mathematical 
tractability and s•plicity, we chose the models 
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to represent aspects of the real atmosphere most 
relevant to our study. Here we summarize a 
few numerical results with parameters typical 
of temperature and velocity structure at various 
heights and seasons. We hope to gain a view of 
the whole by study of these details. 

In all models, q, ---- c,,/c, = 1.4, g = 9.8 m 
see-',/S = 1.6 X 10-" m -• sec -1, and fo = 10 -4 
sec-•. 

Two-layer atmospheres with no shear. In each 
case 

• -- 2.69 2.92 
• = 2.01i 1.26i 
D•/Qo -- -0.994q-0.0421i -0.0778 
E•/Qo = 3.67 -0.113i 1.23 ' 
Da/Qo = 2.38 -0.897i 2.04-0.519i 
Ea/Qo -- -0.890-2.48i -0.519- 2.04i 
As/QÜ -- 0.113-0.246i (1.51 -5.96i)X10 -5 

Two-layer models with shear. (i) Take Uo = 
3 X 10-sz m sec -• for z _• 104 m, uo = 30 m 
sec -• for z _> 104 m, HT -- 6.69 X 10 a m 
(giving TT ---- 228øK) and Hs = 6.21 X 10 a m 
(giving Ts = 212øK). Then 

H = 7.07 X 10 '• m, N•2/•o •'= 1.69 X 104 

N2/•o 2 = 3.96 X 10 -4 , 

•/ = --0.1, 

q ------ 2HN'•/g•i = --5.71, 
h = 104. 

(i) (ii) (iii) 
uol in m sec -• = 22.5 7.5 10 
uo• in m sec -1 = 7.5 22.5 50 
L--2•r(k •q-12) -1/•inm= 6 X 10 • 6 X 10 • 10 • 

From these parameters we compute the following' 

•l = 2.01i 2.69 2.92 
• -- 2.69 2.01i 1.26i 
D1/Qo - 0.0195-1.03i 0.258 -0.0769 
E•/Qo = -1.08 -0.0391i 0.307 1.22 
A•/Qo -- -0.115 -0.0361i 0.284 2.10 
T -- 0.597 0 0 

Two-layer atmosphere with rigid top. Take 
Uo• -- 22.5 m sec -•, uo• -- 7.5 m sec -•, h• = 104 m, 
h,•= 3X 104m, H= 7.07X 10 •m,N•/f0 • = 
3.96 X 104, n = --0.1, so that 

q = -5.71 L= 6 X 10•m 

Then we compute the following: •l = 2.01i, 
•,. = 2.69, D1/Qo = -- 1.14i, E•/Qo = -- 1.28, 
Da/Qo = 0.534, E,./Qo = --0.390. 

Three-layer atmospheres. In each case H = 7.07 
X 10 • m, N•fo" = 3.96 X 10 4, •/• =--0.1, W = 
--0.4, ql = --5.71, qa = -- 1.43. 

(i) (ii) 
uo• in m sec -• - 7.5 10 
uo• in m sec -• - 22.5 50 
u• in m sec -1 = 7.5 10 
hi in m -- 5 X 10 s 104 
ha in m = 104 10 • 
Linm = 6X 10• 10• 

From these parameters we compute the following' 

corresponding to a lapse rate of 6.8 ø per km in 
the troposphere, and 

NsZ/•o '• = 4.51 X 10 • 

corresponding to an isothermal stratosphere. 
Table I gives the computed values of 
and As for various values of L. 

There is resonance with a free mode with 

eigenvalue c = 0 for L ------7 X 10 • m. Then D 
and As are infinite. 

•s = 0 when L = 1.01 X 10 • m. Below this 
wavelength, all waves are external, and so no 
vertical energy propagation is possible. 

(ii) Take u0 = 3 X 10-sz m sec -x for z _< 10 4, 
u0= 30-- 2.36X 10 -s(z-- 104 ) forz>_ 104m, 
H= 7.07X 10 sm, N• a= }Ns a= 1.41X 10 -4 
see-5 and L = 6.5 X 10 • m. Then we find 
a• = 1.35 X 10 -4 m -1, as = 2.40 X 10 
r• = 0.803, rs = --0.502, D• = 2.63 -- 0.0133i, 
As = --3.98i q- 0.0945. 

Discussion of numerical results. These humeri- 
ca,1 results confirm the general predictions of 
the analogies of the electromagnetic wave 
equation and SchrSdinger's equation. When 
is real in a layer with constant u0 and H, we see 
that V oscillates with z, having an amplitude 
of order ([D[ '• q- El'•)•"e •/•. When • is pure 
imaginary, we find D ---• iE, so that V behaves 
like Ee (•+•)z/"n approximately. The thicker the 
layer in which n is'pure imaginary, the better 
is this approximation. 

For our values of H, N", f0, 

Qo -- -- 2 H NZ Wo/ •oUo1 

•---5.6 X 104Wo/uo• m see-' 

to get the order of m•;gnitude of the velocity in 
each model. It can be seen that this gives 
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V •-• 5 m sec -• if Wo •-• 2 X 10 -a m sec -• at the 
ground. 

In the two-layer atmospheres with no shear, 
waves of length 6000 km are transmitted where 
uo - 7.5 m sec -• but reflected where u• = 22.5 m 
sec -•. In case i the lower layer reflects about 
nine-tenths of the energy. In cases ii and iii there 
is no net vertical energy flux at any height 
because the infinitely thick top layers are 
reflectors. The kinetic energy density in the 
upper layer decreases by a factor of e in half a 
scale height in case ii and a whole one in case 
iii. Although the velocity in the upper layer in 
case iii is more than twice as great as in case ii 
(50 m sec-• against 22.5 m sec-•), the greater 
wavelength chosen (10 ? m against 6 X 106 m) 
permits more energy in case 'fii. 

In the two-layer atmosphere with a rigid 
ceiling, there is again no vertical energy flux. 
The amplitude of the kinetic energy density in 
the lower layer is about double that in the upper. 

Both the selected three-layer atmospheres 
permit vertical energy flux. However, the thick 
reflecting layer where u6 -- 50 m sec -• in case ii 
permits less than 10 -s of the energy released at 
the ground to penetrate to infinity. 

In the thick layer (104 to 105 m) of case ii, 
we find D2 = iE2 to the accuracy of the calcula- 
tion. This shows that the descending exponential 
is picked out. This approximation is not so 
good for the thinner layer (5 X 108 to 104 m) of 
case i, although the negative square of the 
'refractive index' is greater in magnitude there. 

Of the models with shear, case i permits 

vertical energy flux for L > 10 • m, but ii permits 
none. The results for case i are quite extensive 
because it is a fair model of the troposphere 
and stratosphere. 

If the mean velocity and temperature are 
uniform in the upper layer, we can compute 
the energy flux 

__ 1 2 2 re, I,l 

where n is real, •(0) the constant • e •, and A 
equals AsQ6 or AsR•, as is appropriate for the 
case. In case i of the two-layer atmospheres 
with shear, this gives kW•/Wd • 500 g m 
sec -•. If L • 10 • m and Wo • 2 X 10 -8 m sec -•, 
this gives W, •- 4 X 108 g sec -8 --- 4 joule 
sec -•, the order of the tropospheric dissipation of 
energy. Thus it appears that in some circum- 
stances the energy loss by mechanical wave 
propagation into the upper atmosphere may be 
comparable to the energy loss by frictional 
dissipation at the ground. 

8. NONLINEAR THEORY 

Momentum and heat equations. When energy 
is propagated into the upper atmosphere, the 
velocity becomes large and nonlinear effects 
become important. We shall consider these 
effects in this section. To derive the equation for 
zonally averaged flow, we average equations 
2.12 and 2.10. After some manipulation and 
use of the averaged continuity equation 

O(•Vo)/Oy + O(•wo)/Oz = 0 

TABLE 1 

L, km d, km -• D As 

2.93 
1.97 
1.54 
1.23 
1.03 

8.72 
7.41 
6.29 
5.30 
4.41 
3.58 
2.81 
2.O8 

x 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

10 4 
10 4 
10 4 
10 4 

10 4 
10 a 

10 a 
10 a 

10 a 
10 a 
10 a 

10 a 
10 a 

0.9750 
0.800 
0.0857 
0.0923 
0.100 
0.109 
0.120 
0.133 
0.150 
0.171 
0.200 
0.240 
0.300 
0.4OO 

1.6 
1.5 
1.4 
1.3 
1.2 
1.1 
1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 

1.64 2.85 -- 1.61i -- 2.28 + 0.30i 
1.54 1.87 -- 1.60/ --2.68 + 0.01i 
1.41 1.08 -- 1.59i --2.78 -- 0.34i 
1.23 0.24 -- 1.57i --2.96 -- 0.86i 
0.950 -- 1.67 -- 1.35i --2.68 -- 1.69i 
0.358 -- 6.60 -- 0.67i -- 1.40 -- 3.26i 
0.358i 14.9 -- 3.94 
1.51i 51.7 --9.65 
2.06i -- 1.75 7.44 X 10 -• 
2.66i -- 0.85 2.50 X 10 -• 
3.38/ --0.36 7.40 X 10 -• 
4.32i --0.10 1.61 X 10 -• 
5.60/ --0.021 2.20 X 10 -a 
7.80/ --0.0022 8.39 X 10 -• 
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we get 

--O•Xo/Oy at ---- --OM/Oy q- Icrc (8.1) 

O'Xo/Oz at = --OB/Oy -- ]o-•N2wo (8.2) 
where 

• _- Ox' ox__' •,•, (8.•) Ox Oy' -- 

is the eddy momentum flux per unit mass in 
the y direction, 

B ---- 0X' 0X' (8.4) 
Ox Oz 

is proportional to the eddy heat flux in the y 
direction, and the bars denote x averages. 
Eliminating vo and w0 by means of the averaged 
continuity equation, we get 

I 02 __1 1 1 
__ _O2M _ 1)(1 OB) 
Boundary conditions. The boundary condi- 

tion at the ground is obtained by averaging 
w = vh'Vh. Thus 

Ox' 01• Ox' Oh 
+ (s.6) Wo = --Oy Ox Ox Oy 

But, from equations 2.15 and 4.1, 

Oh 'o( O'x' Ouo Ox'.) UO Ox - • Uo ox oz Oz Ox 

and therefore 

(Ox' x' Ouo.• h = --•\• Uo Ozl 
Hence equation 8.6 becomes 

•o (ox' o'x' ox' o'x_' • •o o• 
•o = •, •Tyy o:• o• ox •y Oz/ = -•v' Oy 
and by substitution in (8.2) we obtain 

0% = 0 (z = O) (8.7) 
The boundary condition at a surface of dis- 

continuity is obtained by the methods of section 
5 as follows. The interface has normal 

n --= (OhlOx, OhlOy, -- 1). 

CtIARNEY AND DRAZIN 

In steady flow the velocity is tangential to the 
material interface; therefore n.v = 0, and 
n-Iv] = 0 a forttort. Also the pressure is con- 
tinuous at the interface. Therefore the component 
of the pressure gradient tangential to the inter- 
face is continuous. But v is directed along a 
tangent. Therefore 

0 = [v] ß [grad p] = [v]. [(/oFV, -/oFU, -- g•)] 

These two conditions give 

[w] = [u] Oh/Ox + Iv] Oh/Oy 

[w] = io { [u] [Fv] -- [Fu] Iv] }/g[3] 

= Io(U,V• -- 

identically. The averages of these conditions are 

o( o•'] [Wo] = - 0-5 [X'] Ox / + • 

( o,/• •o i•uo• = __o [x'] [•o] (s.8) 
Oy Ox / g [•] 

[Wo] = ]o(U2'V•' -- u• v,. )/g (8.9) 

(We may not assume in the kinematic condition 
that the zonal mean of v is geostrophic, since 
there will be a net nongeostrophic meridional 
circulation which will tilt the surface of dis- 

continuity.) The perturbation forms of the 
boundary conditions are 

Oh' 

[w'] = [•] 
[w'] = 

from which we obtain 

,o I.: ro,,l 
g [F] L•-•-x ] 

•,.')/g 

a•'/ax = 

With this equation one may show that 

__ ' , , , , Io (u, o, - u• v, ) 
g 

where 

o ( o•' / io on 

II = X:' Ox•'/Ox 

Then equations 8.7, 8.8, 8.9 give 

[.o] = 0 [Wo] = -log -• OII/Oy (8.10) 
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Substitution into equations 8.1 and 8.2 gives 
finMly 

If the flow is not stationary, or there is hori- 
zontal shear in the undisturbed zonal current, 
or higher-order nonlinear interactions are taken 
into account, no such conclusion can be drawn. 
These would seem to be the interesting cases if 
one is to account for trapping when the thermally 
induced upper atmosphere circumpolar vortices 
are weak. 

(z = h) (8.11) 9. APPLICATION TO THE UPPER ATMOSPHERE 

At infinity we require the mean flow to be 
bounded. 

If the surface of discontinuity is one at which 
the vertical gradients of u0 and • are discon- 
tinuous but uo and t> are themselves continuous, 
[x']: [Ox'/Ox] = [w'] -• 0, and H ---- 0. Multipli- 
cation of equation 2.15 by x'/N 2 and integration 
in x then give [B/N •]: 0. Furthermore, M = 0, 
since we have chosen waves with X' • e•' cos ly, 
so that OX'/Ox and OX'/Oy are 90 ø out of phase. 
Thus the surface and interfacial conditions 

become homogeneous. 
Consider now the right-hand side of equation 

8.5. Because of the vanishing of M this may be 
written 

--Io •zz -- • • : • Oyaz 
Multiplication of equation 2.15 by fop'IN • --- 
fd•x•/N • and integration in x give 

•Uo(fo2/N•)B = p'w' (8.12) 

and evaluation of the integrals in equation 2.21 
for a thin horizontal layer for the case of sta- 
tionary flow gives 

(aUo/aZ)(toV V')S = d p'w'lz (8.13) 

the first term on the right-hand side of (2.21) 
vanishing because of the phase shift in OX•/Ox 
and OX'/Oy. Differentiation of (8.12) and substi- 
tution from (8.13) then lead to the result that 
•B/N • and p'w' -- pBuo/N • are independent of 
height if uo • 0. This result was first obtained 
by A. Eliassen who communicated it to the 
authors. It follows that equation 8.5, as well as the 
boundary and interface conditions, are homogene- 
ous, and we may conclude that OXo/Ot vanishes 
identically, i.e., that the second-order changes 
in the zonal flow are zero. 

It follows from condition 3.6 that vertical 

energy propagation in standing waves in an 
atmosphere of uniform basic zonal velocity 
and temperature can occur when the velocity is 
positive but smaller than the modified Rossby 
critical velocity 

In all other cases the waves are trapped. This 
criterion is modified but remains qualitatively 
applicable when the zonal velocity and the 
temperature vary. The Rossby critical velocity 
increases with the wavelengths of the disturbance 
in the zonal and meridional directions, and 
these are determined by wavelengths of the 
exciting forces. The principal Fourier component 
in the spectrum of the northern hemisphere 
topography has an azimuthal (longitudinal) 
wave number of about 2, corresponding to two 
continents and two oceans, and a meridional 
(latitudinal) wave number somewhat greater 
than 2. Hence, if we define L• • 2•r/k and 
Ly •-- 2•r/l, L• _< •ra cos q•0 = 14,000 km at 45 ø, 
and Ly <: •ra = 20,000 km. Taking N • ---- 4 X 
10 -• sec-2, corresponding to an isothermal 
atmosphere, we obtain max Uo <: 38 m sec -•. 
If the fi-plane approximation is not made and 
the motion is expressed in spherical harmonics 
(see section 2), k • q- l • is replaced by n(n q- 1)/a •, 
where n is the degree of the spherical harmonic 
and a is the radius of the earth. The dominant 

n may be determined from the development of the 
earth's topography in spherical harmonics up to 
order 16 by Prey [1922]. He gives the coefficients 
an, amn, bran in the expansion of the nth-degree 
harmonic 

cos mk q- b,.,, sin mk)Pn 'n 
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WINTER 

POLE L,AT• 

Fig. 1. Mean zonal winds in m sec -• in the upper atmosphere for summer and winter (after 
Murgatroyd). 

From these the root-mean-square values can be 
determined 

2(2n q- 1) 2an2 

q_ • (n q- m) ! ]}2/2 ,,,__• (n- m) ! (a'"n2 + bran2) 
It is found that the dominant n is greater than 
3, giving Uc < 38 m sec -• as before. Hence one 
expects trapping when the mean zonal velocity 
exceeds approximately this value, or is negative. 

The best available determination of the mean 

temperatures and zonal velocities in the upper 
atmosphere for winter and summer has been 
given by Murgatroyd [1957] from a critical 
review of all sources of data that were in exist- 

ence at the time of his study. Mean temperatures 
and zonal velocities between the ground and 
30 km have been given by Kochanski [1955] for 
the months January, April, July, and October 
along the 80øW meridian. Murgatroyd's and 
Kochanski's longitude-height sections of zonal 
velocity are reproduced in Figures i to 3. The 
profiles of temperature and N*' averaged for 
the 30 ø to 60 ø latitude belt are shown in Figure 
4. It is seen from Figures i and 2 that the 
planetary waves of middle latitudes cannot be 
expected to penetrate above about 20 km in 

summer and about 35 km in winter. Using 
Murgatroyd's wind and temperature data at 
high levels and Kochanski's at low levels, we 
have calculated •2 averaged between 30 ø and 60 ø 
from the general expression 3.2. The results are 
given in Figure 5 for L --= (L•: -• + L•,-•) -•/• = 
6000, 10,000, and 14,000 kin, corresponding to 
Uc = 13, 31, and 40 m sec -x, respectively. In 
summer • is negative above 20 km, and in 
winter it becomes negative above 30 kin, but 
becomes positive again for L = 14,000 km above 
55 kin. Our qualitative conclusions are thus 
verified. 

We note that there is a jump in • at the 
tropopause due to discontinuities in N • and 
duo/dz. Wave reflection at a discontinuity was 
discussed in section 6, and a numerical example 
was worked out in section 7. In general a dis- 
continuity between two layers transmits a large 
part of the energy unless the index of refraction 
in the upper layer is imaginary. 

Since the winds in the upper troposphere and 
mesosphere reverse in direction from summer to 
winter, we might look for intermediate periods 
in which transmission into these regions becomes 
possible. Batten [1960] has prepared a time section 
of the zonal wind speed from rocket observations 
taken in the western United States at a number 
of stations between 30 ø and 40øN. His section is 
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shown in Figure 6. A composite mean zonal 
wind distribution for the four seasons at middle 

latitudes was compiled by averaging Murga- 
troyd's and Kochanski's data over the 30 ø to 
60øN latitude belt to obtain the s-miner and 

winter curves, and by averaging Batten's data 
over the three-month periods March 1 to June 1 
and September 1 to December 1 to obtain the 
spring and autumn curves. These are shown in 
Figure 7. The absence of appreciable zonal 
velocities in spring signifies that by then the 
winter circumpolar vortex has broken down into 
a number of cellular circulations. It is then no 
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longer possible to treat the wave motions as 
disturbances of a zonal vortex, and values of 
•' computed for spring would not be meaningful. 
The autumn period is dominated by the winter 
circumpolar cyclone, which becomes highly 
developed in the latter half. However, as may 
be seen from Figure 7, the zonal winds are not 
as swift as they later become. Probably for this 
reason the computation of •' for autumn, which 
is shown in Figure 8, does indicate the possi- 
bility of vertical energy propagation into the 
stratosphere. The figure shows that energy which 
tunnels through the layer between 10 and 20 km 

ß 
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Fig. 2. Mean zonal winds in knots between 0 and 30 km for January and July along the 80øW 
meridian (after Kochanski). 
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will propagate to perhaps 60 km but will then 
be reflected by the thick trapping layer above 
that height. If energy could exist at L -- 14,000 
km, it would penetrate to 100 km, but such 
wavelengths are unrealistically large. 

So far no catastrophic changes in the upper 
atmosphere have been reported. If large 
quantities of energy were actually to penetrate 
into the rarefied upper atmosphere, strong non- 
linear interactions could occur which might 
modify the upper atmosphere wind and tempera- 
ture structure in such a way as to insulate it 
against further energy flux. It is remarkable 

that the models so far considered (in which the 
undisturbed zonal velocity is a function of 
height only) permit no such interactions (section 
8). It is impossible at present to say whether 
other models would give very different results. 
More calculations with more realistic models 

are needed to assess the importance of the 
nonlinear interactions. 

The foregoing results arc qualitatively in 
accord with what is known about the motions in 

the upper stratosphere. (The United States 
Weather Bureau 10-mb synoptic charts for the 
IGY period, July 1957 through June 1958, its 
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• ." '". • / ', • ',._,'/•1 / / / / I ' \ " "'•"*'••"•' -ø•,','lllw / I l- 
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ss• • -- .... " / .... ' 

KM 

2O 

I0 

90*N 60 ø I I $0 o i O* 
Fig. 3. Mean zonal winds in knots between 0 and 30 km for April and October along the 80øW 

meridian (after Kochanski). 
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Fig. 6. 
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Vertical time section of zonal winds in the upper atmosphere between latitudes 30 ø 
40øN (after Batten). 

and 

100-, 50-, and 30-mb charts for July 1957, and 
the daily 25-mb charts issued by the Institute 
for Meteorology and Geophysics of the Free 
University of Berlin for the period January 
through March 1958 are available; together with 
tropospheric charts, they give an indication of 
the links between the upper stratospheric, 
lower stratospheric, and tropospheric circula- 
tions.) The circulation in the winter hemisphere 
is dominated by a strong cyclonic circumpolar 

vortex which at times 'breaks down' and forms 

large meanders and cutoff vortices. When the 
westerly winds are strong there is no obvious 
connection between the upper stratospheric 
motions and those in the troposphere and lower 
stratosphere. The breakdown itself appears to 
be due to some form of instability--not baro- 
clinic, perhaps, but barotropic [cf. Murray, 
1960]--rather than to an interaction with the 
lower atmosphere. After the last breakdown, in 

Fig. 7. 
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Composite curves showing seasonal variation of mean zonal winds in middle latitudes 
up to 100 km. 
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March or April, the cyclonic vortex becomes 
progressively weaker, and, at that time, especially 
in lower latitudes, there does appear to be a 
connection between the upper stratospheric 
motions and the lower stratospheric and tropo- 
spheric motions; they are similar in scale and 
move together. As the summer advances, an 
anticyclonic circumpolar vortex is formed, which 
reaches a maximum intensity in July and then 
diminishes until September, when it is quickly 
replaced by the winter cyclonic vortex. The 
summer anticyclone is remarkably steady and 
impervious to all influences from below; the 
low-level influences do not reappear until 
autumn and then only for a short time. The 
qualitative evidence is thus in accord with our 
general conclusions. 

An examination of Batten's time cross section 

(Figure 6) shows that the periods during which 
appreciable lower-upper atmosphere interaction 
can occur are in any case short. This observation 
has an important bearing on the problem of 
the general circulation of the upper atmosphere. 
It implies that during most of the year the 
planetary-wave interactions between the lower 
and upper atmospheres can be ignored. The 
circulations of the two parts would thus appear 
to be self-contained except so far as they interact 
through their axially symmetric components, 
but from considerations of the independence of 
the energy sources for the two circulations it 
would be surmised that this interaction, too, 
is small. 

In summary, we conclude that the escape of 
large amounts of planetary-wave energy from 
the troposphere into the upper atmosphere is 
prevented throughout most of the year by the 
easterly or large westerly zonal winds above the 
tropopause. If propagation does take place, it 
must be during the spring or for a brief period 
in the autumn. But even then there is apparently 
enough trapping to prevent the occurrence of 
an atmospheric corona at the dissipative levels. 
In any event the upper atmosphere acts as a 
selective shor•-wave filter so that the long 
planetary waves produced by forced flow over 
continents or by differential heating over con- 
tinents and oceans are more likely to penetrate 
to high levels than the shorter waves generated 
spontaneously by baroclinic instability. Since 
in most of the year planetary-wave energy is 
trapped in the lower stratosphere, the circulation 
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Fig. 8. The square of the index of refraction 
for autumn, averaged for the period September 
1 to December 1. See Figure 5 for meaning of 
lines. 

in the upper stratosphere and mesosphere is, 
to a large extent, mechanically independent of 
the motion in the lower atmosphere. 
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APPENDIX 

Boundary condition on a mountain. Suppose 
there is a rigid surface with equation 

z = y) 

(the origin of height being chosen so that the 
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horizontal mean of h is zero). The boundary 
condition that this is a streamline is 

w = u o•/ox + •, o•/oy (z = •) 

i.e., 

1 h • O•w/Oz• q_ ... w + • Ow/Oz + • 
= (u + • Ou/Oz + ...) o•/ox 

+ (v + • ovloz + ...) o•/oy (z -- o) 

by Taylor's theorem. Now we have taken 
u --- (u• -• u', v', w') as a superposition of a 
mean zonal flow and a small perturbation due 
to the mountain. Therefore 

w' + • Ow'/Oz + .... (Uo + • •iUo/& 

+ ... + u' + ...) o•/ox 

+ (v' + ...) o•/oy (z = o) 

If Uo(0) • 0, it can be seen that u' is of order 
h and 

w' = Uo Oh/Ox 

on neglect of terms of order h •. If h is absolutely 
integrable and of uniformly bounded variation 
in x, y, it has a real Fourier transform ho(k, l) 
and complex representation 

In this case all the equations and boundary 
conditions are linear, and so all wave components 
are dynamically independent and it is possible 
to confine our attention to a typical component. 
Thus we may put 

h- hoe • • cosly 

and use the boundary condition 

w' - ikuo(O)hoe '•'• cos ly (z- O) 

The linearization of the boundary condition 
has been implicitly based on the assumption 
that h is small for given functions •, N 2, u0 with 
h Ow'/Oz << w', etc. If u0(0)• h(duo/dz)•.o, 
nonlinear interaction of surface components 
occurs. This is illustrated below, where it is 
supposed that h is small for given Uo(Z) with 
u0(0) = 0, (duo/dz),.o • O. Then u' is of order 
h 2, and the boundary condition becomes 

w' = (aUo/aZ),.oa o•/o• 

on neglect of terms of order h 8. If 

go(k', l')e • (•*"•+ •' •) dk' dl' 

we can treat components separately by using 
the condition 

w' - (duo/dz),.o go e •'• cos • ly 
Though go is related to h0 by Parseval's theorem 
and is not easy to derive in general, we can 
calculate go directly if h is purely sinusoidal, 
i.e. if h = h•e •(•+•) is the only surface com- 
ponent. Then 

h Oh/Ox = Rehoeø'•Reikhoe•'• cos • ly 

= --«kho • sin 2kx cos • ly 

from which go may be obtained. Thus the 
boundary condition in this case is 

= •..a Ja•o• •,• w • •t• o t-v-/ e cos • ly 
\ az/,=o 

Note that a sinusoidal mountain excites atmos- 

pheric waves of half its length by this means. 
In the above case there is interaction of the 

harmonic components of the surface elevation 
in producing baroclinic waves, because the 
boundary condition is quadratic in h. However, 
the condition is linear in u', so there is no inter- 
action of the baroclinic waves themselves. 

In fact, atmospheric measurements give 
u0(0) • 5 m sea -• and (duo/dz)•.o • 3 m sea -• 
km-•, and so a complicated mixture of both 
conditions should be used for mountain heights 
of the order of 5/3 kin. Since this is just the 
order of heights that mountains have, strictly 
it is not possible to use a linear theory at all. 
The rigorously required nonlinear boundary 
condition seems intractable, but it is also un- 
warranted in view of other approximations we 
have made (e.g., the assumption that the height 
of the mountain is much less than the height 
of the tropopause, and the linearization of the 
equations of flow). We aim to do no more than 
construct a consistent model close enough to 
the real atmosphere to estimate the nature and 
magnitude of vertical energy propagation. This 
may be done by taking 

Wt ?- WoBi(kz+ 
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a linear boundary condition, which may be no 
more than a definition of Wo(k, l) as a Fourier 
component of w z•.o'. This obviates the problem 
of origin of the motion and can represent any 
surface excitation, be it linear or nonlinear 
mountain waves, or differential surface heating. 
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